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Abstract  

A novel method for measuring the surface coverage of randomly distributed cylindrical nanoparticles 

(nanorods, nanowires etc.) using conventional atomic force microscopy (AFM), is presented. The method offers 

several advantages over existing techniques such as particle-beam and x-ray diffraction spectroscopy. These 

include, sub-/nanometer vertical and lateral resolution, non-destructive interaction with the sample’s surface 

allowing repeated measurements, user-friendly setup and ambient operating conditions. The method relies on the 

use of a statistical model to describe the variations of the nanoparticles aggregates height as a function of x-y 

position on the sample’s surface measured by AFM. To verify the validity of the method we studied two types of 

randomly oriented networks of carbon nanotubes (CNTs) and silver nanowires (Ag NWs) both processed from 

solution-phase. Experimental results are found to be in excellent agreement with model’s predictions whilst 

analysis of the measured surface height density, together with the nanoparticle’s diameter statistical distribution, 

allow the extraction of the coverage coefficients for all detected nanoparticle aggregates, as well as for the total 

surface coverage. The method can be seen as a new powerful tool for the quantitative surface coverage analysis 

of arbitrary nanoscale systems. 
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1. Introduction  

Quantitative evaluation of surface coverage at the nanoscale[1] is a fundamental requirement for 

many modern surface science applications. The characterization of chemical vapor deposited films[2] 

has usually been accomplished by scanning electron microscopy (SEM) or transmission electron 

microscopy (TEM).[3] However, these techniques are expensive, destructive, rely on vacuum, often 

suffers from surface charging, and at their best, provide semi-quantitative information about surface 

coverage. Hence, there is a need for an in-situ technique with high spatial resolution to evaluate the 

surface coverage of adsorbed species and nanostructures under atmospheric conditions. Recently, 

optical methods such as sum frequency generation,[4] infrared spectroscopy,[5,6] second harmonic 

generation[7–9] or fluorescence-based techniques[10,11] introduced significant advantages over 

conventional particle-beam and x-ray diffraction spectroscopy, due to their surface sensitivity, spatial 

resolution, non-destructive interaction with soft samples and ambient operating conditions.  

Another class of techniques that possess all desired characteristics is the so-called scanning probe 

techniques (SPM). The latter includes atomic force microscopy (AFM),[12,13] magnetic force microscopy 

(MFM),[14–17] scanning tunneling microscopy (STM),[18–21] kelvin force microscopy (KFM),[22–26] and 

scanning near-field optical microscopy (SNOM).[27–30] SPM techniques have so far been used for 

morphological, electrical, optical and magnetic characterization of the sample’s surface, with nanoscale 

accuracy. However, to the best of our knowledge, none of these methods have ever been used to quantify 

the surface coverage of a certain nanomaterial deposited on a solid substrate.  

Here, we present a novel method that can be used to quantify the surface coverage of cylindrical 

nanostructures like carbon nanotubes (CNTs) and silver nanowires (Ag NWs), deposited from solution 

onto different substrates, by exploiting topographic information acquired via standard tapping-mode 

AFM. We develop a statistical model of the height density of the cylindrical nanostructure as a function 

of the diameter distribution and apply it to the experimental results to extract the coverage coefficients 

of all measured height configurations deposited onto the substrate. The validity of the method is 

demonstrated by extracting the coverage spectroscopic coefficients for random networks of CNTs and 

Ag NWs deposited on SiO2 and glass substrates.  
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2. Method: Theory of the Coverage Spectroscopy[1] 

Aim of this work is the evaluation of the coverage distribution of randomly distributed 

nanoparticles/nanostructures over a substrate, through high resolution height measurements performed 

by AFM. The roughness of the substrate and the random distribution of the nanostructures suggest using 

a statistical model to describe the variation of the height versus the position on the sample surface. The 

height density of the randomly distributed nanostructures over the substrate, together with the diameter 

density function of the selected nanostructure, allows the calculation of the coverage spectroscopy of 

the measured sample. For clarity, some of the equations mentioned here have been listed in the 

Appendix.  

 The Delta Model  

Let u and ν be two random variables representing respectively the height of the substrate and the 

height of the cylindrical nanostructures distribution, i.e. CNT, each measured independently with 

respect to a reference plane. The Delta model approximation described here is based on the following 

three assumptions: 

i. The diameter is a deterministic variable with constant value d. 

ii. The height density function 
   1

vf z  of the single-layer nanostructure is represented by the Delta 

distribution centered at its diameter, as shown in (A.1).  

iii. The height 
 k

v  of the superposition of k nanostructures is given by the sum of k independent 

random variables νj and the density function of the total height is given by k – 1 times the self-

convolution [30] of the individual height density, as presented in (A.2). 

