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ABSTRACT: We have used the Nernst chemical potential treatment to couple the time domains of 
sodium and calcium ion channel opening and closing rates to the spatial domain of the diffusing 
waves of the travelling calcium ions inside single cells. The model is plausibly evolvable with re-
spect to the origins of the molecular components and the scaling of the system from simple cells 
to neurons. The mixed chemical potentials are calculated by summing the concentrations or 
particle numbers of the two constituent ions which are pure numbers and thus dimensionless. 
Chemical potentials are true thermodynamic free Gibbs/Fermi energies and the forces acting on 
chemical flows are calculated from the natural logarithms of the particle numbers or their con-
centrations. The mixed chemical potential is converted to the time domain of an action poten-
tial by assuming that the injection of calcium ions accelerates depolarization in direct propor-
tion to the amplitude of the total charge contribution of the calcium pulse.  We assert that the 

natural logarithm of the real component (n) of the imaginary term (n i) of any Riemann zeta 

zero (½+n i) corresponds to an instantaneous calcium potential (Zn). In principle, in a physio-

logically plausible fashion, the first few thousand Riemann -zeros can be encoded on this 
chemical scale manifested as regulated step-changes in the amplitudes of naturally occurring 
calcium current transients. We show that pairs of Zn channels can form Dirac fences which en-
code the logarithmic spacings and summed amplitudes of any pair of Riemann zeros. Remarka-
bly the beat frequencies of the pairings of the early frequency terms (Zn - Zn+1, Zn - Zn+2 ….) over-

lap the naturally occurring frequency modes () in vertebrate brains. Action potential con-
trol of calcium transients is a process whereby neuronal systems construct precise step func-
tions; actually Dirac distributions which also underpin the Riemann mathematics. The equation 
for the time domain in the biological model has a similar form to the Riemann zeta function on 
the half-plane and mimics analytical continuation on the complex plane. Once coupled to neu-
rophysiological binding processes these transients may underpin calculation in eukaryotic nerv-
ous systems.

Introduction 

In most receptor-mediated signalling processes in 

biology the external input object, such as a photon 

or a hormone, is rapidly converted into a complex, 

transient chemical disturbance in the cell cyto-

plasm. A major problem in neuronal signalling is 

to understand how the information content of the 

nanoscale chemical perturbation is encoded into 

spike trains for onward transmission over great 

distances and how it is then decoded back into the 

spatial domain in the recipient cell. 

----------------------------------------------------------- 

*Email address: keith.willison@imperial.ac.uk 

Calcium signalling is an ancient and ubiquitous in-

formation transfer system found in all eukaryotic 

cells and sodium channels evolved from calcium 

channels as eukaryotes developed excitable tis-

sues and became larger in the Precambrian around 

540 MYr ago (Liebeskind et al; 2011).  

Although transient intracellular calcium concen-

trations are hundreds of times lower than the 

steady-state sodium ion concentration it is cal-

cium, not sodium, that is the predominant signal-

ling ion species in biology (Smedler and Uhlén, 

2014). Our model treatment here directly couples 

chemical waves made from calcium ions (Laugh-
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lin, 2015) to classical Hodgkin-Huxley action po-

tentials made from sodium ions and then generates 

a heterodyne signalling system. In classical signal 

processing terminology heterodynes are the con-

sequence of mixing two signals at frequencies f1 

and f2 to create two new signals, one at the sum 

f1 + f2 of the two frequencies, and the other at the 

difference f1 – f2. The mixer here is the hybrid ac-

tion potential. 

We use the Nernst chemical potential treatment to 

couple the time domains of sodium and calcium 

ion channel opening and closing rates to the spatial 

domain of the diffusing waves of the travelling 

calcium ions inside single cells. The hybrid chem-

ical potentials are calculated by summing the 

charge contributions from the numbers of the two 

constituent ions which are pure numbers and thus 

dimensionless. Chemical potentials are true ther-

modynamic free Gibbs/Fermi energies and the 

forces acting on chemical flows are calculated 

from the natural logarithms of the particle num-

bers or their concentrations. The mixed chemical 

potential is converted to the time domain of an ac-

tion potential by assuming that the injection of cal-

cium ions accelerates depolarization in direct pro-

portion to the amplitude of the total charge contri-

bution of the calcium pulse.  

