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Abstract 

Broad-scale diversity patterns are the outcome of ecological and evolutionary processes that 

permit different numbers of species to coexist in a region. Many studies have focused on 

understanding the factors that allow a region to contain more species or a clade to diversify 

more rapidly. In this thesis, I shift focus to instead explore the constraints that prevent 

biodiversity increasing unbounded, using a combination of phylogenetic and biogeographical 

approaches across a range of temporal and spatial scales.  In chapter two, I investigate 

conservatism (i.e., the tendency for more closely related species to be more similar) in the 

extremes of climate tolerated by a species, assessing the hypothesis that tightly-conserved 

tolerances are influential in determining the range extents of the species. By using global data 

from two vertebrate classes and a range of climatic variables, I assess the taxonomic 

generality of this hypothesis and identify the most strongly conserved variables. In chapters 

three and four, I develop novel macroecological analyses of factors that may limit the extent 

of geographic ranges and apply them to Afrotropical birds (chapter three) and all continental 

mammals (chapter four). Chapter five assesses how the spatial distribution of range limits can 

be used to compare species’ relative abilities to occupy available landscape. In chapter six, I 

present new methods to detect signals of past changes to diversity limits in phylogenies, 

using simulations to explore the power of phylogenies to reveal such patterns of diversity-

dependent cladogenesis. In addition to the main research chapters, I append a synthetic 

review, of which I am joint first author, exploring the evolutionary underpinnings of large-

scale species-area relationships. This thesis builds links between the macroecology of 

species’ distributions with the dynamics of clades over macroevolutionary timescales to 

determine how geography, phylogeny and history interact in the generation and maintenance 

of large-scale biodiversity.  
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Chapter 1. Introduction 

We live in a diverse world, but no species is distributed ubiquitously. Every species is limited 

by its physiological requirements to specific habitats and prevented from occupying all 

suitable habitats by biotic interactions, dispersal limitation and landscape features (Gaston, 

2003). Likewise, most higher taxa are confined to some subset of the space available, the 

extent of which is also determined by the traits and history of the clade combined with the 

nature and history of the region. When the inherently spatial nature of most cladogenesis is 

taken into account, models wherein clades continue to diversify exponentially lose 

credibility. Rather, clade growth is expected to slow through time as a region fills with 

species and competitive interactions increase over the limited niche space available. 

Nevertheless, the structure of biodiversity is not expected to be static. Biotic interactions and 

key innovations can promote evolutionary responses that lead to occupation of new eco-

space; and external perturbations, major and minor, can alter the areas suitable for species or 

clades and can lead to range changes, radiations and extinctions. In this thesis, I investigate 

the spatial and temporal signatures of ecological constraints on diversity focussing 

exclusively on extant taxa; I quantify when we can and cannot hope to reliably detect these 

signatures and the conditions under which species, clades and areas overcome these 

constraints. 

Why study biodiversity dynamics? 

Human actions, both directly through habitat destruction and overexploitation and indirectly 

through anthropogenic climate change and land-use transformation, are altering the 

distribution of biodiversity very rapidly. Understanding how biodiversity is generated and 

maintained is not only of fundamental interest, but may also help us determine how to 

optimise biodiversity conservation into the future to ensure human wellbeing through the 
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preservation of ecosystem functioning and the provision of ecosystem services (e.g., Dawson 

et al., 2011; Naidoo et al., 2008; Pereira et al., 2010).  

Understanding diversity patterns 

Our understanding of the broad-scale determinants of diversity gradients has been facilitated 

in recent years by robust compilations of global environmental data and species’ range 

extents for all species within several major taxa, although debate remains on the relative 

contributions of ecological and evolutionary processes (e.g., Mittelbach et al., 2007; Ricklefs, 

2004). We know that water-energy dynamics explain a substantial amount of spatial variation 

in species richness across a broad range of taxa (Hawkins et al., 2003). The strength of such 

correlations between contemporary climate and species richness, combined with the 

observation that local interactions among coexisting species constrain species numbers 

(Macarthur & Levins, 1967), initially supported the idea that local determinism controlled 

species’ distributions with little input from regional or historical processes (Currie et al., 

1999).  Such a model requires that the local physical environment controls community 

composition and richness, that similar habitats in different regions harbour similarly rich 

biotas, and thus that local diversity be largely decoupled from regional diversity. However, a 

significant effect for region is almost always found in tests comparing diversity across 

comparable habitats (e.g., Latham & Ricklefs, 1993; Qian & Ricklefs, 2000). Furthermore, 

although strong correlations between contemporary climate and diversity have been used in 

support of local determinism, they do not imply any specific mechanism and could also come 

about if historical processes affect spatial patterns of diversity. Because clades start as a 

single lineage in a single ecological zone, and shifts between zones are difficult and thus rare, 

if certain areas produce more lineages, diversity gradients will persist among zones through 

time (Ackerly, 2003). In the past decade, a more balanced view of the generation and 
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maintenance of biodiversity acknowledges that contemporary, ecological and historical, 

evolutionary explanations for diversity gradients are not mutually exclusive (Harrison & 

Cornell, 2008; Ricklefs, 2004) and that many processes can influence the observable patterns 

(Mittelbach et al., 2007).  

Macroecologists typically have access only to contemporary distribution maps and data on 

current environmental conditions; the emphasis on contemporary processes controlling 

diversity patterns is therefore unsurprising (Harrison & Cornell, 2008). Ultimately, however, 

explanations for diversity patterns must include the processes that directly change species 

numbers and thus must incorporate a temporal perspective. The fossil record, although 

patchy, has been useful in this regard (Jackson & Erwin, 2006), providing evidence of 

fluctuating levels of diversity through time (e.g., Sepkoski, 1978), biotic responses to events 

such as major climatic change (Culver & Rawson, 2000) and macroecological patterns in 

deep time, such as the latitudinal diversity gradient (Jablonski et al., 2006; Valentine et al., 

2008). There is an unprecedented amount of data available for major vertebrate groups such 

as the mammals, amphibians and birds. In combination with a richer understanding of the 

complexity of processes contributing to biodiversity patterns, it is possible to use this data 

sensitively to better understand the factors contributing to the diversification and diversity 

gradients of entire taxonomic groups. My approach in this thesis, then, is to focus exclusively 

on extant taxa, but to include a consideration of the impact of historical processes on 

biodiversity patterns. In my final chapter, I also assess our ability to make inferences on 

temporal diversity dynamics using only extant taxa.   

Defining the niche 

Despite the increasing realisation that species’ ranges limits are determined by a complex 

interplay of biotic and abiotic factors, evidence for climatic controls on individual species’ 
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distributions remains strong – many studies have identified climatic thresholds beyond which 

species do not occur (reviewed in Gaston, 2003). Characterising species’ distributions based 

on the climatic conditions found within them has a long history and was perhaps most clearly 

expressed by Joseph Grinnell in the 1920s. Grinnell’s pioneering work (e.g., Grinnell, 1914; 

Grinnell, 1917) has led to the term Grinnellian niche being adopted to describe, for each 

species, that subset of environmental conditions that facilitates population growth rather than 

population decline (Soberón, 2007). Hutchinson (1957) introduced an elegant way of 

visualising the link between the Grinnellian niche, in environmental space, and the 

distribution of a species, in geographic space. If a grid of a certain resolution is visualised 

over geographic space, each cell of the grid can be uniquely characterised by some 

combination of environmental variables: all combinations together make up the available 

environmental, or niche, space. Those cells occupied by a species can also be uniquely 

characterised and these define the species’ niche. The niche is a slippery concept, however, in 

at least two ways (Colwell & Rangel, 2009; Soberón, 2007).  Firstly, while the Grinnellian 

niche focuses on defining relatively stable conditions that facilitate persistence of the species, 

the Eltonian niche takes a more dynamic view incorporating both the availability of resources 

and the impact the focal species has on its environment and is perhaps most relevant to 

population-level persistence and over the lifetime of individuals (Soberón, 2007).  

The second slippery element of the niche is the discrepancy between all the environmental 

conditions under which a species could persist in the absence of dispersal or biotic limitations 

(the fundamental niche) and those conditions under which the species is found (the realised 

niche). In the absence of expensive translocation or exclusion experiments, we are typically 

restricted to quantifying the realised niche under the assumption that it is a good reflection of 

the fundamental niche. Although this is unlikely to always be the case, particularly in species 

whose ranges are not at equilibrium (e.g., Svenning & Skov, 2004), there exists strong 
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support for climatic factors shaping the observable, realised niches of many species 

particularly at the broad scale (Soberón & Nakamura, 2009).  

The focus on local determinism in the 1960s meant that the link between the distribution of 

individual species and those of related species was briefly forgotten. During his travels in the 

East Indies in the mid-19th century, Alfred Russell Wallace observed that species found west 

of the Lombok Strait were quite distinct from those found to the east (Wallace, 1869). Later 

formalised as Wallace’s Line, the region separates the ecozones of Asia from that of 

Wallacea and, further east, Australia. Thus, it has long been known, both that related species 

occur in close geographic proximity to each other, and that biotic provinces can be delineated 

and that they correspond to regions that have been separate from neighbouring areas over 

geological time (in this instance by a deep-water channel between the continental shelves of 

Asia and Australia).  It is only relatively recently, however, with the concomitant 

development of robust phylogenetic methods and the rejection of local determinism, that 

there has been a realisation that a consideration of the evolutionary relationships among 

species can reveal how a biota is structured at large scales (Ackerly, 2003; Wiens & 

Donoghue, 2004).  

Phylogenetic niche conservatism 

Phylogenetic niche conservatism (PNC), broadly defined as the tendency for lineages to 

retain their ancestral niches over evolutionary time (Grafen, 1989), is gaining ground in 

explaining broad-scale distributions of clades (Wiens & Donoghue, 2004). If niche 

conservatism is prevalent within a clade, the ancestral niche will determine the regions that 

new species can occupy and the geographical spread of the clade as a whole. Similarly, it will 

affect how lineages respond to environmental change (Wiens & Graham, 2005). 
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There has been substantial debate, however, on both the definition and detection of PNC 

(Losos, 2008; Wiens, 2008). Some (e.g., Losos, 2008) state that conservatism only occurs 

when a trait is more similar among related species than expected under a Brownian motion 

model of trait evolution, others think that this is an unduly strict definition. Rather, it is 

enough to find some signal of conservatism above the species level in a niche-related trait to 

think of the trait as conserved and the focus should instead be on the patterns that niche 

conservatism can help explain (e.g., Cooper et al., 2010; Wiens, 2008; Wiens et al., 2010; 

Wiens & Graham, 2005). The debate really comes down to whether PNC is a pattern to be 

explained or a process that can explain additional patterns. I am inclined to agree with the 

second position: phylogenetic niche conservatism as a concept is almost uninteresting: no two 

species occupy identical niches, but related species surely occupy similar ones (Harvey & 

Pagel, 1991). Thus, PNC is most interesting when it is thought of as a process that can help 

explain a multitude of patterns at both the macroecological (e.g., the latitudinal diversity 

gradient) and macroevolutionary (e.g., inability of lineages to adapt to cold climates) levels 

(see also Wiens, 2008; Wiens et al., 2010).  

One of the reasons why PNC has provoked such controversy is because, in the absence of 

clearly defined variables and specific hypotheses to test, the same aspect of a species’ niche 

can be considered conserved or not (Cooper et al., 2010). One of the foremost problems is a 

lack of consideration of taxonomic or geographic scale. For example, within an exclusively 

tropical lineage there might be substantial niche lability but, when compared to a sister 

lineage occurring at higher latitudes, the entire tropical lineage is conserved in its tropicality 

(Wiens, 2008). Similarly, the niche is multidimensional and conservatism may be stronger 

along certain axes than others (e.g., the thermal vs. precipitation niche; Bonebrake & 

Mastrandrea, 2010). Thus, niche conservatism must be studied with scale explicitly stated 
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and a valuable route, avoiding absolute definitions, is to investigate relative conservatism 

e.g., among lineages or among variables (e.g., Cooper et al., 2011).  

Here, I undertake the first global comparison of niche conservatism across two vertebrate 

taxa, mammals and amphibians (chapter 2), investigating conservatism across a suite of 

climatic factors potentially important in determining a species’ distribution. Specifically, I 

investigate conservatism in climatic tolerances - in the extremes of climate experienced by a 

species – under the hypothesis that climatic factors that exhibit strong conservatism within a 

taxon are influential in determining the range extents of the species. The chapter has three 

main aims: to compare and contrast conservatism in the means and extremes of climate found 

within a species’ range, to identify which climatic variables are most conserved and to 

compare and contrast the strength of conservatism in the two taxa.  

Species distribution modelling and climate change  

The idea that species’ niches are conserved is potentially very important to the growing field 

of predicting species’ responses to climate change (Sinclair et al., 2010). Whether explicitly 

stated or not, models predicting species’ range movements rely on species retaining their 

present niche dimensions in their new range (Pearman et al., 2008). A veritable plethora of 

methods for species distribution modelling (outlined in Elith et al., 2006; Thuiller et al., 

2009; Zimmermann et al., 2010) have sprung up to quantify the “climatic envelope” in which 

species now occur. These envelopes are then projected in space to determine where suitable 

conditions will exist in the future and assess whether species will be able to reach these new 

habitats in time to resist extinction (recent reviews include Araújo et al., 2005; Elith & 

Leathwick, 2009; Guisan & Thuiller, 2005).  

All such approaches take niche conservatism as a given, at least over short timescales, 

assuming no possibility for in situ adaptive responses despite evidence to the contrary across 
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a number of species (Gienapp et al., 2008). The approach has been used, for example, to 

bracket estimates of the expected loss of biodiversity from climate change (e.g., Thomas et 

al., 2004). It is particularly useful if niche conservatism is prevalent (Pearman et al., 2008) or 

climatic changes are of such a high magnitude that species are not expected to be able to 

mount adequate adaptive responses to retain their current range location (e.g., Devictor et al., 

2008). In order to provide more robust predictions, however, a number of improvements can 

be made. So far, most attempts have focused on including additional factors considered 

important in determining a species’ range (e.g., biotic interactions: Araújo & Luoto, 2007; 

Heikkinen et al., 2007; population dynamics: Keith et al., 2008; topography: Luoto & 

Heikkinen, 2008, physiology: Kearney & Porter, 2009; history: Svenning & Skov, 2007b). A 

further shortfall common to most methods of range projection is a limited consideration of 

both the landscape over which species must travel to reach their new range and the intrinsic 

capacity of the species to make this journey (but see Engler et al., 2009; Meier et al., in press 

for some recent examples incorporating migration capacities).  

Whereas chapter 2 focuses on unravelling the relative strength of climatic determinants of 

species’ distributions, chapters 3, 4 and 5 explore the insights possible from taking a 

macroecological perspective of range limits by exploring emergent patterns in co-occurring 

range limits in geographic space. 

Macroecology of range limits 

In this time of rapid environmental change, species’ responses are going to be apparent first 

at their range boundary; therefore the importance of studying species’ range limits is clear 

(Gaston, 2009; Sexton et al., 2009). Studies have typically focussed on the range limits of 

single species. While resource requirements might be the proximate cause of range limits, 

studies have focussed on what prevents species expanding their range to occupy a broader 
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niche (reviewed in Sexton et al., 2009). Possible explanations include gene flow from the 

centre of the range thwarting local adaptation at the range edge (Kirkpatrick & Barton, 1997), 

unstable population dynamics in depauperate populations (Keitt et al., 2001) as well as 

competitive exclusion (Case et al., 2005) and dispersal limitation (e.g., out of glacial refugia, 

Fang & Lechowicz, 2006). Recent research also suggests that borders maintained through 

competition may be attracted to abiotic dispersal barriers with suture zones formed where 

multiple species’ borders coincide (Goldberg & Lande, 2007). 

Although studies investigating the macroecological correlates of species richness and average 

range size abound (e.g., Orme et al., 2005; Orme et al., 2006), there has been little 

investigation of the macroecological correlates of high densities of range limits. Phylogenetic 

niche conservatism would suggest that related species will be limited by similar factors, but 

this does not necessarily extrapolate to range limits co-occurring in space (Roy et al., 2009). 

Indeed, correlates of beta diversity in various taxa suggest that species’ turnover is highest in 

areas of steep environmental turnover (e.g., Buckley & Jetz, 2008) indicating that range 

limits cluster in heterogeneous areas where range expansion is impeded.  

Landscape impermeability 

To quantify clustering in range limits, I defined and generated a measure of landscape 

impermeability, namely, the proportion of local species whose ranges end in a certain area, to 

give an indication of how freely species can move across a landscape. Many factors have 

been proposed as potentially limiting to species’ ranges including physical landscape 

features, topography, climate, resource availability and competitors, as well as unstable 

population dynamics and limited genetic variability (Gaston, 2003). Understanding the nature 

of areas where high proportions of resident species have coincident range edges can help 

elucidate which factors are generally important in limiting species’ ranges.  
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Chapter 3 presents my first exploration of the macroecology of range limits, exploring spatial 

patterning and the environmental correlates of landscape impermeability in the Afrotropical 

avifauna. Chapter 4 extends this analysis to mammals globally, comparing and contrasting 

patterns and correlates across realms. Both chapters build spatially-explicit multivariate 

models, using model selection to obtain the most explanatory models.  

Although I identify strong correlates of landscape impermeability, it is also clear that some 

species are not limited in the same places or in the same ways as the majority. For example, 

some species can span areas of high impermeability and others have seemingly idiosyncratic 

range barriers within homogeneous habitats. In chapter 5, I investigate whether our measure 

of landscape impermeability could be co-opted into a species-based measure of relative 

landscape occupancy. Are there diagnosable traits of good and bad occupiers, or are they a 

disparate array of species with anomalous distributions due to historical contingencies or 

strong dispersal or biotic limitations? An understanding of the breadth of possible 

explanations may be one way in which to inform species distribution modellers on the 

validity of their models for certain species.  

Understanding diversity dynamics of clades 

Up to this point, I have focussed on a static world where there is spatial variation in the 

environment and by extension in species richness, beta diversity, average range size and 

landscape impermeability. I have identified a suite of factors that might be responsible for 

this variation and underlined the importance of energy availability and landscape features in 

determining the distributions of individual species and of clades. Nevertheless, the 

distribution of diversity has been far from static on ecological (e.g., invasive/introduced 

species: Jackson & Sax, 2010), evolutionary (e.g., adaptive radiations: Glor, 2010; Schluter, 

2000) or geological (e.g., mass extinctions: Erwin, 2001) timescales. How do clades diversify 
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through time? What are the signatures of temporal diversity dynamics and are they detectable 

in the present day? In my final chapter, I adopt a model of diversity-dependent cladogenesis 

and assess our ability to detect the signal of past changes to diversity limits using data from 

extant species.  

In order to make robust inferences about temporal dynamics, it is important to first 

understand how clades diversify through time and what determines diversity differences 

among clades. Reconstructed phylogenies that document the evolutionary relationships 

among extant species of a clade are often used to study these dynamics (e.g., Bininda-

Emonds et al., 2007; Magallon & Sanderson, 2001, reviewed in Ricklefs, 2007). Because 

these phylogenies do not contain extinct taxa they give the potentially false impression that 

diversity has been continually expanding and that clade diversity is highest in the present day 

(Ricklefs, 2009). This bias has helped promote the idea that to explain diversity differences 

between clades we should be looking for traits associated with higher diversification rates, 

because faster diversification rates will lead more quickly to more species. Despite some 

successes (reviewed in Coyne & Orr, 2004), few studies have managed to identify strong trait 

correlates of high diversity (Phillimore et al., 2006).  

Like species, most clades are restricted to some subset of available space. Clade richness 

should depend then on the size and age of the area in which they are found, alongside 

characteristics of that area and characteristics of the species (Losos & Schluter, 2000; 

Rabosky, 2009b; Ricklefs, 2006; Ricklefs, 2009). Just as resource-based limits to species 

coexistence set upper limits on the number of co-occurring species at finer scales (Chesson, 

2000), available niches should set upper limits on the number of species possible in a clade 

occupying a certain area (Rabosky, 2009a). It is only very recently, however, that the 

contribution of ecological limits to diversification has been investigated (e.g., Rabosky, 
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2009a, b; Vamosi & Vamosi, 2010) with mounting evidence that diversification slows 

through time as clades fill available geographic, or niche, space (Phillimore & Price, 2008; 

Rabosky, 2009a, b). These results suggested that that a failure to consider the possibility that 

clades are no longer growing might lead to erroneous conclusions on the impact of traits on 

diversification and that more complex models than the constant-rate birth-death model of 

macroevolution are necessary to characterise diversification through time (Rabosky, 2010b).  

As part of a synthetic account of the macroevolutionary contribution to species-area 

relationships, I investigated the influence of available area on diversification in mammalian 

clades (Appendix 1: in press as Kisel et al.). We outlined a model of diversity-dependent 

cladogenesis and reviewed the ways in which area, or its correlates, could influence clade 

diversification rate and diversity limits to determine the extent to which diversity differences 

among clades could be due to effects of area. We found a significant effect of area on both 

the initial diversification rate and rate of decline across a suite of mammalian clades and go 

on to discuss the ecological and evolutionary factors that contribute to this result.  

Shifts in diversity limits 

Kisel et al. (in press) championed a model of diversification wherein ecological constraints 

prevent ongoing exponential cladogenesis. In our model, clades diversify up to a limit that 

depends on the size and the nature of the area that they occupy. Such a model leaves little 

room either for the replacement of entire clades through time or for the expansion of clades 

into new ecospace (Simpson, 1953; Valentine et al., 2008). We know that the environment 

through Earth history has been far from constant: continents moved, temperatures fluctuated, 

sea levels changed, meteorites landed and volcanoes erupted, all impacting the nature of the 

surface of the Earth. Diversity limits are thus expected to change through time and there is 

fossil evidence for such biotic responses in the past (Ezard et al., 2011). As data proliferate 
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on the evolutionary relationships among extant species, it becomes important to know how 

much information we can feasibly recover about their past diversification trajectories in the 

absence of additional data.  

In chapter 6, I use a simulation approach to assess the breadth of parameter space under 

which we can expect to retain the signal of past events in the reconstructed phylogenies of 

extant species. Extinction throughout the history of the clade will have removed some of the 

branching relationships, potentially eroding any signal of past events. Specifically, I use a 

model of logistic diversity-dependent cladogenesis and develop two new methods to detect 

increases in diversity limits. I alter the timing and magnitude of the shift and the turnover rate 

at equilibrium diversity to assess how these parameters affect our ability to detect the shift. 

Ecological constraints are continually operating to limit the spread of species through space, 

but constraints are not static through time. Chapter 6 investigates our ability to extract the 

signal of such temporal dynamics in deep time using data on extant species.  

Summary of thesis aims 

The overarching aim of this thesis is to explore our ability to recover spatial and temporal 

signatures of ecological constraints on diversity using data from extant species only. I start 

from the position that such constraints are common and that they produce broad-scale spatial 

patterns in the distributions of species and clades that are unlikely to remain static through 

time. My specific aims are: 

• To explore the detectability of past changes to diversity limits;  

• To uncover patterns and correlates of present range limits; 

• To assess whether present range limits can be used to quantify species’ relative ability 

to overcome landscape constraints with a view to conditioning future range 

projections.  
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Chapter 2. Climatic niche conservatism and the evolutionary dynamics in 

species’ range boundaries: global congruence across mammals and amphibians1 

 
Abstract 

Comparative evidence for phylogenetic niche conservatism – the tendency for lineages to 

retain their ancestral niches over long timescales – has so far been mixed, depending on 

spatial and taxonomic scale. We quantify and compare conservatism in the climatic factors 

defining range boundaries in extant continental mammals and amphibians in order to identify 

those factors that are most evolutionarily conserved, and thus hypothesised to have played a 

major role in determining the geographic distributions of many species. We also test whether 

amphibians show stronger signals of climatic niche conservatism, as expected from their 

greater physiological sensitivity and lower dispersal abilities. We use nearly complete global 

distributional databases to estimate the climatic niche conservatism in extant continental 

mammals and amphibians. We characterise each species’ climatic niche using a suite of 

variables and separately investigate conservatism in each variable using both taxonomic and 

phylogenetic approaches. Finally, we explore the spatial, taxonomic and phylogenetic 

patterns in recent climatic niche evolution. Amphibians and mammals showed congruent 

patterns of conservatism in cold tolerance, with assemblages of escapee species (i.e., those 

escaping most from the climatic constraints of their ancestors) aggregated in the North 

Temperate Zone. The relative strength of climatic niche conservatism varies across the 

variables tested, but is strongest for cold tolerance in both mammals and amphibians. Despite 

the apparent conservatism in this variable, there is also a strong signal of recent evolutionary 

                                                

1 A version of this chapter is in press as: Olalla-Tárraga, M.A.*, McInnes, L.*, Bini, L.M., Diniz-Filho, J.A.F., 
Fritz, S.A., Hawkins, B.A., Hortal, J., Orme, C.D.L., Rahbek, C., Rodriguez, M.A. & Purvis, A. (in 
press) Climatic niche conservatism and the evolutionary dynamics in species’ range boundaries: global 
congruence across mammals and amphibians. Journal of Biogeography. *Joint first authors. 
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shifts in cold tolerance in assemblages inhabiting the North Temperate Zone. Our results thus 

indicate that distribution patterns of both taxa are influenced by both niche conservatism and 

niche evolution. 

 

Introduction 

Deciphering why species live where they do has long been a central issue in ecology and 

evolution (Darwin, 1859). A species’ geographic range reflects both its environmental 

tolerances and its geographical opportunities, now and in the past. Accordingly, ranges shift 

in response to environmental change (Parmesan & Yohe, 2003) and following specific 

adaptations to cope with conditions beyond the range edge (Holt, 2003). Although some 

large-scale spatial patterns in geographic ranges have been found (such as a trend of 

increasing range size northwards: see Stevens, 1989), the biogeographical and historical 

complexities make it unsurprising that closely-related species often have very different range 

sizes (e.g., Freckleton et al., 2002). If, however, large-scale range limits are largely governed 

by slowly-evolving environmental tolerances (Wiens & Donoghue, 2004), then these limits 

will tend to be more similar among related species than are range sizes (Roy et al., 2009).  