Because of the properties of the Delta distribution, the density function of the superposition of k 

nanostructures is the Delta distribution located at the integer multiple kd of the diameter. It is important 

to note that this conclusion is just an application of the average theorem of multiple convolutions: the 

mean value of the convolution between multiple density functions coincides with the sum of the mean 

values of the convolving densities.[31,32]  
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According to the Bayes theorem[31] of the total probability, the density function of the total height 

variable is given by the sum of the product of the probability of occurrence of each nanostructure 

superposition by the density of the corresponding height variable. Let ck be the probability of occurrence 

of k pile-up nanostructures. Assuming there is no substrate, the density of the total height is given by 

the sum in (A.3). The probability of occurrence ck is the coverage coefficient of the k pile-up 

nanostructure configuration. Given the population of all cylindrical nanostructures distributed over the 

measured substrate, the total coverage probability must be unitary (A.4). Since the coverage coefficient 

c0 corresponds to the uncovered configuration, we conclude that the total coverage CN, resulting from 

N nanostructures configurations, satisfies (A.5).  

2.1.1 The Coverage Equation 

The height variable of the substrate is modeled with the random variable u with density  ug z . 

Then, the substrate height is added to each nanostructure height variable
 

,
k

v  k = 0,1…N. Since u and 

νj, j = 0,1…k, k = 0,1…N constitute a set of mutually independent random variables,[31] the density of 

the total height variable z is given by the convolution of  vf z  (A.3) with the substrate density  ug z

(A.6). Substituting (A.3) into (A.6), we conclude that the density function  zf z  of the total height of 

the random superposition of nanostructures over the substrate with known height density function, 

satisfies the coverage equation (1) in the Delta model approximation:  

    
0

N

z k u

k

f z c g z kd


                                                (1) 

From (1) we conclude that the coverage equation is given by the weighted superposition of the 

substrate density function translated at the integer multiples of the deterministic diameter of the 

specified nanostructure. The weighting factors ck are the coverage coefficients.  

2.1.2 The Linear System of Equations 

Assuming the substrate has the known height density  ug z , the coverage equation (1) allows the 

determination of all coverage coefficients ck, k = 0, 1…N. To this end, we form the linear system of N 
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+ 1 linearly independent equations in N + 1 unknowns, namely the coverage coefficients ck, k = 0, 1…N 

(A.7). The factors Bj are the samples of the total height density function measured at every integer 

multiple of the diameter, from the origin. 

Figure 1 illustrates the meaning of the terms in equation (A.7). By knowing the substrate height 

density and the measured samples Bj, we obtain the solution of the coverage spectroscopy from the 

linear system shown in (A.8) and (A.9). Finally, assuming the substrate has a Gaussian height density 

with mean zs and standard deviation σs, the system coefficients ajk in (A.8) assume the simple form of 

(A.10). The assumption of the Gaussian substrate allows the determination of the coverage coefficients 

in (A.9) by knowing only four parameters, more specifically the mean substrate height zs, the substrate 

standard deviation σs, the diameter d of the cylindrical nanostructures and the N + 1 samples Bj of the 

measured height density. 

 

Figure 1: Illustration of the terms in the system of equations (A.7) for the solution of the coverage spectroscopy 

in the Delta model approximation. 

2.1.3 Limitations of the Delta Model  

Besides its simplicity, the Delta model suffers from some limitations and it must be generalized to 

account for the experimental evidence:  

i. The height density of the deterministic diameter is roughly approximated by the Delta distribution. 

In fact, it is apparent that to justify the continuous distribution of measured height values, as 
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resulting from the random superposition of cylindrical nanostructures, the height density function 

cannot be represented by the simple Delta distribution. 

ii. Different diameter statistics must be accounted to represent heterogeneous populations of 

cylindrical nanostructures. 

iii. The Delta model requires that the substrate roughness is comparable to the nanostructure diameter, 

providing satisfactory results only when the Gaussian substrate dominates over the specific height 

densities of the cylindrical nanostructures.  

iv. The substrate is only approximately Gaussian and thus it needs a more general model.  

