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Abstract 

Climatic conditions, population density, geography, and settlement structure all have a strong 

influence on the heating and cooling demand of a country, and thus on resulting energy use and 

greenhouse gas emissions. In particular, choice of heating or cooling system is influenced by 

available energy distribution infrastructure, where the cost of such infrastructure is strongly 

related to the spatial density of the demand. As such, better estimation of the spatial and 

temporal distribution of demand is desirable to enhance the accuracy of technology assessment. 

This paper presents a Geographical Information System methodology combining the hourly 

NASA MERRA-2 global temperature dataset with spatially resolved population data and 

national energy balances to determine global high-resolution heat and cooling energy density 

maps. A set of energy density bands is then produced for each country using K-means 

clustering. Finally, demand profiles representing diurnal and seasonal variations in each band 

are derived to capture the temporal variability. The resulting dataset for 165 countries, 

published alongside this article, is designed to be integrated in a new integrated assessment 

model called MUSE (ModUlar energy systems Simulation Environment), but can be used in 

any national heat or cooling technology analysis. These demand profiles are key inputs for 

energy planning as they describe demand density and its fluctuations via a consistent method 

for every country where data is available.  
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Highlights  

- A high-resolution spatio-temporal approach for estimating global heat and cooling 

energy demand.  

- K-means clustering for deriving energy density bands of each heat and cooling energy 

demand.  

- Open-access data for spatial energy density bands for 165 countries covering 99.96% 

global energy users.  

- 5% of heat demand is at very high energy densities worldwide, while >50% is at very 

low density. 
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Nomenclature  

DES District energy systems 

DHC District heating and cooling 

DH District heating 

DC District cooling 

MUSE ModUlar energy systems Simulation Environment 

IAM Integrated assessment model 

GIS Geographic information system 

HDH Heating degree hours   

CDH Cooling degree hours  

SH Space heating  

SC Space cooling 

WH Water heating 

c Cell 

d Day 

h Hour 

Tc,d,h Temperature in a cell for a specific day and hour 

Tref Reference temperature 

WH Waiting factor for Water heating  

kc scaling factor 

𝑃𝑂𝑃𝑑𝑒𝑛𝑐
 Population density per cell 

ISH Index for space heating  

ISC Index for space cooling  

IWH Index for water heating  

E Energy consumed 

ED Energy density 

ESH Energy demand for space heating 

EWH Energy demand for water heating 

ESC Energy demand for space cooling 

GWh Gigawatt hours 

km2 Square kilometre 

EDB Energy density band 

ONC Optimal number of clusters  

EM Elbow Method 

Wk  Average internal sum of squares 

k  Number of clusters 

nr  Total members points in the cluster 

R Cluster 

Dr Sum of distances between points 

di and dj Points belonging to a cluster 
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1. Introduction 

The residential sector accounts for almost a third of final energy consumption globally and 

is an equally significant source of CO2 emissions [1]. In particular, space and water heating 

account for approximately half of that consumption and are usually dominated by fossil fuels, 

thus representing a significant opportunity to reduce CO2 emissions. Furthermore, cooling 

demand is growing rapidly both in high-income countries and in emerging economies such as 

India and China [2], where the electricity that powers these technologies is currently relatively 

emissions-intensive, [3]. To address the challenge of reducing building sector emissions, a 

number of advances in building design, technology, and policy have emerged, making it 

possible for energy use and emissions to decline significantly [4]. However, this will require 

dramatically increased use of low carbon technologies, alongside development or expansion of 

associated infrastructures and supply chains. 

Energy systems models have emerged as a key tool to investigate different plausible climate 

change mitigation strategies. Several such models indicate that conventional unabated fossil-

fuelled heating technologies must be replaced by lower carbon technologies if climate change 

mitigation targets are to be met [5]. Therefore technologies such as district heating and cooling 

(DHC), heat pumps, hydrogen-fuelled boilers or micro-combined heat and power will become 

more prevalent. When considering these technology options, it becomes apparent that the 

magnitude, and spatial and temporal variability of heat and cooling demand are of significant 

importance. This is because the costs of the infrastructure associated with each technology 

solution (e.g. district heating networks, gas/hydrogen networks, electricity networks) is an 

important determinant of its relative advantage [6]. As these costs depend upon the length, 

capacity and topology of those networks, detailed data on the spatial and temporal distribution 

of heat and cooling energy demand is needed. Space heating (SH), space cooling (SC) and 

water-heating (WH) demands are highly dependent on geographic location due to different 

climate conditions, population densities, economic situations and differences in heating 

practices. Understanding these variations is a central part of understanding which heating and 

cooling system of technologies and infrastructure will be most effective in each location. 
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The assessment of energy demand density is a significant factor in overall energy 

investments due to associated infrastructure costs (e.g. distribution pipes for district heating 

and cooling systems). Thus, energy demand density assessment plays an important role in 

seeking transition pathways to decarbonise the residential sector. The end-use energy demand 

density is the total demand for a heating or cooling service for a defined area; street, 

neighbourhood, city, country or region [7]. To estimate the end-use energy demand density of 

a defined area, studies have begun to use gridded population density data [8], combined with 

temperature profiles and other data to derive spatially-resolved energy demand [9]. Table 1 

categorises these studies in terms of the approach used, the resolution of data inputs and results, 

and consideration of demand density. Most of these studies were focused on Europe, USA and 

China. The main approaches are the use of national energy balances such those presented by 

the International Energy Agency (e.g. India building energy demand estimations [10]), the 

national energy authorities (e.g. Europe’s heat roadmap  [11], USA and China’s building 

energy use [8], Denmark’s district heating assessment [12] and German’s residential building  

heating and cooling demand [13]), the United Nations database as in [14], and other research 

initiatives as the use of climate model’s output of mean monthly temperature [15], and the use 

of energy demand surveys [16]. In contrast to heating demand studies, cooling demand studies 

are rarely found in the scientific literature. Table 1 also presents relevant studies that estimate 

the demand for space cooling at country and regional level. Based on the reported literature, 

space cooling demand estimates are presented in more detail for the European Union at the 

country and regional level (e.g. nationwide estimations [11], accounting for measurement of 80 

weather stations across UE [17], and at sub-national scale estimates [18]). Overall, a systematic 

assessment of the spatio-temporal variations in end-use heat and cooling demand for the world 

at the country scale was not present in the literature prior to this study.  

Table 1: Summary of GIS-based end-use energy density assessment studies. 