Climatic niche conservatism has been defined as the tendency for species to retain aspects of 

their ecological niche over evolutionary time-scales (Wiens & Graham, 2005). There has 

been debate recently over what constitutes niche conservatism: whether it is enough for 

phylogeny or taxonomy to explain significant variation in species’ traits or whether trait 

values specifically need to be more similar in closely-related species than expected under a 

Brownian motion model of trait evolution (Harvey & Pagel, 1991; Losos, 2008; Wiens, 

2008). We use the former, more permissive, definition. Under this view, niche conservatism 
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is common and research attention switches from demonstrating it to measuring and 

comparing its strength in different traits, groups or regions. Different ecological 

characteristics often show widely different degrees of conservatism across the same set of 

species (Freckleton et al., 2002). Here, we specifically test the strength of conservatism 

across a suite of potential range-limiting factors across two major vertebrate taxa to 

investigate which environmental aspects are most conserved within clades and, therefore, 

implicated in having played the most important roles in limiting and structuring distributions 

at a broad scale (Soberón, 2007).  

Detection of climatic niche conservatism (Harvey & Pagel, 1991; Wiens & Graham, 2005) 

depends on both taxonomic resolution and spatial scale (Cooper et al., 2010; Losos, 2008; 

Wiens, 2008). Many genera and families are geographically restricted and so experience a 

limited range of environmental variation, making climatic niche conservatism harder to detect 

(Wiens & Graham, 2005). As an emergent species-level property, the range boundaries of 

species distributions are determined by biotic interactions, abiotic constraints or a 

combination of both. Hutchinson’s (1978) niche concept provides a clear link between a 

species’ observed geographical distribution and the multiple biotic and abiotic dimensions 

limiting where a species can persist. While the fundamental niche represents all regions 

where a species could maintain a positive growth rate in the absence of biotic or dispersal 

limitation, observed species’ ranges correspond to realised niches, a subset of the 

fundamental niche (Soberón, 2007). Despite the difficulties involved in disentangling the 

relative contribution of biotic and abiotic factors in shaping observed range edges, there is 

strong support for climate as a major driver at continental and global scales (i.e., the 

Grinnellian niche, Soberón & Nakamura, 2009). Detection of conservatism in specific 

climatic requirements therefore suggests that those variables influence the broad-scale 
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distribution of species and can be termed range-limiting factors (see also Cooper et al., 2011 

who made similar assumptions).  

Despite the awareness that climatic niche conservatism may only become apparent at these 

broad spatial scales and higher phylogenetic levels, few phylogenetically inclusive global 

studies have been conducted to date.  Hof et al. (2010) and Buckley et al. (2010) provide two 

exceptions.  However, rather than investigate potentially important factors individually, Hof 

et al. (2010) instead used ordination techniques to derive single niche values for amphibians 

and Buckley et al. (2010) only investigated two climatic variables for continental mammals. 

Here, we use nearly complete global distributional databases to estimate conservatism in the 

climatic tolerances of two vertebrate taxa: continental mammals and amphibians. For each 

taxon, we compare the relative conservatism across a suite of potentially important variables 

to address the idea that different aspects of the niche may evolve independently (Cooper et 

al., 2010; Freckleton et al., 2002; Losos, 2008). We characterise each species’ climatic niche 

using the suite of variables and separately investigate conservatism in each. Our goal is to 

identify those climatic factors that are most conserved within clades (and thus hypothesised 

to influence the distributions of many species in the clade) and those factors for which related 

species’ tolerances are more idiosyncratic. We also test whether the greater physiological 

sensitivity and lower dispersal abilities of amphibians compared to mammals have produced 

a stronger signal of conservatism in climatic range limits. Furthermore, we explore whether 

conservatism is stronger in the extreme values (minima or maxima) of environmental factors 

experienced by species in any part of their range than in whole-range averages. Finally, we 

map inferred recent changes in climatic tolerances to investigate spatial patterning in lineages 

that have escaped conservatism. 
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Methods 

Geographic distribution data for mammals and amphibians 

Polygon shapefiles of the geographic ranges of each mammal and amphibian species were 

taken from the Global Mammal and Amphibian Assessments (GMA: 

www.iucnredlist.org/mammals; Schipper et al., 2008 and GAA: 

www.iucnredlist.org/amphibians; Stuart et al., 2004). Because islands may be subject to 

different evolutionary processes, we excluded island endemics and any parts of species’ 

ranges that fell on islands.  We also excluded wholly marine mammalian families within 

Cetartiodactyla, Carnivora and Sirenia, as well as the polar bear (Ursus maritimus) and the 

sea otter (Enhydra lutris). We matched the GMA species with the taxonomy of Wilson & 

Reeder (2005) as in Fritz & Purvis (2010a), and the GAA with the taxonomy of Frost et al. 

(2006). The final data set contained 3878 mammal and 4165 amphibian species. 

Environmental variables 

Environmental variables came from the WorldClim database (Hijmans et al., 2005; 

http://www.worldclim.org/current.htm) at 5 arc-min (=0.083°) resolution and EDIT 

Geoplatform (http://edit.csic.es) at a resolution of 0.1°. Environmental factors thought to limit 

ranges of terrestrial vertebrates include ambient energy, primary productivity, water 

availability and their seasonal variation (Hawkins et al., 2003). We chose four of the 19 

BioClim variables available from WorldClim as well as Normalized Difference Vegetation 

Index (NDVI) remote-sensing data to address our hypotheses, on the basis of their 

importance for the ecology and distribution of vertebrates (see e.g., Aragón et al., 2010). We 

used mean temperature of the warmest quarter (Bio10) and mean temperature of the coldest 

quarter (Bio11) to represent heat- and cold-tolerance and, together, tolerance to seasonal 

temperature variation. Similar alternative measurements such as maximum temperature of the 
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warmest period or minimum temperature of the coldest period are probably too extreme and 

mostly capture outlier conditions unlikely to influence the long-term viability of all 

populations of each species. We used annual precipitation (Bio12) to capture cumulative 

water availability through a year, and precipitation seasonality (Bio15) to capture its 

seasonality, measured as the coefficient of variation of the weekly mean values. Finally, we 

used mean annual NDVI, calculated from monthly values for the period 1982-2000 (see 

EDIT Geoplatform, http://edit.csic.es for details on data processing), to reflect primary 

productivity. We also calculated a measure of seasonality (coefficient of within-year 

variation) in NDVI, but it provided no additional information and was omitted from the final 

analyses. By using these fine-grain climatic datasets, we aim to characterize species climatic 

niches in a way that not only incorporates broad-scale macroclimatic effects, but also 

mesoscale climatic variation associated with elevational gradients. Note, however,  that we 

do not attempt to characterise microclimatic factors that may be relevant for the habitat 

suitability of species at more local scales (e.g., microclimatic variation in water availability 

for amphibians: Hillmann et al., 2009). 

We used the environmental variation within each species’ geographic range as a proxy of its 

realised niche (e.g., Cooper et al., 2011; Hof et al., 2010), under the assumption that species’ 

distributions, at the coarse scale of our data, are primarily set by their environmental 

tolerances (Pearson & Dawson, 2003; but see Soberón & Nakamura, 2009). For each 

environmental variable, we characterised each species’ tolerance by calculating the mean, 

maximum and minimum values within its continental range (hereafter termed climatic niche 

measurements). At the coarse resolution of our analysis, our polygon-based range data (i.e., 

extent of occurrence) is congruent with survey-based data (see Hawkins et al., 2008 and 

references therein) and, hence, consistent with those that may be obtained from species 

distribution modelling approaches. We recognise that biotic interactions and different kinds 
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of historical effects can also limit distributions, so our measurements correspond to the 

realised rather than the fundamental niche (Soberón & Nakamura, 2009). However, 

quantitative genetic models (Case & Taper, 2000) suggest that even competitive limits may 

be strongest along steep environment gradients. Therefore, we assume that if we detect 

conservatism in any climatic extreme, it is in spite of any idiosyncratic effects.  

We analyse these environmental variables separately, rather than processing them through a 

principal components analysis (as in, e.g., Hof et al., 2010), to preserve their interpretability 

and evaluate their individual importance. As expected, mean temperature of the warmest and 

coldest quarters are strongly correlated. This is, however, not a problem because we test each 

variable individually and are primarily interested in identifying which climatic variables are 

the most strongly conserved among species, with the aim of identifying that climatic factor 

along which related species diverge least. Finally, we also tested the absolute latitude of the 

centroid of each 0.1° grid cell, because latitude could be a proxy for as-yet-unidentified 

environmental factors (Hawkins & Diniz-Filho, 2004, see Appendix 2.1).   

Data processing and statistical analyses 

We first used a nested ANOVA to examine how variance in species’ climatic tolerances is 

partitioned among taxonomic levels (Hof et al., 2010). Species were assigned to genera and 

families and these taxonomic levels were treated as random effects in a linear mixed-effects 

model fitted using restricted maximum likelihood with the R package nlme (Pinheiro & 

Bates, 2000). Variance components were scaled to sum one. We tested the significance of 

each taxonomic level in two ways. First, we used likelihood ratio tests and Akaike’s 

information criterion (AIC) to compare the full model to models omitting a level. Second, we 

tested whether the 95% confidence intervals of each level’s variance estimate included zero. 

We interpret greater than 50% variance explained above the species level as indicative of 
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niche conservatism.  To check whether the selection of this threshold may affect our 

perceptions on the existence of niche conservatism we additionally used more liberal (40%) 

and conservative (60%) thresholds for comparison. Very wide-ranging or narrowly-

distributed species can sometimes drive macroecological patterns (Jetz & Rahbek, 2002). 

Accordingly, we split species according to range size quartile and repeated the linear mixed-

effects model within quartiles to test whether the taxonomic structure of niche conservatism 

varies with range size (see Appendix 2.2).  

To complement the nested ANOVA analysis, we followed the approach of Roy et al. (2009) 

and quantified the tendency for tolerances to be more similar within than among genera, in 

units of the variable in question (rather than proportion of variance explained at higher 

taxonomic levels). For each climate niche measurement, the differences between pairs of 

species are calculated first for species within each genus and second for species across all 

genera. The test statistic is then calculated as the median difference between these two 

distributions, and expresses the absolute magnitude of within-group similarity in the correct 

units. Differences were calculated separately for the three climate niche measurements 

(maximum, minimum and mean). We repeated this analysis at the family level (within- and 

between family comparisons). Significance was assessed by randomly assigning taxonomic 

affinities across genera and families (depending on the level of analysis) while keeping the 

original number of species in each clade (1000 permutations). 

Results of the analyses above could differ between mammals and amphibians simply if 

taxonomic levels are not comparable between the two groups. To assess the influence of 

family age on our results, we used Mann-Whitney U tests to compare crown group ages of 

mammalian families (taken from the mammal supertree, Fritz et al., 2009) with amphibian 

family ages from each of two sources (Frost et al., 2006; Roelants et al., 2007). We also 
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calculated ratios of genus-to-family ages (i.e. the average age of genera relative to their 

family age). Low values of this ratio indicate that genera are young relative to families. In 

two families of comparable age and conservatism, more variance would be attributed to 

genus level in the family with the lower ratio because the component genera have had less 

time for trait divergence. In the absence of a dated phylogeny, these results help indicate the 

extent to which our taxonomic results are truly comparable among the two taxa. 

The validity of analyses of taxonomic structure, such as nested ANOVAs, depends on the 

extent to which taxonomic clustering directly reflects evolutionary relationships. We 

therefore also calculated Pagel’s λ (1999), a measure of phylogenetic signal strength in 

comparative data, for our mammalian climatic niche measurements using the best available 

phylogeny (Fritz et al., 2009) under the assumption that finding significant phylogenetic 

signal bolsters our inferences based on taxonomy (see also Roy et al., 2009). We did not 

repeat this analysis for amphibians because Pagel’s λ is a branch length transformation and 

dating is not complete in the best-available amphibian phylogeny (see below).  

Even if environmental tolerances are usually strongly conserved through evolutionary 

history, there will have been exceptions. Identifying lineages along which tolerances have 

shifted, and assemblages where many species show a change from ancestral environmental 

limits, may highlight the importance of adaptive innovations in structuring present-day 

assemblages. Mean temperature in the coldest quarter showed the strongest conservatism 

across both groups (see results); ideally, we would assess divergent lineages by estimating 

ancestral states for this variable and calculating the magnitude of species’ deviations from 

these to quantify independent evolution. However, currently available phylogenies may not 

be sufficiently resolved to permit these analyses; while the mammal supertree we use (Fritz et 

al., 2009) is nearly complete, some parts of the tree are highly polytomous, and there is no 
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well-resolved species-level amphibian phylogeny. Instead, we use the residuals from the 

nested ANOVA as a coarse proxy of intra-generic evolution with negative values indicating 

an increased ability to tolerate cold. 

For comparison, we also conducted phylogenetically-explicit analyses using the mammal 

supertree (Fritz et al., 2009) and a newly-constructed genus-level amphibian supertree with 

all the species within each genus included as polytomies (Fritz & Rahbek, unpublished 

manuscript and see Appendix 2.3) and with all branch lengths set equal. We estimated 

ancestral states using a one-parameter maximum likelihood (Brownian motion) model 

(Maddison, 1991) and estimated each species’ change in cold tolerance as the change in mean 

temperature of the coldest quarter along the terminal branch of the phylogeny leading to it. In 

well-resolved sections of the mammal tree, these changes estimate species-level change. In 

the amphibian tree, and within internally unresolved mammalian genera, they reflect 

deviations from the genus mean, as in the earlier analysis, but accounting for evolutionary 

relationships among genera. Given the reservations outlined above, these results must be 

interpreted with caution, but are still useful as an examination of the consistency of taxonomy 

and phylogeny-based approaches.  

For both methods, we combined these results with each species’ occurrences in the cells of a 

96.5 x 96.5 km Behrmann projection global grid to calculate and map the mean inferred 

amount of recent evolution in cold tolerance within each grid cell, for amphibians and 

mammals separately. We also calculated cell-average differences between amphibians and 

mammals to map cross-taxon congruence. 

We classified cells according to whether or not mean temperature in the coldest quarter 

dropped below 5º Celsius and defined species as escapees if any part of their range fell within 

these cold cells or as non-escapees if they were restricted to warmer climates. This threshold 
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was defined on the basis of the relationship between temperature and plant growth (as 

measured by NDVI), following the procedure described in Olalla-Tárraga et al. (2006). We 

wished to test whether release from conservatism has impacted clade diversification by 

comparing the diversities of sister clades where one clade was exclusively composed of 

escapees and the other of non-escapees. However, because of polytomies in both the mammal 

and amphibian trees, only three valid phylogenetically independent contrasts were possible in 

each group precluding formal analysis.  

Ideally, we would also have liked to estimate the effect of our binary character (escapee vs. 

non-escapee) on diversification using a maximum likelihood-based model such as BiSSE 

(binary-state speciation and extinction, Maddison et al., 2007). However, when we carried 

out this analysis on the dated mammal supertree (see Appendix 2.4), maximum likelihood 

extinction rates were estimated as zero for both character states calling into question the 

validity of these results and suggesting that the lack of resolution or heterogeneity in rates 

across the phylogeny prevents robust conclusions being made at this time. 

  

Results 

Nested ANOVAs show substantial variation in conservatism across climatic variables (figure 

2.1, table A2.5). Mean temperature in the coldest quarter was strongly conserved in both 

vertebrate classes: the proportion of variance explained above the species level across the 

three summary statistics (maximum, minimum and mean) ranged from 63.8% to 73.4% in 

amphibians and 50.3 to 65.8% in mammals (i.e., the sum of family and genus values in table 

A2.5). In amphibians, the highest proportion of variance for this variable was attributed to the 

family level, ranging from 40.0 to 48.5% across the three summary statistics. In mammals, 

however, although a similar amount of variance was explained above the species level, more 
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of it was attributable to genera rather than families (figure 2.1). As for the consistency across 

climatic niche measurements, mean values generally showed as strong as or stronger 

taxonomic structure than did the minimum or maximum values. 

Comparing within- and between-genus differences in climatic preferences to null 

expectations (Roy et al., 2009) also indicated marked conservatism of mean temperature in 

the coldest quarter (table 2.1). Results remained qualitatively the same after excluding 

monotypic genera (data not shown). Pagel’s λ also indicates significant phylogenetic 

conservatism for the same set of variables in mammals (table 2.1).  

The observed signal in our nested ANOVAs was not an artefact of amphibian families being 

younger than those of mammals: they are older, whichever amphibian phylogeny is used 

(amphibians - Roelants: median = 66.1 mya, Frost: 66.0 mya, n = 54; mammals: median = 

24.7 mya, n = 101, Mann-Whitney U test: U = 325 and U = 316 respectively, P<0.0001).  

The average ratio for genus-to-family ages was higher for amphibians (0.46) than mammals 

(0.33) (Mann-Whitney U test: U = 6546, P<0.0001) which, even though ages were available 

for only 17% of amphibian genera, suggests that mammalian genera are relatively as well as 

absolutely younger than amphibian genera. This non-comparability of taxa between the two 

groups weakens comparisons of the depth of conservatism, but indicates that when 

conservatism is found to be stronger in amphibians, this conclusion is robust to taxonomic 

artefacts.  

For both taxa, latitude (in absolute degrees) gave similar results to mean temperature in the 

coldest quarter (figure 2.1 and table 2.1). We investigated whether the latitudinal signal was 

anything more than a proxy for climatic signal, but found no independent contribution of 

latitude (Appendix 2.1).   
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Global maps of the mean residuals from our nested ANOVA models highlighted regions 

where many of the species have recently shifted their tolerance to cold climates (figure 2.2). 

Results were qualitatively similar using ancestral trait reconstructions on phylogenies 

(Appendix 2.6), supporting the validity of our taxonomy-based analyses. As indicated by the 

strongly negative mean deviations (dark blue), mammal and amphibian assemblages 

inhabiting the northern Nearctic and Palearctic regions can cope with much lower minimum 

temperatures in the coldest quarter than expected compared to their relatives  (figures 2.2a 

and b, see also figure A2.6). On the contrary, few assemblages contained species whose cold 

tolerance is strongly under-predicted by phylogeny (red and orange cells in figures 2.2a and 

b). For both vertebrate classes, these under-predictions are clustered in northern Australia, 

Malaysia and the Ethiopian Highlands as well as in the Nubian Desert and southern parts of 

the Arabian Peninsula and Atlas Mountains for amphibians (see also figure A2.6). Our cross-

taxon congruence map (figure 2.2c) picked out the latter regions, together with the Iberian 

and Italian peninsulas, as places where the mammals have evolved relatively greater cold 

tolerance than amphibians. Conversely, amphibian faunas of Canada, northern India and 

Patagonia have recently evolved greater cold tolerance than mammalian faunas there. 

 

Discussion  

Our findings suggest that cold tolerance is a major limiting factor for the geographic 

distributions of both amphibians and mammals, apparently with broadly similar levels of 

conservatism in the two groups. Strong phylogenetic conservatism in cold tolerance has 

previously been reported for hylid frogs (Smith et al., 2005, Wiens et al., 2006); our results 

show that the phenomenon is much more general, but that there are exceptions within each 

taxon – ‘escapee’ lineages that have shifted their cold tolerance. These expansions are 
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associated with colonisation of the North Temperate Zone, leading to the spatial aggregation 

of assemblages dominated by escapee species. Our results agree with a recent meta-analysis 

of experimental evidence (Sunday et al., 2011) showing that thermal tolerance breadth in 

terrestrial ectotherms – including amphibians – indeed changes latitudinally, mostly as a 

result of increasing cold tolerance in northern temperate regions. They also reflect those of 

Cooper et al. (2011), who found greater conservatism of the thermal niche in tropical than 

temperate mammals.  

Signals of conservatism in mammals and amphibians 

While amphibians showed slightly stronger climatic niche conservatism than mammals for 

the most conserved variable, for other variables showing strong conservatism (e.g., annual 

precipitation), this conservatism was stronger in mammals than amphibians. These results 

also remained consistent under a more restrictive threshold for conservatism (60% variance 

accounted for above the species level). The variation in precipitation requirements across all 

amphibians is much more restricted than in mammals and the absence of strong phylogenetic 

signal in these variables may be due to this low variation and so a simple reflection of 

amphibians’ strict minimum water requirements. Above this minimum, precipitation is no 

longer a limiting factor. Conversely, mammals are capable of persisting under a wider range 

of precipitation regimes, with conservatism for particular regimes apparent above the species 

level.  

Our results must be interpreted bearing in mind that amphibian and mammalian taxonomists 

may or may not be acting equivalently. Mammalian families are younger than amphibian 

families and, on average, mammalian genera are also younger relative to the age of their 

family than is the case for amphibians. This indicates that, for a given proportion of variance 

explained at the genus or family level, the variable in question is more conserved in 
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amphibians than in mammals, as amphibians have more time for divergence. This does not 

mean that the mammalian signal is not real; simply that it is less “impressive” than the 

amphibian one.  The absence of a dated phylogeny for amphibians prevents more formal 

analyses of the rate of evolution of the climatic tolerances of this group (Ackerly, 2009). 

However, our observation that amphibians, with, on average, older families and older genera 

than mammals, have more limited variation and similarly strong levels of conservatism in 

cold tolerance, strongly suggests they must have evolved more slowly along this niche axis. 

Indeed, the younger average age of mammalian genera and families may partly be a 

reflection of this faster rate of evolution (Simpson, 1953). It is possible that differences in the 

branching patterns within clades may be contributing to the observed differences between the 

two groups (O’Meara et al., 2006).  

That most of the variation in amphibians was strongly structured at the family level for cold 

tolerance, but not for the remaining variables, may be due to the ectothermicity of this group. 

That is, even though many amphibian species (especially anurans) can regulate their body 

temperatures within narrow ranges through behavioural and physiological adjustments (see 

e.g., Hillmann et al., 2009), as ectothermic organisms they rely on external sources for heat 

gain and are unable to produce metabolic heat to the levels of mammals. In colder 

environments, amphibian heating rates are lower and thermoregulation is severely limited, 

which, in turn, affects their operative temperatures and activity times. Under prolonged cold 

conditions, amphibians survive by decreasing metabolic rates and resorting to overwintering 

strategies (i.e., spending most of the year inactive in burrows or under logs). These responses 

appear to have been established early in the evolutionary history of the clade and are 

consistent with a recent interpretation of the amphibian fossil record. Sahney et al. (2010) 

have suggested that climate aridification through the later Paleozoic, which eventually led to 

the collapse of Carboniferous Coal Forests, favoured the ecological diversification of 
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amniotes (reptiles) but had devastating effects on amphibian faunas. Mainly as a result of 

their limitations to adapt to the drier conditions that dominated Permian environments, many 

amphibian families failed to occupy new ecological niches (in terms of climate preference, 

body size or diet) and went extinct. A more nuanced understanding of the temporal dynamics 

of niche evolution and clade diversification in amphibians must await a well-resolved and 

dated amphibian phylogeny (e.g., Kozak & Wiens, 2006, 2010 for plethodontid salamanders).  

Recent evolution of cold tolerance 

Our map comparing the changes in cold tolerance of amphibians and mammals suggests that 

the amphibian species inhabiting the northern-most latitudes show more pronounced shifts in 

cold tolerance than mammals do. Amphibian species able to survive in northern parts of the 

Nearctic, Western Palearctic and Siberia (seven anurans and the Siberian salamander) have 

evolved to tolerate freezing: they are able to convert 50% or more of their total body water 

into extracellular ice (Hillmann et al., 2009). Conversely, mammals in the Iberian and Italian 

peninsulas have shifted their cold tolerance more than amphibians have. These mammalian 

faunas consist of species whose ranges stretch northwards into much colder areas, whereas 

the amphibian faunas are largely endemic to the peninsulas themselves so their cold 

tolerances reflect only Mediterranean minimum temperatures. This result may echo the two 

groups’ different rates of emergence from southern refugia following the retreat of the 

Pleistocene glaciers: while many mammal species have been able to expand out of these 

refugia, most amphibians have shown more limited recolonisation abilities or greater 

specialisation to Mediterranean habitats. Araújo et al. (2008) argue that the scarcity of 

amphibian species further north may result from either dispersal limitation or stronger 

physiological constraints stemming from their being ectotherms. It remains unresolved which 

hypothesis is more important; however, the facts that even wide-ranging European 



40 

amphibians are limited by climate (Araújo et al., 2008) and the successful dispersal of other 

‘poor’ dispersers out of glacial refugia (e.g., some European trees: Svenning & Skov, 2007a) 

suggest that physiological limitations may be more important in constraining amphibian 

rather than mammalian diversity at least in Europe. Further research is needed to determine 

whether this limitation is due to the basic ecophysiological organisation of the clade (as we 

suggest above) or to difficulties in evolving new adaptations to cold environments for 

particular subclades only.  

We wanted to test whether the hypothesis that species currently occupying northern latitudes 

are members of a relatively small number of ‘escapee’ clades nested within tropical clades 

(Buckley et al., 2010; Jablonski et al., 2006; Wiens et al., 2006) and whether escape from 

conservatism has led to rapid diversification following entry into new niche space (Simpson, 

1953). Due to the lack of resolution in both the mammal and amphibian phylogenies, we 

could identify few valid sister-clade contrasts precluding formal analyses. If diversity only 

needs time and space to accumulate, diversification since the appearance of large 

geographical areas of new temperate and boreal environments in the Miocene should have 

produced many new species. However, other factors are likely necessary to build up 

diversity, in particular habitat heterogeneity, climatic stability and consistent energy (Kisel et 

al., in press; Mittelbach et al., 2007; Stephens & Wiens, 2003).  Escapee clades may then be 

depauperate, due to higher rates of extinction during glacial cycles, or due to selection for 

generalists or large-range species better able to cope with fluctuating climates (over 

geological time) and strong annual seasonality (Davies et al., in press).  

Niche conservatism in means versus extremes 

We had hypothesised that the extreme values of environmental variables that species 

experience would relate most closely to the phylogenetically conserved physiological traits 
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underlying species’ tolerances (Soberón & Nakamura, 2009), so would show stronger 

conservatism than average values of environmental variables across species’ ranges. 

However, mean values of climatic variables had similar amounts of taxonomic structure as 

minima or maxima. These findings concur with Wiens et al.’s (2006) and Martin & 

Husband’s (2009) results for mean and extreme values in hylid frogs and North American 

angiosperms, respectively. Given the broad-scale spatial autocorrelation in climatic variables, 

it is unlikely that slight discrepancies between actual and modelled distributions would cause 

grossly incorrect estimates of climatic requirements. Nevertheless, one possible explanation 

for the strong signals found for mean values is that they correlate better with actual tolerances 

than extreme values do simply because centres of distributions are easier to characterise than 

are extremes. Part of our signal strength could also stem from the spatial autocorrelation in 

climatic variation: related species may have similar climatic tolerances due to their 

geographic proximity (despite having very different range sizes if, for instance, one is a 

peripheral isolate of the other). Indeed, Cooper et al. (2011) found that the spatial component 

of various aspects of the mammalian climatic niche was significant for that reason. However, 

the congruence in conservatism for mean and extreme values suggests that our results are not 

driven purely by spatial proximity in range edges (e.g., abutting sister species) but rather 

reflect conserved climatic tolerances across the range.  

