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Abstract

Broadly speaking, the calculation of core spec-
tra such as electron energy loss spectra (EELS)
at the level of density functional theory (DFT)
usually relies one of two approaches: concep-
tually more complex but computationally ef-
ficient projector augmented wave based ap-
proaches, or more straightforward but com-
putationally more intensive all electron (AE)
based approaches. In this work we present an
alternative method, which aims to find a mid-
dle ground between the two. Specifically, we
have implemented an approach in the multi-
wavelet madness molecular DFT code which
permits a combination of atoms treated at the
AE and pseudopotential (PSP) level. Atoms for
which one wishes to calculate the core edges are
thus treated at an AE level, while the remainder
can be treated at the PSP level. This is made
possible thanks to the multiresolution approach
of madness, which permits accurate and effi-
cient calculations at both the AE and PSP level.
Through examples of a small molecule and a
carbon nanotube we demonstrate the potential
applications of our approach.

Introduction

madness (Multiresolution ADaptive Numeri-
cal Environment for Scientific Simulation)1,2 is
a general purpose numerical framework which
combines a multiresolution approach with a
parallel programming environment designed for
petascale performance.3 The use of an adaptive
multiresolution approach allows integral and
differential equations in many dimensions to be
solved with guaranteed precision. Furthermore,
the code has been structured so that develop-
ers can focus on the high level implementation
of new functionalities, without needing detailed
knowledge of the low level technicalities. These
features have facilitated the development of var-
ious scientific applications using madness, in-
cluding a molecular density functional theory
(DFT) code4–6, and many other applications
spanning a range of fields, many of which are
concerned with quantum chemistry7–19.

The molecular DFT code (hereafter referred
to as moldft) provides a setup for the pre-
cise treatment of electronic systems with an
excellent cost to accuracy ratio. Nonetheless,
the cost of treating heavy atoms – or large
molecules containing many light atoms – re-
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mains high, inhibiting the ability to study tech-
nologically interesting systems such as those
containing transition metals. The most popular
way to alleviate this problem is the replacement
of the exact all electron (AE) atomic potential
with a smoother pseudopotential (PSP), which
has the dual advantage of reducing the number
of electrons requiring explicit treatment (as the
core electrons are incorporated implicitly), and
reducing the number of basis functions needed
to represent the wavefunctions close to the nu-
clei, thanks to increased smoothness. This en-
ables heavy atoms to be treated with a much
lower computational cost and would extend the
applicability of moldft.

Beyond these advantages, the multiresolution
approach of madness also facilitates the im-
plementation of a mixed representation, namely
the treatment of only select atoms with PSPs,
with others retaining the full AE potential.
While this is also possible in Gaussian basis sets
using effective core potentials (ECP), a mul-
tiresolution approach permits a similar method
using a systematic basis, since the automatic
refinement ensures that both full and pseudo-
atoms are treated at a resolution which is high
enough to maintain accuracy without loss of ef-
ficiency.

One application where this is of particular
use is core level spectroscopy, e.g. electron en-
ergy loss spectra (EELS), specifically energy
loss near edge structure (ELNES), which is the
region of the spectrum immediately after the
edge onset. ELNES is able to probe the local
electronic structure of a sample and is thus an
invaluable experimental technique. Theoretical
calculations (often based on DFT) are required
to help interpret experimental spectra. The de-
velopment and application of methods for sim-
ulating ELNES is therefore an active area of re-
search20. However, one is often only interested
in calculating spectra for a subset of a system,
e.g. a group of atoms or single atomic species
within a molecule, or a molecule in an environ-
ment. In such cases, core states need only be
explicitly calculated for the atoms of interest,
which can easily be achieved by treating only
these atoms at the AE level.

In this paper we first outline the key concepts

behind the madness molecular DFT code, be-
fore briefly discussing the implementation of a
mixed AE/PSP approach. We then present
the method used to calculate ELNES, includ-
ing the calculation of the virtual Kohn Sham
(KS) eigenstates. Finally, we validate the ap-
proach through examples of two systems which
benefit from a mixed PSP/AE representation.

Theory

Molecular DFT with MADNESS

Both the madness code as a whole and the
moldft code in particular have already been
described elsewhere2,4–6, and so here we give
only an outline. One of the central compo-
nents of madness is the use of a disjoint “multi-
wavelet” basis set, which is constructed from a
set of (shifted and scaled) Legendre polynomi-
als represented in a non-uniform grid. The grid,
therefore the basis, is dynamically adapted to
give higher resolution where needed (e.g. close
to the atoms where the KS wavefunctions are
more rapidly varying), giving rise to a computa-
tionally efficient yet highly accurate multireso-
lution analysis (MRA). Indeed, each KS orbital
has its own individual adaptively refined repre-
sentation. The exploitation of MRA techniques
allows the code to reach a finite arbitrary pre-
cision, while relieving the user of the need to
manually converge the basis set.

In contrast to other DFT codes, the central
eigenvalue equation to be solved is recast from
a differential equation of the form(

−1

2
∇2 + V (x)

)
ψ (x) = Eψ (x) , (1)

to an integral equation of the form

ψ (x) = −2

∫
dx
(
−∇2 − 2E

)−1
V (x)ψ (x) .

