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Abstract—Previous work has analyzed the role of energy storage 

(ES) on generation investment planning through centralised 

cost-minimization models which are inherited from the era of 

regulated electricity utilities. This paper investigates this issue in 

the context of the deregulated market environment by proposing 

a new strategic generation investment planning model. The 

decision making of a strategic generation company is modeled 

through a multi-period bi-level optimization problem, where the 

upper level determines the profit-maximizing investment 

decisions of the generation company and the lower level 

represents the market clearing process, accounting for the time-

coupling operational characteristics of ES. This bi-level problem 

is solved after converting it to a single-level mixed-integer linear 

problem (MILP). Case studies demonstrate that the introduction 

of ES reduces the total generation capacity investment and 

enhances investments in “must-run” baseload generation over 

flexible peaking generation, yielding significant system cost 

savings. 

Index Terms-- Bi-level optimization, electricity markets, energy 

storage, generation investment planning. 

NOMENCLATURE 

A. Indices and Sets 

𝑡 ∈ 𝑇  Index and set of hours 

𝑑 ∈ 𝐷  Index and set of representative days 

𝑖 ∈ 𝐼  Index and set of generation technologies 

𝐼𝑀𝑅 ⊆ 𝐼  Subset of must-run generation technologies 

𝑉𝐿𝐿  Set of decision variables of lower level problem 

𝑉  Set of decision variables of MPEC model 

B. Parameters 

𝜏, 𝑁𝑇  Temporal resolution and length of market horizon  

𝑤𝑑  Weighting factor of day 𝑑 

𝐼𝐶𝑖  Investment cost of generation technology 𝑖 
(£/kW/year) 

𝑐𝑖 Marginal operation cost of generation technology 𝑖   
(£/MWh) 

𝑏𝑑,𝑡  Marginal benefit of demand at day 𝑑 and hour 𝑡 

(£/MWh) 

𝑑𝑑,𝑡
𝑚𝑎𝑥  Maximum demand at day 𝑑 and hour 𝑡 (MW) 

𝑠𝑚𝑎𝑥   Power capacity of ES (MW) 

𝐸𝑐𝑎𝑝  Energy capacity of ES (MWh)  

𝐸𝑚𝑎𝑥   Maximum energy limit of ES (MWh)  

𝐸𝑚𝑖𝑛   Minimum energy limit of ES (MWh)  

𝐸𝑜  Initial energy level of ES (MWh) 

𝜂𝑐 , 𝜂𝑑  Charging and discharging efficiency of ES  

Υ  System adequacy coefficient 

C. Variables 

𝑋𝑖 Invested capacity of technology 𝑖 (MW) 

𝑔𝑖,𝑑,𝑡 Power output of technology 𝑖 at day 𝑑 and hour 𝑡 

(MW) 

𝑑𝑑,𝑡 Power input of demand at day 𝑑 and hour 𝑡 (MW) 

𝑠𝑑,𝑡
𝑐  Charging power of ES at day 𝑑 and hour 𝑡 (MW) 

𝑠𝑑,𝑡
𝑑  Discharging power of ES at day 𝑑 and hour 𝑡 (MW) 

𝐸𝑑,𝑡 Energy level of ES at day 𝑑 at the end of hour 𝑡 

(MWh) 

𝜆𝑑,𝑡 Market clearing price at day 𝑑 and hour 𝑡 (£/MWh) 

I. INTRODUCTION  

Growing environmental and energy security concerns have 
paved the way for the decarbonization of energy systems 
through the large-scale integration of renewable generation 
and the electrification of transport and heat sectors. However, 
these paradigm changes introduce great techno-economic 
challenges, associated with the high variability and limited 
controllability of renewable generation as well as the 
increasing demand peaks, respectively. 

In this setting, energy storage (ES) technologies have 
attracted special interest by governments, industry and 
academia, as their flexibility can support system balancing and 
limit peak demand levels, improving the cost efficiency of 
low-carbon electricity systems [1]-[2]. A particularly 
interesting area of research lies in investigating the role and 
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value of ES in long-term generation investment planning 
decisions. However, previous studies in this area, [3]-[7], have 
employed centralised planning models inherited from the era 
of vertically integrated electricity utilities, optimising system 
objectives (i.e. minimising the long-term system cost) and 
assuming perfectly competitive behaviour by market 
participants. 