Concluding remarks 

All our environmental variables showed conservatism that was stronger than or similar to that 

for geographic range size itself, suggesting that much of the interspecific variation in range 

size might reflect that simple ‘rules’ such as threshold tolerances and dispersal limitation are 

being played out on a complex surface. Most vertebrate speciation is allopatric, contingent on 

the location and timing of range-splitting barriers (Coyne & Orr, 2004). We here show that 
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among related species and for certain climatic factors – cold tolerance in particular – climatic 

requirements remain similar following speciation events while range sizes may be very 

different. With better-resolved phylogenies it will also become possible to explore how niche 

conservatism and evolution have affected diversification within these two groups. 
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Tables 

Table 2.1. Test statistics indicating whether species are more similar in their climatic 
requirements within than between genera or families.  
 

Taxon        
 
 
 

 Temp 
Warm 
(°C) 

Temp 
Cold 
(°C) 

Annual 
Precipitation 

(mm) 

Precipitation 
Seasonality 

NDVI Absolute 
Latitude (°) 

Genus level comparisons 

Amphibians Max. 0.3* 1.6 -48.0* 6.0 0.0  4.1 
Min. 0.3* 1.8 48.0 6.0 2.0 4.4 
Mean 0.1  1.7 31.8* 5.5 0.0  4.4 

Mammals Max. 0.6 2.0 659.0 6.0 3.0 5.9 

Min. 1.7 3.2 86.0 2.0*  3.0 5.6 
Mean 1.1 3.1 258.1 2.9 5.6 6.2 

Family level comparisons 

Amphibians Max. 0.5 1.3 25.0* 4.0 1.0 3.0 
 Min. 0.4 1.3 33.0 3.0 1.0* 3.0 

 Mean. 0.4 1.3   48.5 3.5 1.0 3.0 
Mammals Max. 0.2* 0.2   293.0 4.0 1.0   0.5*  
 Min. 0.9 0.8 33.0 -1.0*   2.0 0.9 
 Mean. -0.4 0.5 83.5 0.3   1.0 0.9 

Pagel’s  λ        
Mammals Max. 0.68 0.86 0.77 0.63 0.74 0.88 
 Min. 0.64 0.80 0.79 0.54 0.62 0.84 
 Mean. 0.84 0.88 0.71 0.88 0.90 0.86 

 

Bold values are significant at P < 0.001, except values followed by * (significant at P < 0.05). 

Negative values indicate that closely related species are less similar than more distantly 

related species. Pagel’s λ is 0 if there is no phylogenetic signal and 1 if the signal corresponds 

to expectation from Brownian motion; all values here are significantly different from 0 and 1 

according to likelihood ratio tests. Abbreviations: Temp warm/cold: mean temperature of the 

warmest/coldest quarter; NDVI: Normalized Difference Vegetation Index. 
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Figures 

Figure 2.1. Taxonomic structure of the variance in climatic tolerances for amphibians (A) and 

mammals (M).  

The main bars show the proportion of variance attributed to families (darkest grey), genera 

and species (lightest grey) by nested ANOVA. For each variable, the smaller bars show the 

relative sizes of the total variance associated with amphibians (left of the tick) and mammals 

(right of the tick). 

Figure 2.2. Spatial patterning of recent evolution in cold tolerance for mammals and 

amphibians 

Mean assemblage (grid cell) values for recent evolution in cold tolerance calculated as the 

average residuals from a nested ANOVA (see main text) for the species occurring in each 

cell. (a) Mammals; (b) amphibians and (equal-intervals above and below zero are used in the 

colour scale); (c) their difference (amphibians minus mammals). Only extreme differences 

are coloured; white cells are unoccupied by amphibians; grey cells are those where the 

difference is small. 
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Figure 2.1 
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Figure 2.2 
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Chapter 3. Where do species’ geographic ranges stop and why? Landscape 
impermeability and the Afrotropical avifauna2 

 

Abstract 

Although understanding large-scale spatial variation in species’ distributions is a major goal 

in macroecology, relatively little attention has been paid to the factors limiting species’ 

ranges. An understanding of these factors may improve predictions of species’ movements in 

response to global change. I present a measure of landscape impermeability, defined as the 

proportion of resident species whose ranges end in an area. I quantify and map 

impermeability for Afrotropical birds and use multi-model inference to assess support for a 

wide suite of hypotheses about its potential environmental correlates. Non-spatial analyses 

emphasise the importance of broad-scale environmental patterns of energy availability and 

habitat heterogeneity in limiting species’ distributions. Conversely, spatial analyses focus 

attention on smaller-scale factors of habitat and topographic complexity. These results hold 

even when only species from the top quartile of range sizes are assessed. All my analyses 

highlight that range edges are concentrated in heterogeneous habitats. Global change is 

expected to alter the nature and distribution of such habitats, necessitating range movement 

by many resident species. Therefore, impermeability provides a simple measure for 

identifying regions where continuing global change and human encroachment are likely to 

cause profound changes in regional diversity patterns.  

                                                

2 A version of this chapter is published as: McInnes, L., Purvis, A. & Orme, C.D.L. (2009) Where do species' 
geographic ranges stop and why? Landscape impermeability and the Afrotropical avifauna. 
Proceedings of the Royal Society B-Biological Sciences, 276, 3063-3070 
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Introduction 

The geographic ranges of many species are expected to change in response to ongoing global 

climate change. When trying to predict future ranges, researchers are often forced to make 

assumptions, e.g., that species will not colonise regions outside their present ranges and that 

there are no obstacles to colonisation of newly suitable locations (e.g., Thomas et al., 2004). 

An understanding of current constraints acting at species’ range boundaries may therefore 

make predictions about the future movements of species more accurate.  

Range boundaries have often been studied from a single- or two-species perspective (Holt & 

Keitt, 2005). For example, population genetic models have shown how gene flow from the 

centre of a species’ range may thwart local adaptation at the range edge, which can either 

promote or disrupt the generation of stable range limits (Kirkpatrick & Barton, 1997). 

Interspecific interactions may also stabilise range limits, even in the absence of strong 

gradients in environmental variables or dispersal barriers (Case et al., 2005; Case & Taper, 

2000). While much attention has been given to identifying the patterns and environmental 

correlates of species richness and range size (e.g., Currie et al., 2004; Hawkins et al., 2003; 

Jetz & Rahbek, 2002), there have been few large-scale analyses devoted to deciphering 

patterns in the distribution of range boundaries (Svenning & Condit, 2008; but see Williams 

et al., 1999). Further, the use of species distribution modelling (SDM), where a species’ 

climatic envelope is inferred from the climatic variables found within its range, under the 

assumption that this is an adequate description of a species’ realised niche (Guisan & 

Thuiller, 2005), defines edges largely as the location where a variable becomes unsuitable, 

rather than by modelling the conditions currently constraining range expansion.  Here, I 

identify the areas where high proportions of range boundaries are clustered to provide an 

ensemble, macroecological perspective on species’ limits. I therefore focus on the factors 
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affecting generalised limits of species’ distributions and do not consider temporary, or sink, 

populations or individuals occurring outside this general limit (Fortin et al., 2005; Gaston, 

2003). I do not incorporate the roles of population dynamics (Kirkpatrick & Barton, 1997), 

genetics (Bridle & Vines, 2007) or biotic interactions (Case et al., 2005; Terborgh, 1985) in 

limiting individual species’ ranges. I locate regions where the range limits of multiple species 

coincide, and identify the environmental conditions within these areas.  

Every species has a unique set of environmental variables under which it can survive and 

reproduce. Outside this niche space a species is unable to persist in the long-term. While 

many abiotic and biotic factors have been proposed to limit species’ ranges (reviewed by 

Gaston, 2003), the availability of ambient and productive energy has long been considered 

the most important factor (Currie et al., 2004). The range edges of many species coincide 

with climatic thresholds and have been found to change in broad synchrony with changing 

climate (Gaston, 2003). Consequently, SDMs have been used widely to predict the expected 

new range of a species under one or more climate change scenarios (Thomas et al., 2004). 

Recently observed changes in avian community composition suggest, however, that the 

current pace of climate change may be too rapid, with species’ ranges lagging behind their 

climatic envelopes (Devictor et al., 2008). Furthermore, there is growing evidence that non-

climatic factors also limit ranges (e.g., Beale et al., 2008). Habitat heterogeneity has been 

shown to influence species richness and average range sizes of an area (Davies et al., 2007; 

Rahbek & Graves, 2001). Complex habitats, or steep altitudinal gradients, often harbour high 

numbers of endemic species, uniquely adapted to one of the array of narrow niches found 

there (Terborgh, 1977). Heterogeneous habitats are expected to contain high densities of 

range edges, from resident endemics and larger-ranged species unable to cross the varied 

terrain (Kark et al., 2007).  
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Evolutionary processes of niche conservatism and niche evolution (Hawkins et al., 2007; 

Rangel et al., 2007), along with Pleistocene glacial cycles and older climate changes (Davies 

et al., 2007; Hawkins et al., 2007; Rahbek et al., 2007), have also recently been invoked to 

explain species’ distribution patterns and will likely also impact on the patterning of range 

boundaries. Indeed, evolutionary explanations of high avian species richness in the montane 

tropics include: climatic stability over time; persistence of old species within refugial 

environments; and the generation of new species through fine-scale niche partitioning along 

environmental and topographic gradients (Rahbek & Graves, 2001). In short, where 

evolutionary and ecological explanations of high species richness converge, for example in 

the montane tropics, the density of range edges will also be high. Range edges will also 

cluster at the margin between tropic and temperate zones if it is true that species are 

generated in the tropics and that their ranges expand out of the tropics only rarely (Hawkins 

et al., 2007; Rangel et al., 2007). 

Here I use the birds of the Afrotropics to conduct the first large-scale taxonomic and spatial 

analysis of the distribution and environmental correlates of range boundaries. To do so, I 

develop a measure of landscape impermeability (ω), calculated as the proportion of resident 

species with range boundaries within an area (e.g., a 1° grid cell). This measure gives an 

indication of how readily species’ ranges have extended through an area and captures factors 

beyond hard landscape features (e.g., coastline) that prevent high proportions of species from 

expanding their ranges. My measure is similar to beta-diversity measures (Gaston et al., 

2007a; Koleff et al., 2003), and spatial patterning of ω is expected to be similar to that for 

beta-diversity. However, ω is simpler and easier to interpret because it has relevance within a 

focal cell. It is therefore not necessary to define the neighbourhood within which turnover is 

examined, and yet ω captures compositional changes through space when viewed across grid 

cells.  
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I test a range of potential predictors of ω in three categories – habitat type, energy availability 

and habitat heterogeneity – reflecting the identified roles of both average environment 

(Gaston et al., 2007a) and environmental variability (Buckley & Jetz, 2008; Melo et al., 

2009) in explaining patterns of global avian turnover. Whilst I expect the signal of ω to be 

high in areas rich in restricted-range endemics (e.g., the montane tropics), I am also interested 

in identifying additional patterns and in capturing the range-limiting factors of species of all 

range sizes (Jetz & Rahbek, 2002). Finally, I also look at differences in the spatial patterning 

of ω between passerines and non-passerines to assess whether characteristics of these major 

groups influences a species’ ability to occupy the landscape.  This focus on what limits 

species, rather than on what determines where they are found, sheds new light on the 

processes governing patterns in the distribution of species diversity and provides information 

regarding areas where responses to ongoing global change are expected to be most difficult. 

 

Methods 

Range data 

I used data for all 2075 terrestrial Afrotropical bird species taken from a global database of 

bird ranges (Orme et al., 2005; 2006). I included all endemic Afrotropical species and the 

Afrotropical range of non-endemic species. All range maps for this region were digitised 

from expert-drawn distribution maps from a single source (‘The Birds of Africa’, references 

in Appendix 3.1). The distribution data in this source provide consistent, detailed range 

polygons, constructed without recourse to environmental modelling.  

The digitised vector maps were converted into a Behrmann equal area grid containing 2569 

land cells at a resolution of 96.5 km. This scale, approximately equivalent to a 1° grid, 
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minimises the overestimation of species occupancy of cells arising from using broad-scale 

distribution maps (Hurlbert & Jetz, 2007), especially for species with ragged range edges. 

The scale is also not so coarse as to obscure patterns in edge distribution, particularly in 

relation to restricted-range species (Fortin et al., 2005). Species were scored as present in a 

grid cell if any part of the breeding range fell within the cell. A grid cell was counted as 

containing a species’ range edge if any part of the perimeter of the species’ range, including 

the boundaries of sections of disjunct range, fell within the cell.  

Issues of differences in sampling effort across the realm do exist, for example between the 

well-studied southern African avifauna (Allan et al., 1997) and the under-studied tropical 

forests of Central Africa. However, The Birds of Africa remains the best available source for 

my analyses and a recent comparison of gridded survey data (Allan et al., 1997) and these 

range maps for southern Africa concluded that congruence was adequate using grid cells of 

1° (my scale of analysis) and larger (Hurlbert & Jetz, 2007).  

Calculating impermeability 

Impermeability (ω) was calculated as the proportion of resident species that also had a range 

edge in a cell. As ω is bounded between zero and one, and has non-constant variance and a 

non-normal error distribution, I used logit-transformed ω [log(ω/1- ω)] in all models. 

Predictor variables 

I identified the biome (Olson et al., 2001) occupying the largest proportion of each cell but 

restricted analyses to the four biomes represented in at least 50 cells. Mean ω for the cells in 

discarded biomes (tropical & subtropical dry broadleaf forests (10 cells); temperate 

grasslands, savannas & shrublands (1); flooded grasslands & savannas (33); mediterreanean 

forests, woodlands & shrubs (3)) did not differ significantly from those in the remaining four 
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major biomes: tropical & subtropical moist broadleaf forests; tropical & subtropical 

grasslands, savannas & shrublands; montane grasslands & savannas; and deserts & xeric 

shrublands (results not shown).  In addition, all cells with ω > 0.9 were identified as cells 

containing ranges with boundaries clipped to lakes or coast and hence where ω was trivially 

high. In total, 696 cells were discarded from the original dataset, resulting in the removal of 

170 species restricted to the omitted cells (163 from coastal cells and seven from minor 

biomes). All the omitted species are restricted-range species (mean occurrence: 4.2 cells, 

range: 1 – 45 cells) and, since almost all occur in coastal/lakeside cells which are always 

completely impermeable, their omission is unlikely to obscure additional patterns in ω at this 

scale of analysis.  

Biome type was used as a predictor variable describing broad-scale habitat type; I also used 

mean elevation (metres) as a second measure to capture habitat type. As measures of habitat 

heterogeneity within each cell I used: the number of the four major biomes present, to 

indicate large-scale habitat heterogeneity; the number of land cover types, to represent small-

scale landscape heterogeneity; and log10 elevational range, to capture topographic 

complexity.  To investigate the correlation of climatic factors with ω, I used mean annual 

temperature (°C) as a proxy for ambient energy and mean annual actual evapotranspiration 

(AET, mm) as a proxy for productive energy (all references in Appendix 3.2). The data for 

each of these variables was re-sampled from the original resolutions into the equal-area grid.  

Anthropogenic impacts are expected to be important in determining the boundaries of ranges, 

particularly given the changes expected in human population and land use within the region 

(Millennium Ecosystem Assessment, 2005). However, the absence of estimates of range 

change resulting from anthropogenic impact, a temporal disassociation between available 

measures of impact and the avian range data and the known positive correlation between 
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measures of human impact and biodiversity at coarse spatial scales (Luck, 2007), suggest that 

establishing cause and effect of any relationship between human impact and ω will be 

difficult. Therefore I consider only environmental correlates in my reported models. In 

addition, a correlation test accounting for spatial autocorrelation (Clifford et al., 1989) 

revealed no correlation between mean human population density and ω (r=-0.00281, n = 

2018, effective sample size (ess) = 61.72, t = -0.0216, p = 0.98).  

Data analysis 

Preliminary analyses were performed to limit the scope of the most complex model 

considered. I calculated ordinary least squares (OLS) univariate regressions of ω against each 

predictor across the entire dataset and within each biome (details in Appendix 3.3). 

Significantly different relationships were often found in the biome-specific analyses, 

indicating that biome type is a key factor affecting landscape impermeability. I then used 

regression trees to visualise the structure of the data and to identify potential interaction terms 

(Appendix 3.3). Finally, I used a generalised additive model (GAMs: Wood, 2006) to 

examine the possibility of significant non-linearity between ω and the  predictor variables 

(Appendix 3.3). All of the main effects showed broadly linear relationships with ω, except 

for AET and elevational range which approximated quadratic relationships. My most 

complex model therefore included all main effects and second-order polynomial terms for 

these two variables. I included first-order interaction terms between each main effect and 

biome and also between AET and both temperature and elevational range, resulting in a 

maximal model containing 19 terms. Variance inflation factors between the main effects were 

all low (≤ 4) indicating that there is no strong collinearity among them (Fox, 2002). 

There has been a growing reaction against stepwise model simplification to a single 

minimum adequate model, particularly for broad-scale analyses where multiple alternative 
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hypotheses may be relevant (Diniz-Filho et al., 2008; Johnson & Omland, 2004). Here, I 

fitted all 14,752 valid simplifications of my maximal model and follow a multi-model 

inference approach (Burnham & Anderson, 2002; Johnson & Omland, 2004).  Models were 

fitted using OLS multiple regression and I obtained AICc, the sample size corrected version 

of AIC, for each model. I then computed the Akaike weights of each model across the full set 

of models using ∆AICc values and identified the set of most highly weighted models with a 

combined Akaike weight of greater than 0.95 (the 95% confidence set; Burnham & 

Anderson, 2002).   

Spatial modelling 

Cells close to one another in space will tend to have more similar values of both response and 

explanatory variables than cells located further apart (Legendre, 1993). Such spatial 

autocorrelation can inflate Type I error rates and cause bias in the magnitude of effect of 

explanatory variables (Davies et al., 2007). Coefficients may also be estimated incorrectly 

and their variances strongly underestimated. Irrespective of the model selection method used, 

highly-supported non-spatial models are thus expected to be more inclusive than equivalently 

supported spatial models (Diniz-Filho et al., 2008). However, OLS models may still be 

useful, despite their higher Type I error rates, in capturing broad-scale drivers of 

macroecological patterns (Diniz-Filho et al., 2007). Interpretation of both non-spatial and 

spatial models and explicit consideration of scale and the hierarchical nature of diversity 

drivers may generate a more complete picture than one or the other mode of analysis alone 

(Diniz-Filho et al., 2003; 2007). I follow this course here and present the results of both non-

spatial and spatially-explicit regression analyses following exploration of the spatial structure 

of my data.  
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Correlograms of Moran’s I confirmed the presence of substantial spatial autocorrelation in 

explanatory and response variables and in the residuals of models in my OLS best-model 

subset (Appendix 3.4). Following examination of semi-variograms and calculation of AIC 

values (Rangel et al., 2006; data not shown) to determine the form of  the spatial structure in 

the data, I refitted all models using a generalised least squares (GLS) approach (Pinheiro & 

Bates, 2000, Beguería & Pueyo, 2009) including an exponential spatial correlation structure. 

GLS incorporates this spatial structure directly into model residuals and correlograms of 

normalised residuals from fitted models were used to check that spatial autocorrelation had 

been adequately accounted for (Appendix 3.4; Pinheiro & Bates, 2000).  

When fitting a spatial model using GLS, the range (ρ) over which autocorrelation operates is 

usually optimised for each set of explanatory variables, as the structure of the autocorrelation 

will vary with the suite of variables chosen. However, changes in the correlation structure 

will affect the calculation of AICc for a model and so, in order to simplify multi-model 

inference across models, I used a fixed range (ρ = 39.095 km). This value was obtained as the 

mean of independently estimated ρ from a random subset of 200 models. Pearson’s 

correlation between the AICc values of these 200 models calculated using both optimised and 

fixed ρ is almost perfect (r = 0.999, t198 = 29432, p < 0.0001), suggesting that this restriction 

does not unduly affect subsequent model weighting. In addition, visual inspection of Moran’s 

I correlograms indicated that spatial autocorrelation is similarly accounted for in both model 

sets (data not shown) and that residual autocorrelation was similarly reduced using the fixed 

or optimised ρ.  

Range size and taxonomic influences 

Results from studies of species richness and range size (Jetz & Rahbek, 2002; Orme et al., 

2006) suggest that correlates of ω will differ between large- and small-range species. 
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Following Jetz & Rahbek (2002), the species were divided into range size quartiles based on 

the number of cells occupied within the truncated dataset and the spatial distribution of ω was 

calculated for each quartile. The analyses described above were repeated using the species 

within the top range size quartile to investigate the expected high influence of this quartile on 

analyses of the dataset as a whole.  In addition, I split my dataset into Passeriformes and all 

remaining birds and recalculated ω for each group. I calculated the correlation between the 

two subsets to investigate the degree to which taxonomic biogeographic structure is reflected 

in landscape impermeability. 

 

Results 

Spatial distribution of ω 

Impermeability (ω) shows strong spatial patterns throughout the Afrotropics (figure 3.1). 

Permeable regions include the resource-rich Guinean and Congo basin forests and the 

savannas of the Sahel; ω increases markedly at the boundaries of these productive regions. 

Impermeability is also high in the montane habitats of northeastern Africa and along the 

edges of the Sahara desert in the north and the Namib Desert in the south. 

Non-spatial OLS analyses 

Non-spatial modelling produces a 95% confidence set containing ten models (table 3.1a). As 

expected, these highly supported models are inclusive (summarised in table 3.2a, see also 

Appendix 3.5), with the maximal model being the most highly weighted (weight, wi = 0.184) 

and the remaining nine models including a mean of 16.9 terms. On the basis of F ratios, all 

models in the top set highlight the importance of available energy (AET, AET2) as well as 

elevational range, temperature and biome heterogeneity. Interactions with biome typically 
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have lower explanatory power, but are present in models retained in the preferred model set. 

Although correlograms of the raw residuals from the top OLS model exhibit reduced spatial 

autocorrelation compared to those of individual variables, there is still evidence (Appendix 

3.4) for substantial short-range autocorrelation (Diniz-Filho et al., 2003). 

Spatial GLS analyses  

Accounting for spatial autocorrelation using a GLS approach results in a 95% confidence set 

of two substantially simpler and better-fitting models (table 3.1b) with little remaining 

autocorrelation (Appendix 3.4). Both models include biome heterogeneity and then landscape 

heterogeneity as their strongest explanatory variables (table 3.2b), followed by either 

elevational range or elevational range2. Highly spatially-autocorrelated variables such as AET 

and temperature (Appendix 3.4) are dropped from these models.  

Effect of range size and taxonomy on ω 

Broad scale patterns in ω vary considerably within range size quartiles (figure 3.2a-d) but are 

dominated by species in the top range size quartile (figure 3.2d), which inevitably contribute 

disproportionately to the number of species’ presence (73.6%) and edge (54.8%) records in 

the dataset. Impermeability for this quartile is strongly correlated with overall ω (r = 0.93, n = 

2018, ess = 16.30, t = 13.27, p < 0.0001). Both spatial and non-spatial models (Appendix 3.6) 

for this quartile mirror those for the whole dataset, with OLS models only suggesting a more 

significant role for temperature and with GLS models supporting the importance of habitat 

heterogeneity variables (biome heterogeneity, landscape heterogeneity and elevational range).  

In addition, mean ω for this quartile is significantly higher in cells where restricted-range 

species are also found (F1,2016 = 28.50, p < 0.0001), highlighting the congruence in highly 

impermeable areas for both small- and large-range species. Finally, the correlation between 

passerine and non-passerine ω was moderately strong and significantly positive (r = 0.61, n = 
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2018, ess = 32.94, t = 5.50, p < 0.0001). Given the larger average range size of non-

passerines, it is unsurprising that the patterning of ω for this subset (figure 3.2f) mirrors that 

of the largest range size quartile (figure 3.2d) while that for the passerines (figure 3.2e) is an 

amalgam of the three smaller quartiles (figures 3.2a-c).  

 

Discussion 

I find strong broad-scale patterns of impermeability across Afrotropical birds, despite the 

idiosyncrasies of survival, reproduction and immigration that inevitably define individual 

species’ range limits.  Of the variables assessed, measures of habitat variability (biome and 

landscape heterogeneity and elevational range) are the most consistent predictors of 

impermeability (ω). These variables are significant in both non-spatial and spatial analyses 

(table 3.2) and show that transitional or complex habitats act as barriers for a majority of 

species, even those with the largest ranges (Appendix 3.6). These results support those of van 

Rensburg et al., (2004) who found greater avian turnover at biome transitions in South 

Africa, but differ from the early conclusions of Allan et al. (1997) who believed that the 

botanically-defined biomes of the Afrotropics were not “entirely relevant to [its] avifauna.” 

Whether the clustering of avian range boundaries at biome edges is due to active habitat 

selection or enforced limits does not detract from the congruence found between avian and 

vegetation turnover and that high ω areas are areas where free range expansion is impeded.  

I expected impermeability to be high at the transitions between biomes and in topographically 

complex regions for two reasons. First, such areas act as barriers to the expansion of mid- and 

large-range species as they reach the limits of their environmental tolerances. Second, they 

will be rich in restricted-range endemics adapted to niches uniquely found within the 

transitional habitat. Range edges for these two groups therefore coincide where habitat 
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heterogeneity is greatest and, indeed, mean ω for the widest-ranging species is significantly 

higher in cells also occupied by the narrowest-ranging species. Furthermore, only measures 

of habitat heterogeneity are included in the best supported spatial models for these wide-

ranging species (Appendix 3.6).  

Landscape heterogeneity, measured as the number of ecosystem types within a grid cell, 

shows a more complex relationship with ω. My initial single-predictor analyses show that 

high landscape heterogeneity in tropical & subtropical grasslands, savannas and shrublands is 

associated with lower impermeability (Appendix 3.3). This, however, is driven by the strong 

signal arising from the species-poor, highly impermeable boundary of this biome with the 

Sahara (figure 3.1). In spatial models, which account for the spatial non-independence of this 

signal, I find a strong positive association between landscape heterogeneity and 

impermeability across all biomes (table 3.2b, see also Rosenzweig, 1995).  