(2)
This form is well-suited to the madness frame-
work and has the advantage of being able to be
solved iteratively without the need for a precon-
ditioner. In practice, an initial guess for the KS
wavefunctions is first generated by projecting
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an atomic orbital basis, typically 6-31G, into
the multiwavelet basis. This approach takes ad-
vantage of the underlying madness numerical
and parallel runtime to efficiently solve the KS
equations to a guaranteed precision, while re-
quiring only minimal input from the user con-
cerning the basis set or parallel setup.

A wide range of LDA, GGA and hybrid
functionals are available in moldft through the
LibXC library21. Although we have not ex-
ploited the capability in this work, in addi-
tion to standard canonical orbitals, moldft has
the option to use localized molecular orbitals18,
where the Pipek-Mezy scheme22 is used to lo-
calize the orbitals. This gives rise to a quasi-
linear scaling, reducing the computational cost
of treating larger systems.

Pseudopotentials in MADNESS

Despite the advantages of an MRA approach
for DFT calculations, the computational cost of
treating heavy atoms or indeed of large systems
containing light elements is high, due in part to
the explicit treatment of core electrons. The ap-
plicability of moldft could therefore be extended
to new materials by implementing PSPs. Al-
though most commonly used in periodic plane
wave (PW) DFT codes, PSPs are also effec-
tively employed in combination with other ba-
sis sets. Given such extensive use for DFT cal-
culations, it is of no surprise that PSPs exist
in a number of varieties, generally categorized
as “hard” or “soft”, depending on the smooth-
ness of the pseudized-wavefunctions. Indeed,
the development of ever cheaper and more ac-
curate PSPs continues to be an active area of
research. It is also worth mentioning the pro-
jector augmented wave (PAW) approach23, an
alternative approach to more traditional PSPs,
which aims to reproduce the correct AE be-
haviour near the nuclei, while still avoiding the
explicit treatment of core states.

We have chosen to implement norm-
conserving HGH-GTH24,25 PSPs in moldft, as
they are available for the majority of elements
and have demonstrated a consistently high ac-
curacy and transferability (see e.g. Refs.26,27).
Furthermore, they have already proven to work

well in the wavelet-based BigDFT code28, for
calculations in both open and periodic bound-
ary conditions. This also provides a means of
validating our implementation.

The implementation in madness was rela-
tively straightforward, since the underlying ma-
chinery used to solve the KS equations remains
the same, only the definition of the atomic po-
tential need be modified. In the first instance
we have not implemented either relativistic ef-
fects or non-linear core corrections, which have
demonstrated an accuracy of similar quality to
AE calculations27. In the future this might eas-
ily be extended.

Mixed AE/PSP Calculations

As discussed, an adaptive multi-wavelet ap-
proach is also highly suitable for a mixed
AE/PSP representation. Both the implemen-
tation and application of such an approach is
straightforward. Consider two opposing sce-
narios: calculations using PWs and those using
Gaussian-type basis sets. For the former, aside
from the prohibitive cost of AE calculations in
PW basis sets, the delocalized nature of the ba-
sis functions also prevents them from being spa-
tially varied to be more or less dense around
different atoms. Any mixed AE/PSP approach
would therefore also necessitate a mixed basis
set approach, e.g. combining PWs with a local-
ized basis set29,30.

In the case of Gaussian basis sets, the number
of functions associated with each atom could
be directly modified depending on the level
of theory used. Such a mixed representation
has previously been implemented using Gaus-
sian basis sets and used to assess the accu-
racy of individual PSPs for molecular proper-
ties including binding energies and vibrational
properties31. This approach has been used to
treat select groups of atoms at the AE level, for
example H atoms in molecules or clusters for
the calculation of Raman spectra31,32, only the
molecule for the study of adsorption on a sur-
face33 and for Mössbauer-active Sn atoms for
the calculation of Mössbauer spectra in chalco-
genide glasses34.

While a mixed approach can therefore clearly
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be employed using Gaussian basis sets, this
nonetheless increases the burden on the user to
ensure that the simulation remains both accu-
rate and computationally efficient by tuning the
basis for each atom according to chemical intu-
ition. Furthermore, the use of the same under-
lying approach to e.g. the calculation of Pois-
son’s equation for PSP and AE approaches did
not guarantee a reduction in computational cost
for mixed AE/PSP compared to pure AE calcu-
lations31. The key advantage of a multi-wavelet
approach is therefore that the same high accu-
racy and computational efficiency is achieved
for the mixed mode as for pure AE and PSP
approaches. Crucially, this does not require
any additional fine-tuning of parameters – to
perform a calculation in mixed mode, the only
thing the user must do is specify which atoms
are to be treated at the PSP level.