 Statistical Height Models  

The motivation for the generalized coverage theory is to resolve the limitations of the ideal Delta 

model, providing a simulation environment more suitable for the experimental evidence. Here, we 

formulate the height density theory of cylindrical nanostructures with random diameter distributions as 

depicted in Figure 2. 

                                

Figure 2: Schematics of (a) the diameter density function and (b) of the geometrical representation of the 

cylindrical cross-section with the expected variation of the diameter. 

The statistical model of the height variable ν of the cylinder with a random diameter requires the 

derivation of the joint probability density function[31] between the horizontal position x of the AFM 

probe and the random diameter y (A.11). For this purpose, we formulate the following assumptions:  

y y

 yf y

0y 

(a) 

y y 
y

y y 

(b) 
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1. The random variable x is uniformly distributed in the interval 2x y  with the conditional 

probability density indicated in (A.11).  

2. The joint density  ,xyf x y  (A.12) is given by the product of the conditioned density  x y
f x  

with the probability density  yf y  of the diameter y.[31]  

3. The height density function  vf z  of the cylindrical cross-section with random diameter y is 

then obtained integrating the diameter density  yf y  with the proper surface weight function:  

    
 

2

2
,

y

v y z

I z

z y
f z f y dy z I

y yz z


 


                           (2) 

It is important to remark that for every diameter density, the height density function in (2) is normalized, 

as indicated in (A.13).  

In the following sections, we apply the general equation (2) of the height density function of 

cylindrical structures to the deterministic, uniform and Gaussian-Harmonic random diameter 

distributions.  

2.2.1 Deterministic Diameter  

The deterministic diameter is modelled with the impulsive density located at the diameter value d. 

From the general height density (2), after simple calculations, we obtain the height density of the 

cylinder with the deterministic diameter:  

      
2

1 2
,

2

0 ,
2

y v

z d d
z d

d dz zf y y d f z
d

z z d




      

   


                      (3) 

The mean and the standard deviation of the height variable are reported in (A.14) and (A.15). 

Figure 3 shows the computed height density (3) of the cylindrical nanoparticle with the deterministic 

diameter d = 80 nm. It is evident from the plot that the density function is zero for z ≤ 2d = 40 nm and 

for z > d = 80 nm, while at z = d = 80 nm the density function is singular. Due to the singularity at the 
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diameter height, the density function of the deterministic diameter could be roughly approximated by 

the Delta distribution. 

                                    

Figure 3: Simulation of the height density function of a cylinder with deterministic diameter d = 80 nm. The 

density is identically zero for any height below half-diameter, hence 40 nm in the case shown. 

2.2.2 Uniform Diameter  

The uniform diameter is modelled with the constant density function centered on the nominal value 

d, with the full width specified by the tolerance range Δ, as indicated in (A.16) and Figure 4. 

                      

Figure 4: Schematics of (a) the uniform diameter density function and of (b) the geometrical representation of 

the cylindrical cross-section with the expected variation of the diameter. 
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The height density of the cylinder with a uniform diameter, nominal value d and tolerance Δ, is 

obtained by substituting (A.16) into the general form (2). After some calculations, we obtain the 

following equation:  

 

1 1
2 arctan min 2 , 1 arctan max , 1

2 22

1 1
min 2 , 1 max , 1

2 2

,
2 4 2

v

z

z d z d
z z

f z

z d z d
z z

d
I d

      
          

      
  
       

          
      

  
   
 

       (4) 

Figure 5 shows the simulated plot of the height density function (4) of several cylindrical 

nanostructures with the same nominal diameter but with different tolerances and uniform distribution.  

                                  

Figure 5: Simulation of the height densities of cylinders with uniform random diameters. All curves refer to the 

same nominal diameter d = 80 nm but with different tolerances Δ. 

It is evident that by reducing the tolerance, the height density approaches the case of the deterministic 

diameter shown in Figure 3. 

2.2.3  Gaussian-Harmonic Diameter  

The Gaussian-Harmonic probability density function is a generalization of the Rayleigh probability 

density where both orthogonal amplitudes a and b are normal distributed random variables with the 

same variance σ but with non-zero mean ρ, as shown in (A.17). 