 

In principle, in a physiologically plausible fashion, 

the first few thousand Riemann -zeros could be 

encoded on this chemical scale manifested as reg-

ulated step-changes in the amplitudes of naturally 

occurring calcium current transients. We show 

that pairs of Zn channels could encode the spacings 

and summed amplitudes of any pair of Riemann 

zeros and can be described as Dirac fences with 

Shah function properties where the Fourier trans-

form of the signal is itself. Remarkably the beat 

frequencies of the frequency terms of hundreds of 

the early pairings (Zn - Zn+1) overlap the naturally 

occurring frequency modes () in vertebrate 

brains. Action potential control of calcium transi-

ents, via actin-regulated channels, is a natural pro-

cess whereby neuronal systems construct precise 

step functions which are actually Dirac distribu-

tions that also underpin the Riemann mathematics. 

It is possible that these distributions have been 

adapted further by neurophysiological binding 

processes to permit calculation in eukaryotic nerv-

ous systems and ultimately to encode number rep-

resentation in human brains. 

Chemical potential treatment 

Chemical potential is an intensive quantity like 

temperature and always refers to a specific sub-

stance even though that substance may be a com-

ponent of a mixture (Job and Herrmann, 2006). 

Almost invariably, chemical potentials are manip-

ulated as changes between two states rather than 

their absolute values. Here we use chemical poten-

tial analysis to calculate the instantaneous forces 

delivered by flows of sodium and calcium ions as 

they cross cell membranes, through specific, se-

lective ion channels, by travelling down their re-

spective chemical gradients from outside to inside 

cells. 

 

Equation 1: The chemical potential equation quan-

tifying forces acting on chemical flows is 



i=i
0 + RT. ln ni  

 

Because the chemical potential ( is a measure of 

how much the free energy of a system changes 

upon addition to or removal of a number of parti-

cles (ni) from the reference state,i
0,  the units are 

those of an energy, a Gibbs energy, G. In our treat-

ment the concentrations of ions are used for calcu-

lations and therefore the chemical potential is an 

energy density; the partial derivatives of which 

can be thought of as generalized forces. 

 

During the rising phase of a classical Hodgkin-

Huxley action potential, sodium (Na+) ion fluxes 

can be defined using the Nernst equilibrium poten-

tial equation which has the same form as Eq1. 

 

Equation 2: Nernst equilibrium potential equation 

is 

 

 𝐸𝑖 =  
𝑅𝑇

𝑧𝑖𝐹 
ln (

𝐶𝑖
𝑜𝑢𝑡

𝐶𝑖
𝑖𝑛 )  

 

For Na+, the concentration gradient values in mil-

limoles are Cin = 10mM, Cout =140mM. The po-

tential energy is ENa+ = +71mV. Nernst potentials 

are calculated at T=310oK and constant pressure. 
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Equation 3: Summing the sodium and calcium po-

tentials 

 

 i=i
0 + RT. ln Na+ + ln Ca2+ 

 

This paper develops the idea of a two component 

action potential composed of a mixture of sodium 

and calcium ions whose overall total charge re-

mains constant but whose firing time is advanced 

by the addition of “extra” calcium ions during the 

rising phase. The total chemical potential of the 

hybrid action potential is the sum of the natural 

logarithms of each of the two ion currents. 

 

For Ca2+ the concentration gradient values are Cin 

= 0.0001mM, Cout =1.2mM. The potential energy 

is ECa2+ = +125mV. 

 

Equation 4: Adjustment for the fugacity of cal-

cium 

 

We note that calcium (Ca2+) is a doubly positive 

ion compared to the singly charged sodium ion 

(Na+). For the parental sodium-only action poten-

tial containing N particles and total charge N+ the 

number of particles in the hybrid action potential 

with the same charge = N Na+– ½ Ca2+ charge con-

tribution. Every calcium ion replaces two sodium 

ions which yields a linear relationship at all scales. 

 

Figure 1.  
N Ca2+/ N Na+ = tan  = ½ 

The total charge amplitude is always set fixed for any par-

ticular species of spike train and has a value of 1 for fre-

quency calculations (Equation 5). 

The ‘conductance’ of the system is a complicated 

property to calculate because sodium and calcium 

cannot be in equilibrium at the same time and their 

absolute concentrations are ~100 fold different. 