The recent deregulation of the electricity industry has 
driven unbundling of vertically integrated monopoly utilities 
and the introduction of competition in the generation and 
supply sectors. This means that such centralised models are 
not able to provide accurate and meaningful insights anymore, 
since they neglect the fact that self-interested generators’ 
actions are not generally aligned with system cost 
minimization but rather rely on profit-driven decisions. In this 
setting, generation companies need suitable models to 
optimize their investment strategies, accounting for the impact 
of these strategies on the competitive market. 

A few recent papers, [8]-[12], have modeled this strategic 
generation investment planning framework under different 
assumptions and conditions. All these studies employ the 
same fundamental methodology to model strategic generation 
planning, namely bi-level optimization. The strength of this 
modeling approach lies in its capacity to comprehensively 
capture the interactions between the strategic investment 
decisions of the generation companies and the competitive 
clearing of the electricity market at the operational timescale. 

However, all these previous works on strategic generation 
investment planning exhibit a fundamental shortcoming. 
Time-coupling at the operational timescale is not considered, 
implying that the optimal market clearing is independently 
carried out for each time period. This means that they are 
inherently unable to represent the operation of ES which is 
naturally associated with time-coupling effects, as its charging 
and discharging cycles are interrelated.  

This paper makes the first attempt to fill this knowledge 
gap by incorporating the operation of ES in a strategic 
generation investment planning modeling framework. The 
decision making of a strategic generation company is modeled 
through a multi-period bi-level optimization problem. The 
upper level (UL) problem determines the optimal investment 
decisions of the generation company so as to maximize its 
profit, given by the difference between its profit in the 
electricity market and its investment cost for procuring 
generation capacity. This UL problem is subject to the lower 
level (LL) problem which represents endogenously the 
electricity market clearing process on a daily basis, accounting 
for the time-coupling operational characteristics of ES through 
a generic, technology-agnostic model. This bi-level problem is 
solved after converting it to a Mathematical Program with 
Equilibrium Constraints (MPEC), and linearizing the latter 
through suitable techniques. 

Case studies with the developed model are carried out on a 
test system with a yearly operation horizon and hourly 
resolution. The results indicate that ES reduces the total 
generation capacity investment and enhances investments in 
“must-run” baseload generation over flexible peaking 
generation. Furthermore, this reduction of the total capacity 

investment and the reduced need to run mid-merit and peaking 
generation with high operating costs results in significant 
system cost savings. These impacts are enhanced for higher 
values of the power-to-energy ratio and the energy efficiency 
of ES. 

The rest of this paper is organized as follows. Section II 
details the proposed modeling framework. Section III presents 
the case studies and quantitative results. Finally, Section IV 
discusses conclusions and future extensions of this work. 

II. PROPOSED MODELING FRAMEWORK 

A. Modeling Assumptions 

For clarity reasons, the main assumptions behind the 
proposed model are outlined below: 

- The model assumes a static planning approach and a 
yearly operation horizon. In other words, the strategic 
generation company determines its optimal 
investment decisions considering a single, future 
target year. Both investment and operating costs and 
revenues are calculated at the same yearly basis. 

- The strategic generation company can invest in 
generation capacity of different technologies. Each 
generation technology is characterized by different 
investment and operating costs and a subset of the 
technologies are assumed “must-run” i.e. they must be 
operating at their full capacity during all times. 

- The considered electricity market is a pool-based 
energy-only market with a day-ahead horizon and 
hourly resolution and is cleared by the market 
operator through the solution of a short-term social 
welfare maximization problem. 

- The strategic generation company submits to the 
market a linear offer curve for each of the different 
technologies within its generation portfolio. This 
curve represents the actual operating cost function of 
the respective technology, since strategic offering 
effects are neglected in this paper. 

- The demand side submits to the market a linear bid 
curve. In order to capture the temporal variability of 
demand characteristics, a set of representative days is 
examined. 

- The considered ES is assumed to be already built and 
does not belong to the strategic generation company. 

- Following the approach adopted in [13], a generic, 
technology-agnostic model is employed for the 
representation of the technical characteristics of ES, 
which includes charging and discharging efficiencies, 
energy balance constraints as well as minimum and 
maximum energy and power limits. The operation and 
maintenance costs of ES are assumed negligible, so it 
does not submit a price offer or bid to the market. 