10/27 

 

Let us define the nominal diameter as 2 2d  and the random diameter y equals to the double of 

the geometric mean between the normal random variables a and b, according to (A.18). With simple 

calculations, we conclude that the probability density function of the diameter (2) coincides with the 

overlapping integral between the circular symmetric domain centered at the origin and the center 

symmetric Gaussian joint density  ,abf    centered at the position  , .   From (A.17) and (A.18), 

we conclude that the density function of the Gaussian-Harmonic diameter is given as:  

  

2 2

28
02 2

1
, 0

4 4

y d

y

yd
f y ye I y

 


  

  
 

                                (5) 

When the ratio between the mean value ρ (A.17) and the standard deviation σ becomes large, the 

modified Bessel function of first kind and zero order in the equation (5) is well approximated by the 

exponential function and the density function of the Gaussian-Harmonic diameter approaches the 

symmetric Gaussian profile of equation (A.19). In general, the mean and the standard deviation of the 

Gaussian-Harmonic diameter depend from the variables ρ and σ through integral equations that can be 

solved using numerical methods. The mean is always larger than the peak position and it approaches 

the peak for very large ratios d  .  

The simulations of the height densities generated by the circular cross-section with the Gaussian-

Harmonic diameter distribution are shown in Figure 6. The curves report the height density with the 

fixed nominal diameter d = 80nm, versus different tolerances characterized by the parameter σd. It is 

apparent that when the ratio d
d   becomes relatively large, the density profile approaches the same 

highly peaked shape as the height density obtained from the deterministic diameter shown in Figure 3, 

verifying the correctness of the Gaussian-Harmonic model.  
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Figure 6: Computed plots of the height density for the Gaussian-Harmonic diameter density function at 

decreasing values of the standard deviation. The height density at relatively large tolerance becomes almost 

symmetric and it is well approximated by a Gaussian profile. Decreasing the standard deviation of the Gaussian-

Harmonic diameter density function, the height density begins peaking, loosing gradually the symmetry and 

approaching the highly-peaked profile obtained by the Delta distribution of the diameter density. We remark that 

the Gaussian-Harmonic density approaches the Delta distribution at infinitesimal values of the standard deviation. 

 The Generalized Coverage Theory  

The motivation of the general coverage theory is two-fold:  

1. Confirm the successful results we have verified with the Delta model when the measurement 

conditions were dominated by the Gaussian density of the substrate. 

2. Extract the coverage coefficients under general measurement conditions, implementing a 

realistic statistical height model of both cylindrical nanostructures and substrate. 

2.3.1 Axioms and Assumptions 

In the following section, we list the assumptions used to develop the general coverage theory. To 

begin with, we assume that all cylindrical elements have the diameter distributed with the same known 

density function  yf y . In particular, it can be deterministic, uniform, or Gaussian-Harmonic. The 

height density  vf z of the single circular cross-section is a known function of the diameter statistic. 

The events {j-stacked cylinders} and {k-stacked cylinders} are statistically independent, with 

d-
d
 

d+
d
 d 
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probabilities of occurrence respectively cj and ck, known as partial coverage. The total height
 ˆ
k

z of k 

stacked cylinders, without the substrate contribution, is a random variable given by the sum of the height 

zi, i = 1,…k of each element of the cylinders aggregate, as reported in (A.20). The heights zi are mutually 

statistically independent random variables, distributed with the same density function  vf z . The 

conditioned density function  v k
f z  of the height variable 

 ˆ
k

z of k stacked cylinders is given by k – 

1 times the self-convolution[31] of the individual density  vf z , as shown in (A.21). The total height

 k
z of k stacked cylinders placed upon the substrate is given by the sum of the height 

 ˆ
k

z of the k 

stacked cylinders in (A.20) with the substrate height zs, as indicated in (A.22). The height zs of the 

substrate and the height zi of each cylinder in the stacking aggregate form a set of mutually statistically 

independent random variables.  

The conditioned density function  z k
f z  (A.23) of the total height

 k
z of k stacked cylinders 

placed upon the substrate, is given by the convolution[31] of the height density  ug z  of the substrate 

with the conditioned density  v k
f z .  

a. Coverage Master Equation in the Physical Domain – The total height density  zf z  of the 

entire cylinders’ population stacked in N different configurations and placed upon the substrate, is given 

by the linear combination of N + 1 conditioned probability density functions from (A.23), each weighted 

by the probability of the corresponding stacked configuration:  

      
0

N

z k v k
k

f z c g z f z


                                                 (6) 