Model choice also affects conclusions on the importance of energy availability. In my non-

spatial analyses, ω is low where energy availability (AET, temperature and their interaction) 

is high. However, the strength of these relationships decreases greatly when spatial structure 

in these variables is accounted for. The fact that climatic variables drop out in the best spatial 

models indicates that the matching spatial structures of the explanatory and response 

variables might be driving the strength of these relationships. Additional analyses in other 

realms are required to determine if there is a genuine effect of climate on ω that is not 

simply a function of the broad-scale covariance in these variables.  

Macroclimatic variables may be true range-limiting factors, but for large-range species only 

(Jetz & Rahbek, 2002 Rahbek et al., 2007). Spatially-explicit analyses take account of the 

same large-range species contributing similar signal in many adjacent cells and change the 

focus of analysis from long-distance clinal variables, such as temperature and AET, towards 
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predictors acting at finer geographical scales (Diniz-Filho et al., 2003; 2007). Biome 

heterogeneity, landscape heterogeneity and elevational range are the only predictors 

remaining in my best spatial models (table 3.2b, Appendix 3.5) suggesting that spatial 

analyses permit detection of additional explanatory variables acting at scales where the 

macroclimate is expected to vary only slightly (Diniz-Filho et al., 2007; Hawkins & Diniz-

Filho, 2006). Interestingly, these measures of habitat heterogeneity are also the only variables 

remaining in the best spatial models for species in the largest range size quartile. This 

suggests that additional factors beyond climatic isotherms also limit large-range species, and 

that even species capable of maintaining a large range do not necessarily cross regions of 

major habitat turnover.  

My results complement analyses of beta-diversity in the Afrotropical avifauna (Williams et 

al., 1999). These found that, at higher latitudes, turnover was dominated by richness gradients 

associated with the changing climate (at the edge of the Sahara and Kalahari deserts), while at 

low latitudes most signal was derived from species replacements along complex habitats 

(along the boundary of the humid equatorial forests and to the north and west of Lake 

Victoria). Different environmental factors therefore operate at different scales in shaping 

macroecological patterns (Rahbek & Graves, 2001), and non-spatial and spatial analyses 

should together explain the wider hierarchy of factors affecting species of all range sizes 

(Diniz-Filho et al., 2003; 2007).  

I do not assess the scale-dependency of my results, because such an assessment would be 

confounded by the scale limitations of broad-scale distribution maps (Hurlbert & Jetz 2007). 

My finding of the importance of elevational range and habitat heterogeneity is consistent with 

the observed fine-scale elevational zonation of avian communities within the tropical forest 

of the Udzungwa Mountains, Tanzania (Romdal & Rahbek, 2009) and of the earlier results of 
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Terborgh (1977) for birds along an elevational transect in the Cordillera Vilcabamba, Peru. 

However, neither scale of analysis directly determines the causal factors limiting species 

within heterogeneous habitats, and a detailed understanding of such limits is likely to require 

fine-scale mapping of species’ abundances in combination with models of the population 

dynamics at range edges (Case et al., 2005). Environmental models may also incompletely 

explain variation in ω if range limits are set primarily by historical factors such as the 

location of refugia (Davies et al., 2007; Rahbek et al., 2007). This would also help explain 

the high ω found in montane habitats where ecological factors promoting small ranges and 

refugial environments are coincident (Kark et al., 2007). It is likely that finer-scale analyses 

would further emphasise some areas of high impermeability associated with excluded coastal 

cells (figure 3.1, e.g., in Angola, in Kenya and along the Rift Valley), as these would 

reintroduce some narrow-ranged species culled from the dataset that are also associated with 

transitional habitats in these regions. 

It is likely that areas of high ω will show early responses to the adverse impacts of global 

change.  I show that the edges of wide-ranging and the entirety of narrow-ranging species’ 

distributions are concentrated in heterogeneous areas. Under global change, it is likely that 

the nature and location of these habitats will change (e.g., Hannah et al., 2002). Species will 

respond idiosyncratically to these habitat movements (Davis & Shaw, 2001) and changes in 

community composition in high ω areas are expected to be common (Devictor et al., 2008). 

The steepness of the elevational gradient in mountainous areas may allow some species to 

keep pace with their shifting niches (given the high number of, albeit narrow, niches, that can 

be packed into a certain area; Luoto & Heikkinen, 2008; Rahbek & Graves, 2001). However, 

certain habitats are projected to have no analogues in the near future (Williams et al., 2007), 

and only limited adaptation to changing climates is expected (e.g., Gienapp et al., 2008). 

Şekercioğlu et al. (2008) also highlight the elevated extinction risk of highland birds, with 
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warming temperatures expected to force species uphill, sometimes resulting in complete 

range extirpation.  

Human presence is known to correlate positively with many biodiversity measures at coarse 

spatial scales (Luck, 2007), partly because available energy facilitates both dense human 

populations and diverse natural assemblages, and partly because human settlements in 

transitional habitats can probably access more diverse resources (Hugo & van Rensburg, 

2008). However, in my preliminary analyses, I found no correlation between human 

population density and ω. While this may be due to the temporal discord between the two 

datasets, it seems that the areas I identify as particularly vulnerable to disturbance in the face 

of climate change are not currently facing unusually high human densities.  

Previous studies have highlighted transitional habitats as dynamic centres of endemism 

meriting conservation attention (Kark et al., 2007). I concur with this study, and others, in 

suggesting that both transition zones and the surrounding areas into which species are likely 

to “want” to move, alongside montane areas, are important in systematic conservation 

planning (Luoto & Heikkinen, 2008). My analyses complement others which suggest that 

climate envelope models do not fully capture species’ distributional limits (Beale et al., 2008) 

and make a start at answering the call for a more inclusive understanding of range-limiting 

factors (Gaston, 2009; Svenning & Condit, 2008). 
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 Tables 

Table 3.1.  Results of model selection. Akaike weights (Wi), AICc and the number of terms in 

each model for all the (a) non-spatial and (b) spatial models in the 95% confidence sets.  

 

  Wi  AICc Terms 

(a) Non-spatial 0.18 2578.1 19 

   0.17 2578.3 18 

  0.17 2578.3 16 

  0.16 2578.4 17 

  0.09 2579.5 17 

  0.09 2579.5 18 

  0.03 2581.9 16 

  0.03 2582.0 15 

  0.02 2582.2 18 

  0.02 2582.6 17 

    

(b) Spatial 0.81 -47.2 3 

  0.15 -43.8 3 
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Table 3.2. Summary of top models. (a) The minimum and maximum F ratio and the number 

of times retained (n) for each term across the 95% confidence set of 10 non-spatial models. 

(b) F ratios for significant terms in the two models in the 95% confidence set for the spatial 

models. Superscripts show significance at p < 0.001, along with the sign of the coefficient 

where relevant. 

 (a) Non-spatial   (b) Spatial 

       

Main effects Min F Max F n Model 1 Model 2 

Biome 61.17* 61.54* 10   

Mean elevation 0.05 0.05 10   

Mean annual AET 494.79+ 497.82+ 10   

Mean annual temperature 123.66+ 124.42+ 10   

Elevational range 357.10+ 359.28+ 10 33.59+  

Landscape heterogeneity 0.29 0.30 6 23.86+ 28.58+ 

Biome heterogeneity 203.49+ 204.74+ 10 50.61+ 61.74+ 

Mean annual AET2 283.59- 291.32- 10   

Elevational range2 40.51+ 43.92+ 10  19.47+ 

       

Biome interactions       

Mean elevation 15.17* 15.48* 10   

Mean annual AET 25.98* 26.41* 10   

Mean annual temperature 19.03* 19.49* 10   

Elevational range 41.81* 42.93* 10   

Landscape heterogeneity 6.37* 6.48* 4   

Biome heterogeneity 3.85* 3.87* 6   

Mean annual AET2 17.72* 18.81* 10   

Elevational range2 8.25* 11.34* 10   

       

Mean annual AET: Mean annual temperature 16.48- 21.93- 10   

Mean annual AET: Elevational range 1.90+ 2.38+ 5     
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Figures 

Figure 3.1. Landscape impermeability for Afrotropical birds using untransformed ω. 

Impermeability increases from 0 to 1. Yellow = high ω; red = low ω. Grey cells are omitted 

from all analyses (see text for further justification) 
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Figure 3.2.  Landscape impermeability for subsets of species from the dataset: range size 

quartiles (a-d) from the narrowest-ranged (a) to the widest-ranged (d) species, (e) passerines 

and (f) non-passerines. Grey cells as in figure 3.1 with dark grey cells (a-b) showing cells 

which contain no species from that subset. 
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Chapter 4. Global patterns and inter-realm differences in mammalian landscape 
impermeability  
  
Abstract 

Advances in data availability have enhanced our understanding of broad-scale diversity 

gradients by facilitating global scale analyses of patterns in, for example, species richness, 

range size and body size. Here, I extend my initial exploration of landscape impermeability in 

the Afrotropical avifauna to mammals globally. Because analyses at the global scale may 

mask considerable variation stemming from regional effects, I compare and contrast the 

patterns and correlates of impermeability found for each biogeographic realm. While I find a 

consistent signal of the most impermeable habitats being concentrated in heterogeneous 

areas, there are also differences apparent particularly between temperate and tropical realms 

where characteristic gradients in energy availability modulate landscape impermeability in 

distinct ways. I also present an initial exploration of spatial patterning in amphibian landscape 

impermeability and investigate its congruence with that for mammals, globally and within 

each realm. Species’ movements in response to global change will manifest themselves first 

at range edges, but areas where range edges are currently concentrated represent regions 

where unimpeded range expansion may be difficult. I discuss how an understanding of the 

macroecology of range limits may constitute a necessary additional component when 

forecasting the redistribution of biodiversity under climate change.  
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Introduction 

Much is known of the factors underlying broad scale patterns in species richness and average 

range size, with a consensus emerging over the importance of climatic drivers (e.g., Hawkins 

et al., 2003) in combination with region-specific effects (e.g., Hortal et al., 2008; Ricklefs, 

2004). While single species studies have identified a multitude of factors influencing species’ 

range limits including hard landscape barriers such as coastline or rivers, climatic thresholds, 

landscape heterogeneity and biotic interactions (Gaston, 2003; Sexton et al., 2009), broad 

scale patterns in range limits have, in contrast, been largely ignored (but see McInnes et al., 

2009; Pigot et al., 2010).  

To this end, we recently published a study of the macroecology of range limits in the 

Afrotropical avifauna (chapter 3; McInnes et al., 2009). In this study, we mapped the 

proportion of resident species that have range edges in an area, and termed our new measure 

landscape impermeability (ω) given that areas where most resident species’ ranges end 

correspond to difficult habitats where easy range expansion is impeded. We tested a range of 

potential environmental correlates of ω in three categories - habitat type, energy availability 

and habitat heterogeneity. We found that range limits are clustered in heterogeneous habitats, 

in areas that both harbour restricted-range species endemic to specialised microhabitats and 

act as barriers to larger range species inhabiting the surrounding more homogeneous habitats. 

Here, I extend our analysis of landscape impermeability to mammals globally using 

distribution data from the Global Mammal Assessment (GMA, Schipper et al., 2008). I fit 

models separately within each biogeographic realm under the expectation that their differing 

historical and current environments may lead to contrasting patterns and correlates of ω 

(Davies et al., 2007; Hortal et al., 2008). For example, range sizes are typically larger at 

higher latitudes (Stevens, 1989) and this is commonly attributed to species possessing 
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generalist adaptations to cope with seasonal climates (Davies et al., 2009). Will ω be lower in 

temperate realms where there are fewer range edges and by extension less clustering of range 

edges? Or will correlates of ω in these realms be more strongly biased to climatic thresholds 

beyond which few species can persist (Olalla-Tárraga et al., in press)? 

I also present an initial exploration of amphibian impermeability using data from the Global 

Amphibian Assessment (GAA, Stuart et al., 2004). With more stringent habitat requirements 

and lower dispersal capacity, landscape impermeability might be expected to be “higher” for 

amphibians (Buckley & Jetz, 2008). It is not clear, however, whether amphibians’ more fine-

grained landscape experience (Belmaker & Jetz, 2011) will translate into novel patterns in 

impermeability. As for conservatism in climatic tolerances in the two groups (Olalla-Tárraga 

et al., in press), the clustering of amphibian range limits in space may be highly congruent 

with mammalian clustering if the same underlying landscape features limit high proportions 

of resident species of the two taxa.  

Impermeability is related to various measures of beta-diversity (Koleff et al., 2003), but is 

simpler to calculate and easier to interpret because it has relevance within a focal cell whilst 

also capturing compositional changes through space when viewed across grid cells. Thus, 

while both require decisions on the grain size of the grid, because beta-diversity is concerned 

with compositional and/or richness differences between cells, a suite of further decisions may 

also be necessary (Tuomisto, 2010a, b). Furthermore, an understanding of the macroecology 

of beta-diversity requires partitioning variation into that explained by geographic versus 

environmental distance (e.g., Qian et al., 2009) in order to capture turnover related to 

dispersal- and niche-limitation (Baselga, 2010; Gaston et al., 2007b). In contrast, ω directly 

quantifies areas which are traversed by few species and is useful in assessing the nature of 

such regions.  
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I find that there is a globally consistent signal of high ω in heterogeneous areas. My results in 

general concur with recent studies suggesting that climate change responses will be first 

apparent in montane areas and along major habitat transitions and suggest that ω may be a 

useful measure to identify areas of high current and future biotic turnover. 

 

Methods 

Processing the mammalian range data 

I used the polygon shape files of the ranges of all mammals from the Global Mammal 

Assessment (GMA: www.iucnredlist.org/mammals; Schipper et al., 2008), processed in the 

same way as detailed in chapter 2 (Olalla-Tárraga et al., in press). Briefly, I excluded ranges 

of extinct species as well as the parts of ranges classified as introduced, presence uncertain or 

historical range. I also excluded all marine mammal species. Finally, I matched the GMA 

species with the species found in Wilson & Reeder (2005).  In addition, I retained 103 species 

not found in the mammal supertree (Fritz et al., 2009), but with distributional data available.  

Calculating impermeability 

I converted the polygons of each species using a Behrmann equal-area projection; preserving 

area but not necessarily the shape or distance between cells. I overlaid a 96.5 km2 equal-area 

grid system on the projections and extracted grid cell occurrences for each species. Species 

were scored as present in a grid cell if any part of the breeding range fell within the cell. A 

grid cell was counted as containing a species’ range edge if any part of the perimeter of the 

species’ range, including the boundaries of sections of disjunct range, fell within the cell. 

Impermeability (ω) was calculated as the proportion of resident species that also had a range 
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edge in a cell. As ω is bounded between zero and one, and has non-constant variance and a 

non-normal error distribution, I used a logit [log(ω/(1- ω))] transformation in all analyses. 

I obtained ω for 17450 cells globally. I removed all remaining cells with ω > 0.9 (McInnes et 

al., 2009), as these cells contained ranges with boundaries clipped to lakes or coast and hence 

were where ω was trivially high. I restricted analyses to continental cells (Kreft et al., 2008) 

as patterns of ω on islands are hard to interpret. I also excluded biomes that were represented 

in less than 50 other cells in the same realm, apart from in Australasia where the temperate 

broadleaf and mixed forests biome (37 cells) was retained as it formed a contiguous region in 

the south east. Finally, I removed 65 cells with ω = 0 to facilitate the logit transformation. In 

total, 6044 cells were removed from the dataset, leaving 11406 cells with 3981 species 

contributing to ω.  

Environmental predictor variables 

I used the same set of environmental variables as in McInnes et al. (2009; chapter 3) to test 

for significant correlations with mammalian impermeability (variables mapped in Appendix 

4.1). Briefly, the variables chosen were: biome type and mean elevation (metres) to represent 

broad-scale habitat type; the number of co-occurring biomes and the number of land cover 

types as measures of broad- and small-scale habitat heterogeneity, respectively, and 

elevational range (metres) as a measure of topographic complexity. Ambient energy 

availability has been shown to limit species in high latitude environments, while water 

availability increases in importance in higher energy (i.e., lower latitude) regions (Hawkins et 

al., 2003; O'Brien, 2006; Whittaker et al., 2007). To represent these two climatic axes, I used 

mean annual temperature (°C) and mean annual actual evapotranspiration (AET, mm) as 

proxies for ambient and productive energy, or resource, availability. Mean elevation and 

elevational range were natural-log transformed and AET was square-root transformed to 
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improve normality. The data for each of these variables was re-sampled from the original 

resolutions into the equal-area grid (references in Appendix 3.2). I centred and scaled the 

variables to facilitate comparison of slope estimates both within and between models 

(Schielzeth, 2010). 

Beta-diversity studies commonly include environmental differences between focal cells as a 

measure of environmental roughness (Buckley & Jetz, 2008; Gaston et al., 2007a; Melo et 

al., 2009). In this analysis, topographic and habitat complexity variables both capture the 

degree of such roughness within a given cell precluding the need to include additional 

roughness measures.  

In the original analysis (McInnes et al., 2009; chapter 3), I fitted biome interactions with each 

of the main effects hypothesising that variables such as elevation might affect ω differently 

depending on additional features of the landscape. However, to retain tractability among 

models across realms and because of limits to computing power in the fitting of spatially-

explicit models (see below), here I do not fit biome interactions and include biome identity 

only as a main effect. Thus, while I am still able to assess differences among biomes, I am 

less able to explore which variables in the model may be contributing to differences in ω 

between biomes. 

Data preparation 

I undertook preliminary exploratory analyses to define an adequate maximal model. First, I 

fitted generalised additive models (Wood, 2006) to characterise the shape of the relationship 

of each variable with ω. This identified a humped relationship between ω and mean annual 

temperature, captured here using a squared term. Second, I fitted regression tree models: 

these revealed associations between values of mean annual temperature and both AET and 

elevational range, represented here by the use of two-way interaction terms. The first of these 
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interactions likely reflects how energy and water availability interact to limit ranges (e.g., 

high temperatures may only be limiting in dry environments, Hawkins et al., 2003). The 

second captures the contrasting effect of elevational gradients where energy is plentiful 

versus where it is scarce (e.g., altitudinal change might only be associated with range limits 

when it is also associated with steep gradients in energy availability, Hawkins & Diniz-Filho, 

2006). These additions resulted in a maximal model of 7 main effects, 2 interaction terms and 

1 factor (biome) with between 3 (Indomalaya) and 11 (global) levels. For the global dataset, 

variance inflation factors (all < 2) and condition indices (all < 4) were low indicating there 

was not a problem of multicollinearity among the main effects (Fox, 2002).  

Data analysis – ordinary least squares modelling 

I first fitted ordinary least squares (OLS) multiple regression models separately to each realm. 

Each realm-specific model included all realm endemics and that part of cosmopolitan 

species’ ranges that fell within the focal realm. To best facilitate identification of the most 

explanatory model and to avoid the subjective process of model simplification (Mundry & 

Nunn, 2009), I implemented multi-model inference using the R package, MuMIn (Barton, 

2011). I ranked models (n = 416) according to sample-size corrected AIC (AICc) and 

identified that set of models within four AICc units of the top-ranked model (Barton, 2011). 

Having obtained the top model set, I used model averaging to obtain averaged coefficients 

weighted by the Akaike weights of the set of models each variable occurred in. Note that as 

model averaging may involve sets of models where some models include only main effects 

without their interaction terms, the use of standardised coefficients facilitates interpretation of 

their averaged coefficients (Schielzeth, 2010).  
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Data analysis – simultaneous autoregressive modelling 

I checked for the presence of spatial autocorrelation by plotting correlograms of Moran’s I 

generated from the OLS maximal models using the correlog() function in the R library ncf 

(Bjoernstad, 2006). Following evidence of spatial autocorrelation, I then fitted simultaneous 

autoregressive (SAR) models for each realm using the spdep library (Bivand, 2007). I only 

fitted realm-specific models given that cells in different realms are likely to be spatially 

independent from one another and the degree of spatial autocorrelation is also expected to 

differ between realms (see also Davies et al., 2007; Whitton et al., in press).  

SAR models (reviewed in Beale et al., 2010; Kissling & Carl, 2008) are faster to fit than 

including spatial autocorrelation (SA) structures within a generalised least squares framework 

(McInnes et al., 2009) and can use a single pre-defined spatial weights matrix rather than 

requiring repeated optimisation of a spatial autocorrelation model. While GLS directly 

models the spatial covariance structure and extracts this structure to generate spatially-

structured residuals, SAR models the way SA is produced and corrects for it using a chosen 

form of weight matrix that specifies the strength of interaction between neighbouring sites. I 

followed Kissling & Carl (2008) and fitted SARerror models that assume that autocorrelation 

is found only in the error term, for example due to a missing explanatory variable or to the 

inherent SA of the response variable itself. I used the recommended row-standardised 

weighting scheme which scales covariances based on the number of neighbours in each 

region and used the method developed by Cooper & Purvis (2010) to find the optimal 

neighbourhood distance (lowest AIC) for each realm.  

Pseudo-R2 values were calculated for OLS and SAR models as the squared Pearson 

correlation between fitted and observed values (Kissling & Carl, 2008).  
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Amphibians 

To compare and contrast mammalian impermeability with another vertebrate group with a 

contrasting ecology, I also calculated impermeability for continental amphibians (ωA) 

globally. I used polygon shapefiles of the geographic ranges of each amphibian species taken 

from the Global Amphibian Assessment (GAA: www.iucnredlist.org/amphibians; Stuart et 

al., 2004) and processed them as above to obtain ωA values for 13080 cells globally. Because 

amphibian ranges are, on average, smaller than mammals’ (see also Buckley & Jetz, 2008, 

Qian, 2009), many amphibian species do not occur in more than one grid cell at the 96.5 km2 

scale. This also means that many cells have very high ωA values within the interior of 

continents (e.g., 1139 non-coastal cells with ωA > 0.9, 994 of these with ωA = 1). In contrast 

to mammals, there are also a large number (n = 1471) of cells that have ωA = 0. Because 0 

and 1 are not finite on the logit scale, rather than fit models to such a depauperate dataset, I 

look only at the congruence between untransformed mammal and amphibian impermeability 

using correlation tests accounting for spatial autocorrelation (Clifford et al., 1989). I look at 

congruence in two ways: a. including all cells and b. omitting coastal cells where ω and ωA 

are always 1. I repeat analyses at both the global and realm level.  

 

Results 

Mammals 

Striking spatial patterns of impermeability are visible in each realm (figure 4.1). 

Impermeability (ω) varies significantly among realms (one-way ANOVA, F5,11400 = 107.6, p 

< 0.001) although the interpretation of such a result is complicated by spatial autocorrelation. 
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OLS model sets by realm all contain few, parameter-rich models (table 4.1). In the case of the 

Neotropics and Indomalaya, the maximal model is unequivocally superior (wi > 0.98); 

Australasia shows the most variation with four competing models (highest wi = 0.374). All 

models show reasonable explanatory power with pseudo-R2 varying between 0.303 

(Afrotropics) to 0.697 (Neotropics) for the top model in each realm. Model-averaged t values 

suggest a key role of elevational range in increasing impermeability across most realms. 

Temperature also appears to play a crucial role although this is mitigated in the tropics by 

interactions with elevational range and accentuated in temperate realms by interactions with 

AET (table 4.2).  

The large confidence limits on the temperature variables for the Afrotropics (figure 4.2) stem 

from the absence of the polynomial term in one of the models in the top model set (table 4.2). 

The large absolute values for the temperature variables in Indomalaya and Australasia are a 

function of the low variation in temperature found in these realms: although ω varies as much 

as in other realms, the temperature range is much reduced. 

Correlograms of the residuals from the most highly-weighted OLS model in each realm 

confirmed significant positive spatial autocorrelation (SA) at the shortest distance class (100 

km) indicating that spatially-explicit models were a necessary addition (plots in Appendix 

4.2). Corresponding correlograms for the SAR models indicated that residual SA had been 

successfully removed to non-significant levels apart from in the Nearctic and Palearctic 

where SA was still significant at the shortest distance class (plots in Appendix 4.2). 

Furthermore, the top SAR model in each realm has consistently lower AICc scores and 

higher pseudo-R2 than the corresponding top OLS model with pseudo-R2 for the SAR models 

varying between 0.723 (Australia) and 0.918 (Neotropics) (table 4.1).  
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A greater number of models enter the top model sets for the SAR models in some realms 

(e.g., 22 models in Indomalaya and 25 in Australia) indicating greater model uncertainty 

(table 4.1). Nevertheless, measures of habitat heterogeneity are highly-ranked in most realms 

with elevational range generally remaining one of the highest-ranked variables and biome and 

landscape heterogeneity increasing in importance as compared with the OLS models. In the 

Nearctic and Palearctic, the energy interaction term remains highly-ranked and there is an 

additional signal of a negative relationship between mean elevation and ω in Australia and 

the Afrotropics (table 4.2). In general, the signs of the relationships between each predictor 

and ω remain the same, although in some realms the intercept estimated for certain biomes 

changed considerably (figure 4.3).  

Mammalian versus amphibian impermeability 

Spatial patterns of amphibian impermeability are similar to those found for mammals (figure 

4.4). Using all cells, the Pearson correlation coefficients range between 0.615 (Palearctic) and 

0.898 (Indomalaya). Omitting coastal cells, where all species in both taxa must end, the 

correlation coefficients all decrease and now range between 0.205 (Australasia) and 0.831 

(Neotropics). See table 4.3 for full results.  

 

Discussion 

Results summary 

Across all realms, there is strong spatial patterning in mammalian impermeability (ω). As 

with Afrotropical birds, the most consistent predictors of ω are measures of habitat 

heterogeneity, highly ranked in both OLS and SAR models and across all realms.  For 

instance, topographically complex areas along the Pacific coast of the Americas, the 
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Himalayas in Asia and the African rift mountains all show high ω, patterns also apparent for 

amphibians. Nevertheless, there are also differences among realms and between the two taxa. 

In temperate northern latitudes, there are strong positive correlations between high ω and 

both elevational range and resource availability (captured in the interaction term of 

temperature with AET).  Much of the temperate realms was under ice as recently as 13,000 

years ago (Webb & Bartlein, 1992) and dispersal limitation may mean that species in these 

regions have yet to reach their equilibrial range limits (Fang & Lechowicz, 2006). If species 

also vary in their dispersal ability (e.g., Bowman et al., 2002), range limits could then be 

notably more idiosyncratic in these realms; alternatively they could collect in areas between 

refugia (e.g., Hewitt, 1996, 1999). Such idiosyncrasy would predict poorer models in these 

regions whereas, in fact, the models for the Nearctic and Palearctic are highly explanatory 

with range edges collecting in topographically complex regions (see also Qian et al., 2009). 