Country/region  

 

 

Approach   Resolution 

and/or Study 

level 

Demand density 

considerations 

End-use 

energy 

demand 

estimation 

Ref. 

Global Spatio-

temporal 

1 km2 Heating and 

cooling demand 

density 

SH, SC, WH This 

study 

Global GIS 

Spatial 

55 km x 55 km, 

for mean 

monthly 

temperature 

– SH, SC [15] 
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Global Regional 

demographic 

distributions  

Regional level 

11 regions 

worldwide 

– SH, SC [14] 

Europe DC estimations Regional level Average cooling 

density demand 

SC [17] 

EU28 GIS 

Spatial 

City level Population 

density 

SC [18] 

EU28 National 

energy 

consumption  

Country and 

Regional level 

– SH, SC, WH [11] 

Germany GIS 

Spatial 

Country level 

m2 

Spatially 

distributed 

residential density 

SH, SC, WH [19] 

Germany National 

statistics 

Country and 

Regional level 

Spatially 

distributed 

population 

density 

SH, SC [13] 

UK GIS 

Spatial 

City level Linear heat 

density demand 

Heating  [6] 

Denmark GIS 

Spatial 

Country level, 

results in million 

m2 

Heat demand 

density 

SH, WH [12] 

Denmark Spatio-

temporal 

District level Population 

density 

SH [20] 

Netherlands Spatio-

temporal 

Municipality 

level 

– Heating [21] 

Switzerland Spatio-

temporal 

Municipality to 

country level 

1 km2 

Population 

density 

SH [9] 

India National 

statistics 

Country level – SH, SC, WH [10] 

USA Temporal for 

HDD/CDDs 

Country level Population 

density 

SH, SC [8] 

USA GIS 

Spatial 

0.56 km² and 

0.78 km² 

Heat demand 

density 

SH, WH [16] 

USA temporal Building level – SH, WH [22] 

China National 

statistics 

Country level Population 

density 

SH, SC [8] 

China GIS 

Spatial 

Building to city 

level 

Population 

density  

SH [23] 

 

Advances in Geographic Information System (GIS) methodologies have created an 

opportunity to assess the end-use energy demand of a city or a country in a spatially and 

temporally-explicit manner. One example of this is the increasing use of GIS-based methods 

for analysing the potential of district energy systems (DES). Several GIS-based studies have 

been carried out on a local scale to identify suitable agglomerations of buildings. Studies 

include a range of approaches from optimization of the distribution network, surface modelling, 
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and multispectral imagery, to satellite data and use of ancillary street vectors [24]. However, 

the large amount of required data makes this method challenging to apply at a global scale. For 

example, the small-scale study in [25] focuses on the optimization of the piping network in 

areas with high potential for district heating by mapping building characteristics, resource 

availability, and road networks. Likewise, suitable configurations of buildings for thermal 

microgrids based on analysis of geo-referenced building stock data is carried out in [26]. In 

that case, the linear heat density is estimated, taking into account the heat delivered to a building 

and the length of the pipe route. A further assessment of the building energy consumption for 

the Centro Residential Europa area of Turin–CRE is carried out in [27], where the space heating 

demand is evaluated using a thermal model, where a geo-referenced representation of the DH 

network enables the application of an optimization of the network layout. In [28], a geographic 

information-based mixed integer linear programming model for cost assessment of a DH 

network in northern Japan is presented. Although these studies have addressed the spatial 

density of the heating demand, the proposed methodologies (1) lack accounting for diurnal 

temporal variability, and (2) are only suitable at a small scale. Moreover, despite the increased 

research into the evaluation of DH potential, existing assessments almost universally focus on 

countries in Europe and the USA, and consideration of cooling demand is rarely undertaken. 

Also of relevance to this study is the treatment of spatial detail in Integrated Assessment Models 

(IAMs). This is a class of global models are used to capture possible trends in the energy (and 

climate, land, etc) system, to guide decision makers on setting targets and to indicate the 

strategies that may be most effective in achieving them. The uptake and potential of energy-

technologies is difficult to estimate due to a wide range of factors including energy price, capital 

cost, technical applicability, social acceptance, policy and regulatory uncertainties, to name but 

a few. Taking note of these uncertainties, IAMs strive to capture the interaction between the 

energy sectors, the demand for end-uses, the technologies available and the diffusion of those 

technologies in the market [29]. Some IAMs include spatial and temporal detail, but many lack 

a logical connection between the spatial aspects of energy consumption and the suitability of 

technologies.  

Strachan, et al. [30], for example, integrate a more detailed spatial analysis of supply, 

demand and infrastructure requirements regarding hydrogen uptake in the UK. The 

methodology they present is integrated within the energy system model MARKAL. It focuses 

on the use of hydrogen as a transportation fuel and spatially locates the supply and demand 

centres. Another effort is apparent in highRes (high-Resolution Electricity Model), which 
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analyses the development of the electricity sector, including a spatially and temporally-detailed 

renewable generation time series, to accurately determine electricity production and dispatch 

[31]. This model can be linked to a TIMES model to test the feasibility of long-term investment 

decisions in TIMES. Another study using spatially resolved information as an input to energy 

system models is presented in [32]. This uses spatial data for 2.5 million buildings in Denmark 

along with individual heating supply data to develop a country-wide heat demand atlas. Also, 

a heat atlas for Denmark [33] is used to provide inputs to an energy system model in the form 

of marginal cost curves for heat saving measures and district heating networks.  

Looking at the residential sector and in particular at the role of demand density in IAMs, a 

focus on different core characteristics can be observed. MARKAL and TIMES are bottom-up, 

technology-rich intertemporal cost optimisation models covering any geographical area desired 

[34]; national, regional, state, province, or community level, [35]. Any MARKAL or TIMES 

model is able to consider any range of heating technologies, but implementations often do not 

include a spatially distributed assessment of their potential [36]. Another example is GCAM 

(Global Change Assessment Model) which includes a representation of demand density in 

various sectors of the energy system [37]. In this case, however, the market share of the 

technologies is determined based on a logit-share function on the investment cost, without 

separately considering additional cost for energy distribution systems.  

NEMS (National Energy Modelling System) is an energy system model representing energy 

markets, demand and economic interactions for the USA. Here, investments in new 

technologies are split in retrofits, including fuel-switching and in energy systems of new 

buildings. The share of technologies in the system is determined using a log-linear function 

based on bias, capital costs and operating costs [38, 39]. Although NEMS is a technology-rich 

model, the spatio-temporal demand density phenomena and associated infrastructure costs are 

not considered [39]. In the PRIMES model, the building-sector follows a nested logit model 

approach to determine the technology share based on the cost of each technology, which is 

modified by the households’ income and equipment maturity [40]. These approaches consider 

several energy technologies for buildings. However, the expansion of these systems in the 

energy market is only determined by the logit function, without direct consideration of spatio-

temporal demand density characteristics and thus infrastructure costs.  