The probability ck of the event {k-stacked cylinders} assumes the meaning of the coverage 

coefficient for that event, i.e. how many k – stacked cylinders are present over the entire cylinders’ 

population. The coverage coefficients ck must satisfy the normalization condition for the total 

probability, as shown in (A.24). In particular, the coverage coefficient c0 assumes the meaning of the 

uncovered substrate percentage. Accordingly, the sum of all coverage coefficients between the single 
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layer and the N – stacked layer configurations represents the total coverage C of the cylindrical 

nanoparticles placed over the given substrate, as reported in (A.25). Finally, the conditioned probability 

density function  v k
f z  (A.26) can be conveniently calculated using the convolution theorem of the 

Fourier integral.[32]  

b. Coverage Master Equation in the Conjugate Domain – From the coverage master equation (6), 

we deduce that the total height density  zf z  is given by the inverse Fourier transform of the linear 

combination, through the coverage coefficients ck, of the products between the Fourier transform of the 

height density of the Gaussian substrate with the k – th  power of the Fourier transform of the height 

density of the circular cross-section,[31]  corresponding to the selected diameter statistic:  

            
0

,
N

k

u u z z u k v

k

g z G f z F G c F    



                               (7) 

Equation (7) constitutes the coverage master equation in the conjugate domain.  

2.3.2 System of Coverage Equations  

The unknown coefficients c0, c1…cN of the coverage master equations, either in the form (6) or (7), 

are the solution of the system of N + 1 independent linear equations obtained sampling the measured 

height density at specified height positions. The positions of the height samples can be chosen 

arbitrarily; possible choices are the multiples of the nominal diameter or the positions of the mean height 

at increasing stacking levels. Choosing to sample at integer multiples of the diameter, we obtain the 

sequence shown in (A.27). Each sample Bj of the measured height density evaluated at zj satisfies the 

coverage master equation (6). Providing N + 1 height samples of the measured density profile, we obtain 

the following system of N + 1 independent linear equations:  

  
0

, 0,1, ,
N

k s jz k
k

c f z jd B j N


   K                                    (8) 
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2.3.3 Matrix Representation  

The linear system of equations (8) can be easily represented in the matrix form. To this end, we 

introduce the matrix elements in (A.28), and we define the system matrices in (A.29). Substituting 

(A.28) and (A.29) into (8), the expected matrix form of the coverage master equation is then obtained:  

                             
0

, 0,1 ,
N

jk k j

k

a c B j N


    Ac BK                                    (9) 

The matrix elements in (A.28) can be conveniently calculated using the convolution theorem [31] of the 

Fourier transform, as indicated in the following equation:  

    1 , , 0,1, ,
s

k

jk u v
z z jd

a G F j k N 

 
     K                           (10) 

Finally, the solution of the linear system for the coverage spectroscopy can be obtained by standard 

numerical methods.  

3. Results and Discussion 

In this section, we discuss the applications of the coverage theory to AFM measurements performed 

on solution-processed single chirality (7,5) carbon nanotubes deposited on SiO2 substrates and silver 

nanowires deposited from solution both on glass and SiO2 substrates.  

3.1 Carbon Nanotubes  

Figure 7 illustrates the topography (a) and the height density (b) of (7,5) CNTs wrapped with PFO 

deposited onto a SiO2 substrate, measured with AFM in tapping-mode operation. It is evident from the 

topography the high coverage factor of the CNT networks and the high stacking layer combinations. 

Although the SiO2 substrate height is expected to be in the order of 1-2 nm with respect to the instrument 

reference and to have sub-nm roughness, the height density extends considerably close to 10 nm, 

indicating a large number of CNT stacking layers.  
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Figure 7: (a) Measured topography and (b) height density profile obtained with the AFM operated in tapping-

mode on the solution processed PFO/(7,5) CNT network randomly distributed over the SiO2 substrate. The 

coverage spectroscopy solution assumes the deterministic diameter model and it is shown in the inset of (b). The 

computed total coverage results C = 95.85%, with dominant dual-layer CNT configurations, resulting into the 

coverage coefficient c2 = 35.95%. 