My results generalise those of Swenson & Howard (2005) and Hewitt (1996, 1999) who 

found that hotspots of mammal contact zones in North America and Europe were often found 

in mountain ranges. Mountains can act as strong barriers to dispersal and, as species emerged 

from glacial refugia on either side of mountain chains, contact zones came to cluster within 

the chains (facilitated by low mountain passes functioning as dispersal corridors: Hewitt, 

1996, 1999).  The additional strong association of ω with resource availability suggests that 

fine-scale niche partitioning in resource-rich areas in the south of these realms has led to a 

proliferation of small-range species (Rahbek & Graves, 2001; Wright, 1983). In sum, ω in 

temperate realms is highest where the landscape structure is complex, preventing free range 

expansion and facilitating in situ diversification. 

In the Afro- and Neotropics, ω is not high where both elevational range and temperature are 

high. This is perhaps surprising given that tropical montane areas are home to many 
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restricted-range endemics (Janzen 1967; Ruggiero & Kitzberger, 2004). However, this signal 

of fine-scale niche partitioning in tropical mountains is still apparent in the positive 

correlation and high ranking of elevational range as a main effect with the sign of the 

interaction term a function of each realm’s hot and dry desert areas harbouring relatively few 

species that each occur throughout the region, discernible also from the relatively low 

intercepts specified for the desert & xeric shrubland biome in these realms (figures 4.2-3).  

My exploration of amphibian ωA remains preliminary in the absence of modelling its 

environmental correlates. However, I identified substantial congruence in ω and ωA, 

indicating similar factors lead to the clustering of range limits across the two taxa, although 

the strength of this congruence varies among realms (table 4.3). With their stringent water 

requirements, a major difference for amphibians is the hard landscape barrier represented by 

the boundaries of desert biomes in north Africa and central Asia. High ωA in eastern North 

America stems from the unparalleled diversification of small-range amphibian species in this 

region (Kozak & Wiens, 2006; Rissler & Smith, 2010, see also Buckley & Jetz, 2007). 

Conversely, the high ωA bands visible in the northeastern Palearctic stem from there being 

very few amphibian species in this region.  

Beta-diversity 

As expected, my results bear resemblance to recent studies of broad-scale correlates of beta-

diversity. For instance, McKnight et al. (2007) and Melo et al. (2009) found a strong 

signature of high beta-diversity along altitudinal gradients for New World mammals. Both 

attributed this to species being adapted to unique niches found there, in combination with 

histories of vicariant speciation. I would add that both ω and beta-diversity are high in such 

areas, as the ranges of many large range species occupying, for instance, the Amazon basin 

end along the slopes of the Andes. Given the variety of ways in which these studies 
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calculated beta-diversity and the broad congruence between all of their conclusions and mine, 

it would be of interest to calculate the relationship between beta-diversity measures and ω. 

Studies have recently focused on partitioning the nestedness and turnover components of 

beta-diversity (e.g., Baselga, 2010; Svenning et al., 2011). While ω seems closer to the 

turnover component, how it relates to either component will likely depend on an area’s 

species richness in combination with its underlying environmental gradients.  

Impermeability and climate change 

Understanding the factors limiting species’ ranges has taken on new importance recently as 

the scale of the threat from climate change becomes apparent (Gaston, 2009; Sexton et al., 

2009). We can expect to see substantial range movement as species attempt to track their 

climatic niche (Parmesan & Yohe, 2003) and this range movement will first become apparent 

at the range edge (Ackerly, 2003). The range limits of numerous species have already been 

observed to be moving in the expected direction (e.g., Hill et al., 1999; Parmesan et al., 1999) 

and this response has been used as evidence that climatic factors are important in determining 

range limits at the broad scale (Gaston, 2003; Soberón, 2007).  My analyses also demonstrate 

that climatic/energy variables are important factors in determining where the range 

boundaries of multiple species coincide. I additionally find a strong signal of the most 

impermeable areas being concentrated in heterogeneous areas such as mountain ranges, in 

complex habitats and at biome transitions. These results suggest that climate change 

responses will be visible first in these areas and that high ω areas constitute good 

conservation targets: a lot is expected to happen in relatively small areas (see also McKnight 

et al. 2007). While the low velocity of climate change expected in mountainous biomes 

(Loarie et al., 2009) may mean species need to move less far to track their climatic niche, any 
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lag in the vegetation response at non-mountainous biome transitions may make the consumer 

species found there particularly vulnerable (e.g., Kissling et al., 2010; Loarie et al., 2009).  

Although efforts to generate robust predictions of species’ range responses typically focus on 

individual species, an alternative approach has been to use the parameters estimated from 

regression models explaining macroecological patterns such as species richness to make 

ensemble predictions of the likely redistribution of biodiversity under global change (e.g., 

Algar et al., 2009; Sommer et al., 2010). Exact forecasts of the future ranges of species are 

implausible – range movements will of course be influenced by unmeasured factors, 

stochastic events, altered biotic interactions and in situ adaptation. Nevertheless, if present 

day macroecological patterns are driven by true functional relationships between species and 

their environment, ensemble forecasts are likely to be informative on the future distribution 

of biodiversity.  Mapping the likely redistribution of range limits would provide a 

complementary perspective on shifting biodiversity to studies focused on richness changes 

and would constitute a good extension to the analyses presented here.  

Spatial modelling 

Following evidence of spatial autocorrelation in the residuals of my OLS models, I used SAR 

models to account for the spatial structure in my data and obtain unbiased parameter 

estimates. Both GLS and SAR models were judged to have “generally good overall 

performance” in a recent assessment of the suite of methods now available to account for SA 

in ecological data (Beale et al., 2010). Both were found to perform well in terms of low 

absolute bias and high precision of coefficient estimates. It was also noted that GLS is highly 

computationally intensive and its performance rests on identifying the correct autocorrelation 

structure, a subjective and time-consuming endeavour especially when fitting large or a large 
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number of models (Beale et al., 2010). I therefore feel confident that my switch to SAR 

models has not threatened the legitimacy of my results.  

Caveats 

I used co-occurrence of a range boundary within a grid cell to capture coincident range limits. 

Of course, range limits are notoriously difficult to quantify (Gaston, 2003) with species able 

to persist in sink populations outside their realised niche (Holt, 2009). In using globally 

consistent sources of expert-drawn range maps (Schipper et al., 2008; Stuart et al., 2004) 

projected onto a 96.5 km2 grid, I have attempted to strike a balance between spurious 

accuracy and discrimination of local spatial gradients in impermeability. Analyses using a 

range of grain sizes suggest that a grid of this resolution is appropriate for macroecological 

analysis (Hurlbert & Jetz, 2007; see also McInnes et al., 2009). Nevertheless, my conclusions 

are shaped by the relatively coarse scale of my analysis (Belmaker & Jetz, 2011).  It is likely 

that, if range limits were explored within each grid cell, one would find examples of active 

habitat selection, competitive exclusion and microscale climatic gradients determining the 

fine-scale distribution of range limits (Sexton et al., 2009). In fact, it is heartening to find 

that, despite the idiosyncrasies that inevitably contribute to determining the range limits of 

most species, we are still able to uncover broad-scale spatial patterning in range limits.  

Future directions 

My initial comparison of mammals and amphibians revealed strong congruence in landscape 

impermeability for the two groups. Once a suitable transformation is identified, it will be of 

interest to quantify the similarities and differences between the two groups using equivalent 

modelling techniques. Buckley & Jetz (2008) found turnover in the most narrowly-distributed 

birds to closely match amphibian turnover. Similarly, it would be of interest to separate 

mammals into quartiles by range-size and model ω in each quartile (see also McInnes et al., 
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2009). Finally, modelling mammalian subclades may reveal idiosyncrasies particular to 

certain groups that have been masked by modelling all mammals together (e.g., Buckley et 

al., 2010). 
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Tables 

Table 4.1.  Summary of results of OLS and SAR model selection. 

  Afrotropics Australasia Indomalaya Nearctic   Neotropics Palearctic   

 

OLS SAR OLS SAR OLS SAR OLS SAR OLS SAR OLS SAR 

No. of grid cells 2018 2018 710 710 578 578 1558 1558 1714 1714 4828 4828 
No. of parameters in full model 13 14 14 15 12 13 15 16 15 16 18 19 
No. of models in top model set 3 4 4 25 1 22 2 6 1 7 2 2 

Top model statistics              
AICc 3668.6 1560.4 1454.2 1073.0 1222.7 688.0 3002.6 1713.7 3563 2000.5 10817.3 6642.5 

No. of parameters  13 11 12 9 12 8 15 15 15 16 18 19 
Pseudo R2  0.303 0.839 0.392 0.723 0.421 0.846 0.503 0.844 0.697 0.918 0.448 0.839 
Moran's I  0.654 0.026 0.449 0.025 0.602 0.099 1.816 0.264 0.597 0.038 1.151 0.126 

Akaike weight  0.589 0.364 0.374 0.105 0.983 0.132 0.702 0.360 0.988 0.396 0.667 0.633 
Autoregressive error -- 0.908 -- 0.785 -- 0.892 -- 0.779 -- 0.905 -- 0.834 
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Table 4.2. Results of OLS and SAR model averaging. Model averaged t values (for OLS models) and Z values (for SAR models) are shown. The most significant variable in 
each model is highlighted in bold. Note that the t and Z values for each biome (apart from the first) refer to the magnitude of the difference between the focal biome and the 
first biome in each realm (see figures 4.2-3 for actual intercept estimates for each biome). Biome did not feature in any of the top SAR models for Australasia. For this realm, 
the Z value refers to the intercept estimated for the entire realm. Biomes: 1 (tropical & subtropical moist broadleaf forests); 2 (tropical & subtropical dry broadleaf forests); 4 
(temperate broadleaf & mixed forest); 5 (temperate coniferous forests); 6 (boreal forests/taiga); 7 (tropical and subtropical grasslands, savannas and shrublands); 8 (temperate 
grasslands, savannas and shrublands); 10 (montane grasslands and shrublands); 11 (tundra); 12 (Mediterranean forests, woodlands and scrub); 13 (deserts and xeric 
shrublands).  

  Afrotropics Australasia Indomalaya Nearctic   Neotropics Palearctic   

Terms t Z t Z t Z t Z t Z t Z 

Biomes   3.861         

1 2.083 2.390   -2.153 1.027   0.29 0.955 -2.172 0.814 

2     -5.025 -0.332   13.255 2.508   

4   7.697     -2.638 -0.963   -1.176 0.166 

5       -0.847 0.250   0.232 0.777 

6       -8.023 -2.392   -1.264 -0.110 

7 4.307 2.280 9.401       2.549 0.657   

8   6.211     3.217 0.812 3.402 1.831 4.059 0.997 

10 3.785 2.016       5.973 2.135 4.407 0.868 

11       -8.003 -2.175   3.388 0.022 

12   8.991         2.331 0.651 

13 1.837 1.489 7.802   1.215 -1.284 -2.720 -0.270 1.359 2.069 5.209 1.425 

Mean elevation -3.397 -4.125 -5.481 -2.843 -6.991 0.228 1.353 1.298 -8.487 -2.334 -9.575 -4.558 

Mean annual temperature -0.788 -0.376 -4.363 -1.083 8.81 -0.241 8.664 5.410 -2.852 -1.391 9.083 3.364 

Mean annual temperature2 1.516 -1.053 4.047 -0.338 -11.903 -0.690 2.643 -0.191 -10.487 -3.772 -6.147 -3.659 

Mean annual AET -4.694 -2.975 2.535 3.017 -6.855 0.266 -5.870 -2.620 2.661 0.449 -1.308 -1.300 

Elevational range 12.049 4.983 -2.435 0.428 7.894 5.533 9.236 7.126 15.395 8.777 19.206 12.224 

Biome heterogeneity 8.890 3.276 0.225 2.897 3.178 3.954 5.471 3.245 8.083 5.980 15.005 7.681 

Landscape heterogeneity 2.892 4.767 2.939 1.519 5.263 4.144 3.889 2.657 10.801 6.661 8.194 6.429 
Mean annual temperature: 
elevational range -8.112 -3.864 4.680 0.519 -6.535 -0.038 6.908 4.624 -12.125 -5.260 1.230 -1.116 

Mean annual temperature:AET 1.799 3.000 -0.590 0.368 6.906 -0.041 9.016 6.554 3.283 1.308 18.304 7.116 
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Table 4.3. Correlation between mammal and amphibian impermeability. Pearson’s 

correlation coefficient (Pearson’s r), number of cells compared (n), effective sample size 

after correcting for spatial autocorrelation (ess), t-value (t) and p-value (p) of each correlation 

are given.  

  Pearson's r n ess t p 

All cells 

Afrotropics 0.782 2271 33.5 9.38 0.000 
Australasia 0.694 834 18.4 5.08 0.000 
Indomalaya 0.898 763 21.3 12.39 0.000 

Nearctic 0.703 1890 56.9 9.56 0.000 
Neotropics 0.874 2098 12.2 7.87 0.000 
Palearctic 0.615 4362 76.0 8.52 0.000 

Global 0.714 12218 122.8 14.70 0.000 
Omitting coastal cells 

Afrotropics 0.517 2057 91.4 7.04 0.000 
Australasia 0.205 694 56.4 1.70 0.095 
Indomalaya 0.765 610 15.3 5.75 0.000 

Nearctic 0.374 1547 36.7 2.78 0.009 
Neotropics 0.831 1789 10.3 5.83 0.000 
Palearctic 0.402 3750 28.0 2.65 0.014 

Global 0.489 10447 72.4 5.75 0.000 



88 

Figures 

Figure 4.1. Mammalian impermeability. Grey cells are coastal cells omitted from the analysis because ω = 1. Blue cells are cells in 

minor biomes not included in the models. Green cells had ω = 0 and were omitted from the models so that a logit transformation could 

be used. Greenland and Antarctica were omitted from all analyses because of missing environmental data.  
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Figure 4.2. Coefficient estimates for the top OLS models. The error bars show the 95% confidence intervals across the averaged 
estimates. Because only one model entered the top model set for Indomalaya and the Neotropics the error bars in those panels show 
the 95% confidence intervals of the estimates from that model. Note the different scales on the x axes of each plot. The grey panel 
highlights the same range (-0.5 – 0.5) on each plot for comparison. The number next to each realm is the number of models that enter 
into the top model set. Biomes described in table 4.2. 
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Figure 4.3. Coefficient estimates for the top SAR models. Figure layout as described in figure 4.2. Biome did not feature in any of the 
top models for Australasia. For this realm, a single intercept was estimated across all biomes (“Biome_all” in the figure). 
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Figure 4.4. Amphibian impermeability. Dark grey cells contain no amphibians. Light grey cells are coastal cells (ωA all 1). Greenland 
and Antarctica omitted from all analyses.  
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Chapter 5. Can landscape impermeability be co-opted into a measure of species’ 
relative occupancy?  
 
Abstract 

Predicting species’ abilities to respond to climate change is a difficult, but pressingly 

important, endeavour. It requires knowledge of the intrinsic capacity of the species to 

respond, as well as the nature of the landscape both where the species is currently found and 

where it could move to. Measuring the proportion of resident species whose ranges end in an 

area quantifies landscape impermeability and indicates which regions currently act as barriers 

to the range expansion of many species. In this study, I investigate whether this spatial 

measure of landscape structure can be successfully co-opted into species-based measures of 

relative landscape occupancy. My motivation for doing so is that such measures integrate 

intrinsic species’ traits and extrinsic environmental conditions, which must be combined for 

robust prediction. I develop two measures of relative occupancy, but, using a phylogenetic 

generalised least squares approach, I identify few strong trait correlates from a suite of 

potential predictors including measures of species’ dispersal ability, generalism and climatic 

tolerances. Rather, I find that relative occupancy is more strongly related to where on the 

globe a species’ range is located, underlining that the most effective conservation under 

climate change may come from targeting vulnerable locations rather than specific species.   



93 

Introduction  

There is an increasing need to make robust predictions on how species will respond to current 

rapid global change. Range projection modelling can be a powerful tool in this endeavour, 

but has low power for species whose distributions do not meet its assumptions (reviewed in 

Guisan & Thuiller, 2005). Objective criteria to separate those species that can be adequately 

described by SDMs from those that cannot will increase efficiency in predicting responses to 

global change by facilitating improved targeting of limited resources (Thuiller et al., 2008). 

Quantifying the proportion of resident species that had their range limits within regions, I 

earlier developed a measure of landscape impermeability (ω: McInnes et al., 2009; chapters 3 

& 4), with high values corresponding to areas where range expansion appears impeded. 

Landscape impermeability is strongly correlated with landscape and topographic complexity, 

supporting the inclusion of topographic and habitat variables in SDMs (e.g., Luoto & 

Heikkinen, 2008). However, substantial residual variation in environmental models (McInnes 

et al., 2009; chapters 3 & 4) indicates that species differ considerably in their ability to 

overcome barriers and occupy the landscape, with some species having range limits in 

homogeneous areas easily traversed by other species.  

Here, I assess whether impermeability can be used to quantify species’ relative ability to 

occupy the landscape, as more able species are expected to be well equipped to change their 

distribution in the face of rapid climate change. I overlay the geographic distribution of 

individual species of terrestrial mammals onto a gridded global map of impermeability for all 

terrestrial mammals. For each species, I separate the overlapping set of grid cells into those 

that constitute the edge of the species’ range (exterior) and those that lie entirely within the 

distribution (interior). From these two sets of cells, I calculate the mean interior (ωi) and 
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exterior (ωe) impermeability for each species. Since ω is calculated across species, both these 

new measures assess the strength of the constraints on a given species’ distribution relative to 

other co-occurring species (see also Arita et al., 2008 for a similar approach involving 

relative range sizes). Since different processes are expected to occur at the core and margin of 

ranges (Gaston, 2003; Sexton et al., 2009), these two measures provide complementary 

approximations of relative occupying ability within and at the edge of a species’ range. 

Although these measures do not address intraspecific variation in occupancy across a species’ 

range (beyond the distinction of range exterior and range interior), they are intended to 

provide an interspecific ranking of relative ability. 

Typically, species might be expected to have lower ωi and higher ωe, perhaps occupying a 

homogeneous tract of habitat and limited, in common with other species, by a major habitat 

transition (see also table 5.1 & figure 5.1 for a graphical representation of these ideas). I am 

interested in species having unusually high ωi or low ωe, respectively considered good and 

poor “occupiers”, and focus on characterising species with these traits. Species with high ωi 

are able to occupy regions that act as barriers for most other co-occurring species. Intuitively, 

high ωi should correlate positively with traits associated with the ability to reach and persist 

in a range of habitats, such as indices of habitat generalism, broad climatic tolerances and 

high dispersal ability. Low ωe indicates a species whose range is more constrained than those 

of most co-occurring species. Such species are expected to possess traits such as low 

dispersal ability and strong specialisation to specific habitats. Species might also have low ωe 

if biotic interactions prevent expansion into suitable habitat, resulting in seemingly 

idiosyncratic range limits. Although both indices are informative on their own, it is also of 

interest to investigate how ωi and ωe are related to each other and to range size. For instance, 

a species with high ωi, but occupying only a handful of cells, may not be a particularly good 

occupier, residing in a high ω area through an accident of history. 
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I fit a suite of models to test these hypotheses using a database of mammalian traits 

(PanTHERIA, Jones et al., 2009). While neither measure of a species’ ω is directly heritable, 

similar emergent traits such as range size or extinction risk (e.g., Freckleton et al., 2002; Fritz 

et al., 2009) often show phylogenetic structure arising from shared ancestry. I therefore use a 

phylogenetic generalised least squares approach (Freckleton et al., 2002) in combination with 

a recent mammalian supertree (Fritz et al., 2009). I also assess the relative contributions of 

space and phylogeny (Freckleton & Jetz, 2009) to the measures, under the hypothesis that a 

species’ occupancy may be better explained by its spatial location, rather than by any 

intrinsic traits it might possess (see also Gove et al., 2009; Munguía et al., 2008).   

Although climate change is widely accepted to be one of the most pressing risks to species’ 

survival, the extinction risk associated with climate change is much less well quantified than 

the risks associated with other contemporary drivers such as habitat loss or over-exploitation 

(Dawson et al., 2011). Some of the main insights emerging from recent studies (e.g., Davies 

et al., 2008; Fritz et al., 2009) include pervasive geographic heterogeneity in the strength of 

extinction risk drivers and phylogenetic heterogeneity in the lineages most at risk. For 

example, extinction risk for small-bodied mammals is largely shaped by location whereas 

risks for large-bodied mammals depend also on their ecology (Cardillo et al., 2005). If I am 

to use relative occupancy as a proxy for vulnerability to climate change, I must also address 

geographical heterogeneity in landscape structure and phylogenetic heterogeneity in the 

responses of species.  To tackle these issues I investigate trait correlates at both the global 

and realm levels.  

I find that mammals exhibit a wide diversity of relative occupancies, but that no strong trait 

correlates emerge. Rather, relative occupancy is intricately linked to the environments species 

are found in, suggesting that while we may not be able to obtain robust predictions of climate 
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change responses of particular species, we can nevertheless target attention to specific areas 

in order to reap the most conservation benefits.  

 

Methods 

Dataset  

I used the same dataset of mammalian species’ ranges as detailed in chapters 2 & 4. Briefly, I 

extracted polygon shape files of the ranges of all mammals from the Global Mammal 

Assessment (GMA: www.iucnredlist.org/mammals; Schipper et al., 2008). I converted the 

polygons of each species into the Behrmann equal-area projection, preserving area but not 

necessarily the shape or distance between cells. I overlaid an equal-area grid (96.5 km2 

resolution) on the polygons and extracted grid cell occurrences for each species. Species were 

scored as present in a grid cell if any part of the breeding range fell within the cell. A grid cell 

was counted as containing a species’ range edge if any part of the perimeter of the species’ 

range, including the boundaries of sections of disjunct range, fell within the cell. As in 

chapters 2 & 4, I analyse only species whose distributions overlap continental cells. In 

addition, 178 species were omitted from the analyses as they are not found in the most 

current version of the mammal supertree (Fritz et al., 2009), leaving 3803 species in the 

dataset.  

Phylogenetic clustering in edges 

For each grid cell, I recorded which species present in the cell also had a range edge in the 

cell. I then used a supertree of mammals (Fritz et al., 2009) to obtain a phylogeny for the 

species present in the cell and computed D, a measure of the phylogenetic signal strength in 

binary traits (Fritz & Purvis, 2010b). The parameter D reveals the pattern of dispersion of a 
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trait on a tree with 0 and 1 as convenient calibration points. Here, D indicates whether species 

with range edges in the focal cell are phylogenetically clumped (D << 1), with D ~ 0 

corresponding to a binary trait underpinned by a trait evolving under Brownian motion and D 

~ 1 corresponding to a binary trait that is randomly distributed on the tree. Spatial variation in 

this measure reveals whether there is geographical heterogeneity in the phylogenetic 

selectivity of impermeable landscapes.  As a measure of spatial structure in D within each 

realm, I plotted Moran’s I correlograms and assessed the significance of Moran’s I at the 

shortest distance class (100 km). D is unreliable for small phylogenies (Fritz & Purvis, 

2010b) so I did not evaluate it for cells containing fewer than 50 species. I also exclude cells 

where all resident species, or all but one, have a range edge as D cannot be interpreted unless 

the less common trait is present in at least two species.  

Generating species scores 

For each species, I re-calculated impermeability (ω) for the cells occurring in its range, 

excluding the focal species (for details see McInnes et al., 2009; chapters 3 & 4). I separated 

the grid cells of each species into interior and exterior cells, where exterior cells contain any 

part of the perimeter of the species’ range, including the boundaries of sections of disjunct 

range. Coastal cells truncate all species’ ranges and always have a ω of one. These cells 

cannot inform tests of the ecological predictors of relative occupancy and were removed prior 

to generating species’ scores. To preserve the range of ω between 0 and 1 whilst also 

bringing its distribution closer to normal, I used a square-root transformation; all references 

to ω and its derivatives henceforth refer to the square-root transformation.  I then calculated 

mean ω separately for interior and exterior cells to give a measure of the central tendency of 

ωi and ωe.  
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Because a substantial proportion of the range edge for some species may be coastal, I tested 

whether there was a relationship between the mean ωe values obtained for each species and 

whether any of their range edge included coastline. Thirty-six species were excluded from 

analyses of ωe because their range margins fell entirely in coastal cells. 

Calculation of ωi requires that species’ ranges have interior cells. However, under the scale of 

grid used, the ranges of 1042 species (27.4%) have no interior cells. These are 

overwhelmingly small-range species and are not expected to possess traits hypothesised to be 

associated with high ωi (e.g., broad climatic tolerance, strong dispersal ability). I tested 

whether ωe differed between those species with and without interior cells and repeated the 

trait correlate analyses for ωe (see below) including only those species that also had interior 

cells. 

Covariate choices and modelling 

I tested the following set of variables hypothesised to predict ωi and/or ωe: 

i) The number of cells contributing to ωi and ωe to assess how ωi and ωe scale with the 

range size of species. One expects that the variance in each measure will decrease as 

range size increases, from a regression on the mean effect.  However, it is unclear 

what trend to expect in the mean value of each measure as range size increases. Large 

range species might be expected to be good occupiers based on their range extent, but 

large ranges are also expected to encompass both high and low ω areas. 

ii) The product of the number of dietary items eaten (range: 1-8) and the number of 

habitat types occupied (range: 1-4) as a coarse measure of generalism (Cooper et al., 

2011; Jones et al., 2009). 