Calculating ELNES

One way of maximizing the information that
can be extracted from DFT simulations is by
calculating experimental quantities like spectra.
For example, core spectra such as ELNES can
be used to extract information concerning the
chemical bonding environment, valence state
and nearest neighbour distances. The simula-
tion of such spectra is invaluable both for un-
derstanding and interpreting experimental re-
sults and predicting and guiding future exper-
iments on new materials. To give an exam-
ple, a combined theoretical and experimental
approach allowed the identification of individ-
ual fullerene molecules encapsulated in a carbon
nanotube35. Here we summarize the different
approaches to calculating ELNES within AE
and PSP DFT calculations. For a more thor-
ough discussion of the calculation of ELNES see
e.g. Refs.20,36.

The most straightforward method of calcu-
lating ELNES within DFT (beyond the simple
site- and angular-momentum-projected density
of states approach) is via Fermi’s golden rule
in conjunction with the dipole approximation.
In this formalism the imaginary part of the di-
electric function, ε2, in atomic units, is given

by

ε2 (ω) =
1

Ω

∑
c,v

|〈ψv|q · r|ψc〉|2δ (Ev − Ec − ω) ,

(3)
where ω is the transition energy, Ω is the volume
of the unit cell, q is the momentum transfer, r
is the position operator and ψc (ψv) is a core
(virtual) state with associated energy Ec (Ev).
In practice, the δ-function is usually replaced by
a Gaussian or Lorentzian function to simulate
broadening effects or lifetime of the transition.

If one assumes that the excitation of a core
electron to a virtual state is “sudden”, i.e. the
virtual states are unaffected by creation of an
instantaneous core hole (and neglecting rela-
tivistic effects), one can directly calculate the
matrix elements of Eq. 3 between core and vir-
tual KS eigenstates from a ground state cal-
culation. This provides a first approximation,
however more quantitative comparison with ex-
periment generally requires the inclusion of core
hole effects. Different approaches may be used,
the most basic being the Z + 1 approximation,
wherein the excited atom is replaced by an atom
with atomic number one higher than its actual
atomic number. This has met with mixed suc-
cess, see e.g. Ref.37. Alternatively, a PSP may
be generated with a missing core electron38,
while for AE calculations a constraint may be
applied to maintain a core hole. Irrespective
of the approach used, a separate calculation is
needed for each atom one wishes to excite.

For AE-based DFT approaches, the calcula-
tion of matrix elements between core and vir-
tual states is straightforward. For PSP ap-
proaches where there are no explicit core states,
one could instead use core states originating
from an isolated atom. However the calcu-
lated (valence and) virtual states are pseudo-
wavefunctions and therefore only match the
true wavefunctions outside of the core region.
This can have a noticeable impact on the accu-
racy of the matrix elements. If one assumes that
the core wavefunctions are themselves unaf-
fected by their environment, one could nonethe-
less calculate accurate matrix elements if the
correct behaviour of the virtual states could
be recovered in the core regions. This can be
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achieved using the PAW approach, which is able
to recover the AE valence and virtual wavefunc-
tions, resulting in matrix elements which are
comparable in accuracy to AE approaches while
requiring significantly less computational effort.
In contrast, ELNES calculations using standard
PSPs (i.e. without PAW), generally do not give
accurate values for the matrix elements36,38.

PAW has been successfully employed for
ELNES calculations using a PW basis set36,38,39

for systems which are larger than could be ac-
cessed using AE approaches, where PAW is ei-
ther used in place of PSPs or as a correction to
the ELNES matrix elements following a PSP
calculation. Indeed, more than 1000 atoms
have been treated using a PAW approach within
the context of linear scaling DFT calculations
with a psinc basis40. This allows the treat-
ment of more complex materials, while also per-
mitting supercell calculations which are large
enough to minimize interactions between core
holes in periodic images.

The absolute energies of the core levels for a
given atomic species are affected by their lo-
cal chemical environment. The magnitude of
such variations, i.e. the chemical shift, depends
on the species in question – e.g. for the C 1s
state this can be as much as 12 eV41. Ex-
cept in trivial cases where all atoms of a given
species within a molecule have the same chem-
ical environment, such shifts must therefore be
taken into account in order to correctly combine
spectra originating from different atoms of the
same species within a system. This cannot be
achieved by manually aligning theoretical and
experimental spectra, instead one must calcu-
late the absolute energy onsets.

A first approximation to calculating such en-
ergies would be to take the difference between
the corresponding KS eigenvalues. This relies
on having access to the energies of the core
states, so that such an approach is only appli-
cable within an AE calculation. A better ap-
proach would be to also include core hole effects
in the calculated energies, by taking the dif-
ference between the total energy of the excited
(core hole) and ground state calculations, which
relies on the explicit inclusion of core states.
However, it is possible to estimate the absolute

energy onsets from PAW calculations by also
calculating the effect of core holes on isolated
atom calculations42.

The mixed AE/PSP approach provides an
interesting compromise between the AE and
PAW approaches for calculating ELNES. In
cases where one is only interested in calculating
excitations for few atoms of interest, the com-
putational cost is significantly reduced com-
pared to a pure AE approach, while the direct
access to select core states allows for the accu-
rate and straightforward calculation of transi-
tion matrix elements and energies.