The measured profile has been captured up to 20 nm of maximum height, thus including residual 

high-order CNT stacked configurations. The coverage has been extracted assuming the deterministic 

diameter model of cylindrical (7,5) CNT with nominal diameter d = 0.82 nm.[33] The substrate height 

has been modelled using the Gaussian density with mean height sz = 1.49 nm and standard deviation σs 

= 0.465 nm. Because of the large value of the maximum height zmax = 20 nm considered in this 

measurement, the number of allowed coverage coefficients become very large as well, counting 

C ≈ 96% (a) 

(b) 

0 nm 

9 nm 
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  max
int

s
z zN d  = 25 unknowns. Accordingly, the measured profile shows 25 height samples Bj 

, j = 0,1…25, as it is required by the system matrices in (A.29). Then, the Matlab® script computes the 

26 x 26 = 676 matrix elements using the convolution theorem expression shown in equation (10). The 

solution of the system of 26 linear equations into 26 unknowns is performed by the Matlab® standard 

library. The total computation time, including the measured profile upload and the sample data capture, 

is of the order of one second on a standard computer. The complete list of 26 coverage coefficients is 

listed in the inset of Figure 7(b) and it constitutes the coverage spectroscopy of the measured CNT 

film. It is evident that the substrate surface is almost fully covered by CNTs, indicated by the coefficient 

c0 = 4.15% corresponding to the uncovered SiO2. The single-layer CNT coverage results c1 = 24.1%. 

The largest coverage configuration belongs to the dual-layer CNT, represented by the coverage value 

c2 = 35.95%. Other coverages report c3 = 20.96% and c4 = 8.48%, respectively for the triple and 

quadruple layers. The sensitivity of the coverage spectroscopy is proven by the accuracy of the 

calculations of the coverage coefficients belonging to the long tail of the measured profile. The total 

coverage corresponds therefore to the sum of all coefficients except c0 and it gives C = 95.85% with the 

unitary normalization factor. The blue curve visible in Figure 7(b) is obtained by superposing the 26 

partial densities, each one weighted with the appropriate coverage coefficient. It is apparent that the 

computed coverage spectral decomposition (blue line) provides an extremely good fit of the measured 

curve (red line), confirming the validity of the proposed method.  

We remark that the bell-shaped dashed curves shown in Figure 7(b) represent the partial height 

density function components of the corresponding CNT configuration and they are not Gaussian, even 

if the substrate profile has been modelled with the Gaussian density. In fact, each partial density is 

obtained from the multiple convolution of the deterministic diameter height density function, shown in 

Figure 3, with the substrate Gaussian density profile. 

Figure 8 shows the topography (a) and the height density (b) of a second sample of (7,5) CNTs 

wrapped with PFO deposited onto a SiO2 substrate and measured with AFM in tapping-mode operation. 
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Figure 8: (a) Measured topography and (b) height density profile obtained with the AFM operated in tapping-

mode on the solution processed PFO/(7,5) CNT network randomly distributed over the SiO2 substrate. The 

coverage spectroscopy solution assumes the uniform diameter model and it is shown in the inset of (b). The 

computed total coverage results C = 7.13%, with dominant single-layer CNT configurations with the coverage 

coefficient c1 = 5.79%. 

In this case, the CNT density is significantly lower than the sample shown in Figure 7, as most of 

the substrate area is well visible. Due to the much smaller number of stacking layers, the height density 

extinguishes faster, reaching the negligible tail contribution below the maximum height zmax = 4 nm. 

The small percentage of covered area is confirmed by the relatively large peak of the substrate height 

density shown in Figure 8(b). In this case, the CNT diameter has been modelled using the uniform 

density with the mean value d = 0.82 nm[33] and the full width Δ = 0.144nm. The uniform diameter 

C ≈ 7% 
(a) 

(b) 

0 nm 

3 nm 
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model is justified to account for additional polymer partially wrapped around some CNTs, making their 

effective diameter a statistical variable with uniform distribution. The choice of the diameter statistical 

model, i.e. deterministic, uniform or Gaussian-Harmonic, depends on the result of the fitting procedure. 

Some measurements fit better assuming the simpler diameter deterministic model, assuming that CNT 

population is almost free from any residual polymer. Both uniform and Gaussian-Harmonic diameter 

distributions represent either residual polymer contamination or heterogeneous CNT population with 

multiple diameters.  

The substrate height density extracted from the measurement has a mean s
z  = 0.856 nm and a 

standard deviation σs = 0.2 nm. Because of the small value of the maximum height measured zmax = 4 

nm, the number of allowed coverage coefficients is small as well, including only   max
int

s
z zN d 

= 4 unknowns. The measured profile reports 4 height samples Bj , j = 0,…4, according to the system 

matrices shown in (A.29). The large percentage of uncovered substrate area is indicated by the coverage 

coefficient c0 = 92.87%. The CNTs are almost distributed in the single-layer as indicated by the 

coverage coefficient c1 = 5.79%. The dual, triple, and quadruple layer configurations give respectively 

c2 = 1.19%, c3 = 0.1%, and c4 = 0.05%. The total coverage results therefore C = 7.13% with the unitary 

normalization factor. Except for the small region between the tails of the substrate density and the partial 

density of the single-layer, the extracted curve (blue line) fits very well the curve of the measured profile 

(red line).  