B. Bi-Level Optimization Fomulation 

The proposed bi-level optimization formulation models the 
decision making process of the strategic generation company 
and is formulated as follows: 

(Upper level) 

max
{𝑋𝑖}

∑ 𝑤𝑑𝑑 (∑ (𝜆𝑑,𝑡𝑔𝑖,𝑑,𝑡 − 𝑐𝑖𝑔𝑖,𝑑,𝑡)𝑖,𝑡 ) − ∑ 𝐼𝐶𝑖𝑋𝑖𝑖           (1) 

subject to: 

𝑋𝑖 ≥ 0, ∀𝑖 (2) 

∑ 𝑋𝑖𝑖 ≥ Υ ∗ (𝑑𝑑,𝑡 + 𝑠𝑑,𝑡
𝑐 − 𝑠𝑑,𝑡

𝑑 ), ∀𝑑, ∀𝑡 (3) 

(Lower level) 

min
𝑉𝐿𝐿

(∑ 𝑐𝑖𝑔𝑖,𝑑,𝑡𝑑,𝑡,𝑖 − ∑ 𝑏𝑑,𝑡𝑑𝑑,𝑡𝑑,𝑡 ) (4) 

where: 

𝑉𝐿𝐿 =  {𝑔𝑖,𝑑,𝑡 , 𝑑𝑑,𝑡 , 𝑠𝑑,𝑡
𝑐 , 𝑠𝑑,𝑡

𝑑 , 𝐸𝑑,𝑡} (5) 

subject to: 

𝑑𝑑,𝑡 + 𝑠𝑑,𝑡
𝑐 − 𝑠𝑑,𝑡

𝑑 − ∑ 𝑔𝑖,𝑑,𝑡𝑖 = 0: 𝜆𝑑,𝑡; ∀𝑑, ∀𝑡 (6) 

0 ≤ 𝑔𝑖,𝑑,𝑡 ≤ 𝑋𝑖: 𝜇𝑖,𝑑,𝑡
− , 𝜇𝑖,𝑑,𝑡

+ ; ∀𝑖 ∉ 𝐼𝑀𝑅 , ∀𝑑, ∀𝑡  (7) 

𝑔𝑖,𝑑,𝑡 = 𝑋𝑖: 𝜉𝑖,𝑑,𝑡 , ∀𝑖 ∈ 𝐼𝑀𝑅 , ∀𝑑, ∀𝑡 (8) 

0 ≤ 𝑑𝑑,𝑡 ≤ 𝑑𝑑,𝑡
𝑚𝑎𝑥  𝑣𝑑,𝑡

− , 𝑣𝑑,𝑡
+ ;  ∀𝑑, ∀𝑡   (9) 

𝐸𝑑,𝑡 = 𝐸𝑑,𝑡−1 + 𝜏𝜂𝑐𝑠𝑑,𝑡
𝑐 −

𝜏𝑠𝑑,𝑡
𝑑

𝜂𝑑 : 𝜋𝑑,𝑡; ∀𝑑, ∀𝑡 (10) 

𝐸0 = 𝐸𝑑,𝑡: 𝜌𝑑; ∀𝑑, ∀𝑡 = 𝑁𝑇 (11) 

𝐸𝑚𝑖𝑛 ≤ 𝐸𝑑,𝑡 ≤ 𝐸𝑚𝑎𝑥:  𝜎𝑑,𝑡
− , 𝜎𝑑,𝑡

+ ; ∀𝑑, ∀𝑡 (12) 

0 ≤ 𝑠𝑑,𝑡
𝑐 ≤ 𝑠𝑚𝑎𝑥 : 𝜑𝑑,𝑡

− , 𝜑𝑑,𝑡
+ ; ∀𝑑, ∀𝑡   (13) 

0 ≤ 𝑠𝑑,𝑡
𝑑 ≤ 𝑠𝑚𝑎𝑥 : 𝜒𝑑,𝑡

− , 𝜒𝑑,𝑡
+ ;  ∀𝑑, ∀𝑡   (14) 

The upper level (UL) problem maximizes the profit of the 
strategic generation company across the yearly planning 
horizon (1), given by the difference between its yearly 
operational profit in the electricity market (first term) and its 
annuitized investment cost for procuring generation capacity 
(second term). This problem is subject to the positivity limits 
of the investment decisions (2), the adequacy constraint (3) 
which is enforced by the regulator to preserve security of 
supply requirements, as well as the lower level (LL) problem 
(4)-(14). The latter represents the market clearing process at 
each representative day, minimising the negative social 
welfare (4), subject to demand-supply balance constraints (6) 
(the Lagrangian multipliers of which constitute the market 
clearing prices), and the operating constraints of the 
generation side (7)-(8), the demand side (9), and the ES. The 
latter include energy balance constraints (10), the assumption 

of energy neutrality over the daily market horizon (11), and 
minimum and maximum energy and power limits (12)-(14). 