Furthermore the protein ion channels that 

transport them in and out of cells are different, and 

other ionic flows are also in play.  

To simplify the analysis we are going to consider 

the chemical potential of calcium as an instantane-

ous injection into the rising action potential. It is 

known from experimental measurements that the 

relative contribution of calcium ions to an action 

potential is only a few per cent of the dominant 

sodium current. We do not want to get into too 

much mechanistic development of this aspect of 

our model here but it is important to provide an 

estimate the potential dynamic range of the cal-

cium current. Consider a dendritic bouton of vol-

ume 0.1pl receiving a bolus of calcium ions 

through a channel which increases local [Ca2+free] 

by 1M: 1 mole/litre = 6 x 1023 molecules and 

1M/0.1pl = 6x104 molecules. We have used a 

minimum estimate for the volume of a dendritic 

bouton. Dendrites are the computation centres in 

single neurons (London and Hausser, 2005). Ob-

viously if the calcium channel component is mul-

tiplexed into the action potential integral then the 

dynamic range will increase. The time resolution 

of each calcium current injection is comfortably in 

the low millisecond range since protein ion chan-

nels can permit ion flows of ~107 sec-1. It is an es-

sential requirement that a neuronal calculation 

system is fast and action potentials satisfy this 

condition.  

Calcium diffusion for a two channel model 

Let us first consider two identical calcium chan-

nels, closely located in a membrane, which open 

and close at the same time; in phase (Figure 2). 

The two pulses of calcium ions will diffuse into 

the cytoplasm in a semi-circular wave and the lo-

cation where the wave-fronts meet will constitute 

the maximum amplitude of the calcium signal. 

The absolute value of the maximum amplitude 

will be the sum of the two signals minus some con-

stant terms which depend upon the rate of diffu-

sion and dispersion of the calcium ions into the 

half-sphere. The physical location of the wave-
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front peak is estimated to be of the order of a mi-

cron or less (calculation not shown). If we con-

sider two non-identical channels the wave front 

peak location will be steered towards the 

‘weaker’channel; the channel which opens for less 

time and therefore transmits fewer calcium ions. 

The diffusion coefficient of calcium is 2000 m2s-1. 

 

Figure 2. 
Two identical calcium channels (red circles), closely located 

in a membrane, open and close together The two pulses of 

calcium ions diffuse into the cytoplasm in semi-circular 

waves and the location where the wave-fronts meet consti-

tutes the maximum amplitude of the paired signal (blue filled 

arrow). 

 

In vivo calcium transients overlap Riemann zeros 

We assert that the natural logarithm of the real 

component (n) of the imaginary term (n i) of any 

Riemann zeta zero (½+n i) corresponds to an in-

stantaneous calcium potential (Zn).  

 

Assertion:  

Ln n is equivalent to ln (Ca2+
out /Ca2+

in) = Zn 

Let us compare the logarithms of the imaginary 

terms of the -zeros with the amplitudes of the cal-

cium currents (Appendix 1). The concentrations of 

calcium outside neurons, [Ca2+]o ,  compared to 

free-calcium inside cells [Ca2+]i at the Nernst 

equilibrium potential for calcium (+125mV) are 

between 2.5-1.2mM versus 0.0001mM respec-

tively. Calcium enters cells through specific ion 

channels, gated by active F-actin processes, and 

contributes to a rising Na+ action potential and the 

free-calcium concentration rises into the mi-

cromolar range. Therefore we can calculate the 

range of values for the calcium current flows as ln 

([Ca2+]o / [Ca2+]i).  

Figure 3 shows a plot of selected points on this 

range compared to the natural logarithms of the 

first 500 real numbers of the imaginary terms of 

(1/2 +i). It is striking how the two distributions 

overlap in the steepest phase of the exponential 

distribution of the calcium concentration range 

and continue in the limit when the free calcium 

concentration is in the nanomolar range (between 

0 and 1 on the plot). 

Figure 3. 
Plot of ln calcium transients (1-56M) and co-mapping of -

zeros 1-500. The red trace shows ln Ca2+OUT/ Ca2+IN for 1-

56M internal [calcium] in 1M steps ([Ca2+OUT] is con-

stant at 1200M since this external pool is large both in con-

centration and volume; the inflow of calcium does not per-

turb the pool). The distribution is actually smooth at this 

scale since each M step contains a minimum of 6 x 104 ions. 