Overall, it is clear that while researchers have begun to include the impact of spatial demand 

detail in energy systems models, many do not take into account both spatial demand density 
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and the temporal variability of that demand. There is a further need for mathematical 

descriptions and computational methods to enable research teams to explore this issue, generate 

temporally-explicit energy demand and spatial energy density maps, and thus improve 

estimates of cost-effective uptake for heating and cooling technologies and their associated 

infrastructure. With this paper the authors aim to begin to fill this gap. 

In summary, this paper presents such an analysis, producing a spatially and temporally-

resolved worldwide atlas of space heating, water heating and space cooling demand, and 

deriving associated energy density bands for each of these service demands for each country. 

Results, which include the diurnal and seasonal profile of demand in each band and for each 

country, are published alongside this article. The approach is validated based on cross-checking 

against the International Energy Agency (IEA) Energy Balances for the residential sector. The 

novelty and contributions of this paper are as follows: 

(1) A systematic, spatio-temporal data-driven approach for estimating end-use energy 

demand based on a combination of energy data from IEA Energy balances [41], hourly 

temperature data from NASA MERRA-2 [42], population counts [43] and population 

density [44] at 1 km2 resolution. Interpolated temperature profiles are used to calculate 

heating degree hours (HDH) and cooling degree hours (CDH) for each location, season and 

hour, for each country in the world. This is combined with population density data and energy 

balance data to yield time-sliced energy demand by location, ultimately generating spatio-

temporal energy demand raster data for 165 countries, covering 99.96% of global energy users 

in residential sector. 

(2) A spatial clustering analysis for deriving the energy density bands (EDBs) of each 

end-use energy demand via the use of K-means techniques. Here, K-means clustering 

techniques are used to find distinctive spatial areas with similar energy demand characteristics. 

Thus lower and an upper limits are mathematically determined applying this spatial clustering 

approach. The heating demand is assessed separately from the cooling demand to any implicit 

assumption that these two types of demand are served via common infrastructure. Details of 

the method are presented below. 

(3) Significant temporal detail is retained in the resulting energy density bands. After 

banding by energy density, the temporal profile of each band is derived based on the locations 

that were binned into each band. Results are presented using a 24-hour profile for each of four 

seasons, for each country. 
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The outputs of this analysis are intended to be integrated in the residential sector module in 

the MUSE1 framework, but can be equally used for input in other energy systems models and 

are made freely available for the community as supplementary material here. The remainder of 

this paper is organised as follows. Section 2 describes the datasets and clustering methods used 

in this study. Section 3 gives a discussion of results followed by limitations, conclusion and 

further research provided in Section 4. 

2. Methodology 

This paper presents a GIS-based approach to spatially and temporally assess the global 

energy demand and energy density for all heating and cooling end-uses. Based on the total 

energy consumption taken from the IEA Energy balances, population density gridded maps, 

and national weather conditions, heat density maps of the world with a grid of 1 × 1km2 cells 

are generated. These heat density maps are used to identify the amount of energy consumed by 

each end-use in a set of energy density bands, which are in turn determined via a K-means 

clustering method. By using GIS, it is possible to conduct a study with high spatial resolution 

on a global scale, which is necessary in order to build a consistent model. This assessment is 

carried out in four main steps and schematically illustrated in Figure 1. 

 

                                                           
1 MUSE is the ModUlar energy systems Simulation Environment, an integrated assessment model (IAM) 
developed at Imperial College London. MUSE is a bottom-up technology-rich model of the global energy system, 
focusing on the simulation of investment and operational decision making across the energy sector. 
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Figure 1: Schematic representation of the global spatial heating and cooling energy demand 

assessment per country for 2010. The gathered data contains three data sets: (1) spatio-temporal 

temperature variations of the world, from the NASA MERRA-2 program, at a spatial resolution 

of 0.625 x 0.5 degrees at the equator, which are used to determine the heating degree hours and 

cooling degree hours of a cell [42]; (2) the Gridded Population of the World data, which models 

the distribution of human population (counts [43] and densities [44]) on a continuous global 

raster surface using population census tables and corresponding geographic boundaries at 1 

km2 spatial resolution; and (3) the total energy consumption of the residential building sector 

from the International Energy Agency Energy Balances [41]. Two main data processing steps 

are described. First, for the global temperature data in combination with population data and 

energy balances data, global energy density maps along with seasonal-hourly demands are 

calculated for space heating, space cooling and water heating demands. Second, the global 

spatio-temporal datasets are clustered into energy density bands to find areas with similar 

demand density characteristics and demand profiles in each band.  

 

2.1. Energy density maps 

In the first step, the energy demand for the main heating and cooling end uses is determined. 

To obtain the demand for the different end-uses for each country the total energy consumption 

of the residential building sector from the IEA energy balances [41] is allocated to the main 

end-uses. Due to a lack of consistent household level data on energy consumption for all 

countries [45], an estimate of the energy consumption for cooling and heating purposes is 

determined by assuming a specific share of the total consumption of each end-use by region as 

indicated in [46]. This is shown for the example of the United Kingdom in Table 2. 

Table 2: End-use energy share for the United Kingdom [46]. This is an example of the Energy 

Balances of the International Energy Agency for a selected country. In this study, the values 

corresponding to space heating, space cooling and water heating demands have been 

considered. 

