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Domain Wall Energy

We define the wall formation energy, Fw as

_ lEWall - EDomain (Sl)
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where Eway and Epomain are the energies of the wall and bulk domain supercells respectively
(each cell contains 200 atoms) and S is the wall area contained in the supercell. The factor

of 1/2 accounts for the two walls in the supercell.

Born Effective Charge Polarisation

Method

We calculated the layer by layer polarisation P with Born Effective Charges such that

1
P= 5 Z w;diuy, (82)

where Z; and u; denote the Born Effective Charge and displacement from a reference high
symmetry position of the ith ion. Weights w; scale the contributions of ions shared with
neighbouring cells that lie on the edges or vertices of the volume  (e.g. an ion lying on a
face—center is shared between two cells and hence w; = 1/2). The sum runs over all atoms

contained in the volume in which the polarisation is computed.

Axial Strain

Axial § strain was estimated by the expansion/compression of perpendicular distances be-
tween Cs—Pb-I planes relative to such a distance in the wall super cell where the bulk

properties were recovered. Layer widths were calculated from taking distances between av-
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erage positions of Cs and Pb cations in a given plane; these approximately correspond to

the width of the dotted blue box along § in Fig. 2a).

Data
The input files and data required to reproduce our results are on Zenodo at https://doi.
org/10.5281/zenodo.2546900. Included are the following files:

e HT and HH twin input and structure files relaxed to forces smaller than 10 meV /A.

e Relaxed Ij/mecm conventional 20 atom wall cell, relaxed to forces smaller than 10

meV /A.

e 200 atom bulk domain structure adapted to the geometry of the wall supercells for

calculating wall formation energy.

e Cubic Pm3m structure relaxed to 1078 eV and associated Born Effective Charges.

As stated in the manuscript, all calculations were performed with VASP 5.4.4%% using the
PBEsol exchange-correlation functional.” Valence electron configurations 6s*, 6s26p* and
5525p5 were employed for Cs, Pb and I respectively with the supplied Projector-Augmented-
Wave pseudopotentials generated in 2002. 5397 We used an energy cut-off of 500 eV for the
plane-wave basis set and, for the wall supercells, a 4 x 5 x 1 Monkhorst-Pack grid.® The grid

was scaled appropriately for the cubic and tetragonal structures.
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