99 

iii) The standard deviation of the mean annual temperature across the grid cells in a 

species’ interior or exterior range as a measure of climatic niche breadth (Hijmans et 

al., 2005).  

iv) A suite of variables taken from PanTHERIA (Jones et al., 2009) thought to capture 

aspects of dispersal, given that there are limited data directly quantifying mammalian 

dispersal (Lester et al., 2007). Successful dispersers need to be able to both colonise 

new areas and form viable populations upon arrival. Traits that could act as proxies 

thus include measures of colonisation and competitive abilities (see also Angert et al., 

in press).  

a. As a coarse measure of abundance and thus of competitive ability I include 

population density (individuals per km2) (Enfjäll & Leimar, 2009).  Across most 

groups examined, local population density and regional site occupancy are 

positively correlated: species that are locally common are regionally widespread 

(Blackburn et al., 2006). Here I use mean population density across a species’ 

range and look to see whether the abundance-occupancy relationship holds when 

occupancy is measured relative to other co-occurring species.  

b. Life-history speed also impacts colonisation and competitive abilities (Freckleton 

et al., 2005) and so I include gestation length (days) and weaning age (days) to 

represent two axes of the ‘fast-slow’ life history continuum: fecundity and timing 

of reproduction, respectively (Bielby et al., 2007).  

c. I also investigate whether there is a consistent relationship between the measures 

and body mass (grams): movement is energetically cheaper per unit mass as mass 

increases so it might be expected that larger-bodied species that typically 

experience their landscape at a broader scale are also better at occupying their 

landscape. Body mass is also often used as a proxy for various species’ traits 
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including dispersal ability, life history speed, competitive ability and ecological 

generalisation (Gaston, 2003). Following Fritz & Purvis (2010a), for species 

lacking body mass data, I interpolated values as the value of their closest relative 

(or the mean of all equally close relatives). This action is justified because body 

mass is strongly phylogenetically patterned in mammals (values of λ =1 reported 

in Freckleton et al., 2002). Following interpolation, data was available for a far 

larger number of species than for most of the other variables under test; body mass 

is thus expected to be a useful proxy in my hypothesis testing. 

v) Two further variables are each specific to a single measure. For ωi, I recorded the 

number of subspecies in each species (Wilson & Reeder, 2005):  high ωi may mask 

internal subspecies range margins that do coincide with the margins of co-occurring 

species. For ωe, I included the number of congeners (Wilson & Reeder, 2005), since 

low ωe may be associated with biotic constraints such as competition.  

vi) Finally, I modelled ωe as a function of ωi to explore how the two measures are related. 

Whilst multiple predictor analyses would be preferable (Houle, 2007), missing data for many 

of the variables (n = 703 - 2761) resulted in few species with data available for all traits. I 

therefore built single predictor models using phylogenetic generalised least squares 

(Freckleton et al., 2002) to test support for each variable, but include the full multivariate 

models (ωe: n = 301, ωi: n = 303) for comparison. All variables were log10-transformed, 

except climatic niche breadth which was square-root transformed so that their distributions 

better approximated normality. They were then scaled and centred (Schielzeth, 2010). I 

generated correlation matrices of the variables entering the two multiple predictor models 

(table 5.2) and calculated variance inflation factors (VIFs) which were all below 3. Although 

the VIFs indicated that multicollinearity was not a problem, the correlation matrices indicated 

that weaning age, gestation length and population density were substantially collinear with 
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body mass. Therefore, I fitted additional models for these variables with body mass as a 

covariate: these models assess the importance of the variables while controlling for body 

mass effects. Finally, I repeated the analyses of ωe including ωi as an additional predictor 

variable to address the hypothesis that relative occupancy in the range core may dictate the 

nature of a species’ range margin. I repeated all analyses at a global scale and within 

biogeographic realms. Within realms, I calculated ωi and ωe using only that portion of a 

species’ range that occurred in the focal realm.  

The phylogenetic signal in variables associated with species niches has recently come under 

scrutiny (Cooper et al., 2011; Dormann et al., 2010), particularly since biogeographic 

patterns in species’ ranges may confound phylogenetic and spatial structure.  Indeed, a recent 

study has identified a strong spatial signal in the climatic niche similarity of related 

mammalian species (Cooper et al., 2011). I therefore used Freckleton & Jetz’s (2009) method 

to estimate the relative contributions of space and phylogeny to ωe or ωi. This method 

quantifies the proportion of variance attributable to space (φ) and phylogeny accounting for 

space (λ') and the residual variation unexplained by either (γ).  λ' equates to (1 – φ) λ and 

would be equivalent to λ in the absence of effects that are attributed to space.  

Finally, for each measure, I ranked species. For ωi, I generated species richness maps of the 

highest scoring 25% of species to investigate the spatial distribution of species with high 

relative landscape occupancy. For ωe, I mapped the lowest scoring 25% of species to 

investigate the spatial distribution of poor occupiers.  
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Results  

Figure 5.2 shows the global distribution of the phylogenetic signal (D) in the species whose 

ranges end in each cell.  The D values in the majority of cells (n = 4708) are not statistically 

distinguishable from a random distribution on the phylogeny. A smaller number of cells (n = 

587) show non-random phylogenetic patterning consistent with a Brownian threshold model 

and the remaining cells (n = 1356) have intermediate D values that do not reject either model. 

An ANOVA comparing cells in each of these three groups indicated that all groups had 

significantly different ω to each other (F2,6648 = 31.9, p < 0.0001). In particular, the cells 

where the Brownian model could not be rejected had significantly lower ω (mean = 0.510) 

than cells with intermediate D values (mean = 0.561) although caution must be used in 

interpreting these results due to spatial autocorrelation in D estimates: Moran’s I coefficients 

were significantly different to 0 at the shortest distance class across all realms. Note that there 

are many cells where D cannot be calculated, either because they contain too few species for 

the measure to be reliable (n = 5038) or because all species in the cell have range edges there 

(i.e., coastal cells; n = 2025). 

Both ωi and ωe show a strong decrease in variance with increasing range size (figure 5.3), as 

estimates for the largest ranged species inevitably converge on the global mean value. 

Observed ωe is significantly higher (t = 20.6, df = 1690.2, p < 0.0001) for species with no 

interior cells (mean ωe = 0.675) than for the remaining species (mean ωe = 0.595), although 

the decrease in variance of ωe (F test comparing the variance in ωe for species with interior 

cells versus those without: F 1041, 2724 = 1.295, p < 0.0001) with increasing range size affects 

statistical testing. In addition, ωe is significantly lower (t = 6.16, df = 1619.1, p = < 0.0001) 

and range size significantly larger (t = -20.47, df = 1902.1, p = < 0.0001) for species whose 
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ranges include omitted coastline cells (n = 2705, mean ωe = 0.610) than for the remaining 

species (n = 1062, mean ωe = 0.636). 

Figures 5.4 and 5.5 show the results of models of ωi and ωe (see Appendix 5.1.for these 

results in tabulated form). For ωe, relationships were similar whether or not only species with 

interior cells were included in the models.  Significant relationships were qualitatively 

identical in the global and multiple predictor models; in the realm-specific models 

significance of life history variables sometimes varied. I report here only the models 

including species with both interior and exterior cells (but see table A5.1.3 in Appendix 5.1 

for the results including all species). In general, niche breadth is positively associated with ωi 

and ωe both globally and within realms. However all of these models had low explanatory 

power. A negative correlation with range size was also recovered in most tests. Although the 

adjusted R2 was higher for this variable, these results should be interpreted with caution given 

the decrease in variance in both measures as range size increases. Life history variables did 

not show consistent relationships among realms.  

There is a significant positive correlation between ωi and ωe (figures 5.5 (top-left panel) & 

5.6, table A5.1.2).  This is mostly a reflection of the right skew of species’ distributions: most 

species have small ranges and reside wholly within low or high ω areas, such that modelling 

ωe as a function of ωi approximates fitting a spatial term. Note that the outlying species in the 

bottom right and top left of the plot are species with fragmented ranges and relatively few 

interior cells. Fitting ωi as a co-variate in the trait models for ωe substantially increased the 

models’ explanatory powers (figure 5.7, table A5.1.4). Nevertheless, niche breadth remained 

significantly positively correlated with ωe globally and in four realms. Range size lost 

significance in most realms and switched sign to a significantly positive correlation globally 
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and in the Neotropics and Indomalaya. Again, life history variables did not show consistent 

relationships among realms.  

A positive association with niche breadth and a negative association with geographic range 

were found for both ωi and ωe in the multiple predictor models (table 5.3) although 

geographic range became marginally non-significant in the model for ωe including ωi as a 

covariate, where the most important variable was ωi.  

Partitioning species into those with subspecies and those without revealed no significant 

differences in ωi (average score: 0.543 and 0.544 respectively; t = -0.1499, df = 2349.6, p = 

0.8808). Similarly, partitioning species into members of monotypic or polytypic genera also 

revealed no significant differences in ωe (average score: 0.618 and 0.617 respectively; t = 

0.0817, df = 2563.4, p = 0.935). 

Table 5.4 shows the partitioning of spatial and phylogenetic effects on relative landscape 

occupancy measures. ωe showed a slight tendency to have a stronger pure phylogenetic signal 

(λ) than ωi, but in all realms the phylogenetic signal accounting for spatial structure (λ') is 

largely subsumed into variation explained by space (φ). For both measures, the spatial effect 

was strongest in Indomalaya, the Nearctic and the Neotropics. For ωi, neither space nor 

phylogeny explained any variation in the Palearctic. 

The lowest ranking species for ωe are concentrated away from high ω areas, in the centres of 

large biomes such as the tropical and subtropical moist broadleaf forests in central Africa and 

Brazil (figure 5.8a). As expected, the highest scoring species for ωi are concentrated in 

montane areas and at biome edges, where ω is highest (figure 5.8b).  
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Discussion 

Many factors must influence the ability of a species to occupy a landscape. These include 

intrinsic traits, the local community, external factors such as the nature and stability of the 

environment, and the biogeographic history of the species and region (Gaston, 2003). 

Previous work has identified significant correlates of species richness (e.g., Ruggiero & 

Kitzberger, 2004), of high densities of range margins (e.g., McInnes et al., 2009; chapters 3 

& 4) and of range size (e.g., Davies et al., 2009). Taken together, this research captures the 

influence of environmental variables that most commonly correlate with species’ range 

extents. Here, I am interested in assessing the use of simple measures to identify those 

species that are most likely to be misrepresented by such approaches, either by overcoming, 

or failing to reach, the constraints that act on other species.  

Species’ relative occupancies are influenced by both phylogeny and space. Whether a species 

had a range edge in a cell did not consistently show phylogenetic structure according to D. 

Indeed, in high ω areas, landscape features are expected to impede species irrespective of 

their phylogenetic position. Phylogenetic structure was mostly found in low ω areas such as 

the Amazon basin. This is perhaps a signal of the abutting edges of congeners or phylogenetic 

selectivity in the impact of river barriers on the area’s biota (figure 5.2; and see Ayres & 

Clutton-Brock, 1992). In contrast, when assessing the phylogenetic and spatial signal in the 

measures of relative occupancy, both ωi and ωe showed relatively strong phylogenetic signal 

globally, but the spatial effect was much more important at the realm level (table 5.4). This 

result does not indicate that related species do not occupy the landscape similarly: rather, it 

suggests that within realms, related species co-occur and exhibit similar abilities to occupy 

the landscape (although the direction of causality cannot be confirmed with this analysis). 

That the phylogenetic component was far greater than the spatial component globally 



106 

underlines this: related species in different realms are occupying spatially-distinct but 

similarly structured landscapes. Cooper et al.’s (2011) analysis of thermal niche conservatism 

also found that phylogenetic signal in the thermal niche transferred to a spatial effect when 

the spatial relationships among related mammalian species were included.  

Correlates of relative occupancy 

The strong spatial variation and environmental correlates identified for ω suggests that many 

species occupy homogeneous tracts of habitat with range boundaries in impermeable areas at 

the edges of biomes and in montane regions (McInnes et al., 2009, chapters 3 & 4). They are 

expected to have low ωi and high ωe. For example, the forest giant pouched rat, Cricetomys 

emini (ωi = 0.502; ωe = 0.601), inhabits the tropical forest biome in central Africa with its 

range edges along the biome boundary. There is, in fact, a strong positive association 

between ωi and ωe, globally and in all realms, driven by small-range species that have 

restricted ranges exclusively within high or low ω areas (figure 5.6).  While table 5.1 outlines 

hypotheses on the traits that might be associated with high and low ωe and ωi, few species 

possess certain combinations (figure 5.6). In particular, there are few species with high ωi and 

low ωe, which would require a species to exclusively occupy high ω areas, except at its range 

margin. More surprisingly, few species have low ωi and high ωe because the species with 

highest ωe are small-range species found exclusively within high ω areas (= high ωi). There 

is, however, a final striking feature of figure 5.6: a group of species with much higher ωe than 

the overall relationship predicts, matching the expectation of low ωi and high ωe more 

convincingly. Such species are all Neotropical with one range edge in the Andes and include 

the capybara, Hydrochaerus hydrochaeris, the tayra, Eira barbara and the Argentinean 

brown bat, Eptesicus furinalis. 
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Weak support for broad climatic tolerance (niche breadth) and high abundance (population 

density) as predictors of high ωi was found in four and two realms, respectively, suggesting 

that strong occupancy is influenced by the physiological capacity to occupy a variety of 

habitats (see also Swihart et al., 2006) and sometimes from the ability to compete 

successfully with co-occurring species (if high abundance is considered a valid proxy for 

competitive ability). Better occupiers also tend to reproduce rapidly: fast life histories will 

facilitate wide landscape occupancy if they enable a species to colonise additional habitats 

and outcompete other species there. The lack of a consistent relationship across all realms 

may reflect that species with low occupancy may also have fast life-histories. Fagan et al. 

(2009), using a spatially explicit theoretical framework, have shown that species with 

identical life histories could have very different landscape occupancies dependent on 

landscape structure. 

For ωe, few consistently significant trait correlates were identified. This may be due to there 

being multiple potential determinants of ωe, although there was consistent, albeit weak, 

support for a positive association with niche breadth. Many of the low ωe species are 

members of speciose genera, each species occupying restricted ranges within homogeneous 

areas: the red-handed howler monkey (Alouatta belzebul), the red-bellied titi (Callicebus 

moloch) and the white-lipped tamarin (Saguinus labiatus) all have some of the lowest ωe 

scores and occupy restricted sections of the Amazon basin with congeners nearby. 

Nevertheless, overall, there was not a significant relationship between number of congeners 

and ωe. That species whose ranges reach the coast have significantly lower ωe and larger 

range sizes than those that do not also merits attention. It indicates that, barring the absolute 

barrier of the coastline, such species’ are able to span large areas, reaching idiosyncratic 

limits at least in parts of the rest of their range margin.  
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Relative occupancy and climate change responses 

Schurr et al. (2007) found that colonisation and persistence ability was positively correlated 

with range filling, using ratios of realised to potential range size for 37 species of Proteaceae 

in the Fynbos. They concluded that species most vulnerable to increasing rates of 

environmental change will be those that currently compensate for low colonisation ability 

with high persistence. Similarly, many species with high ωi are expected to be safe in the face 

of climate change. Found throughout the Andes or the Central Asian mountains, respectively, 

the Culpeo or Andean wolf (Lycalopex culpaeus) and the silver mountain vole (Alticola 

argentatus) both have high ωi and are good examples of wide-ranging species occupying a 

landscape impermeable to many co-occurring species. Heterogeneous areas are often 

highlighted as meriting conservation attention due to their rich biota of restricted-range 

endemics (e.g., Kark et al., 2007), I show here that there exist species capable of spanning 

such areas. My result, that broad niches are sometimes associated with high relative 

occupancy, is also consistent with predictions from the contemporary climate change 

literature (e.g., Engler et al., in press; La Sorte & Jetz, 2010) and from prehistoric climate 

change (Blois et al., 2010) that suggest that altered habitats will probably be dominated by 

weedy species. Species with very restricted ranges, but high ωi, are expected to manage less 

well and we can expect to lose, for example, some high-elevation specialists (Engler et al., in 

press; Şekercioğlu et al., 2008). Some species may still be able to cope, however, as the 

velocity of climate change in montane areas is expected to be low (Loarie et al., 2009). 

The fate of low ωe species appears more precipitous. They predominately occur within 

homogeneous habitats and are not currently limited by landscape features. On the face of 

things, range tracking might be easier for them if there are no major landscape barriers 

between their old and new ranges. Cooper et al. (2011) suggested that the strong spatial 
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component to conservatism of the mammalian thermal niche indicates that recent evolution 

and available niche space underline current mammalian distributions. They proposed that this 

demonstrates a lack of deep conservatism that will facilitate species’ tracking of current 

change until they hit impermeable barriers. However, for low ωe species, if their idiosyncratic 

limits stem from traits such as poor dispersal capacity or habitat specialism, range tracking 

even across homogeneous areas may not be easy. Tropical lowland species may be at 

particular risk if the climate warms beyond their physiological limits (Colwell et al., 2008). If 

these low ωe species are biotically-limited through competitive interactions, their responses 

will depend critically on the rest of the biota (Davis & Shaw, 2001). I observed a weak, but 

fairly consistent association between small body size (often used as a proxy for fast life 

history, e.g., Roy et al., 2002; Lyons et al., 2010) and low ωe.  Fast life histories could favour 

in situ adaptive responses and alleviate the need to track a changing climate (Reed et al., 

2010). Investigating Pleistocene range shifts in Nearctic mammals, Lyons et al. (2010) found 

that the species whose range centroids shifted the most were those with slow life histories; 

species with faster life histories presumably adapted in situ. Whatever the factors underlying 

species’ low ωe, simple range projection modelling is unlikely to provide reliable predictions 

on their expected response to climate change. Furthermore, the expected high velocities of 

climate change in homogeneous areas (Loarie et al., 2009) will compound their difficulties.  

Caveats – the data 

As with all macroecological studies, these results must be interpreted with a consideration of 

scale. Using a grid size of 96.5 km2 (~ 1º at the equator) is generally accepted to strike the 

best balance between the expected accuracy of the available range data and the finer scale at 

which species’ ranges actually end (Hurlbert & Jetz, 2007). It is well-documented that in 

mountainous areas, 1º cells span steep elevational gradients with substantial microclimatic 
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variation (Hawkins & Diniz-Filho, 2006). Species with range edges assigned to cells in such 

areas are thus not all expected to come into contact with one another. However, for ωi, I am 

most interested in species able to span high ω areas such as mountains. Even species whose 

ranges are incorrectly assigned to grid cells at the edge of high ω areas (for example in the 

foothills of a mountain that they span) will still be correctly identified as a high ωi species if 

they occur widely along the elevational gradient. Similarly, scaling issues do not affect ωe. 

An additional explanation for relatively low ωe would be if a species’ range spanned high ω 

areas with its range edge (either actually, through errors in range map construction, or 

through scaling issues) in abutting low ω areas. This is unlikely to have systematically biased 

the results: the map of low ωe species shows highest richness in homogeneous areas (figure 

5.8a) and there are few species with high ωi and low ωe (figure 5.6). Finally, our ability to 

identify trait correlates may have been hampered by data availability: niche breadth, body 

mass and range size were the only variables available for all species.  

Caveats - the approach 

There are a number of outstanding difficulties with this approach that must be acknowledged. 

First, as with models derived from realised niches (e.g., Cooper et al., 2011), species that 

happen to occur within areas of low ω may have higher ability to cross boundaries than their 

correspondingly low ωi would suggest. Similarly, in this first analysis of relative occupancy, 

intraspecific responses (beyond our division into range exterior and range interior) have not 

been considered, although there may substantial variability in the occupancy profile of 

populations within the range (Brown et al., 1995; Pearman et al., 2010). Second, like realised 

to potential (R/P) range size ratios arising from species distribution modelling (Svenning & 

Skov, 2004), my measures make the assumption that current ranges are at equilibrium. ωe 

may still be a useful measure of likely responses to rapid environmental change: I am 
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interested in species’ current relative landscape occupancy and not their occupancy when 

given unlimited time to fill their range. Lastly, the inevitable decrease in variation in both ωe 

and ωi with increasing species’ range size makes it difficult to interpret results for the largest 

ranged species. A simulation approach may be needed to establish expectations for such 

species. 

My aim was to use an assemblage-based measure of landscape impermeability to create 

species-specific relative measures of landscape occupancy and then to identify traits 

associated with species with strong, or weak, relative abilities to occupy the landscape. Few 

significant trait correlates were identified and the measures are strongly influenced by the 

spatial location of species (underlined by the significant positive relationship between the two 

measures, figure 5.6). My results underscore that species’ distributions are determined by a 

complex interplay of intrinsic traits, extrinsic conditions and biotic interactions which 

combine to make predicting species’ responses to climate change difficult (Lavergne et al., 

2011; Thuiller et al., 2008). They also suggest that predicting responses may be most difficult 

in permeable (low ω) habitat where it is least clear what factors are limiting species. Labour-

intensive mechanistic models have had the greatest success so far in predicting species’ 

responses (e.g., Kearney & Porter, 2009). My results suggest that species inhabiting low ω 

areas may benefit most from such models.  
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Tables 

Table 5.1. Possible interpretations of ωi and ωe 

Measure Score Definition Interpretation 

ωi High 
Range interior contains the range 
edges of co-occurring species 

Species possesses traits that conveys high relative 
occupancy, for example broad climatic tolerances, 
strong dispersal ability, habitat generalism 

  Low 
Few ranges end within focal 
species' interior 

Species occupies homogeneous, permeable landscape 

ωe High 
Range ends alongside other 
species 

Species ends in heterogeneous habitat: biome 
boundary, mountain range, climatic threshold 

  Low Range ends idiosyncratically Species is biotically or dispersal limited  
 

 

Table 5.2. Correlations among traits calculated using only those species with data available 

for all variables. Values above the diagonal refer to the 303 species with data available for ωi; 

below the diagonal the 301 species with data available for ωe. Range size refers to the 

number of cells making up the interior and exterior measures respectively. All values log10-

transformed except niche breadth which was square-root transformed. Weaning age (days), 

gestation length (days), population density (average number of individuals per km2), 

generalism (product of number of dietary items eaten and number of habitat types occupied), 

body mass (grams), niche breadth (standard deviation of mean annual temperature recorded 

for each cell in the range exterior or interior), range size (number of cells in range exterior or 

interior). 

 

  
Weaning 

age 
Gestation 

length 
Population 

density 
Generalism 

Body 
mass 

Niche 
breadth 

Range 
size 

Weaning age 
 

0.607 -0.443 -0.180 0.681 -0.293 -0.152 
Gestation length 0.605 -0.513 -0.221 0.775 -0.294 -0.015 

Population density -0.442 -0.513 
 

0.334 -0.721 -0.116 -0.263 
Generalism -0.180 -0.221 0.332 -0.313 0.005 0.011 
Body mass 0.682 0.777 -0.720 -0.311 

 
-0.088 0.047 

Niche breadth -0.278 -0.266 -0.101 0.057 -0.099 0.579 
Range size -0.012 0.145 -0.411 -0.090 0.251 0.506 

  



113 

Table 5.3. Results of multi predictor models using phylogenetic GLS 

 ωi    ωe    ωe with ωi as covariate  
Variable Slope Error T  Slope Error T  Slope Error T   
Body mass -0.100 0.122 -0.821  -0.019 0.147 -0.126  -0.012 0.103 -0.112  

Gestation length 0.113 0.129 0.876  0.140 0.150 0.934  0.148 0.097 1.526  

Population density 0.132 0.084 1.576  0.075 0.102 0.727  -0.036 0.074 -0.495  

Weaning age 0.110 0.094 1.171  0.227 0.112 2.032 * 0.094 0.076 1.243  

Niche breadth 0.544 0.059 9.248 *** 0.335 0.068 4.918 *** 0.151 0.053 2.842 ** 

Generalism -0.017 0.048 -0.349  -0.015 0.059 -0.255  0.048 0.044 1.077  

Range size -0.540 0.056 -9.626 *** -0.295 0.067 -4.367 *** -0.102 0.053 -1.903 (*) 

ωi         0.698 0.046 15.106 *** 

             

Adjusted R2 0.287    0.111    0.489    
λ 0.556    0.448    0.192    
n 303    301    301    

 

Variables as described in table 5.2. Significance levels for T: (*) p = 0.058, * p < 0.05, ** p < 0.01, *** p <0.001. λ was significantly different 

from 0 and 1(χ2 tests, p < 0.001) apart from the model for ωe with ωi as a covariate where λ was not significantly different from 0 (p = 0.301).

  113 
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Table 5.4. Phylogenetic and spatial signal in the measures of relative occupancy. To the left 

of the grey bar is the maximum likelihood (ML) estimate of λ without considering space. To 

the right of the grey bar are the ML estimates of φ, λ' and γ which sum to 1.  

Realm n λ ML   φ λ' γ ML 

Interior   

Global 2761 0.591 2389.4   0.047 0.534 0.419 2390.3 

Afrotropics 767 0.202 947.5   0.373 0.007 0.621 954.4 

Australasia 160 0.095 164.8   0.517 0.005 0.479 169.5 

Indomalaya 431 0.052 395.4   0.884 0.004 0.112 426.5 

Nearctic 329 0.471 298.1   0.917 0.001 0.082 316.4 

Neotropics 832 0.647 459.4   0.885 0.001 0.114 532.2 

Paleoarctic 663 0.000 640.7   0.056 0.009 0.934 640.9 

Exterior   

Global 2725 0.633 2725.0   0.061 0.577 0.361 2726.4 

Afrotropics 766 0.041 1298.0   0.250 0.020 0.731 1301.3 

Australasia 159 0.316 214.9   0.546 0.005 0.449 220.8 

Indomalaya 396 0.010 408.6   0.694 0.003 0.303 423.3 

Nearctic 329 0.468 335.7   0.916 0.025 0.060 356.3 

Neotropics 830 0.703 577.2   0.904 0.047 0.049 639.1 

Paleoarctic 662 0.139 707.0   0.330 0.007 0.664 717.1 
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Figures 

Figure 5.1. The different combinations of ωe and ωi possible. The thick grey rectangle 

represents high ω habitat while the remaining habitat (white) is low ω. The black lines are the 

range edges of four species found in the area, each demonstrating an alternative combination 

of high or low ωe and ωi. 
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Figure 5.2. Assessing phylogenetic selectivity in range determinants. Measuring the 

phylogenetic dispersion of species with a range edge in the focal cell according to D. 

Phylogenetic clustering indistinguishable from random (D ~ 1, yellow) or from Brownian 

motion (D ~ 0, blue). Green cells are those with D non-significantly different from both 0 and 

1. Cells with too few species to compute D (pale grey) or with no variation (i.e., all resident 

species have a range edge; dark grey).  

 



117 

Figure 5.3. Relationship between measures of relative occupancy and range size. Top plot: 

ωi; bottom plot: ωe. Solid lines: global mean ω (0.527). Dashed lines: mean ωi (0.543) and ωe 

(0.617), respectively. Grey points are ωe for those species without interior cells. Dotted lines 

mean ωe of species without interior cells (grey, 0.675) and with interior cells (black, 0.595). 
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Figure 5.4. Results of models predicting ωi. Variables as described in table 5.2. Each panel depicts that 

variables' slope estimate in each realm and globally. The error bars are the 95% confidence limits on the slope 

estimate. The shape of the point corresponds to the λ estimate (up triangle: not significantly different from 0, 

down triangle: not significantly different from 1, diamond: intermediate). The shading corresponds to the 

adjusted R2 (higher values are darker). Note that the lower panel contains the results from bivariate models 

where body mass was fitted as a covariate. These results are available in tabulated form in Appendix 5.1, table 

A5.1.1. 
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Figure 5.5. Results of models predicting ωe. Figure arrangement as explained in figure 5.4. 