The black dots on the red curve show ln of the imaginary 

term of selected Riemann -zeros up to 500. Interestingly 

ln 1 and the Nernst equilibrium potential for sodium are 

similar: Na+ = ln 140/10 and 1 = 14.13473 is equivalent to 

[Ca2+IN] = 84.9 (Note: x-axis is truncated at 60). The num-

bers generated during this mapping are shown in Table 1 for 

the first 25 Riemann -zeros. 

 

Conversion of chemical potential equation to the 
time domain 

The following equation converts an instantaneous 

calcium potential (Ca-in), expressed in units of 

micromoles, to a spike train frequency carried by 

a specific sodium action potential type. 
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Equation 5: Converting instantaneous potential to 

frequency 

Na+ channel rate (sec-1). [Na+-Resting (M)]. 
1

([Na−Resting (μM)]−2.[Ca−in (μM)])
        

Units are seconds-1 

Appendix 1 shows the detailed workflow and 

numbers behind equation 5. Table 1 shows the val-

ues for converting the first 25 zeros to the chemi-

cal domain and then to the frequency domain. 

There is a direct reciprocal relationship between 

the frequencies and spatial domains of the ion 

channel chemical potentials analogous to the prop-

erties of Shah functions (Ш) where the Fourier 

transform of a Shah function is itself. The spatial 

domain diffusive-ion structure can be considered 

as a Dirac fence in two dimensions. The chemical 

component therefore contains the property of con-

volution, (C(x)) of F1(x) with F2(x) where the Fou-

rier pair is the product of 1 (p) and 2 (p), because 

logarithms are being summed in the chemical po-

tential equation. 

 

Beat frequencies and transformation to and from 
physical space 

In acoustics a beat is caused by interference be-

tween two sounds of slightly different frequencies. 

This periodic variation in volume occurs at a rate 

equal to the difference between the two frequen-

cies. The derivation of the beat frequencies of con-

structive and destructive interference of sine 

waves requires only straightforward trigonometry 

(not shown). 

Equation 6:                  f beat = f1 – f2 

 

Equation 7: Beat frequency calculation for pairing 

chemical zeros 𝑍𝑛 

               f beat = 
1

1−𝑙𝑛
𝐶𝑎 𝑜𝑢𝑡

𝐶𝑎 𝑖𝑛
 𝑍𝑛+1

   -  
1

1−𝑙𝑛
𝐶𝑎 𝑜𝑢𝑡

𝐶𝑎 𝑖𝑛
 𝑍𝑛

                    

𝑍𝑛 is the largest zero in any particular series 

Beat frequencies occur in any vibrating system 

and in this case the beats are nodes of increased 

calcium concentration adding constructively only, 

since we cannot have negative calcium ion con-

centrations. 

Figure 4 shows a plot of the beat frequencies and 

the calcium amplitudes of the first four Riemann 

zeta zero terms, z1, z2, z3 and z4 coupled to a 1 

kHz sodium channel (Table 1) and paired with the 

subsequent zeros up to z100. Each series forms a 

straight line in this space and all the lines in this 

representation are parallel. Remarkably the beat 

frequencies range from ~1Hz to 17Hz for the first 

100 zeros and overlap the natural frequency range 

of vertebrate brain oscillations (Buzsaki and Dra-

guhn 2004). 

Figure 4. 

Beat frequencies of interacting calcium amplitudes. Red line 

is a plot of the 99 beat frequencies of z1-z2 ……z1-z100. 

Light blue line is a plot of the 98 beat frequencies of z2-z3 

……z2-z100. Green line is a plot of the 97 beat frequencies 

of z3-z4 ……z4-z100. Turquoise line is a plot of the 96 beat 

frequencies of z4-z5 ……z4-z100. The y-axis shows the 

physical amplitude of the mixed signals which are the addi-

tion of the values for the calcium transient shown in Table 1 

(Fugacity column). 

 

Figure 5 shows the beat frequency profiles of pairs 

of calcium transients with repeated, random and 

Riemann zero spacings over the chemical space. 