Since the goal of this paper is a demonstra-
tion of the benefits of a mixed PSP/AE rep-
resentation within a multiresolution approach,
rather than the explicit comparison of calcu-
lated ELNES spectra with experiment, the im-
plementation of core hole effects is left as a fu-
ture extension, where the constrained approach
mentioned above should be used – note that it
would already be possible to employ the Z + 1
approach. Since we have not included core hole
effects we calculate the transition energies by
taking the difference between KS eigenvalues.

Calculation of KS States

The KS core and virtual (unoccupied) states
are a key ingredient of Eq. 3. In moldft, a
given number of virtual states can be calculated
alongside the occupied KS states. We note that
the approach is not designed to allow access to
unbound states – with positive energies the ker-
nel of Eq. 2 (−(∇2−2E)−1) diverges – while in
any case such states might strongly depend on
the simulation cell size. We therefore avoid cal-
culating such eigenstates in this work. However,
there is also another subtlety relating to the ini-
tial ordering of the (bound) virtual states. This
is similar to a situation which arises in the con-
text of the linear-scaling DFT code onetep43,
wherein the virtual states are represented in a
localized orbital basis set, which is itself rep-
resented in an underlying systematic basis set.
Starting from an initial atomic orbital guess,
these localized orbitals are optimized to repre-
sent a set of low lying virtual states. However,
the virtual states can be incorrectly ordered in

5



the initial basis, so that some high energy vir-
tual states are selected in favour of states which
would be lower in energy in an optimized (i.e.
more complete) localized orbital basis, resulting
in some “missing” virtual states44.

While we are not applying any localization to
the KS states, the initial guess is nonetheless
generated from a localized atomic basis set, so
that the same energy ordering problems can oc-
cur. Fortunately, the same solution can also be
used: a larger number of virtual states than re-
quired must initially be requested to allow the
virtual states to attain the correct energy order-
ing. After this initial stage the higher energy
KS states are eliminated and the calculation
proceeds with the actual number of states re-
quired. In order to reduce the user effort, this
process has been semi-automated so that the
code will gradually reduce the number of calcu-
lated virtual states, however the user must still
pay careful attention to ensure no virtual states
have been neglected.

There are also some subtleties regarding core
states. When multiple atoms are treated as AE,
it is possible for mixing to occur between core
wavefunctions. For standard DFT calculations
this does not pose a problem, however when we
are interested in probing excitations originating
on specific atoms this is problematic. One way
to minimize this mixing is by explicitly local-
izing the core states, with the aim of ensuring
that the core states remain associated with a
single atom. In some cases it might be neces-
sary to impose a more strict localization crite-
rion, however in the following examples this was
not needed. Furthermore for core hole calcula-
tions one could always treat only a single atom
at the AE level, avoiding such problems.

Results

We present in the following benchmark calcu-
lations demonstrating the accuracy of our ap-
proach for cysteine and a single walled carbon
nanotube (SWCNT) by comparing the PSP,
mixed and AE approaches with results from
other codes employing different basis sets and
approaches. We emphasize here that the goal

is not to present a new approach for the cal-
culation of core spectra, but to demonstrate
the potential advantages of using a multireso-
lution approach for calculating such quantities
in a straightforward and computationally inex-
pensive manner. Our motivation behind cal-
culating ELNES is to show an example of a
type of calculation where the use of a mixed
AE/PSP scheme within a multiresolution ap-
proach is advantageous. As such, we have not
presented any comparisons with experiment, as
many such comparisons, including the impact
of whether of not core hole effects are incorpo-
rated, can be found elsewhere; see for example
a recent review article on the subject20.

Computational Details

All ELNES spectra were generated for an
isotropic average of q. For madness,
BigDFT28 and NWChem45 we used explicit
free boundary conditions, while for castep46

we used large cubic supercells with sides of
30 Å to minimize interactions between periodic
images. For madness and BigDFT we used
the same PSP parameters, ensuring that the
employed PSPs were generated with the cor-
rect functional, while for castep we used the
on-the-fly PSP generator using default param-
eters. Following a PSP calculation in castep,
PAW is used to correct the ELNES matrix ele-
ments, as described in Refs.36,38. For cysteine
we used the LDA exchange correlation func-
tional47, while for the SWCNT we used the
PBE functional48.
madness calculations were initially con-

verged using a threshold of 10−4 and wavelet
order k = 6, following which 10−6 and k = 8
were used to achieve a well converged result.
For NWChem we used aug-cc-pVnZ basis sets
with varying n, which we abbreviate to aVnZ
in the following. For BigDFT we employed
a small wavelet grid spacing of 0.08 Å and
coarse and fine radius multipliers of 12 and 15
respectively to obtain well converged energies.
For castep we used PW cutoffs of 1000 eV
and 600 eV for cysteine and the SWCNT re-
spectively. In all codes we calculated the five
lowest energy virtual states for cysteine and
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the fourteen lowest energy virtual states for the
SWCNT.

Cysteine

We first take the amino acid cysteine, for which
the atomic structure is depicted in Fig. 1. We
use this example to verify the correctness of
the PSP implementation and assess the mixed
AE/PSP scheme. In order to put the results
into context we also compare with other codes
using different basis sets.