3.2  Silver Nanowires  

In this section, we consider the AFM measurements of two samples of silver nanowires (Ag NW) 

deposited respectively from solution on a glass substrate and on a SiO2 substrate. Silver nanowires are 

deposited on the substrate without any additional polymer and the measured height density is 

determined by the variation of the diameter along the nanowire itself, the different stacked superposition 

and the substrate roughness. However, silver nanowires have usually a much larger diameter than the 

substrate roughness, even for bare glass substrates, producing high resolution height measurements. 

The manufacturing process generates relatively large tolerances of the diameter among the Ag NW 
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population, requiring either the uniform or the Gaussian-Harmonic diameter statistic to correctly 

represent the experimental evidence.  

The inset of Figure 9(a) shows the topography of a single Ag NW located in a small area of the 

substrate. Despite the area scanned, the entire substrate was covered with many randomly distributed 

Ag NWs from the same batch with a nominal diameter d = 75nm. Since the area measured by the AFM 

probe shows only one Ag NW sample, the statistical model of the diameter applies to the radial 

uniformity of the cylindrical nanostructure instead of the ensemble model of the entire Ag NW 

population. The height profile of the single Ag NW topography shown in the inset of Figure 9(a) was 

processed, and the height density profile shown in Figure 9(b) was obtained. In this case, the Gaussian-

Harmonic diameter model was used, as suggested from the diameter distribution provided by the Ag 

NW manufacturer. The maximum height of the measured interval results zmax = 120 nm. In order to 

model the diameter with the Gaussian-Harmonic density, a good match with the measured profile was 

found by setting the nominal diameter to d = 75.7 nm with the standard deviation σd = 0.459 nm. The 

glass substrate was modelled using the Gaussian density with mean height s
z = 5.8 nm and standard 

deviation σs = 2.4 nm. The simulated curves shown in Figure 9(a) are the density function of the 

Gaussian-Harmonic diameter (black line), the Gaussian substrate height (red line), the stand-alone Ag 

NW height (blue line) and the total height of the Ag NW placed onto the rough glass substrate (purple 

line). All these curves have unit area as they are probability densities. Figure 9(b) shows the measured 

height density (red line) and the superposed extracted height density (blue line) obtained with the 

coverage spectroscopy method. Since there is only one sample in the scanned area, the system of 

equations (9) contains only two linear equations with two unknown coverage coefficients, namely the 

uncovered substrate coefficient c0 and the single layer coverage coefficient c1. The inset in Figure 9(b) 

shows the detailed profiles of the measured and computed height densities. The computed curve 

provides a good fit to the measured profile and it also highlights the asymmetric shape of the peak, 

which is in agreement with the prediction of the theoretical model. The total coverage results C = c1 = 

5.48%.  
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Figure 9: (a) Simulation of the density function of the Gaussian-Harmonic diameter (black line), the Gaussian 

substrate height (red line), the stand-alone Ag NW height (blue line) and the total height of the Ag NW placed 

onto the rough glass substrate (purple line). Inset: measured topography. (b) Height density profile obtained with 

the AFM operated in tapping-mode on the random network of silver nanowires distributed over the glass substrate. 

The solution of the coverage spectroscopy algorithm assumes the Gaussian-Harmonic diameter model and it is 

shown in the inset of (b): the total coverage results C = c1 = 5.48% and corresponds to the coverage of the single 

Ag NW deposited in the scanned area. 

The inset of Figure 10(a) shows the topography and the height density of a different sample of Ag 

NW deposited onto SiO2 substrate. The diameter is larger as indicated by the right shift of the peak 

position in the height density function. The SiO2 surface is flatter than the glass surface, and this is 

evident comparing the different Gaussian peak amplitudes of the substrate height densities shown in 

Figure 9(b) and Figure 10(b).  