Each descending series forms a line in beat fre-

quency space which decreases in amplitude as the 

calcium transient terms become smaller. For a 

given spacing mechanism all the lines are parallel 

which is most easily viewed for the evenly divided 

space (Fig 5A) because a simple plane is observed. 
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A single random division run yields a distorted 

plane because the gap sizes vary but if the mean of 

many random runs were taken a planar surface 

would be observed. The Riemann spacings yield a 

beautiful manifold which runs towards the beat 

frequency limit of zero as the terms reduce in am-

plitude. We note that pairs of channels with iden-

tical frequencies (Fig 2) will have a chemical am-

plitude but no beat frequency value; f beat = f1 – f1 

= 0. These identical pairs are summed logarithms 

and it is interesting to note that the Riemann func-

tion has support at the squares of the primes. Alt-

hough the beat frequency would be physically it is 

a secondary property of the behaviour of the 

chemical system. 

 
 

Figure 5 

Panels A, B, C show beat frequencies over the range of the 

calcium gradient (Ca2+ in) shown in column 6 (Table 1). Fig 

5A divides the calcium gradient evenly into 99 segments, 

producing a plane in the state space. Fig 5B shows 100 ran-

dom real numbers (Matlab – rand function), aligned in de-

scending order and dividing the space into 99 segments. Fig-

ure 5C shows the state space divided up into 99 segments 

using the first 100 Riemann zeros. The z-axis shows the 

value of the chemical amplitude of the pairs. 

Discussion 

This paper presents a new way of considering the 

relationship between chemical potentials and ac-

tion potential generation in cell signalling. The 

values and behaviours of the chemical ion compo-

nents are known with high confidence.  An im-

portant aspect has been to minimize the biological 

detail in order to generate the mathematical de-

scription. The outcome is a straightforward state 

space which includes both the chemical and time 

domains of the hybrid system. The scale of the 

chemical space is highly restricted because of the 

low dynamic range of the calcium gradient which 

exists across the membranes of eukaryotic cells. 

The scale is logarithmic and this fact has implica-

tions for understanding the origin of the logarith-

mic properties of sensation scales; the Weber-

Fechner Law. Furthermore, despite the restricted 

scale, the model of the system yields a range of 

beat frequencies which exactly lie on the conven-

tional brain-wave scale (eg ) which is itself 

a logarithmic scale found in all vertebrate brains 

(Buzsaki and Draguhn, 2004). 

We show that the calcium scale can be divided up 

in several ways (Figure 5) which is unsurprising 

since it is a real number line but we have focused 

on dividing the space guided by the properties of 

the Riemann zeta function zeros. One intention of 

our work was to think about effective methods to 

divide up physical space inside cells where order 

disruption by diffusion and thermalization pro-

cesses abounds. It is one of the great innovations 

of eukaryotes that although their cells are much 

larger than bacterial species and are only enclosed 

by single lipid bilayer membranes they are able to 

organize and sub-divide their cytoplasm effec-

tively and reproducibly. It was thinking about di-

visibility and segmentation that caused us to con-

nect our model to discontinuous functions and the 

Riemann zeta function in particular. 
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-zeros and the distribution of prime numbers 

The number of prime numbers less than or equal 

to , (), is well approximated by simple loga-

rithmic integrals. Prime number theorem (PNT) 

asserts that () is asymptotic to  /ln and 

Gauss’s integral is expressed as the reciprocal of 

the logarithm = ∫
1

𝑙𝑜𝑔 𝑡
 𝑑𝑡

𝑡

2
. This integral is called 

the logarithmic integral of , denoted as 𝐿𝑖(𝑥).  

The great insight of Riemann was the enhance-

ment of the 𝐿𝑖(𝑥) integral with an infinite series of 

integrals, 

 (𝑥) =  1 +  ∑
(𝑙𝑜𝑔𝑥)𝑚

𝑚!𝑚𝜁(𝑚+1)∞
∞
𝑚=1  . 

In this equation  is the Riemann  -function   

∑ 𝑛−𝑠
𝑛 =  ∏ (1 − 𝑝−𝑠)−1

𝑝 . 

Note that variable nomenclature is used for the 

real part of the imaginary term of the zero 

(andt). 