C1S

N

O1

O2C2

C3

Figure 1: Atomic structure of the cysteine
molecule, with H atoms in white, C in grey,
N in blue, O in red and S in gold. The atom
labels refer to those used in Table 2 and Fig. 2.

We first compare select eigenvalues close
to the HOMO (highest occupied molecular
orbital) and the LUMO (lowest unoccupied
molecular orbital) – results are shown in Ta-
ble 1. In the first instance, we compare the
AE and PSP approaches in moldft with the
PSP implementation in BigDFT, which, as
previously mentioned, employs the same type
of PSPs. The PSP results from the two codes
are in excellent agreement, with differences of
at most a few tenths of a meV, confirming the
correctness of our PSP implementation. Com-
paring the AE and PSP values, as expected the
differences are more significant, but nonetheless
remain small, of the order of 10 meV. Such a
high level of agreement is more than sufficient
given typical smearing applied when calculating
ELNES.

To put the results in context, we have also
calculated the energies using the castep PW
code and with various Gaussian basis sets using
NWChem, as well as the Stuttgart relativis-
tic large core ECP49 in NWChem. For the

latter, ECP were used for all elements except
H, for which the aVTZ basis was used. This
approach gives the largest errors compared to
the madness AE results, which might be at-
tributed to the fact that they have been devel-
oped for Hartree Fock calculations rather than
DFT. The next biggest discrepancies are for
castep. This is unsurprising given the greater
differences in computational setup, including
the use of a periodic supercell and different PSP
type. However the differences are small – less
than 50 meV. The error due to using the small-
est Gaussian basis set (aVDZ) is of a similar
magnitude, while for the largest Gaussian basis
set (av5Z) the difference with respect to mad-
ness AE has reduced to around 1 meV.

We also compare different approaches to
ELNES calculations. This includes those ob-
tained using Gaussian basis sets in NWChem
and using the PW code castep. As with
moldft, the dipole approximation is used in
both castep and NWChem to generate the
transition matrix elements. Since we are inter-
ested in comparing like-for-like, we do not in-
troduce a core hole into any of the calculations.
Fig. 2 shows the ELNES spectra for transitions
from each atom in the system. Since the core
states are not accessible in the PW approach,
the spectra have been manually aligned, while
in all other cases the transition energies are ex-
plicitly calculated. There is excellent agreement
between the PW results and madness for all
cases except the S 2p spectrum, which is due to
the splitting in the core energy levels which can-
not be captured with the PW approach. The
Gaussian results converge rather slowly with re-
spect to basis size, especially in the case of S.
However, the shape is already similar for small
basis sets. Furthermore, a closer examination
of the core energies, which are given in Table 2,
shows that while the core energies themselves
converge slowly, the splitting between core lev-
els converges quickly.

In order to test the mixed scheme, we next
investigated several scenarios, which are listed
in Table 3. In each case we calculated the occu-
pied and negative energy unoccupied KS states.
The error in the eigenvalues compared to the
AE values is of the same order of magnitude
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Table 1: Comparison of select eigenvalues (eV), for the cysteine molecule using the AE
and PSP approaches in MADNESS, PSP implementations in BigDFT and CASTEP,
various Gaussian basis sets using the AE approach and the Stuttgart relativistic large
core (SRLC) ECP using NWChem, as described in the text.

madness BigDFT castep NWChem
AE PSP PSP PSP AE ECP

aVDZ aVTZ aVQZ aV5Z SRLC

HOMO-3 -7.8867 -7.8915 -7.8916 -7.8619 -7.8750 -7.8804 -7.8859 -7.8859 -7.8287
HOMO-2 -6.9024 -6.9099 -6.9095 -6.8869 -6.8654 -6.8954 -6.9008 -6.9008 -6.9933
HOMO-1 -6.0708 -6.0652 -6.0652 -6.0436 -6.0355 -6.0654 -6.0709 -6.0709 -5.9838
HOMO -5.7905 -5.7812 -5.7813 -5.7503 -5.7688 -5.7933 -5.7933 -5.7906 -5.7715
LUMO -1.7365 -1.7263 -1.7263 -1.7128 -1.7116 -1.7252 -1.7334 -1.7361 -1.8232

Table 2: Core energies and energy splittings between states (eV) calculated using the
AE and appropriate mixed approach as defined in Table 3 as well as various Gaussian
basis sets. The atom labels are those indicated in Fig. 1. For the S 2p energy levels
there is significant mixing between the states, particularly between y and z. The
specific orbital has therefore not been labelled.

madness NWChem
Atom State AE Mixed aVDZ aVTZ aVQZ aV5Z

S

1s -2387.00 -2387.00 -2387.64 -2387.33 -2386.65 -2386.75

2s -207.82 -207.82 -208.16 -208.00 -207.85 -207.82

2p
-154.91 -154.91 -155.31 -155.13 -154.95 -154.91
-154.79 -154.79 -155.18 -154.80 -154.80 -154.80
-154.61 -154.61 -154.97 -154.82 -154.65 -154.61