Region Country End-Use Share [%] Demand [
𝐄𝐧𝐞𝐫𝐠𝐲

𝐓𝐖𝐡
] 

 

 

 

European Union 

 

 

 

United Kingdom 

Space heating 59 304.81 

Water heating 14 75.08 

Space cooling 3 16.52 

Lighting 6 30.03 

Cooking 3 15.02 

Appliances and 

other 

15 78.08 

 

To account for the spatial resolution of the heating and cooling demand, the country level 

end-use demand is refined based on two key drivers, the exterior temperature and the 

population in each 1 km2 cell. The allocation of energy demand is carried out based on 

temperature dependent specific weighting factors for each end-use: water heating 𝐼𝑊𝐻, space 

heating 𝐼𝑆𝐻 and space cooling 𝐼𝑆𝐶 . Key indicators of the energy consumption in each cell are 
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the heating degree hours (HDH) and cooling degree hours (CDH), which are used to estimate 

the energy required to heat a building in a particular location. To determine the HDH and CDH 

of a cell, the freely available NASA MERRA-2 [42] dataset was used, which contains hourly 

temperature measurements with a spatial resolution of 0.625 x 0.5 degrees at the equator 

(approximately 64 km x 55 km). The HDH and CDH for cell c  for a specific day d and hour h 

are calculated according to [47] by using Eq. (1) and Eq. (2): 

𝐻𝐷𝐻𝑐,𝑑,ℎ = {
(𝑇𝑟𝑒𝑓 − 𝑇𝑐,𝑑,ℎ), 𝑇𝑐,𝑑,ℎ < 15 °𝐶

0, 𝑒𝑙𝑠𝑒
                                               Eq. (1) 

𝐶𝐷𝐻𝑐,𝑑,ℎ = {
(𝑇𝑐,𝑑,ℎ − 𝑇𝑟𝑒𝑓), 𝑇𝑐,𝑑,ℎ > 18 °𝐶

0, 𝑒𝑙𝑠𝑒
                 Eq. (2) 

 

where 𝑇𝑐,𝑑,ℎ is the temperature and 𝑇𝑟𝑒𝑓 the reference temperature. The weighting factor 

𝑊𝐻𝑐,𝑑,ℎ for water heating is assumed to be less dependent on the HDH and is defined according 

to [48] by using Eq. (3): 

𝑊𝐻𝑐,𝑑,ℎ = 15.04 − 0.125 𝑇𝑐,𝑑,ℎ       Eq. (3) 

The datasets are further summed by season s, where the hourly resolution is maintained:  

𝐻𝐷𝐻𝑐,𝑠,ℎ = ∑ 𝐻𝐷𝐻𝑐,𝑑,ℎ𝑑∈𝑠         Eq. (4) 

𝐶𝐷𝐻𝑐,𝑠,ℎ = ∑ 𝐶𝐷𝐻𝑐,𝑑,ℎ𝑑∈𝑠        Eq. (5) 

𝑊𝐻𝑐,𝑠,ℎ = ∑ 𝑊𝐻𝑐,𝑑,ℎ𝑑∈𝑠        Eq. (6) 

The demand required for cooling or heating a building in a specific location is considered 

to be proportional to the number of HDH and CDH at the location. To map the population data2 

(counts [43] and density [44]) with the HDH, CDH, and WH rasters, the data in the grid cells 

need to be interpolated to match the accuracy of 1 km2 of the population dataset. Further 

adjustments are taken into account for the reduced heat demand in cities by assuming a 

reduction for the per-capita heat demand in densely populated areas compared to rural ones 

according to the approach in [16], [49]. The indices for space heating and space cooling are 

multiplied by a scaling factor 𝑘𝑐 =  𝑓(𝑃𝑂𝑃𝑑𝑒𝑛𝑐
) with 𝑘 ∈  [0.7,1] depending on the 

population density in a cell 𝑃𝑂𝑃𝑑𝑒𝑛𝑐
. This dependency on outside climatic conditions can be 

                                                           
2 The Gridded Population of the World (GPW) collection, now in its fourth version (GPWv4), models the distribution of human population 

(counts and densities) on a continuous global raster surface using population census tables and corresponding geographic boundaries. 
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balanced by the housing conditions (namely building type, dwelling size, inhabitants per 

habitation). Since such data is not available on a global scale the SH, SC and WH indices are 

determined by combining the weighting factors and population data; 

𝐼𝑆𝐻𝑐,𝑠,ℎ,
= 𝐻𝐷𝐻𝑐,𝑠,ℎ𝑃𝑂𝑃𝑐𝑓(𝑃𝑂𝑃𝑑𝑒𝑛𝑐

)       Eq. (7) 

𝐼𝑆𝐶𝑐,𝑠,ℎ,
= 𝐶𝐷𝐻𝑐,𝑠,ℎ𝑃𝑂𝑃𝑐𝑓(𝑃𝑂𝑃𝑑𝑒𝑛𝑐

)       Eq. (8) 

𝐼𝑊𝐻𝑐,𝑠,ℎ,
= 𝑊𝐻𝑐,𝑠,ℎ𝑃𝑂𝑃𝑐       Eq. (9) 

where the population of the cell is 𝑃𝑂𝑃𝑐. The indices are normalized to split the energy 

consumption of a country for the different end uses between all cells, while maintaining the 

overall sum: 

𝐼𝑆𝐻,𝑛𝑜𝑟𝑚𝑐,𝑠,ℎ,
=

𝐼𝑆𝐻𝑐,𝑠,ℎ,

∑ 𝐼𝑆𝐻𝑐,𝑠,ℎ,

         Eq. (10) 

𝐼𝑆𝐶,𝑛𝑜𝑟𝑚𝑐,𝑠,ℎ,
=

𝐼𝑆𝐶𝑐,𝑠,ℎ,

∑ 𝐼𝑆𝐶𝑐,𝑠,ℎ,

                     Eq. (11) 

𝐼𝑊𝐻,𝑛𝑜𝑟𝑚𝑐,𝑠,ℎ,
=

𝐼𝑊𝐻𝑐,𝑠,ℎ,

∑ 𝐼𝑊𝐻𝑐,𝑠,ℎ,

        Eq. (12) 

The overall energy consumed in one cell for a country for each season and hour 𝐸𝑐,𝑠,ℎ  and 

energy density 𝐸𝐷𝑐,𝑠,ℎis defined by 

𝐸𝑐,𝑠,ℎ = 𝐼𝑆𝐻,𝑛𝑜𝑟𝑚𝑐,𝑠,ℎ,
 𝐸𝑆𝐻 + 𝐼𝑆𝐶,𝑛𝑜𝑟𝑚𝑐,𝑠,ℎ,

𝐸𝑆𝐶 + 𝐼𝑊𝐻,𝑛𝑜𝑟𝑚𝑐,𝑠,ℎ
𝐸𝑊𝐻                            Eq. (13) 

 𝐸𝐷𝑐,𝑠,ℎ =
(𝐼𝑆𝐻,𝑛𝑜𝑟𝑚𝑐,𝑠,ℎ,

 𝐸𝑆𝐻+𝐼𝑆𝐶,𝑛𝑜𝑟𝑚𝑐,𝑠,ℎ,
𝐸𝑆𝐶+𝐼𝑊𝐻,𝑛𝑜𝑟𝑚𝑐,𝑠,ℎ

𝐸𝑊𝐻)

𝑎
              Eq. (14) 

where the area is 𝑎, the energy demand for space heating is 𝐸𝑆𝐻, water heating is 𝐸𝑊𝐻, and 

space cooling is 𝐸𝑆𝐶 . 