These results are available in tabulated form in Appendix 5.1, table A5.1.2. 
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Figure 5.6. Relationship between ωi and ωe. Bubbles are scaled by range size (total number of 

cells in range). Range size has not been log10-transformed.  
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Figure 5.7. Results of models predicting ωe with ωi fitted as a covariate in all models. Figure 

arrangement as explained in figure 5.4. These results are available in tabulated form in 

Appendix 5.1, table A5.1.4. 
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Figure 5.8. Richness of good and poor occupiers. (A) Richness (log10) of lowest-ranked 

quartile of ωe species. Richness ranged from 0 to 113. The green cell in the northeastern 

Neotropics corresponds to the richest cell.  (B) Richness (log10) of top-ranked quartile of ωi 

species. Richness ranged from 0 to 71. The green cell in Mexico corresponds to the richest 

cell.  Light grey cells no species. Dark grey cells coastline. Greenland and Antarctica omitted 

from all analyses.  

A 

 

 

 

B 
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Chapter 6. Detecting shifts in diversity limits from molecular phylogenies: what 
can we know?3 
 

Abstract 

Large complete species-level molecular phylogenies can provide the most direct information 

about the macroevolutionary history of clades having poor fossil records.  However, extinction 

will ultimately erode evidence of pulses of rapid speciation in the deep past. Assessment of how 

well, and for how long, phylogenies retain the signature of such pulses has hitherto been based 

on a – probably untenable – model of ongoing diversity-independent diversification.  Here I 

develop two new tests for changes in diversification ‘rules’ and evaluate their power to detect 

sudden increases in equilibrium diversity in clades simulated with diversity-dependent speciation 

and extinction rates.  Pulses of diversification are only detected easily if they occurred recently 

and if the rate of species turnover at equilibrium is low; rates reported for fossil mammals 

suggest that the power to detect a doubling of species diversity falls to 50% after less than 50 

million years even with a perfect phylogeny of extant species. Extinction does eventually draw a 

veil over past dynamics, suggesting that some questions are beyond the limits of inference, but 

sudden clade-wide pulses of speciation can be detected after many millions of years, even when 

overall diversity is constrained. Applying my methods to existing phylogenies of mammals and 

angiosperms identifies intervals of elevated diversification in each. 

 

 

                                                

3 A version of this chapter is in press as: McInnes, L. Orme, C.D.L., Purvis, A. (in press) Detecting shifts in 
diversity limits from molecular phylogenies: what can we know? Proceedings of the Royal Society B-Biological 

Sciences 
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Introduction 

Clades are unlikely to have diversified at a constant per-lineage rate over deep time (Ricklefs, 

2009). The fossil record has long been used to study tempo of evolution (Simpson, 1953; 

Stanley, 1979), but its incompleteness and temporal biases have often limited the strength of 

inference about macroevolutionary dynamics (Alroy et al., 2001; Smith et al., 2001). Time-

calibrated phylogenies of extant taxa provide another window on diversification (reviewed in 

Nee, 2006).  Analyses of such phylogenies have recently been used to identify pulses of 

speciation wherein clade richness rapidly increases (Bininda-Emonds et al., 2007), and to test 

whether such pulses coincide with the times of climatic shifts (e.g., Alfaro et al., 2009), tectonic 

movement (Williams & Duda, 2008) or mountain uplift (Hughes & Eastwood, 2006).  Because 

these phylogenies do not contain extinct lineages, the signal of pulses will tend to be eroded by 

subsequent extinction (Liow et al., 2010; Rabosky & Lovette, 2008b).   

Under what circumstances might we expect a diversification pulse to still be detectable? There 

has been some investigation of the power of phylogenies to reveal temporal changes in 

diversification (Nee et al., 1994; Pybus & Harvey, 2000; Rabosky, 2006), but many studies have 

relied on two simplifying assumptions. First, they have assumed that extinction played a 

negligible role in producing current patterns of diversity (reviewed in Nee, 2006), despite 

evidence from the fossil record that extinction is important (e.g., Alroy, 2008; Sepkoski, 1978). 

The lack of a record of extinction therefore results in a biased account of diversification (Kubo & 

Iwasa, 1995; Liow et al., 2010). Secondly, many studies have implicitly assumed that per-lineage 

rates of speciation and extinction have been constant, implying that there is no upper limit to 

clade diversity (e.g., Alfaro et al., 2009; Magallon & Sanderson, 2001).  
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More recent studies have shown that patterns of clade accumulation through time are often 

consistent with models incorporating diversity limits (Morlon et al., 2010; Phillimore & Price, 

2008; Rabosky, 2009a, b). Diversification slows as available geographic or niche space becomes 

saturated. Beyond this point, turnover continues but clade size stabilizes or increases more 

slowly (e.g., Alroy, 2009; Kisel et al., in press; Morlon et al., 2010; Phillimore & Price, 2008; 

Rabosky, 2009a, b; Ricklefs, 2009). Controversy persists as to whether declining diversification 

rates are driven by decreasing speciation, increasing extinction rates or a combination (Alroy, 

1998; Levinton, 1979; Quental & Marshall, 2009; Rabosky & Lovette, 2008b; Walker & 

Valentine, 1984), although declines driven by increasing extinction rates may not be detectable 

(Quental & Marshall, 2009; Rabosky & Lovette, 2008b). Additionally, the ability to detect 

declines depends on a high ratio of initial speciation rate to equilibrium extinction rate and is 

greatest when clades first reach equilibrium diversity (Liow et al., 2010; Quental & Marshall, 

2009). As yet, however, there has been little exploration of how improved models using 

equilibrial diversity affect our ability to detect changes in diversification (but see Rabosky, 

2009c).  

Equilbrium diversity emerges from the attributes of a clade and extrinsic factors including 

climate and the nature and size of the area available for diversification (Alroy, 2010; Kisel et al., 

in press; Rabosky, 2009a; Ricklefs, 2009).  Extrinsic changes that add or remove suitable habitat, 

such as major climatic change, can therefore affect diversity limits (Alroy, 2009; Barnosky, 

2005; Blois & Hadly, 2009), even without intrinsic changes such as key innovations.  The fossil 

record indicates many biotic turnovers induced by climate change (e.g., mammalian responses 

reviewed in Blois & Hadly, 2009). In particular, the Paleocene-Eocene Thermal Maximum 

(PETM; 55 – 55.5 Mya) is associated with the dispersal of the modern mammalian orders 
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Primates, Artiodactyla and Perissodactyla into new continents with subsequent rapid 

diversification (Gingerich, 2006). A time-calibrated phylogeny of extant mammals shows an 

increase in diversification rate around the same time (Bininda-Emonds et al., 2007), but for how 

long should phylogenies retain a signal of past events?  

Here, I simulate diversity-dependent cladogenesis to assess when a major change in maximum 

equilibrium diversity can be detected from a perfect molecular phylogeny of extant taxa. In the 

light of recent evidence for  the importance of diversity limits to clade diversification (Rabosky, 

2009a, b) and the impact of discrete events on clade diversification (Alfaro et al., 2009; Hughes 

& Eastwood, 2006; Williams & Duda, 2008), I focus on detecting transient pulses of 

diversification associated with changing equilibria rather than declines in diversification (e.g., 

Liow et al., 2010; Phillimore & Price, 2008; Quental & Marshall, 2009) or shifts from one 

constant rate to another (e.g., Alfaro et al., 2009; Rabosky, 2006). I propose and use two new 

statistical tests to explore how the timing and size of changes in diversity, and the background 

turnover rate, affect my ability to recover rule changes from a time-calibrated phylogeny of 

extant species. Finally, I apply these tests to a species-level supertree of mammals (Fritz et al., 

2009) and a family-level supertree of angiosperms (Davies et al., 2004).  

 

Methods 

Evidence for diversity-dependent cladogenesis is mounting (e.g., Alroy, 2009, 2010; Rabosky, 

2009a, b), but uncertainty remains over the form of diversity-dependence (Nee et al., 1992; 

Rabosky, 2006) and whether it acts through speciation rates, extinction rates or both (Alroy, 

1998; Levinton, 1979; McPeek, 2008; Rabosky & Lovette, 2008a; Walker & Valentine, 1984). 



127 

Here, I use an equal-rates logistic model of diversity-dependent cladogenesis (Nee et al., 1992) 

and vary instantaneous per-lineage rates of both speciation (λ) and extinction (µ) as a function of 

initial speciation rate (b) and extinction rate at equilibrium (d), as the number of extant lineages 

(N) approaches the maximum possible diversity of the clade (M) (Ricklefs, 2009):  

λ = b * (1-(N/M)) 

µ  = d * (N/M) 

As N rises, extinction increases and speciation decreases until N fluctuates stochastically around 

an equilibrium diversity, K, defined by bM/(b+d), with a turnover rate of d/(b + d). Thus, when d 

> 0, M will not be reached (Walker & Valentine, 1984). This model differs from the critical 

birth-death model (where λ = µ), which has no diversity limit, and from a Moran process, where 

N is deterministically held constant with every extinction met with by immediate speciation 

(both reviewed in Nee, 2006). I use stochastic simulation, drawing each species’ waiting time to 

the next speciation or extinction using the current N, and re-drawing waiting times after each 

event. 

To this basic model, I introduce an increase in maximum diversity – a rule change – from M1 to 

M2 after a set time (T1) from the start of the simulation (T0), resulting in an immediate increase in 

speciation and decrease in extinction. The simulation continues under this higher M for a further 

time period (T2). In my first set of simulations, I examine how variation in the size of the shift in 

M and the rate of turnover affect detection of the change in diversification. Simulations start with 

a single species at T0 and I fix M1 = 500, b = 1, and vary M2 from 600 to 1000 in steps of 100 and 

d from 0.1 to 0.5 in steps of 0.1. These values of d correspond to turnover rates at equilibrium 

between 0.091 and 0.333, bracketing estimates from the mammalian fossil record of ~0.24 
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species per lineage per million years (Alroy, 2009). I run the simulation over 110 My with the 

shift from M1 to M2 occurring at the PETM (55 Mya); both T1 and T2 are therefore 55 My in 

length. Equilibrium diversity levels are reached within 10 My of T0 and T1 (figure 6.1). I also 

investigate decreases in maximum diversity, using b = 1, T1 = 55 My, T2 = 55 My, M1 = 1000, 

M2 = 500 and varying d from 0.1 to 0.5 in steps of 0.1. These ‘downshift’ simulations represent a 

permanent reduction in diversity limits.  

I consider two further scenarios, looking at how the signal deteriorates over time since the shift 

and at the signal left by non-selective mass extinctions. Both these simulations use b = 1 with d 

varying between 0.1 and 0.5. The first scenario additionally varies T2 between 10 and 100 My 

with T1 = 55 My, M1 = 500 and M2 = 1000.  For mass extinction, I randomly remove 50% of 

extant species from equilibrium diversity (M1 = 1000) at T1 = 55 My, and then allow diversity to 

recover from around 500 to then remain at the original equilibrium (M1 = M2) for a further 55 My 

(T2). I compare this scenario to previous simulations where, after an initial 55 My (T1), 

equilibrial diversity simply increases from 500 (M1) to 1000 (M2) until the end of the simulation 

55 My later (T2). I consider only random extinction for simplicity. Harvey et al. (1994) and 

Rabosky (2009c) discuss the signal left by non-random mass extinction. Finally, I investigate 

how detectability changes when only a subset of lineages is affected by the rule change with the 

remaining lineages continuing to diversify under M1 (details in Appendix 6.1).  

To assess the type I error rates and power of my detection methods, I also simulate a set of null 

trees with no diversification shift. All trees have b = 1, M = 500 and I vary d between 0.1 and 0.5 

and tree age between 65 My and 155 My, as above. In all scenarios, I simulate 100 replicate trees 

under each set of parameters; in total 14000 trees are analysed. 
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Detecting changes in diversification  

My simulated phylogenies contain all extant and extinct lineages, and plots of the number of 

then-extant lineages against time clearly show the effects of diversification shifts (figure 6.1, 

solid line). To represent the best data that molecular phylogenies could provide, I only analyse 

phylogenies from which all extinct lineages have been removed (figure 6.1, dashed line). The 

resulting complete, perfectly time-calibrated molecular trees are, of course, far better than data 

currently available (Felsenstein, 2004). However, my primary interest is in identifying situations 

in which there is no prospect of ever confidently making inferences, rather than those where 

potentially-recoverable signal is erased by incomplete sampling or imperfect dates (see e.g., 

Moore & Donoghue, 2009; Pybus & Harvey, 2000). 

I developed two methods to detect the signal of shifts in diversification within phylogenies, both 

of which use temporal windows sliding across evolutionary history to identify anomalous 1 My 

intervals. In both cases, I discard estimates for the first and last 20 My because they are biased: 

estimates in the first period are biased upwards because clades that happened to diversify slowly 

initially are likely to have gone extinct before the present, while the second period gives rise to 

new lineages that will go extinct but have not yet done so (Nee, 2006). Analyses are therefore 

based on a 70 My sequence centred on the change in diversification at 55 My. When analysing 

simulations where T2 varies, I include the final 35 My of T1 and only truncate T2 where it is 

longer than 35My; some sequences are therefore shorter than 70 My. 

The first method extends Pybus & Harvey’s (2000) γ statistic.  Given a sequence of internode 

distances, γ measures whether those nodes are clustered towards the start (γ < 0) or end (γ > 0) of 

the sequence, compared to the expectations of a pure-birth process. Although it is more typically 
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used to measure changes in diversification across a whole tree, it also applies to a sequence of 

nodes drawn from a time window. A diversification pulse within a 1 My slice will lead to a 

positive γ for a longer window that ends with that 1 My, and to a negative γ for a longer window 

that starts with the pulse (figure 6.2).  The difference (∆γ) in γ between the earlier and later 

window therefore reflects changes in the per-lineage rates, with a negative ∆γ indicating a 

diversification pulse in the 1 My where the windows overlap (figure 6.2). I simulated the 

distribution of ∆γ and found it follows a normal distribution under both (a) a constant-rates pure-

birth process (λ = 0.06, T = 110 My, 100 replicates: mean = -0.0425, sd = 1.65) and (b) single 

logistic decline (b = 1, d = 0.1, T = 110 My, M = 500 lineages, 100 replicates: mean = 0.0183, sd 

= 1.69). The ∆γ statistic seems to avoid some of the biases exhibited by γ, for instance 

correlations with clade size (Phillimore & Price, 2008) and number of branching times in the 

overlap window (results not shown), presumably because I sample only in narrow intervals and 

discard the intervals at the beginning and end of each tree. From my simulations, I calculate the 

significance of ∆γ at 1 My intervals, using local windows of 5 My. 

My second method uses the maximum likelihood (ML) diversification rate estimate for each 1 

My time slice, (n-m)/s, where n and m equal the number of lineages at the end and beginning of 

the slice, respectively, and s equals the total branch length within the slice (Nee et al., 1994). 

Because I use phylogenies of currently extant species, lineage number can only increase with 

time (n ≥ m) and the ML estimates are therefore bounded at zero. When M2 > M1, the expectation 

is that the slice including the rule change will have a higher rate than its neighbours. To detect 

elevated rates statistically, I fit generalised additive models (GAMs: Wood, 2006) to the rate 

estimates through time, weighting by the number of lineages present at the end of each interval. 

The smoothed term from the GAM allows local rate heterogeneity in the tree to be modelled 
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(rather than assuming rate constancy apart from the rule change) and hence the significance of 

outliers can be assessed using Studentised residuals relative to neighbouring time intervals within 

the tree, rather than relative to the predictions of null models parameterised from the tree. This 

method removes both the need to estimate background turnover rate and the assumption that 

there even is a background turnover rate: I am trying to recover major perturbations against a 

background of rate constancy or rate heterogeneity. However, the smoothing parameter (k) in 

GAMs always needs to be chosen with care (Wood, 2006): too high and the model will trace all 

fluctuations, including large outliers; too low and the background rate will not be adequately 

characterised and, following preliminary tests, I have used k = 5. For those simulations where T2 

< 35 My (i.e., where the rule change occurs close to the present), I retain all time intervals up to 

the present (see above); this may impede my ability to detect a shift, as any increase in M will be 

conflated with the signal from lineages present that are committed to extinction in the future. 

I assessed each method’s Type I error rate as the proportion of null simulations in which a 

significant shift in diversification rate was detected at the end of T1.  The power of each method 

for each scenario was calculated as the number of simulations showing a significant change at 

the end of T1, minus the corresponding Type I error rate from null simulations. I also recorded 

the number of other intervals identified as significant for each parameter combination and used a 

binomial test to compare this proportion to 0.05. Finally, I applied my methods to a suite of 

models of exponential diversification to determine whether the type I error rates are still 

reasonable under these scenarios (and thus that my results were not contingent on there being 

zero net-diversification apart from at the rule change; see Appendix 6.1). 



132 

Testing my methods with empirical data 

I applied both methods to a species-level supertree of mammals (Fritz et al., 2009) and a family-

level supertree of angiosperms (Davies et al., 2004). It is unlikely that either clade evolved under 

a single or even two-phase homogeneous diversification process (Davies et al., 2004; Purvis et 

al., in press); however, I was interested in whether my methods detect anomalous time intervals 

despite the heterogeneity of process expected within trees of this size. Similarly, it is not 

problematic that the angiosperm tree has families as tips, as I am testing for diversification pulses 

deeper in the tree where sampling is effectively complete. I also use one of the most 

parsimonious supertrees rather than the strict consensus (as in Davies et al., 2004) in order to 

exploit its completeness and full resolution. Diversification within older families is not reflected 

in the branching pattern of the supertree, so my methods will not detect diversification bursts 

exclusively occurring within these families. In mammals, I also applied the method to four 

subclades (marsupials and the three placental groups: Atlantogenata (Afrotheria + Xenathra), 

Laurasiatheria, and Euarchontoglires) to identify shared or unique pulses of diversification in 

these groups. The mammal tree has a number of extrapolated dates for taxa lacking sequence 

data; these tend to be distributed uniformly through time and will bias against detecting 

diversification pulses. Because of this and other imprecisions in dating phylogenies, I also 

assessed wider focal intervals than in my simulations, testing both 2 and 5 My intervals (for the 

∆γ method I also adjusted the time windows to 10 My and 25 My, respectively). The results of 

the three interval sizes are quantitatively similar and I present results only from the 2 My 

window analyses.  

I initially tested whether diversification bursts are associated with the Cretaceous-Tertiary 

boundary (65.5 My ago), the PETM (55 – 55.5 My ago) and the Eocene-Oligocene boundary 
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(33.9 My ago), given their association with responses in the mammalian and angiosperm fossil 

record (Alroy, 2009; Blois & Hadly, 2009; Jaramillo et al., 2006). In addition to testing these 

specific hypotheses, I also assessed the use of both methods for data exploration by identifying 

all significant time slices. This requires conducting multiple tests simultaneously. Numerous 

corrections for multiple testing have been proposed, most adjusting the level at which a result is 

considered significant to make it more stringent (reviewed in Moran, 2003); however, some 

methods have been criticised as being too conservative (Moran, 2003). In particular, there is 

debate on whether it is necessary to control the probability of erroneously rejecting even one of 

the true null hypotheses (the family-wise error rate, FWE) or whether controlling the expected 

proportion of falsely rejected hypotheses (false discovery rate, FDR) is adequate (Benjamini & 

Yekutieli, 2001). An additional problem with my data is the expected autocorrelation among 

consecutive time intervals. To address these issues I report significant intervals (a) unadjusted for 

multiple testing, (b) using the sequential Bonferroni correction (an FWE method), (c) using the 

Benjamini and Yekutieli method (2001) that controls the FDR when tests are not independent, 

and (d) the sequential Bonferroni correction using the effective sample size after autocorrelation 

is accounted for (see Appendix 6.2).  

 

Results  

The power analyses shown in figure 6.3 demonstrate that statistical tests are more likely to detect 

a diversification pulse when it is large, when it occurs against a background of low turnover and 

when it is recent. The two methods also do not differ substantially in the regions in which they 

demonstrate reasonable power (> 0.8). For instance, when turnover rates correspond to those 
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estimated for the mammalian fossil record (d ~ 0.24; Alroy, 2009), both methods’ power to 

detect a diversification pulse falls to 50% after 50 My (figure 6.3). Validity testing reveals a 

similar picture (table A6.3): the proportion of false positives is lowest where the diversification 

pulse is most pronounced. Validity of the GAM method decreases as T2 and turnover rate 

increase, whereas validity of the ∆γ method is less variable through parameter space.  

The rebound from a 50% random mass extinction is detected with similar power to a doubling in 

equilibrium diversity, although significant signal is maintained with higher turnover under the 

mass extinction scenario (table 6.1). Conversely, decreases in equilibrium diversity are much less 

likely to be detected than increases: plots of the ML rate estimates per My interval (figure A6.4) 

indicated that there is no unambiguous signal of a rule change across the five values of d tested. 

Rate estimates for the specified interval are zero but this zero rate also occurs in adjacent 

intervals and – for trees with high d - is the modal rate until near the present.  

Applying ∆γ to the mammal and angiosperm phylogenies revealed significant increases in 

diversification for intervals close or coincident with the Eocene-Oligocene boundary (~ 33.9 My 

ago) in the Laurasiatherian, Marsupial and complete mammal tree. A signal was also found for 

the first two groups using the GAM method, but these results were not retained in marsupials 

once I had adjusted for multiple testing. Neither the Cretaceous-Tertiary boundary (65.5 My ago) 

nor the PETM (55 – 55.5 My ago) were associated with significant changes in diversification 

once I had adjusted for multiple testing. Looking throughout the phylogenies, significant 

diversification bursts were recovered (figure 6.4) in the angiosperm tree and the mammal tree 

both when analysed as a whole and by superorder, although adjusting for multiple tests removed 

some intervals. This correction was notably severe for two groups, Atlantogenata and 
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marsupials, where significant intervals were identified only using the ∆γ method (see also table 

A6.5).  

Finally, my methods are robust in the face of alternative models of diversification. I tested a 

variety of null and non-null diversity-independent models of cladogenesis and found the type I 

error rate was reasonable in all cases (see Appendix 6.1).  

 

Discussion 

My results indicate that some large rule changes long ago may still, in principle, be detectable 

from information gleaned exclusively from extant diversity. It should therefore be possible to 

combine information on known past events with phylogenies of extant species to ask whether the 

event had an impact on diversification (see also Alfaro et al., 2009; Moore & Donoghue, 2009). 

My analyses of mammalian and angiosperm supertrees (figure 6.4, Table A6.5) also demonstrate 

that my methods are useful for data exploration. However, my results indicate unambiguously 

that, under diversity-dependent cladogenesis with rapid turnover, even large increases in M will 

often not be apparent from reconstructed phylogenies (figure 6.3, see also Quental & Marshall, 

2009; Rabosky & Lovette, 2008b). In these cases, strong inferences will require fossil evidence 

(Liow et al., 2010; Quental & Marshall, 2010), though this remains a difficult endeavour because 

of the paucity of both suitable data and tractable methodologies (but see Etienne & Apol, 2009). 

Signals of alternative rule changes  

Mass extinctions followed by rebounds produced equivalent signals to increases in M (table 6.1). 

Diversification pulses not associated with a change in M (e.g., Rabosky, 2009c) are also expected 
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to produce similar signals. Additional methods may therefore be required to distinguish between 

these events, for example by investigating the time intervals preceding the identified rule change 

(Crisp & Cook, 2009; Harvey et al., 1994). For example, random extinction culls a higher 

proportion of young lineages and so clades rebounding from extinction events retain a surplus of 

early lineages in comparison to increases in equilibrium diversity (figure A6.6). Once an event 

has been recognised using a time-slice method, differences in the LTT plots may distinguish 

different scenarios, perhaps in conjunction with simulations (see also Crisp & Cook, 2009). Any 

such approach, of course, assumes that, other than at the proposed event, the clade has been 

diversifying according to some diagnosable model of cladogenesis.  

Some events, such as extensive habitat loss or the disappearance of suitable climatic regimes, 

may lead to permanently reduced equilibrium diversity. Such decreases (“downshifts”) are 

difficult to detect using time-slice methods alone (figure A6.4), with intervals at and around the 

shift characterised by zero net diversification. This is unsurprising: until extinction forces clade 

size to the new equilibrium, diversity dependence will constrain further speciation. Higher d 

facilitates a more rapid approach to the new equilibrium, but is also associated with larger 

fluctuations (and more zero-rate intervals) across the rest of tree, eroding any signal of the 

downshift. Downshifts may be more easily detected when specific traits or conditions have led to 

a diversity loss in one part of a tree and stasis or gain in another part (Moore & Chan, 2004; 

Purvis et al., in press). While periods of low diversification across the tree can be inferred, 

unambiguously pinpointing clade-wide reductions in M on a reconstructed phylogeny will be 

difficult.   
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Empirical results  

Application of my methods to the angiosperm family (Davies et al., 2004) and mammal (Fritz et 

al., 2009) supertrees highlighted a number of time intervals associated with diversification bursts 

(figure 6.4, Table A6.5), each also associated with fossil evidence for diversification shifts (Bell 

et al., 2010; Meredith et al., 2008; Poux et al., 2006; Price et al., 2005).  The Eocene-Oligocene 

boundary was significant in two groups (figure 6.4): in Laurasiatheria, as artiodactyl radiations 

replace the previously dominant perissodactyls (Price et al., 2005); and in marsupials 

corresponding to the origin of crown-group Macropodiformes (Meredith et al., 2008). The 

Oligocene (34 – 23 My ago) is commonly considered the epoch linking the archaic faunas of the 

hothouse Eocene to the modern faunas that had become well-established by the mid-Miocene. 