C. MPEC Formulation 

In order to solve this bi-level optimization problem, the LL 
problem is replaced by its Karush-Kuhn-Tucker (KKT) 
optimality conditions, a replacement enabled by the fact that 
the LL problem is continuous and convex. This converts the 
bi-level problem to a single-level MPEC which is formulated 
as: 

max
𝑉

∑ 𝑤𝑑𝑑 (∑ (𝜆𝑑,𝑡𝑔𝑖,𝑑,𝑡 − 𝑐𝑖𝑔𝑖,𝑑,𝑡)𝑖,𝑡 ) − ∑ 𝐼𝐶𝑖𝑋𝑖𝑖  (15) 

where: 

𝑉 =  {
𝑋𝑖, 𝑔

𝑖,𝑑,𝑡
, 𝑑𝑑,𝑡, 𝑠𝑑,𝑡

𝑐 , 𝑠𝑑,𝑡
𝑑 , 𝐸𝑑,𝑡, 𝜆𝑑,𝑡, 𝜇

𝑖,𝑑,𝑡
− , 𝜇

𝑖,𝑑,𝑡
+ , 𝜉

𝑖,𝑑,𝑡
,

𝑣𝑑,𝑡
− , 𝑣𝑑,𝑡

+ , 𝜋𝑑,𝑡, 𝜌
𝑑

, 𝜎𝑑,𝑡
− , 𝜎𝑑,𝑡

+ , 𝜑
𝑑,𝑡
− , 𝜑

𝑑,𝑡
+ , 𝜒𝑑,𝑡

− , 𝜒𝑑,𝑡
+ } (16) 

subject to: 

(2)-(3), (6), (8), (10)-(11) 

𝑐𝑖 − 𝜆𝑑,𝑡 − 𝜇𝑖,𝑑,𝑡
− + 𝜇𝑖,𝑑,𝑡

+ = 0, ∀𝑖 ∉ 𝐼𝑀𝑅 , ∀𝑑, ∀𝑡 (17) 

𝑐𝑖 − 𝜆𝑑,𝑡 + 𝜉𝑖,𝑑,𝑡 = 0, ∀𝑖 ∈ 𝐼𝑀𝑅 , ∀𝑑, ∀𝑡 (18) 

𝜆𝑑,𝑡 − 𝑏𝑑,𝑡 − 𝑣𝑑,𝑡
− + 𝑣𝑑,𝑡

+ = 0, ∀𝑑, ∀𝑡 (19) 

𝜆𝑑,𝑡 − 𝜏𝜂𝑐𝜋𝑑,𝑡 − 𝜑𝑑,𝑡
− + 𝜑𝑑,𝑡

+ = 0, ∀𝑑, ∀𝑡 (20) 

−𝜆𝑑,𝑡 +
𝜏𝜋𝑑,𝑡

𝜂𝑑 − 𝜒𝑑,𝑡
− + 𝜒𝑑,𝑡

+ = 0, ∀𝑑, ∀𝑡 (21) 

−𝜎𝑑,𝑡
− + 𝜎𝑑,𝑡

+ + 𝜋𝑑,𝑡 − 𝜋𝑑,(𝑡+1) = 0, ∀𝑑, ∀𝑡 < 𝑁𝑇 (22) 

−𝜎𝑑,𝑡
− + 𝜎𝑑,𝑡

+ + 𝜋𝑑,𝑡 − 𝜌
𝑑

= 0, ∀𝑑, ∀𝑡 = 𝑁𝑇 (23) 

0 ≤ 𝑔𝑖,𝑑,𝑡 ⊥ 𝜇𝑖,𝑑,𝑡
− ≥ 0: ∀𝑖 ∉ 𝐼𝑀𝑅 , ∀𝑑, ∀𝑡  (24) 

0 ≤ (𝑋𝑖 − 𝑔𝑖,𝑑,𝑡) ⊥ 𝜇𝑖,𝑑,𝑡
+ ≥ 0, ∀𝑖 ∉ 𝐼𝑀𝑅 , ∀𝑑, ∀𝑡 (25) 