Essentially the  -function is a correction term 

which improves the approximation to (). We 

note that PNT is intimately related to natural logs 

and no other flavours of logarithms (Montgomery 

and Wagon, 2006) as is the Nernst equilibrium po-

tential equation.  Interestingly the amplitude of the 

correction terms relative to 𝐿𝑖(𝑥) and the calcium 

amplitudes relative to sodium overlap; the low ly-

ing zeros contribute a maximum of ~ 2% to 𝐿𝑖(𝑥) 

and the biological system has a maximum effect 

on the sodium channel firing rate which is esti-

mated at 1.7 % for a single injection of current 

(first term in Table 1 – 84.9). We remark that our 

equation for converting the Riemann zeros to fre-

quencies has a similar form to the  -function de-

spite operating in different mathematical spaces 

and the original zeta function of Euler over the re-

als. 

The Riemannium 

Polya and Hilbert famously suggested that there is 

a naturally occurring Hermitian operator whose ei-

genvalues are the zeros of (1/2+it) and are there-

fore real and that the heights of the zeros corre-

spond to the frequencies of an unknown vibrating 

system. The mathematical search for the vibrating 

system has predicted the algebraic properties of 

the so called Riemannium (Bohigas, Lebœuf and 

Sánchez, 2001; Leboeuf, Monastra and Bohigas, 

2001) and computational investigations have 

made discoveries about the properties and behav-

iours of the GUE system by examining the ampli-

tudes of the zeros and the nearest-neighbour spac-

ings between the zeros (Odlyzko, 1987). The 

fields of classical and quantum physics have also 

been the landscape for the search for the operator 

because Riemann zeta functions and several other 

types of related zeta functions and Dirichlet L-se-

ries all seem very effective in describing natural 

physical systems (Lapidus, 2008; Schumayer and 

Hutchinson, 2011). Even the realm of quantum 

chaology has been linked to the Riemann zeros 

(Berry and Keating, 2013). Dyson proposed an in-

verse approach to this problem (Dyson, 2010)  

stating that if the Riemann hypothesis is true, then 

the zeros of the zeta-function form a one dimen-

sional quasi-crystal according to the definition and 

constitute a distribution of point masses on a 

straight line, and their Fourier transform is like-

wise a distribution of point masses, one at each of 

the logarithms of ordinary prime numbers and 

prime-power numbers. Our model resembles Dy-

son’s quasi-crystal idea but differs considerably in 

that it also contains its own intrinsic frequency do-

main; the ascending beat frequencies being 

aligned along a one-dimensional line of points 

containing all the pairs of zeros in descending or-

der (Figure 5). The biological line is chemically 

constrained but mathematically speaking it could 

be infinite. In both systems precision is expensive 

because more correction terms are required as the 

systems grow in size. In the slowly ascending Rie-

mann series the integrals on ∁ slowly become in-

creasingly huge in order to effect correction higher 

up the number line (Review: Conrey, 2003). Bio-

logically speaking, correction occurs as the indi-

vidual calcium pulses become smaller and this is 

because enhancement of the precision of the 

chemical system would require more components 

and more energy. We note that Riemann spacings 

are a maximum entropy solution, S=w ln w,  to di-

viding number lines (Katz and Sarnak, 1999 ) and 

it is likely that evolution too found the maximum 

entropy solution to dividing up space and time. 

Presumably this MaxEnt solution (Jaynes, 2003) 

has reached its apogee in the Bayesian calculation 
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centres in human brains. Riemann mathematics in-

volves analytical continuation on the complex 

plane and we note that the points on the beat fre-

quency rays have unique amplitudes and therefore 

knowing one value allows continuation of the se-

ries. This property suggests how single action po-

tential spikes could transfer information via the 

spatial domain in addition to the time-gap between 

a pair of spikes (Rieke et al; 1999). A further sim-

ilarity is that the Riemann function is supported at 

the prime powers and in our state space the pairs 

of identical channels have beat frequencies of zero 

but amplitudes of twice the log of the calcium po-

tential. 

To our knowledge no-one has tried to build a bio-

logical model for the operator and it is our goal to 

develop it further. The Riemann hypothesis has a 

mythical attraction because it addresses an essen-

tial enigma; where does our mathematics come 

from? We assume that mathematics is generated 

by standard activities in our brains and we are 

building an operator using known molecules and 

well understood biological phenomena and esti-

mations of the numbers and kinetics thereof. We 

are not invoking new physics to explain an emer-

gent biological phenomenon. Our model scales 

with system size and therefore incorporates the 

concept of evolvability; mathematical ability can-

not have originated de novo in early humanoids, 

rather it must have built upon pre-existing calcu-

lation systems already in use in vertebrates and 

probably invertebrates too.  
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Appendix 1 

Mathematical workflow for calculating instantaneous calcium transients to beat frequencies 

WORKFLOW 

1. The calcium ion gradient in vivo is; Ca2+
out = 1200 M and Ca2+

in = 0.1 M (effectively zero). 