2.2. Energy density bands approach 

  Heat demand density and cooling demand density are used to describe and assess the 

related technologies, considering climatic and demographic conditions in each country [50]. 

This research classifies different energy demand density levels by implementing an energy 

density bands (EDB) approach. Firstly, the lower and upper energy density bounds for each 

EDB are defined using the GIS-based energy density global maps clustering results. Then, 
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every cell within the bounds of each EDB is allocated to that EDB. All cells in an EDB are 

then summed up to determine the total energy demands within the band.  

A range of energy density levels for the assessment of heating technologies are 

evaluated in [51] and [52]. The values considered in these studies are used to define the lowest 

and highest EDB at 0 GWh/km2 to 1 GWh/km2 and at 90 GWh/km2 and above, respectively. 

Further banding between 1 GWh/km2 and 90 GWh/km2 is conducted by grouping energy 

density values into clusters using a K-means method. The clustering-based knowledge 

discovery method is applied to avoid arbitrarily dividing up the range of the energy demand 

density values.  

Clustering analysis is an established technique for pattern classification into groups of 

similar characteristics denominated “clusters” which has been widely applied in the electricity 

sector for assessing spatio-temporal electricity consumption profiles [21]. Although a number 

of different clustering algorithms have been implemented in the energy field [53], Gianniou, et 

al. [54] found that the K-means algorithm has great potential in relation to energy demand. In 

this research, the K-means clustering is undertaken as follows. (1) From the global atlas of end-

use energy demand density, all 1 km2 cell-by-cell values between 1 GWh/km2 and 90 GWh/km2 

are selected. Then, (2) this data is used to calculate the optimal number of clusters (ONC) 

according to the Elbow Method (EM). The EM uses Eq. (15) to calculate the sum of squared 

errors (SSE) of within-cluster distances between the cluster centres and their members. When 

the number of clusters k is plotted against SEE, the visually-determined location of the elbow 

of the curve indicates the appropriate number of clusters. Once the ONC is estimated, (3) the 

Hartigan-Wong algorithm (1979) for K-means is applied; this is defined by Eq. (15) [55] and 

Eq. (16) [56], and explained in [57]. The K-means clustering algorithm applies an iterative 

process aiming at minimizing the intra-cluster inertia criterion defined by Eq. (16).  

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 (𝑊𝑘 = ∑
1

𝑛𝑟
𝐷𝑟

𝑘
𝑟=1 )        Eq. (15) 

𝐷𝑟 = ∑ ∑ ‖𝑑𝑖 − 𝑑𝑗‖
2𝑛𝑟

𝑗=1
𝑛𝑟−1
𝑖=1          Eq. (16) 

where Wk is the average internal sum of squares, k is the number of clusters, nr is the total 

members points in the cluster r, and Dr is the sum of distances between points di and dj, that 

belong to a cluster.  
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3. Results and discussion  

As a result of the energy density mapping methodology applied, a spatial mapping of global 

heat, cooling and water heating demand is presented for 165 countries, representing 99.96% of 

the global population. The seasonal and hourly data profile of end-use energy demands for each 

country are also presented. Further analysis of these large datasets is conducted with respect to 

two areas of interest (1) EDB for annual end-use energy demands (SH, WH and SC), and (2) 

seasonal and hourly end-use energy demand profiles for each EDB, for each country. These 

data can be used as inputs to modelling and are included as supplementary material alongside 

to this article. 

3.1. Global heating and cooling demand 

The global atlases of space heating demand and space cooling demand are illustrated in Fig. 2 

and Fig. 3 respectively. It is found that 81% of the global SH demand is concentrated in Europe 

(44%), USA (18%), and China (19%). Overall, the highest energy demands for space heating 

are located in Northeast China, Northern and Central Europe, Northeast USA and the western 

part of Russia; countries with both extreme seasonal weather conditions and highly populated 

areas. Similarly, significant space cooling demand is also identified in India (8%), China (20%) 

and USA (30%).  

Figure 2: Global atlas of space heating demand in the residential sector. This atlas has been 

generated taking into account the global demand for spacing heating in each cell of 1 km2 

resolution. This atlas illustrates the annual spacing heating demand distribution globally. 

Similar atlases have been obtained for a seasonal hourly temporal resolution. A total of 96 time 

slices are considered for 165 countries covering 99.96% of global energy users.  
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Figure 3: Global atlas of space cooling demand in the residential sector. This atlas has been 

generated taking into account the global demand for spacing cooling in each cell of 1 km2 

resolution. This atlas illustrates the annual spacing cooling demand distribution globally. 

Similar atlases have been obtained for a seasonal hourly temporal resolution. A total of 96 time 

slices are considered for 165 countries covering 99.96% of global energy users. 

 

3.2. Regional heating and cooling demand 

Fig. 4 shows the highest consuming twenty countries responsible for 77% of heat demand and 

83% of cooling demand worldwide. It is clear that China and USA lead the demand of this end-

use energy, as expected. High demand for space cooling in India is also apparent; mostly 

located in Northern India. Clearly local temperature variations along with population density 

are reflected in the demand for end-use energy results. Of particular note is the dominance of 

the highest five countries, responsible for approximately 50% of the global demand for these 

energy end-uses.  
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Figure 4: The twenty countries with the largest energy demand for heating (left), including SH 

and WH, and for space cooling (right) in the residential building sector. Units are in TWh/year. 

These countries are responsible for approximately 77% of heat demand, including space 

heating and water heating, and 83% of cooling demand worldwide. 

 

3.3. Energy density banding results 

Fig. 5 illustrates the evolution of the SSE values with increasing k. As k increases, SSE tends 

to zero, creating an elbow at the 6-cluster solution. This suggests that cluster solutions larger 

than 6 do not provide a substantial impact on the total SSE. Once the ONC is selected at 6, the 

K-means clustering algorithm is applied to obtain the clusters (centred around their respective 

centroids). Then, the EDB bounds are defined to be halfway between each consecutive centroid 

value, thus defining the limits of each band. Table 3 shows the lower bound and upper bound 

of each EDB. This is based on the literature for the extreme bands (to eliminate spurious k-

means results in very high or very low energy density areas), and based on the clustering 

approach for bands within those extremes. Fig. 6 represents the resulting EDB within the 

annual heating energy demand for 165 countries representing 99.96% of global energy 

consumers. A similar method is also applied to cooling demand and presented in Appendix A.  