0 ≤ 𝑑𝑑,𝑡 ⊥ 𝑣𝑑,𝑡
− ≥ 0, ∀𝑑, ∀𝑡 (26) 

0 ≤ (𝑑𝑑,𝑡
𝑚𝑎𝑥 −  𝑑𝑑,𝑡) ⊥ 𝑣𝑑,𝑡

+ ≥ 0, ∀𝑑, ∀𝑡 (27) 

0 ≤ (𝐸𝑑,𝑡 − 𝐸𝑚𝑖𝑛) ⊥ 𝜎𝑑,𝑡
− ≥ 0, ∀𝑑, ∀𝑡 (28) 

0 ≤ (𝐸𝑚𝑎𝑥 − 𝐸𝑑,𝑡) ⊥ 𝜎𝑑,𝑡
+ ≥ 0, ∀𝑑, ∀𝑡 (29) 

0 ≤ 𝑠𝑑,𝑡
𝑐 ⊥ 𝜑𝑑,𝑡

− ≥ 0, ∀𝑑, ∀𝑡 (30) 

0 ≤ (𝑠𝑚𝑎𝑥 − 𝑠𝑑,𝑡
𝑐 ) ⊥ 𝜑𝑑,𝑡

+ ≥ 0, ∀𝑑, ∀𝑡 (31) 

0 ≤ 𝑠𝑑,𝑡
𝑑 ⊥ 𝜒𝑑,𝑡

− ≥ 0, ∀𝑑, ∀𝑡 (32) 

0 ≤ (𝑠𝑚𝑎𝑥 − 𝑠𝑑,𝑡
𝑑 ) ⊥ 𝜒𝑑,𝑡

+ ≥ 0, ∀𝑑, ∀𝑡 (33) 

The set of decision variables of the MPEC formulation 
(16) includes i) the decision variables of the UL problem, ii) 
the decision variables of the LL problem, and iii) the 



Lagrangian multipliers associated with the constraints of the 
LL problem. The KKT optimality conditions of the LL 
problem correspond to equations (17)-(33). 

This MPEC formulation is characterized by several non-
linearities, including bilinear terms in the objective function 
(15) and the complementarity slackness conditions (24)-(33). 
In order to avoid global optimality issues associated with 
non-linear formulations, this MPEC is transformed to a 
mixed-integer linear problem (MILP), which can be 
efficiently solved to global optimality using commercial 
branch-and-cut solvers. For space limitation reasons, this 
transformation is not presented here, but adopts the 
linearization approaches presented in previous relevant works 
[13]. 

III. CASE STUDIES 

A. Test System and Implementation 

The strategic generation company can invest in three 
different technologies, namely nuclear, combined cycle gas 
turbines (CCGT) and open cycle gas turbines (OCGT). 
Nuclear generation is assumed “must-run”. The assumed 
values of the investment and operating costs of these 
technologies are presented in Table I. Four typical days 
representing the four seasons of the year are used, and the 
respective maximum demand profiles are obtained from [14]. 

TABLE I.  INVESTMENT AND OPERATING COSTS OF GENERATION 

TECHNOLOGIES 

Technology Nuclear CCGT OCGT 

𝐼𝐶𝑖 (£/kW/year) 328.21 52.12 26.46 

𝑐𝑖 (£/MWh) 4.72 37.68 56.98 

 

The developed MILP model has been implemented and 
solved using the optimization software FICOTM Xpress [15] 
on a computer with a 6-core 3.50 GHz Intel(R) Xeon(R) E5-
1650 processor and 32 GB of RAM. The average 
computational time required for solving this MILP across all 
the examined scenarios was approximately 15 minutes. 

B. Results 

The scope of the case studies lies in quantitatively 
analyzing the impacts of ES on the investment decisions of the 
considered strategic generation company. For this reason, we 
run the developed model for different scenarios regarding the 
operating parameters of ES. For ease of reference a baseline 
scenario is defined, characterized by the ES parameters 
presented in Table II. 