C1 1s -270.02 -270.04 -270.28 -270.03 -270.03 -270.03

C2 1s -267.86 -267.87 -268.13 -267.86 -267.86 -267.86

C3 1s -267.21 -267.21 -267.53 -267.23 -267.22 -267.22

C3 - C1 1s 2.16 2.17 2.15 2.17 2.17 2.17

C3 - C2 1s 2.81 2.83 2.75 2.80 2.81 2.81

N 1s -377.15 -377.16 -377.63 -377.18 -377.16 -377.15

O1 1s -508.08 -508.09 -508.73 -508.14 -508.10 -508.09

O2 1s -506.33 -506.33 -506.99 -506.38 -506.34 -506.32

O2 - O1 1s 1.76 1.76 1.75 1.76 1.76 1.76

as for the PSP calculation – around 10 meV
for the set of states considered in Table 1. In
other words, the mixed formalism works as an-
ticipated, with the quality of results only being
limited by the quality of the PSP. In each of the
mixed cases, the total wall time was reduced by
around a factor of two compared to pure AE.
However, no particular effort was made to opti-

mize the implementation of PSPs in madness.
It is therefore likely that further decreases in
computational cost could be achieved in the fu-
ture, e.g. by optimizing the calculation of the
PSP projectors in the multi-wavelet basis.

Finally, we also calculate ELNES spectra us-
ing the mixed approach. In this case, the spec-
tra can only be calculated where we have access
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Figure 2: ELNES spectra for the different
atoms of the cysteine molecule as labelled in
Fig. 1, using the AE approach in madness, the
PW approach in castep and various Gaussian
basis sets in NWChem. Gaussian smearing
of 0.1 eV was applied and the intensities were
scaled for easier comparison.

Table 3: The different setups for the cys-
teine molecule, where 4 (8) denotes the
treatment of all atoms of that species at
the AE (PSP) level. The column denoted
“ELNES” indicates whether the calcula-
tion of an ELNES spectra is possible.

H C N O S ELNES

AE 4 4 4 4 4 4

PSP 8 8 8 8 8 8

mixed (H) 4 8 8 8 8 8

mixed (C) 8 4 8 8 8 4

mixed (N) 8 8 4 8 8 4

mixed (O) 8 8 8 4 8 4

mixed (S) 8 8 8 8 4 4

to at least one core state, which is only possible
when at least one atom was treated at the AE
level. Table 3 indicates which of the calculation
setups were used, while Fig. 3 shows the respec-
tive spectra, which are also compared with PW
and aVQZ results. Each curve corresponds to

the average of all transitions from atoms of that
species. As can be seen, the PW results show
noticeable differences for the C and O 1s spec-
tra, for the same reasons discussed above for the
S 2p spectrum. This is not surprising given that
the splittings between core states are of the or-
der of 2 eV. On the other hand, the mixed and
AE results are virtually identical at the applied
smearing level, as are the Gaussian results. The
only exception is that the Gaussian results dif-
fer for the S 1s spectrum, which in any case
would not be measured experimentally. Indeed,
the absolute core energy levels calculated using
the different mixed approaches, (given in Ta-
ble 2) show excellent agreement with the pure
AE results, with the induced error on the order
of 0.01 eV. Thus, should one be interested for
example in only the core edge for C, one could
easily treat all other atoms at the PSP level at a
reduced computational cost, without noticeable
loss of accuracy, and indeed with an accuracy
comparable to that of a very large Gaussian ba-
sis set.

Carbon Nanotube

As our second example, we take a short,
hydrogen-terminated (4,0) single walled carbon
nanotube, depicted in Fig. 4. For this system
we are interested in calculating the full ELNES
spectrum, however since there are only three
C atoms which could be considered to be dis-
tinct (i.e. different chemical environment, unre-
lated by symmetry), we might hope to calcu-
late the core excitations from only one atom of
each type, and use this to reconstruct the total
spectrum. This can be achieved using a mixed
calculation with only three atoms treated at the
AE level and the remainder at the PSP level.
The AE atoms are labelled A, B and C and
indicated in Fig. 4. For the mixed moldft cal-
culation, it was not necessary to explicitly im-
pose any localization on any of the core states,
since they remained disentangled. As well as
comparing the spectra originating from the dif-
ferent atoms, we are also interested in the core
energies of atoms A, B and C, i.e. to what ex-
tent there is splitting in the energy levels due
to the differing bonding environments. As with
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Figure 3: ELNES spectra for the cysteine
molecule, for the AE approach and various
mixed setups (defined in Table 3) in madness,
as well as using the PW approach in castep
and the AE approach from NWChem using the
aVQZ basis set. The core state is indicated for
each plot, and where more than one atom of a
given species is present, the average spectrum
is shown. The PW spectra have been manually
aligned and intensities have been scaled to facil-
itate comparison. Gaussian smearing of 0.1 eV
was applied.

cysteine, we also compare results with PW and
Gaussian basis set approaches.