19 
 

   

Figure 5: The Elbow Method to define the optimal number of clusters. This number of clusters 

is used as an input in the K-means algorithm. ONC = 6. The evolution of SSE values with 

increasing the number of clusters, k creates an elbow at the 6-cluster solution. This suggests 

that cluster solutions larger than 6 do not provide a substantial impact on the total SSE 

variation.  

 

Table 3: Energy density bands widths based on clustering analysis results and previous research 

found in the literature. Bands are presented for heating end use demand. Separately, bands are 

also presented for cooling end use demand, see Appendix A. Heating end use refers to space 

heating and water heating while cooling end use refers to space cooling. SH plus WH energy 

density clustering was conducted at the global scale with a resolution of 1km2. 

EDB Lower bound 

[MWh/km2] 

Upper bound 

[MWh/km2] 

 Validation 

1 0 1000  [6, 51] 

2 1000 1790  Spatial clustering on SH+WH energy density  

3 1790 5680  Spatial clustering on SH+WH energy density  

4 5680 12080  Spatial clustering on SH+WH energy density  

5 12080 21360  Spatial clustering on SH+WH energy density  

6 21360 36930  Spatial clustering on SH+WH energy density  

7 36930 63910  Spatial clustering on SH+WH energy density  

8 63910 90000  Spatial clustering on SH+WH energy density  

9 90000 Inf  [6, 51] 

 

Fig. 6 provides the distribution of EDB for residential heat-related energy demand for the 165 

countries considered in this study. From this figure, it is apparent that the larger part of 

aggregate demand occurs in the lower energy density bands. In essence, despite much higher 

energy density in cities etc, the sheer volume of less dense areas leads to greater aggregate 

demand there. The supplementary material contains the number of cells accounted in each EDB 

for each country. 
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Figure 6: Energy density bands for global end-use energy demand per country [TWh/year]. 

The distribution of EDB for residential heat-related energy demand for the 165 countries is 

presented here. It is apparent that the larger part of aggregate demand occurs in the lower 

energy density bands. In essence, despite much higher energy density in densely populated 

areas, the sheer volume of less dense areas leads to greater aggregate demand there. In the 

supplementary material, the area accounted in each energy density band for each country is 

provided. 
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Fig. 7 shows the distribution of the EDB in the countries with the largest demands for heating 

(77%, left) and cooling (83%, right). In the case of China, the highest three EDBs represent 

8.5% and 7.3% of heating and cooling demands respectively, and are associated with a total 

land area of 5708 km2. On the other hand, the lower three EDBs account for 75% and 74.7% 

of heating and cooling demands respectively, associated with a total area of approximately 11 

million km2.  

 

Figure 7: Energy density bands for the highest consuming twenty countries worldwide. The 

energy density bands are presented for heating (left) and cooling (right) for corresponding 

bands. Units are in TWh/year. 

 

The case of USA is similar to China when comparing the highest three EDBs, but completely 

different for the lower three EDBs. The highest three EDBs represent 5.4% and 3.3% of heating 

and cooling demands respectively, associated with an area of 2183 km2. However, bands 1, 2 

and 3 represent 47% and 53% of heating and cooling demands respectively, associated with 

approximately 9.4 million km2. This result reflects the higher urbanisation of the USA relative 

to China. 

India is a unique case because only five EDBs are present due to the lack of occurrence of the 

extreme energy densities seen in China or the USA. In India, the highest two EDBs represent 



22 
 

4.1% and 4% of heating and cooling demands respectively, associated with 2394 km2 land area. 

In contrast, 88.5% of heating demand and 88.6% of cooling demand are in band 1, covering 

approximately 4 million km2 of land. The reader should note that the analysis presented 

represents a snapshot in time, and one would expect the spatial characteristics of demand to 

change as countries become wealthier [58] and more urbanised [59]. Also in particular for 

cooling demand, ownership of air conditioning equipment, which has a strong correlation with 

wealth, is an important driver of results [60]. 

Results are also presented with respect to the temporal variation of heating and cooling. The 

temporal variability is captured in seasonal profiles with an hourly resolution per EDB for each 

country. Energy demand profiles have been traditionally used by utility companies, covering 

large areas, and thus do not well represent the spatio-temporal phenomena of demand. Also, a 

utility company’s data is not usually accessible to the public [21]. The use of high-resolution 

country-wide detailed spatio-temporal demand profiles developed in this paper can therefore 

contribute to the insights obtained regarding technology choice in the residential sector. Some 

possible applications of these data sets are (1) the realistic representation of the spatio-temporal 

energy demand variability in energy modelling, (2) the assessment of deployment of low 

carbon technologies in an area of interest, (3) the design of location-based electricity tariffs for 

distributed generation, and (4) the use of local renewable energy sources to meet the demand 

in the residential sector. Fig.8 illustrates the USA-wide example of 24-hr energy demand 

profile of SH, SC, WH in band 2. Fig. 9 additionally provides the spatio-temporal visualization 

of a 4-hr (13:00 – 17:00) SH demand for USA in each of the four seasons. The supplementary 

material supplied with this paper contains the data needed to distribute annual energy demand 

values in each EDB to arrive at the seasonal/diurnal profiles for each country. 
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Figure 8: USA 24-hr profile of each service demand for each season for the second highest 

consuming energy density band (EDB = 2). The variation of SH demand in day peak hours can 

reach up to 40% less than night peak hours. The SC has a demand profile with a plateau 

between 11:00 and 17:00 in summer in EDB2. 

 

Figure 9: Four-hour total space heating demand for USA for selected time slices in each of the 

four seasons. Results are presented for USA SH demand [MWh], 1pm − 5pm. One cell is equal 

to 1 km2. 
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3.4. Approach comparison  

The approach presented here differs from earlier works that estimate the global spatio-

temporal end-use energy demand (SH, SC, and WH) at a high resolution of 1 km2. One 

approach found in the literature is that of Voulis, et al. [21]. Both Voulis et al. and this study 

share a number of key features, such as the estimation of energy demand profiles considering 

spatio-temporal characteristics, and the use of clustering techniques. However, there are 

important differences: Here, we estimate the spatio-temporal energy demand profiles for SH, 

SC and WH globally while Voulis, et al. [21] estimate only the spatio-temporal electricity 

demand for specific areas of a selected country. Although that approach presents novelty in 

terms of spatio-temporal considerations, it is also limited with respect to application at the 

global scale.  

