Supporting information for: First Principles Study of Ferroelastic Twins in Halide Perovskites

Andrew R. Warwick,[†] Jorge Íñiguez,^{‡,¶} Peter D. Haynes,[†] and Nicholas C.

 $Bristowe^{*,\S,\dagger}$

†Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
‡Materials Research and Technology Department, Luxembourg Institute of Science and
Technology, 5 avenue des Hauts-Fourneaux, 4362 Esch/Alzette, Luxembourg
¶Physics and Materials Science Research Unit, University of Luxembourg, 41 Rue du Brill,

L-4422 Belvaux, Luxembourg

§School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, United Kingdom

E-mail: N.C.Bristowe@kent.ac.uk

Domain Wall Energy

We define the wall formation energy, $E_{\rm W}$ as

$$E_{\rm W} = \frac{1}{2} \frac{E_{\rm Wall} - E_{\rm Domain}}{S},\tag{S1}$$

where E_{Wall} and E_{Domain} are the energies of the wall and bulk domain supercells respectively (each cell contains 200 atoms) and S is the wall area contained in the supercell. The factor of 1/2 accounts for the two walls in the supercell.

Born Effective Charge Polarisation

Method

We calculated the layer by layer polarisation \mathbf{P} with Born Effective Charges such that

$$\mathbf{P} = \frac{1}{\Omega} \sum_{i} w_i \mathbf{Z}_i \mathbf{u}_i, \tag{S2}$$

where \mathbf{Z}_i and \mathbf{u}_i denote the Born Effective Charge and displacement from a reference high symmetry position of the *i*th ion. Weights w_i scale the contributions of ions shared with neighbouring cells that lie on the edges or vertices of the volume Ω (*e.g.* an ion lying on a face-center is shared between two cells and hence $w_i = 1/2$). The sum runs over all atoms contained in the volume in which the polarisation is computed.

Axial Strain

Axial $\hat{\mathbf{s}}$ strain was estimated by the expansion/compression of perpendicular distances between Cs–Pb–I planes relative to such a distance in the wall super cell where the bulk properties were recovered. Layer widths were calculated from taking distances between average positions of Cs and Pb cations in a given plane; these approximately correspond to the width of the dotted blue box along \hat{s} in Fig. 2a).

Data

The input files and data required to reproduce our results are on Zenodo at https://doi. org/10.5281/zenodo.2546900. Included are the following files:

- HT and HH twin input and structure files relaxed to forces smaller than 10 meV/Å.
- Relaxed I_4/mcm conventional 20 atom wall cell, relaxed to forces smaller than 10 meV/Å.
- 200 atom bulk domain structure adapted to the geometry of the wall supercells for calculating wall formation energy.
- Cubic $Pm\bar{3}m$ structure relaxed to 10^{-8} eV and associated Born Effective Charges.

As stated in the manuscript, all calculations were performed with VASP 5.4.4¹⁻⁴ using the PBEsol exchange-correlation functional.⁵ Valence electron configurations $6s^1$, $6s^26p^2$ and $5s^25p^5$ were employed for Cs, Pb and I respectively with the supplied Projector-Augmented-Wave pseudopotentials generated in 2002.^{1,3,6,7} We used an energy cut-off of 500 eV for the plane-wave basis set and, for the wall supercells, a $4 \times 5 \times 1$ Monkhorst-Pack grid.⁸ The grid was scaled appropriately for the cubic and tetragonal structures.

References

- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561.
- (2) Kresse, G. Ab Initio Molekular Dynamik für Flüssige Metalle. Ph.D. thesis, Technische Universität Wien, 1993.

- (3) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15 – 50.
- (4) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169.
- (5) Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. *Phys. Rev. Lett.* **2008**, *100*, 136406.
- (6) Blöchl, P. E. Projector Augmented-Wave Method. *Phys. Rev. B* **1994**, *50*, 17953–17979.
- (7) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B* 1999, *59*, 1758–1775.
- (8) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. *Phys. Rev.* B 1976, 13, 5188–5192.