In the first instance we calculated the density
of states (DOS) for the different approaches,
shown in Fig. 5. As can be seen, the four
curves are virtually identical within the level of
smearing for the valence and conduction states.
Furthermore, despite the varying setups (dif-
ferent basis sets, type of PSP if used, boundary
conditions etc.), the calculated HOMO-LUMO
band gaps differ by at most a few meV. We
can therefore be confident that the calculated

Figure 4: Atomic structure of the SWCNT,
with H atoms in white, generic C atoms treated
at the PSP level in grey and the atoms with
different environments which are treated at the
AE level and labelled A, B and C highlighted
in red, yellow and blue respectively.

electronic structure of the different calculations
is in agreement, and thus any discrepancies in
the calculated ELNES spectra result from the
differing approaches to calculating the spectra,
rather than as a result of more fundamental dif-
ferences between the codes.
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Figure 5: DOS for a SWCNT, calculated using
the AE and mixed setup of moldft as described
in the text, with a PW approach in castep
and with a Gaussian basis set in NWChem.
Gaussian smearing of 0.1 eV has been applied,
while the energies have been shifted so that the
HOMO of each setup is at zero. The core ener-
gies for the AE and Gaussian calculations (in-
dicated by the arrow in the figure) have been
divided by eight to facilitate comparison with
the mixed mode DOS.

Considering now the core energies, we com-
pare the mixed and AE results. There are eight
atoms each of types A, B and C and thus we
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have scaled the core AE DOS by 1
8

for com-
parison with the mixed DOS. Aside from the
need for scaling, there is excellent agreement
between the two setups. In order to be more
quantitative, in Table 4 we give the core ener-
gies for the different approaches. There is non-
negligible splitting between the core energy lev-
els, with that of atom A around 0.7 eV lower in
energy. All methods are in good agreement for
the splittings, although a larger Gaussian basis
set is required to also obtain well converged ab-
solute energies. As with cysteine, such a level
of splitting, which mainly arises due to the edge
of the SWCNT, could have a potentially impor-
tant affect on the ELNES spectrum.

Table 4: Core energies and energy split-
tings (eV) associated with a particular
atom type for the SWCNT calculated us-
ing the AE and mixed approaches as well
as two Gaussian basis sets. For the AE
and Gaussian values, the energies have
been averaged over all instances of atoms
with the same symmetry. The atom la-
bels are those indicated in Fig. 4.

madness NWChem
Atom AE Mixed aVDZ aVTZ

A -270.48 -270.46 -270.81 -270.49

B -269.78 -269.79 -270.12 -269.80

C -269.64 -269.64 -269.96 -269.65

B - A 0.69 0.66 0.68 0.69

C - A 0.84 0.82 0.84 0.84

We now turn to the ELNES spectra, which
are shown in Fig. 6. Alongside the spectra for
the three atom types, the total spectra is also
shown. In the case of the AE, PW and Gaus-
sian calculations this is merely the sum of the
C K edge spectra of each C atom in the sys-
tem. For the mixed calculation, we take the
three representative spectra and weight them
accordingly. The AE and mixed spectra are
in excellent agreement, demonstrating that our
method is able to distinguish between the dif-
ferent carbon atoms, with the relative heights of
the different peaks significantly affected by the
local environment. Through judicial choice of

atoms treated at the AE level, it is possible to
generate the correct averaged spectra without
needing to treat all the core states explicitly.
Such an approach could be applied to larger
systems which contain atoms which are equiv-
alent by symmetry. On the other hand, the to-
tal PW spectrum shows significant differences
with the other approaches. Upon examining the
separate contributions from the three types of
atoms, which are plotted in the top three panels
of Fig. 6, it can be seen that the spectra for the
different atoms are very similar, with only small
differences in the relative peak heights and lo-
cations. As with cysteine, the difference in the
total spectra is therefore almost entirely due to
the core level splitting which has not been cap-
tured in the PW calculation.
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Figure 6: ELNES spectra for the C K edge of
a SWCNT, calculated in AE and mixed modes
in madness, the PW approach in castep and
using a Gaussian basis set in NWChem. In the
lower panel the total spectra are plotted (com-
bining the spectra of each atom), while the top
two panels show the core edges for atoms A,
B and C for the mixed and PW approaches.
Gaussian smearing of 0.1 eV has been applied.
Each of the PW spectra have been manually
shifted along the energy axis by a single energy
value such that the total spectra can be com-
pared. Similarly, the intensities have also been
scaled to facilitate comparison.

As previously discussed, only the bound vir-
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tual states can be calculated using madness.
Using the aVTZ basis in NWChem, we there-
fore also explore the convergence with respect
to the number of virtual states by calculating
ELNES spectra for an increasing number of vir-
tual states, beyond Nv = 14, which was used in
the above. The results are shown in Fig. 7. It
can be seen that the spectrum is already con-
verged up to around 270 eV, after which an
increasing number of (unbound) virtual states
are required. We emphasize that the unbound
states converge slowly with respect to both the
simulation cell size and basis set size50, so that
the higher energy part of the spectrum requires
careful convergence irrespective of the method
used. Nonetheless, provided care is taken to en-
sure that the number of accessible virtual states
is sufficient to converge the spectrum in the re-
gion of interest, the restriction to only bound
states does not prevent the ability to generate
well converged ELNES spectra in a low energy
window.
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Figure 7: ELNES spectra for the C K edge
of a SWCNT, calculated using the aVTZ basis
set in NWChem. The line colour refers to the
number of virtual states, Nv, used to generate
the spectrum. The spectrum for Nv = 14 has
been highlighted in thicker black lines. Gaus-
sian smearing of 0.1 eV has been applied.