Another relevant study has been conducted by Rhodes, et al. [61]. In a similar way to our 

study, Rhodes, et al. use a K-means clustering algorithm to determine the pattern of demand 

profiles in the residential sector. Their study is different from the approach presented in this 

paper in a number of respects. For example, Rhodes, et al. conduct a spatio-temporal analysis 

for only 103 homes in a selected city of the USA. They analyse electricity demand data at the 

household level while we estimate the global demand of heating and cooling at the resolution 

of 1 km2. What is interesting from Rhodes, et al. [61] is that they validate the applied clustering 

approach with the use of survey data of the same 103 dwellings. Although this approach gives 

valuable insight to the accuracy of estimations, is also presents data challenges for application 

at larger scales.  

The scale of the datasets and the goal of the analysis presented in this study make 

comparison with other studies challenging. In the scientific literature, significant approach 

differences have been found, including (1) the estimation of demand density (e.g. USA and 

China [8], and Switzerland [9]); (2) the estimation of demand profiles for SH, SC, and WH 

[21]; (3) the spatio-temporal scale of the approach (e.g. national scale [15] and spatial 

considerations [18]), i.e. global 1 km2 spatial resolution and seasonal daily-hourly variation.  

 

3.5. Approach validation  

The GIS-based methodology presented in this paper can be described as a bottom-up 

approach to estimate countrywide spatio-temporally resolved energy demand profiles for 

heating and cooling worldwide. At smaller spatial scales (i.e. mega-city, metropolitan areas, 
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neighbourhoods, intra city areas), bottom-up approaches can result in detailed descriptions of 

spatio-temporal demand variations [62] and energy user compositions [63]. However, one of 

the limitations of these approaches is that it requires large location-specific datasets (i.e. 

building features, energy consumption description at the appliance level) that are not available 

on a consistent basis or tractable at larger scales [21]. To address this limitation in order to 

scale-up the methodologies from city level to national/region level, a combination of datasets 

from others fields has been presented here.  

Therefore, datasets upon which to perform a validation are presently not widely available. 

Thus, the validation of the approach herein relies on (1) comparing the aggregated cell-by-cell 

energy demand with selected sub-national measurements of energy statistics data; and (2) 

comparing the aggregated cell-by-cell energy demand with the Annual Energy Balances from 

the IEA.  

(1) The generated results presented in this study have been validated with the UK National 

Statistics of the Lower and Middle Super Output Areas (LLSOAs) with respect to gas 

consumption to meet heating demand in the residential sector. Two countries have been 

considered: England and Wales [64]. Although these energy statistics does not provide 

spatio-temporal detail, the annual country-level energy balance data is used for validation 

purposes, and thus enables the measurement of calculation accuracy undertaken in this 

study. First, energy consumption data was obtained from [64]. This data represents the total 

heating energy consumption in the residential sector in approximately 40,000 LLSOAs 

across England and Wales. A significant number of gas meters were considered in this 

study, as can be seen in Table 4. Second, data was aggregated by local authority for 335 

authorities in total. Third, using the GADM database of Global Administrative Areas [65], 

all 1 km2 cell-by-cell values of the annual heating demand estimated in this study were 

extracted from raster datasets, aggregated and matched with the same 335 local authorities. 

This step allows us to have comparable results with the data collected from LLSOAs. 

Finally, both datasets, this study and LLSOAs, are compared. As can be observed in Fig. 

10, the approach presented here has a high accuracy of demand estimation in respect to 

LLSOA data. In Table 5, ab additional comparison is performed using absolute percentage 

error. We can see that the absolute percent error varies among boroughs, however, it is 

aligned with the error calculated for both countries overall (Table 4). 
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Table 4: Comparison of energy statistics of gas consumption in the UK’s Lower Layer Super 

Output Areas (LLSOAs) with results presented in this study. England and Wales were 

analysed, accounting for 335 local authorities. Heating demand represents the energy required 

for space heating and water heating uses. 

 No. of 

LLSOAs  

No. of gas 

meters 

UK 

countries 

Authori

ties 

LLSOA  

energy 

statistics  
[TWh/year] 

This study 

estimation  
[TWh/year] 

Percent 

error, abs 
[%] 

39928 20,783,505 2 335 300 318 6 

 

 

Figure 10: A comparison of selected LLSOAs data and results from this approach for England 

and Wales is illustrated. A linear regression shows that predictions in this paper are similar to 

LLSOAs measurements. At higher demand levels, the approach presented here shows a slight 

overestimation of demand, likely because the related areas are typically smaller and very dense, 

leading to higher potential errors where the spatial grid in this article does not match exactly 

with LLSOA boundaries.  
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Table 5: Comparison of energy statistics of gas consumption in boroughs of Greater London 

taking into account national statistics of the UK’s Lower Layer Super Output Areas (LLSOAs) 

with results presented in this study. Ten local authorities are selected for comparison purposes. 

Here, heating demand represents the energy required for space heating and water heating uses. 

Authority No. of 

LLSOAs 

Area 

covered 

[km2] 

No. gas 

meters 

per km2 

LLSOA  

Energy 

statistics  
[TWh/year] 

This study 

estimation  
[TWh/year] 

Percent 

error, abs 

[%] 

Barnet 250 86.74 1447.91 2.39 2.28 4.61 

Bexley 163 60.56 1463.24 1.38 1.32 4.37 

Greenwich 158 47.35 1775.76 1.27 1.35 6.29 

Hackney 160 19.06 4727.96 1.10 1.18 6.67 

Hammersmith and 

Fulham 

127 16.40 4546.59 1.00 1.06 5.75 

Haringey 168 28.50 3349.16 1.43 1.50 4.25 

Islington 137 14.86 5877.93 1.03 1.00 2.98 

Lambeth 204 26.82 4416.41 1.56 1.54 1.03 

Merton 144 37.61 1999.52 1.17 1.21 3.53 

Waltham Forest 167 38.82 2350.46 1.33 1.41 6.29 

 

 

(2) The obtained results have been compared with the Annual Energy Balances from the IEA. 

Although the IEA does not provide detailed spatio-temporal demand profiles, this is a self-

validation approach that matches the annual country-level energy balance data of the 

residential sector, and thereby ensures the calculation steps undertaken are correct. All 1 

km2 cell-by-cell values were aggregated and matched the national energy balances 

presented by the IEA.  