2. The sodium ion gradient in vivo is; Na1+
out = 140000 M and Na1+

in = 10000 M. 

3. In the model a single injection of calcium ions is deposited during the evolution of a single sodium 

action potential. Since the amplitude of the calcium ion component is around only 1% of the total 

amplitude of the action potential we can ignore time and de-phasing as variables during the cal-

cium influx process and assume an instantaneous deposition process1. Nevertheless, because the 

absolute amplitude of the action potential, and therefore firing timing, is constant for any particular 

rapid-fire spike train, calcium ion addition to an individual action potential will slightly accelerate 

the discharge rate. 

4. Calculations may be performed using moles or particle numbers. Using moles avoids taking ac-

count of the absolute size of the action potentials and the system size. We take the selected value2 

for a single calcium influx (Zn) in micromoles and divide 1200M by Zn. The natural logarithm 

of this ratio yields the chemical potential energy distribution3 

5. Multiply 1200 / Zn by 2 because calcium is a doubly charged positive ion whereas sodium is a 

single charged positive ion. 

6. The sodium ion concentration of an action potential at the time of firing is constant in this model 

and in these initial calculations is set at 10000M, the resting state concentration inside cells4. 

7. Therefore a mole of sodium action potentials will contain 10000M of sodium charges but a mole 

of hybrid action potentials will consist of 10000 – (2 x 1200 / Zn) moles of sodium charges and 2 

x 1200 / Zn moles of calcium charges.  

8. The hybrid action potential will fill up and discharge earlier in proportion to the ‘extra’ calcium 

ions deposited. The acceleration of the firing time is the reciprocal value =  1 / [10000 – (2 x 1200 

/ Zn)]. 

9. Multiply 1 / [10000 – (2 x 1200 / Zn)] by 10000 to set the value of the sodium only action potential 

amplitude to 1.5 

10.  Select a frequency for a train of spikes. For example if this is to be set at 1 kHz then further 

multiply 1000 to convert to Hz. 

 

 

 

                                                 

 

1 Since our model is as minimal as possible we assume an action potential generated by multiple sodium channels and a single calcium 

channel. Suppose that the mean action potential firing rate is 1000Hz and the mean calcium channel rate is 1000Hz, each with some variance 

around the mean, then the activities of the two channel systems are invariably in phase and co-incident. 

2 See Table 1 column 4. We note that the maximum value of an instantaneous influx is unlikely ever to be greater than 100M even with 

multiple calcium channel injections into one mixed action potential. 

3 Energy distribution because chemical concentrations are being manipulated. Calculations using particle numbers yield pure energies. 

4 During a neuronal action potential large changes take place in the membrane potential but the actual concentrations of the positive ions Na+ 

and K+ do not change. Approximately 2 x 106 Na+ ions enter the cell during a single spike phase representing ~0.06% of the total number 

per cell. 

5 This transforms the spikes into Dirac distributions and scales the system with respect to the channel numbers and phasing (see footnote 1). 
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Equation to convert an instantaneous calcium potential (Zn) to a spike train frequency carried by 

a specific sodium action potential type 

 

 

Sodium channel rate (sec-1). [Na+-Resting (M)].
𝟏

([𝐍𝐚−𝐑𝐞𝐬𝐭𝐢𝐧𝐠 (𝛍𝐌)]−𝟐.[𝐂𝐚−𝐢𝐧 (𝛍𝐌)])
 

Units are seconds-1 

 

𝑭𝒁𝒏
= 𝟏𝟎𝟑. 𝟏𝟎𝟒.

𝟏

(𝟏𝟎𝟒−𝟐×𝒁𝒏)
  

 

In this example the spike train frequency is 1kHz 

 

 

STATEMENT: Let the natural logarithm of the real component of the imaginary term of the Rie-

mann zeta zero (1/2+n i) correspond to an instantaneous calcium potential. 

 

Ln n is equivalent to ln (Ca2+
out /Ca2+

in) 
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Table 1 

 

 

 

 
 

 

 

 

 

 

 