C ≈ 5.5% 

(b) 

(a) 
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Figure 10: (a) Simulation of the density function of the Gaussian-Harmonic diameter (black line), the Gaussian 

substrate height (red line), the stand-alone Ag NW height (blue line) and the total height of the Ag NW placed 

onto the SiO2 substrate (purple line). Inset: measured topography. (b) Height density profile obtained with the 

AFM operated in tapping-mode on the random network of silver nanowires distributed over the SiO2 substrate. 

The solution of the coverage spectroscopy algorithm assumes the Gaussian-Harmonic diameter model and it is 

shown in the inset of (b): the total coverage corrected by the normalization factor results C = c1 = 1.96% and 

corresponds to the coverage of the single Ag NW deposited in the scanned area. The uncorrected coverage instead 

is C = 1.83%. 

A good match for the measured profile was found by adjusting the nominal diameter to d = 111.5 

nm with the standard deviation σd = 0.61 nm. The SiO2 substrate was modelled using the Gaussian 

density with mean height s
z = 4.25 nm and standard deviation σs = 0.69 nm. The position of the height 

peak is well captured by the fitting model even if some residual fluctuations of the height density 

background, reasonably attributed to the measurement calibration, are still visible. In this case, the flat 

substrate emphasizes the sharp falling edge of the density profile at the nominal diameter value, 

confirming the theoretical model behavior we obtain when the diameter is much larger than the substrate 

(a) 

(b) 

C ≈ 2% 
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roughness. Because of the low value reached by the normalization factor N , the coverage coefficients 

must be corrected in this case, by dividing them by the normalization factor, i.e. 

1
0.0183 0.934 0.0196C c  N , corresponding to the uncovered area of the scanned surface equal 

to 
0 0

0.9157 0.934 0.9804C c  N . We remark that these calculations consider the correction of 

the normalization factor 0.934N . In conclusion, the corrected total coverage is 1.96%C  , while 

0
98.04%C  .  

At this point it is important to note that all scanning probe techniques present some native distortion 

when measuring highly resolved vertical profiles of isolated nanoparticles, like cylindrical nanoparticles 

with large diameters placed upon very low roughness surfaces. This is due to different probe resolutions 

available along vertical and lateral axes that distort the profile image and generate coverage coefficients 

larger than the expected/actual.  

Unless the shape of the probe is known and de-convolved from the acquired data, the measured 

height profile will result distorted, mainly in the transversal direction, showing an artificial elliptical 

section instead of the expected circular one. The different native resolution available along vertical and 

lateral axes is determined by the different atomic force interaction established between the probe shape 

and the sample surface.  

Conclusions 

In conclusion, we presented a new method for the calculation of the coverage coefficients of 

randomly distributed cylindrical nanoparticles, and their random networks, by using the topography 

obtained through AFM measurements. The diameter of CNTs, Ag NWs, and more generally of any 

cylindrical nanostructure, has been modelled as a random variable distributed with deterministic, 

uniform or Gaussian-Harmonic density function. The height density function has been derived for each 

diameter distribution and for any cylindrical aggregate order and it was used to generate the master 

coverage equation. The coverage spectroscopy method has been successfully tested on several 

aggregates of randomly distributed CNTs and Ag NWs, thus providing a functional and extremely 

useful new technique for a more accurate and in-depth surface characterization.  
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Appendix A 

Material Preparation: Single-walled carbon nanotubes (Sigma-Aldrich, CoMoCat SWNTs, diameter 

0.7 – 0.9 nm, SWNT content ≥ 77%) were dispersed in toluene together with polyfluorene [poly(9,9-

di-n-octylfluorenyl-2,7-diyl)] (Sigma-Aldrich, Mw
 ≥ 20000). The mixture was then subjected to 

ultrasonication, centrifugation and vacuum filtration. A detailed description of the full procedure can 

be found in the work of Bottacchi et al.[33] Silver nanowires (Blue Nano, average diameter: 90 (±20) 

nm, average length: 30 μm) were dispersed in isopropyl alcohol in a concentration of 2 mg/ml. Both 

solutions were spin-coated at 1000 rpm for 30 s, followed by 15 min thermal annealing at 90°C to 

remove residual solvent.  

Surface Characterization: Surface topography images and height distributions were obtained using 

the Agilent 5500 SPM atomic force microscope operating in tapping-mode. Budget Sensors Tap300Al-

G silicon probes were used, with a spring constant of 40 Nm-1 and a probe-radius <10 nm. Image 

planarization and simulations were performed using Gwyddion 2.38 and Matlab R2015a. 
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