 

Future research will consider further validation measures, such as comparison with emerging 

spatially-resolved demand datasets that may be able to empirically validate the results further. 
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Conclusion 

This article has formulated and applied a methodology for spatially and temporally-resolved 

estimation of global space heating, space cooling and hot water demand. It combines energy 

balances, spatially-resolved population density, and spatially and temporally-resolved 

temperature data to calculate these demands at 1km2 resolution for 165 countries, representing 

99.96% of global energy consumers. A k-means clustering algorithm has then been applied to 

this data to arrive at a set of representative energy density bands for each country, each of which 

is then further disaggregated into seasonal and hourly demand profiles. The result is the first 

self-consistent analysis of these three energy end-uses at a global scale, disaggregated into 

country and energy density categories, and provided in profile form to capture seasonal and 

diurnal demand variations. 

End-use energy demand for heat and cooling varies from country to country depending on 

weather conditions, population density, and level of uptake of energy-consuming devices to 

provide these services. It is apparent from the results presented here that global space heating 

demand is concentrated in three regions of the world; Northeast China, Northern and Central 

Europe, Northeast USA. Conversely, global cooling demand is heavily concentrated in the 

USA, China and India, reflecting not only population and temperature characteristics, but also 

the correlation of gross domestic product with the ownership of air conditioning equipment.  

In terms of energy density, the results show that a relatively small portion of demand 

(approx. ~5%) occurs at very high energy density locations (i.e. above 36.9 GWh/km2). This 

is in contrast to what is usually upwards of 50% of demand that occurs in low energy density 

locations (i.e. below 1.79 GWh/km2). Each country differs substantially in this regard, 

highlighting the importance of this consistent dataset that captures the core differences between 

each country, and is applicable for use in the global integrated assessment modelling that is 

crucial for climate change mitigation assessment. 

The dataset produced is published as supplementary material alongside this article. It 

describes the amount of energy in each energy density band for each country, including 

disaggregation into seasonal and hourly demand profiles for each band. The number of cells in 

each energy density band is also provided. The dataset is provided for heat and cooling demand 

using (a) the approach of clustering based on space heating and water heating demand 

combined (with space cooling also reported for each band), and (b) the approach of clustering 

based on space cooling demand only. It is expected that this data will be a valuable resource 
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for the energy systems modelling and integrated assessment modelling communities, in 

addition to providing a sound basis for techno-economic or decarbonisation assessment of 

thermal demand for any of the 165 countries considered.  

Finally, the authors would like to draw attention to the limitations of the analysis undertaken, 

in order to inform focus areas for future research. The important limitations are that:  

a) It is assumed that heat and cooling energy demand density is proportional to population 

density, with basic adjustment to reflect lower per capita demand in energy dense areas. 

Researchers must be aware that this is not always the case as in some regions of the world, 

energy demand density is not proportional to population density due to economic and other 

factors. Further research should consider income distribution spatially in order to have a 

better understanding on the economic capacity of areas. Here, there is an opportunity for 

future research as the spatial-temporal distribution of energy service demand, when 

combined with socio-economic factors, can lead to a better understanding of the potential 

for clean technologies in diverse contexts.  

b) This analysis represents a snapshot in time, and the spatial and appliance ownership 

characteristics of demand would be expected to change as countries become wealthier and 

more urbanised. Further research can apply the methodology presented here to data 

available for different years. This would provide further insights of how the EDB along 

with its associated demand evolve in time.  

c) Only final energy consumption has been spatially and temporally distributed in the study, 

implying that the efficiency of conversion of that final energy to the heat or cooling energy 

service demand has not been considered. As future research could focus on the technology 

choices to meet the demands in each EDB, it is recommended that heating and cooling 

technology efficiency should be considered in the analysis. Additionally, at the time of 

writing, data for spatially resolved income analysis is not yet available. Including the 

income spatial distribution would allow researchers to have a better overview of what 

technologies are economically feasible in different locations. This limitation has in 

particular been identified as a key area for future research.  
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Appendix A: EBD for cooling demand  

A similar approach described in Section 3.2 is applied for global SC demand. Fig. 10 

illustrates the EM to determine the ONC for SC data (the ONC is determined to be 5). 

Furthermore, the lowest and highest EDB are set based on the work presented in [7, 11, 13, 

17]. Table 4 defines the EDB for SC demand based on the clustering analysis. Here, bands 

are presented for the cooling end use energy demand only. SC energy density clustering was 

also conducted at the global scale with a 1 km2 resolution. For researchers requiring SC 

demand estimations, Fig. 11 shows the distribution of the EDB within 165 countries.  

 

Figure 11: The Elbow Method to define the optimal number of clusters for SC demand. This 

number of clusters is used as an input in the K-means algorithm. ONC = 5. The evolution of 

SSE values with increasing the number of clusters, k creates an elbow at the 5-cluster solution. 

This suggests that cluster solutions larger than 5 do not provide a substantial impact on the total 

SSE variation.  
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Table 6: SC Energy density bands widths based on clustering analysis results and previous 

research found in the literature. Bands are presented for cooling end use demand. SC energy 

density clustering was conducted at the global scale with a resolution of 1km2. 

Cooling energy density [MWh/km2] Justification 

EDB Lower bound Upper bound  

1 0 10 [7, 11, 13, 17] 

2 10 36 Spatial clustering on SC energy density  

3 36 364 Spatial clustering on SC energy density  

4 364 1087 Spatial clustering on SC energy density  

5 1087 2420 Spatial clustering on SC energy density  

6 2420 5228 Spatial clustering on SC energy density  

7 5228 16600 Spatial clustering on SC energy density  

8 16600 Inf [7, 11, 13, 17] 
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Figure 12: Energy density bands for global SC energy demand per country [TWh/year]. The 

distribution of EDB for residential cooling-related energy demand for the 165 countries is 

presented here. It is apparent that the larger part of aggregate demand occurs in the lower 

energy density bands. In essence, despite much higher energy density in densely populated 

areas, the sheer volume of less dense areas leads to greater aggregate demand there. In the 

supplementary material, the area included in each energy density band for each country is 

provided. 
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Appendix B: Supplementary data  

The following are the supplementary data related to this article. Spreadsheet of the factors to 

allocate annual end-use energy demand into seasonal/diurnal end-use energy demand profiles 

for each EDB for each of the 165 countries. This is presented for each of the two clustering 

methods, heating and cooling separately. Units are in MWh/km2 for end-use energy density 

demand and MWh for end-use energy demand.  
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