TABLE II.  ES PARAMETERS IN BASELINE SCENARIO 

Parameter 𝐸𝑐𝑎𝑝 = 𝐸𝑚𝑎𝑥 𝐸𝑚𝑖𝑛 𝐸0 𝑠𝑚𝑎𝑥 𝜂𝑐 = 𝜂𝑑 

Value 16GWh 20%𝐸𝑐𝑎𝑝 25%𝐸𝑐𝑎𝑝 50%𝐸𝑐𝑎𝑝/1h 0.9 

 

In the first study, we examine different scenarios regarding 
the energy capacity of ES while keeping the rest of the 
parameters equal to their baseline values (Table II). Fig. 1 
presents the net demand of the system (accounting for the 
charging and discharging power of ES) corresponding to one 

of the considered representative days, for the different 
examined scenarios along with a scenario without ES in the 
system (No ES). The introduction of ES flattens the demand 
profile by charging during off-peak periods and discharging 
during peak periods, with this effect being enhanced as the 
energy capacity of the ES is increased. 

 

Figure 1: Net system demand for different ES energy capacity scenarios. 

Fig. 2 presents the optimal investment decisions of the 
generation company for the examined scenarios. Since ES 
reduces the peak demand levels (Fig. 1), it drives a reduction 
in the total capacity investment. Furthermore, since it flattens 
the demand profile, it enhances the competitiveness of “must-
run” nuclear generation. As a result, the invested nuclear 
capacity is increased, while the invested CCGT and OCGT 
capacity is reduced. 

 

Figure 2: Investment decisions of strategic generation company for different 

ES energy capacity scenarios. 

Fig. 3 presents the total system cost savings brought by ES 
with respect to the case without ES. The results demonstrate 
that the total system cost (sum of investment and operating 
costs) is reduced by the introduction of ES. This positive 
impact of ES is driven by the combination of two effects: a) 
the reduction of the total capacity investment and b) the 
reduced need to run CCGT and OCGT generation which is 
characterized by high operating costs. 
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Figure 3: System cost savings for different ES energy capacity scenarios. 

In the second study, we examine different scenarios 
regarding the ratio between the power capacity and the energy 
capacity of ES (known as power-to-energy ratio) while 
keeping the rest of the parameters equal to their baseline 
values (Table II). A higher power-to-energy ratio enhances the 
ability of ES to charge / discharge during critical off-peak / 
peak periods, enhancing the two effects discussed above with 
the effect of reduced total capacity investment being more 
prominent (Fig. 4). As a result, a higher power-to-energy ratio 
enhances the positive impact of ES on total system cost (Fig. 
5). 

 
Figure 4: Investment decisions of strategic generation company for 

different ES power-to-energy ratio scenarios. 

 
Figure 5: System cost savings for different ES power-to-energy ratio 

scenarios. 

In the last study, we examine different scenarios regarding 
the efficiency of ES (assuming equal charging and discharging 
efficiencies in every scenario) while keeping the rest of the 
parameters equal to their baseline values (Table II). A higher 
efficiency reduces its energy losses and enables it to further 
flatten the demand profile, enhancing the two effects 
discussed above with the effect of reduced total capacity 
investment being again more prominent (Fig. 6). As a result, a 
higher efficiency enhances the positive impact of ES on total 
system cost (Fig. 7). 

 
Figure 6: Investment decisions of strategic generation company for different 

ES efficiency scenarios. 

 
Figure 7: System cost savings for different ES efficiency scenarios. 

IV. CONCLUSIONS 

Energy storage is considered one of the key technologies 
for addressing the techno-economic challenges of future 
electricity systems. However, their role and value in long-term 
generation investment planning has been only analyzed 
through centralised cost-minimization models inherited from 
the era of vertically integrated electricity utilities. On the other 
hand, although existing strategic generation investment 
planning models capture more accurately the deregulated 
market environment, they do not consider time-coupling in 
their operational timescale and thus they are inherently unable 
to analyze the impacts of ES. 

 In order to fill this knowledge gap, this paper has 
proposed a new strategic generation investment planning 
model incorporating the operation of ES. Specifically, the 
decision making of a strategic generation company is modeled 
through a multi-period bi-level optimization problem, where 
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the upper level determines the optimal investment decisions of 
the generation company so as to maximize its profit, and the 
lower level represents the market clearing process, accounting 
for the time-coupling operational characteristics of ES. This 
bi-level problem is solved after converting it to a single-level 
MILP. 

Case studies have demonstrated that the introduction of ES 
reduces the total generation capacity investment and enhances 
investments in “must-run” baseload generation over flexible 
peaking generation. Furthermore, this reduction of the total 
capacity investment and the reduced need to run mid-merit 
and peaking generation with high operating costs results in 
significant system cost savings. These impacts are enhanced 
for higher values of the power-to-energy ratio and the energy 
efficiency of ES. 
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