Finally, we note that the level of smearing ap-
plied is small compared to typical experimental
energy resolutions – this was chosen to allow
for a precise comparison between the different
methods. The impact of core splitting might
be less significant for a larger smearing level,
however it would still have a noticeable impact
on both the position and shape of the peaks.
Therefore, for systems where there exist atoms

of the same species with differing local chemi-
cal environments, it is essential to calculate the
absolute energy onset of different atoms. In
the future, it would be interesting to perform
a similar comparison taking into account core
hole effects, for example in order to assess to
what extent the estimation of absolute energy
onsets in a PAW approach recovers the values
of an AE calculation. Nonetheless, the mixed
AE/PSP approach presented in this work might
offer an appealing alternative to both PAW and
pure AE approaches, given the possibility of ac-
cessing the core states without the full cost of
an AE calculation.

Conclusion

In this paper we have introduced the im-
plementation of norm-conserving HGH-GTH
pseudopentials in the multi-wavelet madness
molecular DFT code. We have validated our
implementation through comparison with both
PSP and AE calculations using other basis
sets. The difference between the KS energies
calculated using the AE and PSP approaches
in madness are shown to be well below the
desired accuracy for many applications. In
the first instance, the introduction of such a
functionality opens up new possibilities for the
treatment of heavy elements or larger molecules
in madness.

We have also presented a mixed AE/PSP ap-
proach, wherein atoms within a single calcula-
tion may be treated at different levels of theory.
The multiresolution approach of madness au-
tomatically refines the basis in areas requiring a
greater resolution, thereby achieving a balance
between the competing requirements of accu-
racy and computational efficiency, irrespective
of the choice of PSP or AE. Crucially, this does
not require any input from the user.

The availability of a mixed approach is partic-
ularly useful in cases where one requires a high
degree of accuracy in a particular subset of a
system. For example, for the simulation of a
molecule on a surface, where one might choose
to treat the molecule and upper layer(s) of the
surface at the AE level, and lower layers of the
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surface at a PSP level. Furthermore, such an
approach is particularly suited to the calcula-
tion of ELNES spectra, where explicit access
to the core states is highly desirable, but only
required for a subset of a system.

We have implemented the calculation of
ELNES in madness employing the dipole ap-
proximation and Fermi’s golden rule. Using
examples of a small molecule and short fi-
nite SWCNT, we have shown how our method
compares with ELNES spectra calculated using
both a PW approach wherein PAW is used to
generate the matrix elements, and with Gaus-
sian basis sets. Through these examples we
have demonstrated how one might only treat ei-
ther select atomic species or select (symmetry-
unrelated) atoms at an AE level. This offers
a compromise between the high computational
cost of AE ELNES calculations and the inabil-
ity to directly access the core states in PAW
based approaches. In each case we show ex-
cellent agreement between pure AE and mixed
calculations. In both systems the different lo-
cal chemical environments of atoms of the same
species resulted in a splitting in the core en-
ergies, which needs to be explicitly calculated
to correctly generate the ELNES spectra. A
method which has direct access to the core
states at a much lower cost than a full AE cal-
culation is highly useful for such a task.

The examples presented suggest future areas
of applicability, as well as avenues for further
development. In particular, it would be de-
sirable in future to also incorporate core hole
effects, which in the majority of cases signifi-
cantly improves the agreement between theo-
retical and experimental ELNES spectra. Fur-
thermore, the current approach to calculating
the virtual states in moldft is not very robust –
in some cases the inclusion of too many virtual
states leads to a failure to converge. In addi-
tion, the energy range is limited due to the fact
that the unbound (i.e. continuum) virtual states
are ill-defined in the multi-wavelet basis. Alter-
native approaches to calculating virtual states
should therefore be explored in future.

There are also other potential areas of appli-
cation – the availability of a high precision code
which can operate as AE or PSP introduces new

opportunities for benchmarking new flavours or
parameterizations of PSPs. There has been
a recent investment within the community in
benchmarking different DFT approaches and
codes, notably in comparing a wide range of pe-
riodic DFT codes26, while multi-wavelets have
also been used to benchmark AE basis sets for
calculations of molecules51. In a similar spirit,
one could use madness to separate errors re-
sulting from different basis sets or other code
features from those coming from the choice of
PSP.

Furthermore, in order to test the accuracy
of a particular PSP, one must typically per-
form benchmarks for a material containing only
one atomic species, e.g. elemental solids26,52,
since otherwise it is difficult to disentangle er-
rors resulting from the different PSPs. How-
ever, using the mixed approach, one could also
consider materials containing more than one
atomic species by treating only the element of
interest at the PSP level and all other species
at the AE level. This would allow one to disen-
tangle the errors resulting from different PSPs,
without additional approximations due to the
basis set. The work presented above could
therefore represent a powerful tool for future
benchmarking endeavours.
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