My data exploration approach identified additional diversification bursts during this epoch for 

Laurasiatheria  and Euarchontoglires, coincident with major clades of rodents and primates 

dispersing and diversifying into South America (figure 6.4; Poux et al., 2006). In angiosperms, 

significant intervals are clustered in the Cretaceous, associated with the origin of the major 

orders (Bell et al., 2010). The GAM method also highlights two Cretaceous intervals (100 My 

and 90 My ago) associated with the origin of the mammalian superorders (Bininda-Emonds et 

al., 2007); however, these results must be interpreted conservatively, as deep polytomies will 

also be recovered as diversification bursts. The ∆γ method identified bursts at 48 My and 34 My 

ago, intervals also associated with low resolution in the tree. Although these polytomies might be 

hard and indicative of true diversification bursts, further tests are required to identify the 

underlying process. At the least, my methods underline these unusual intervals in the tree.  

My empirical results attest to the heterogeneity of processes occurring within large trees: while I 

identify pulses coincident with intervals identified by Bininda-Emonds et al. (2007) and Davies 
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et al. (2004) using different methods, there are also discrepancies. For instance, the pulse at the 

PETM for mammals was not recovered, nor were the more recent diversification shifts found by 

Davies et al. Recent analyses highlight that diversification in both mammals and angiosperms is 

heavily influenced by available area (in agreement with my model of cladogenesis), but also trait 

variation, innovations and abiotic conditions (Kisel et al., in press; Purvis et al., in press; Vamosi 

& Vamosi, 2010). Although the intervals I identify do correspond to events in the fossil record, a 

robust understanding of the diversification of large clades will entail incorporating fossil 

evidence and the effects of intrinsic traits and the extrinsic environment.  

Limitations 

I have modelled diversity-dependent cladogenesis using a single M. Although an improvement 

on density-independent alternatives, my model is a caricature of the complex interplay between 

clades and their environments (Kisel et al., in press; Purvis et al., in press; Vamosi & Vamosi, 

2010). A more realistic model may comprise distinct adaptive zones (Simpson, 1953), each able 

to sustain some equilibrium species diversity, and sub-clades diversifying in a diversity-

dependent manner within them.  While each adaptive zone persists, sub-clades will maintain 

deep nodes in the reconstructed phylogeny, retaining a signal of their initial diversification into 

their zones. Even if only certain sub-clades respond to regime change, my methods should then 

detect the diversification pulses within these sub-clades. My supplementary analyses showed 

that, when only a subset of lineages responds to the change in M, the pulse is still detectable 

(Appendix 6.1). Indeed, some of the pulses detected in my empirical trees are probably caused 

by only a subset of lineages (Purvis et al., in press; Vamosi & Vamosi, 2010). Pinpointing the 

lineages responsible for diversification pulses requires additional tests incorporating tree 
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topology (Moore & Chan, 2004; Purvis et al., in press). My methods are, however, unlikely to 

perform well if changes are weak or affect different sub-clades in opposite ways.  

The above scenario suggests a route by which downshifts could be retained indefinitely in a 

phylogeny (Purvis et al., in press): if incumbency effects (Jablonski, 2008) make it difficult to 

remove all members of an established group, extinction will be over-dispersed at the deepest 

levels of phylogeny and relict taxa will survive to be detected. This speculation does not 

contradict the evidence that extinction risk is phylogenetically clumped (e.g., Davies et al., 

2008): it may be difficult to fully extirpate a group occupying extensive geographic or niche 

space, whether extinction is random or clumped at low taxonomic levels (Jablonski, 2008). 

Other valuable extensions will be to systematically investigate the effect of incomplete taxon 

sampling (e.g., Pybus & Harvey, 2000) and to develop methods that are robust to dating 

mismatches between hypothesised impact events and the responding nodes. Moore & Donoghue 

(2009) recently outlined a Bayesian method that accommodates uncertainty stemming from 

dating, rate and event-timing estimates. Although employing pure birth (Nee, 2006) as their null 

model of diversification, the explicit incorporation of uncertainty is an important step. Finally, 

adaptation of existing likelihood (e.g., Alfaro et al., 2009; Rabosky, 2006) or approximate 

Bayesian (e.g., Rabosky, 2009c) techniques may provide more robust tools for the detection of 

rule changes, and may even be able to estimate parameters like turnover rates and the absolute 

magnitude of the pulse. 

Conclusions 

My analysis is timely given the recent rapid proliferation of large phylogenies (Bininda-Emonds 

et al., 2007; Smith et al., 2009) and the recognition that diversity dynamics are probably often at 
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least approximately equilibrial (Alroy, 2009; Morlon et al., 2010; Rabosky, 2009b). As 

phylogenies become more complete and more accurate, it will be possible to mine them for 

information about the impact of deep-time events on diversification. My simulations of simple 

models of diversity-dependent cladogenesis show that low turnover and large shifts are required 

if rule changes in the deep past are to be recovered robustly: there is much that we cannot know.  

 

  

 



141 

Tables 

Table 6.1.  Comparing power to detect rule changes – doubling-in-M versus mass extinction and 

rebound to initial M .d is the extinction rate (see text for details).  

 

  d 0.1 0.2 0.3 0.4 0.5 

  Doubling-in-M             

  GAM  0.97 0.71 0.33 0.21 0.12 

  ∆γ   0.95 0.62 0.35 0.18 0.16 

  Mass extinction             

  GAM  0.97 0.79 0.47 0.42 0.28 

  ∆γ   0.96 0.65 0.44 0.27 0.22 
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Figures  

Figure 6.1. Example lineage-through-time plots showing the loss of information when going 

from a complete phylogeny with all extinct and extant taxa included (solid line) to the best 

reconstructed phylogeny possible (all extinct taxa pruned from the tree, dashed line). The tree 

was grown under the following parameters: b = 1, d = 0.1, M1 = 500, M2 = 1000, T1 = T2 = 55 

My.  
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Figure 6.2. Schematic explaining ∆γ. The top panel displays a complete reconstructed phylogeny 

where b = 1, d = 0.1, M1 = 50, M2 = 100, T1 = T2 = 15 My. The middle panel displays the set of 

overlapping time intervals involved in the calculation of ∆γ with vertical bars to represent each 

node. The calculation for ∆γ is displayed for two representative windows. The bottom panel 

displays ∆γ for all time intervals.  
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Figure 6.3. Contour plots of power to detect the rule change in the specified interval. (A, B) 

effect of shift timing versus extinction rate (C, D) effect of shift magnitude versus extinction 

rate. (A, C) GAM method (B, D) ∆γ method. That area of parameter space where power > 0.8 is 

indicated by a white contour line.  
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Figure 6.4. Diversification bursts in the angiosperm family, mammal and mammalian superorder 

trees analysed using 2 My intervals. Solid triangles denote significant intervals after correcting 

for multiple tests according to my modified sequential Bonferroni method. Open triangles are the 

additional intervals, significant only before correction. (left two panels) GAM method: the blue 

dashed line is the fitted curve. (right two panels) ∆γ method. Dotted lines on both plots delimit 

the boundaries of the Cenozoic epochs tested (Cretaceous-Tertiary boundary, 65 My; Paleocene-

Eocene Thermal Maximum, 55 My; Eocene-Oligocene boundary, 34 My). Dashed lines mark the 

cut-offs for unanalysed intervals due to biases (see text). Results for 1 My and 5 My intervals in 

supplementary material (Table A6.5).  
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Chapter 7. Conclusion 
 

In this thesis, I have explored spatial and temporal signatures of constraints on diversity across 

three major vertebrate groups and through simulations. Using a combination of phylogenetic and 

biogeographical approaches, I have investigated the macroecology and macroevolution of range 

limits and quantified our ability to detect the signal of temporal changes to diversity limits. 

Summary of results 

A full understanding of broad-scale diversity gradients requires an integrated understanding both 

of the traits of species that allow them to persist in a region and the capacity of that region to 

harbour a certain set of species, both now and in the past. While it was previously popular to try 

and distinguish ecological and evolutionary processes contributing to biodiversity gradients, it 

has since become clear that processes acting along a continuum of timescales probably 

contribute to the generation and maintenance of biodiversity (Mittelbach et al., 2007; Ricklefs, 

2004). In this thesis, I have assessed whether, using data on extant species alone, it is possible to 

untangle the influences of historical and contemporary factors driving diversity patterns and 

speculate on the possibility of accurately inferring likely future patterns of biodiversity.   

Many taxa have more species in the tropics than at temperate latitudes (Hillebrand, 2004). Such 

diversity gradients require turnover of species in space without replacement.  My approach to 

understanding broad-scale variation in diversity has been to investigate the constraints acting on 

species and explore the factors limiting species’ ranges. I approached this study of range limits in 

a variety of ways. In chapter 2, I investigated conservatism in climatic tolerances in two major 

vertebrate taxa and found that cold tolerance - or the lack of it - was similarly conserved in both 
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mammals and amphibians despite major differences in the ecologies of the two taxa. The 

strength of this conservatism in both groups suggests that the (in)ability to evolve cold tolerance 

is a common feature limiting the distributions of many species to tropical latitudes (Wiens & 

Donoghue, 2004).  

In chapters 3 & 4, I investigated range limits directly by mapping the overlap of range limits in 

space – landscape impermeability (ω) - in Afrotropical birds (chapter 3) and mammals and 

amphibians globally (chapter 4). Despite the strong signal of limiting climatic factors found in 

chapter 2, the most consistently important correlates found for ω were measures of habitat 

heterogeneity. This indicates that while climatic thresholds limit individual species, when the 

range limits of all species within a taxon are considered together, the areas of greatest overlap are 

in heterogeneous areas such as along steep altitudinal gradients or at biome transitions. Taken 

together these results emphasise that species distributions are determined not only by climatic or 

resource requirements, but also by landscape structure, with range limits collecting in hard-to-

pass areas. Such areas are also known as hotspots of diversification, the complex landscape 

facilitating proliferation of endemic species (Rahbek & Graves, 2001). Thus, a failure to consider 

landscape structure in analyses of diversity patterns may lead to poorly-fitting models (as shown 

by e.g., Davies et al., 2007). More importantly, perhaps, a failure to consider the nature of the 

habitat in which species are found and through which they are expected to move, will render 

erroneous predictions of the redistribution of diversity under climate change (e.g., Luoto & 

Heikkinen, 2008).  

In chapter 5, I explored the possibility of converting my assemblage-based measure of 

mammalian landscape impermeability into a species-based measure of relative landscape 

occupancy by summarising the impermeability within each species’ range. The aims were to 
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rank species on their relative ability to overcome constraints operating on the co-occurring biota 

and then to identify traits associated with this ability. However, few strong trait correlates could 

be identified for my relative measures: relative occupancy was more strongly related to where 

species were found. One possible reason for a failure to find strong relationships is that the key 

explanatory variables were missing from my analyses.  Another possible explanation is that the 

relationships are complex and apparently idiosyncratic and that searching for common correlates 

is, as it turns out, a fruitless endeavour. In some respects, this in itself is an interesting result: 

while I identified areas of high and low ω and strong environmental/landscape correlates of these 

areas, the particular reasons why certain species do not adhere to these patterns can vary. They 

are likely to include dispersal and biotic limitations, historical accidents and real variation in 

occupancy abilities, perhaps precluding the use of a single summary measure relevant to all 

species.  

Chapters 2-5 explained current distribution patterns by exploring the constraints acting on 

species and the traits and locations associated with overcoming these constraints. Two 

conclusions emerged: species are limited by both resource availability and landscape structure; 

and a failure to consider historical processes leads to an incomplete understanding of how current 

diversity patterns came to be. Chapter 6 assumed diversity to be constrained and explored our 

ability to detect the signal of changes to diversity limits through time. 

The idea that ecological constraints operate to control clade diversity limits stems from fossil 

evidence for equilibrial diversity dynamics (e.g., Alroy, 2009) alongside mounting evidence in 

reconstructed phylogenies of diversification slowdowns (Morlon et al., 2010; Phillimore & Price, 

2008), a disconnect between clade age and richness (Rabosky, 2009b; Ricklefs et al., 2007) and 

an association between clade richness and area occupied (Rabosky, 2009b; Vamosi & Vamosi, 
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2010). In short, diversification cannot be understood without considering the landscape upon 

which it plays out. Furthermore, it is unreasonable to assume that diversity limits do not change 

through time, as a result of extrinsic perturbations or intrinsic innovations (Alfaro et al., 2009; 

Ezard et al., 2011). In chapter 6, I explored the conditions under which we can expect to detect a 

signal of a shift in diversity limits using data only from extant taxa. I found that, for a signal of 

an increase in diversity limits to be detected, the change has to have been large and recent with 

low background rates of turnover. As phylogenetic data proliferate, it is useful to know what 

information we can hope to glean from it and what signals are likely to be lost without additional 

evidence. My study indicates that there are reasons to be hopeful, particularly when testing for 

the effect of extrinsic events identified a priori and expected to impact a clade as a whole.  

Directions for future work 

Climate change predictions 

My analyses of impermeability and its species-centred derivatives were motivated, in part, by a 

desire to generate straightforward predictions on the expected redistribution of biodiversity under 

climate change using only the distribution data of a taxon. I find range edges are clustered in 

heterogeneous areas; this result complementing others that suggest that range movement will be 

extensive in such areas (La Sorte & Jetz, 2010; Williams et al., 2007). An additional way in 

which ω maps could be used is in creating least-cost paths of range movement (Chetkiewicz et 

al., 2006). If distribution modelling indicates that a species’ new range is located beyond an 

impermeable region, it is unreasonable to assume that the species will be able to reach it unaided. 

Conversely, a species whose new range is more geographically distant may have little difficulty 

reaching it if the area through which the species must pass is permeable. Therefore, ω of 
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intervening regions could be used to identify the most likely route a species might take to reach 

suitable habitat and could also be used to anticipate the most likely sources of seed populations 

of the new range. Of course, these responses rest on there also being no further biotic or intrinsic 

constraints on species movement.  

Understanding clade diversity dynamics 

My thesis emphasises that diversity patterns are the result of clades diversifying on a landscape 

whose nature and size determine the level of diversity each clade can achieve as well as 

patterning the range limits of its component species. As the idea of ecological constraints 

limiting clade diversity takes root, it is becoming clear that a single carrying capacity will not 

apply for globally-distributed taxa, but rather that distinct carrying capacities might exist for 

different subclades occupying separate realms (e.g., Purvis et al., in press).  It would be of 

interest to see if impermeability calculated for higher taxa, for example mammalian families, 

would be useful in delimiting biotic regions and whether within each region there was also 

evidence for distinct carrying capacities. Rabosky (2010b) reported evidence that a model 

incorporating diversity limits fitted the distribution of diversities of ant genera much better than a 

model dependent on differential diversification rates. He suggests that, if models incorporating 

ecological limits fit higher taxa more generally, this would support Simpson’s (1953) idea of 

higher taxa radiating within adaptive zones, with entry into a new zone (geographic, ecological) 

constituting origin of a new higher taxon. Mammals represent an ideal taxon with which to 

pursue these ideas: there is a relatively robust phylogeny available alongside distributional and 

trait data available for all species (see also Kisel et al., in press; Purvis et al., in press).  
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This thesis made use exclusively of data from extant taxa both because this data is more readily 

available and generally more comprehensive and in order to test how much we can infer without 

recourse to additional data. An important future direction will be to incorporate fossil data into 

analyses of diversity dynamics through time (e.g., Quental & Marshall 2010), particularly given 

the accumulating evidence that omitting extinct lineages from diversification analyses limits or 

even biases inferences possible (chapter 6; Rabosky, 2010a; Liow et al., 2010).  

Integrating niche evolution and diversification 

Chapter 2 documented the clustering of climatic ‘escapees’ in the North Temperate Zone, the 

species having colonised the region during or after evolving the cold tolerance necessary to 

succeed there. Data limitations precluded formal analysis of whether colonisation of temperate 

latitudes led to increased diversification and higher diversities. When a dated amphibian 

phylogeny becomes available, and both the mammal and amphibian trees become better 

resolved, more nuanced questions can be asked of the impact of niche evolution on 

diversification. Similarly, a dated amphibian phylogeny will permit a better comparison of rates 

of niche evolution across the two groups.  

I inferred recent evolution of cold tolerance by using the residuals from a nested ANOVA to 

quantify species-level change from their genus means. Consistency with parallel phylogenetic 

analyses in mammals suggested that this crude proxy for recent evolution is likely to be 

reflecting true events. Both analyses, however, are silent on the tempo and mode of niche 

evolution deeper in the phylogeny. If niche conservatism is prevalent – as our results and others 

suggest – it is unreasonable to use an unbounded model of trait evolution such as Brownian 

motion to model niche evolution. Our results, and intuition, suggest that entry into new ecospace, 
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for example into temperate latitudes, requires a major change in the underlying physiological 

trait(s) that determine the conditions under which a lineage can persist. A better null model for 

the evolution of niche traits may be one that accommodates periods of stasis with bursts of 

change (Estes & Arnold, 2007; Hunt, 2008). Further interesting avenues would be to investigate 

how generally jumps in climatic tolerances are associated with shifts in diversification 

rates/diversity limits and whether finding evidence for one can be used to target searches for the 

other. Reciprocal illumination may come from methods designed to partition phylogenies into 

subclades apparently diversifying along independent trajectories (e.g., Barraclough, 2010) 

combined with methods designed to detect discontinuities in trait evolution (e.g., Butler & King, 

2004). However, without incorporating additional data, for example from the fossil record, we 

may really be reaching the limits of inferences possible using the branching pattern of 

phylogenies alone. 

Incorporating intraspecific variation 

Throughout this thesis, I have used species as units while frequently eluding to the expectation 

that intraspecific variation will modify species’ responses. My measures of relative occupancy 

distinguished a species’ range core from its range margin, but occupancy ability varies at a much 

finer scale than this, as seen, for example, from the spatial variation in abundance typically found 

across a species’ range (Brown et al., 1995). We investigated conservatism in climatic means 

and extremes, but it is likely that there is substantial local adaptation in climatic tolerances across 

the range.  An understanding of how such variation impacts evolution of niche traits will help us 

to see for example, how niche requirements shape the diversification of entire clades. 

Macroevolution does not exist without microevolution; thus, an understanding of the forces 

acting below the species level will help our understanding of patterns emergent above the species 
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level. It is noted that assimilating intraspecific variation into broad-scale analyses is generally 

hampered by data availability (but see Jetz et al. (2009) for a successful recent example). As data 

accumulates, the additional inferences possible are expected to be substantial.  

Concluding remarks 

Concise explanations of spatial diversity gradients and diversity differences among clades 

remain elusive despite centuries of research. It is becoming apparent that no single explanation is 

likely to be found; rather, a combination of contemporary environmental factors together with 

historical contingencies and species’ traits have combined to produce the diversity patterns we 

see today. A full understanding of biodiversity at the macro-scale can only come through an 

integration of geography, phylogeny and history: every pattern I have studied bears the 

fingerprints of all three. 
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Appendix 1. How diversification rates and diversity limits combine to create large-scale species-
area relationships4 
 
Abstract 

Species-area relationships have mostly been treated from an ecological perspective, focusing on 

immigration, local extinction, and resource-based limits to species coexistence. However, a full 

understanding across large regions is impossible without also considering speciation and global 

extinction. Rates of both speciation and extinction are known to be strongly affected by area and 

thus should contribute to spatial patterns of diversity. Here, we explore how variation in 

diversification rates and ecologically-mediated diversity limits among regions of different sizes 

can result in the formation of species-area relationships. We explain how this area-related 

variation in diversification can be caused by either the direct effects of area or the effects of 

factors that are highly correlated with area, such as habitat diversity and population size. We also 

review environmental, clade-specific, and historical factors that affect diversification and 

diversity limits but are not highly correlated with region area, and thus are likely to cause scatter 

in observed species-area relationships. We present new analyses using data on the distributions, 

ages and traits of mammalian species to illustrate these mechanisms; in doing so we provide an 

integrated perspective on the evolutionary processes shaping species-area relationships. 

 

 

                                                

4 A version of this appendix is in press as: Kisel, Y.*, McInnes, L.*, Toomey, N.H. & Orme, C.D.L. (in press) How 
diversification rates and diversity limits combine to create large-scale species-area relationships. 
Philosophical Transactions of the Royal Society B-Biological Sciences.  *Joint first authors. 



177 

Introduction  

The species-area relationship (SAR), which describes an increase in the number of species as 

region size increases, is a nearly ubiquitous pattern of biodiversity. SARs exist at a wide range of 

spatial scales, from local to global, and in a wide range of taxa, including mammals (Pagel et al., 

1991). In the ecological literature, SARs have been explained by considering the factors that 

limit species from immigrating into, establishing, and persisting in a region (Arrhenius, 1921; 

MacArthur & Wilson, 1967; Preston, 1960). However, at large geographic scales, in situ 

diversification contributes significantly to generating diversity, and so a full understanding of the 

generation of species-area relationships at such scales is impossible without also considering the 

macroevolutionary processes of speciation and extinction (Losos & Schluter, 2000; Rosenzweig, 

1995; 1998).  

Here, we explore the evolutionary underpinnings of large-scale SARs, outlining the roles of area 

itself, environmental variation, clade traits and historical contingency. We adopt a model of clade 

diversity in which clade diversification within regions is diversity-dependent and SARs are 

created by the scaling of both diversity limits and diversification rates with area. We support this 

discussion with new analyses using mammals as they are a well-known, diverse, and globally-

distributed group with a wide variety of life histories, occupying a wide range of habitats and 

with robust data for many key traits (Jones et al., 2009).  

SARs have traditionally been treated as the outcome of differences between regions in the 

balance between immigration and local extinction (MacArthur & Wilson, 1967) and in the 

number of species that can coexist (Arrhenius, 1921; Preston, 1960). However, it was later 

recognized that SARs may not be controlled by the same processes at all spatial scales (Palmer & 
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White, 1994; Rosenzweig, 1995). At the smallest scales, SARs result from more complete 

sampling of the local biota as the area sampled increases, and as such they are sampling rather 

than biological phenomena. At larger scales (sampling all of the local biota), classical ecological 

explanations apply, with SARs emerging as a result of more species being able to immigrate into 

and persist in larger areas. Finally, at the largest scales, differences between regions in rates of 

speciation and extinction should be the main factor generating SARs (Losos & Schluter, 2000; 

Rosenzweig, 1995; 1998). Here, we focus on SARs at the largest geographic scale. For 

mammals, this large-scale phase is likely to occur only when considering quite large regions: in 

Kisel & Barraclough’s (2010) study of the spatial scale of speciation, the two mammal groups 

represented (bats and carnivores) both required a region larger than 400,000 - 500,000 km2 for 

any in situ speciation to occur. 

We use a framework of diversity-dependent cladogenesis (Section 1) to explore how the area 

(Section 2) and environment (Section 3) of regions affect diversification and diversity limits in 

the generation of SARs. We also examine the role of clade traits (Section 4) and temporal 

patterns of diversification (Section 5) in modulating the shape of SARs. See table A1.1 for a 

summary of the factors addressed. 

Methods 

We used the geographic distributions of 4650 terrestrial mammal species within PanTHERIA 

(Jones et al., 2009) to explore the scaling of species richness with area. The choice of appropriate 

regions at a global scale is not obvious, so we have taken two approaches to identifying 

provinces. First, we used botanical sampling regions based on geopolitical units (Taxonomic 

Database Working Group (TDWG), Brummit, 2001) to subdivide continental landmasses, 
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although we further separated disjunct sub-regions, such as islands. Second, we identified 

species presence in equal-area grid cells at a resolution (96.5 km) comparable to a 1° grid. We 

then used complete linkage hierarchical clustering on the Jaccard distance (Linder et al., 2005; 

but see Kreft & Jetz, 2010) between grid cells to identify approximate mammalian biotic regions.  

Both methods are hierarchically nested between levels but regions within the same level are not 

nested. The fineness of subdivision can also be varied: the TDWG standard defines four levels, 

ranging roughly from different biomes at the coarsest scale (level 1) to subdivisions within 

countries at the finest scale (level 4); the hierarchical clustering can be cut at different “heights” 

to give different numbers of regions and we have used 50, 100, 150 and 200 regions (mapped in 

figure S1.1).  The two region types differ in ways that are likely to affect the outcome: for 

example, political boundaries are likely to more finely partition large biotically homogenous 

regions in the temperate zone and agglomerate smaller biotically heterogeneous tropical regions. 

We used both methods and the variety of scales to assess the robustness of our conclusions to the 

details of sampling. Separating discontinuous parts of detailed polygons of TDWG regions, in 

combination with the imprecision in global species distribution maps, led to a large number of 

tiny islands and boundary regions with implausible biotas. We therefore removed all regions at 

the coarsest TDWG scale that did not contain at least one species endemic to that region, 

reducing 3974 candidate regions to 117. All nested subdivisions of these 117 regions at the finer 

TDWG scales were retained. 

The areas of both geopolitical and clustered regions were calculated using an equal-area 

projection of the land within each region (figure S1.2). We recorded both the total and endemic 

mammalian species richness for each region and fitted SARs at each scale of subdivision using 

linear models on log-log axes to estimate the slope. We modelled species richness (S) as a power 
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of area (A) as S = cAz (Arrhenius, 1921; Rosenzweig, 1995): although there has been 

considerable debate about the shape of SARs (Lomolino, 2000; Scheiner, 2003), our results 

should be general to alternative functions. For all further analyses, we used the most finely 

divided regions and compared results using TDWG Level 4 and 200 biotic regions. We also 

explored the differences between slopes of SARs arising from species endemic to a region versus 

those occurring in more than one region, and the variation among mammalian orders in slopes of 

SARs.  

To investigate the additional explanatory power of habitat diversity and environmental variables, 

we used two variables to capture different elements of habitat diversity: the diversity of land 

cover classes (GLCC v2.0, http://edc2.usgs.gov/glcc/glcc.php), calculated as the inverse of 

Simpson’s diversity index (1 - D) on the relative areas of the classes within each region; and the 

log range in elevation (GTOPO30, http://eros.usgs.gov/) within each region. We considered two 

environmental variables within regions: the mean annual temperature (www.worldclim.org) and 

the mean normalized difference vegetation index (NDVI, Los, pers. comm., updated versions of 

Los et al., 2000). We fitted multiple regressions with log area and each of these four variables in 

turn as predictors of log species richness. For each variable, we tested whether it showed a 

significant interaction with area as well as its significance as a main effect. All covariates were 

mean centred and standardized to facilitate the interpretation and comparison of these models 

(Schielzeth, 2010). 

An approximate measure of habitat breadth for mammalian species was found by counting the 

number of GLCC habitat cover classes across all the 96.5km cells intersecting each species' 

range. This number correlates strongly with the species' geographic range (Kendall's tau = 0.61) 

and we therefore also estimated a number of major habitats by counting only those habitats with 
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a proportional contribution of at least 0.142. This cutoff was selected because it minimises the 

observed correlation between the resulting number of major habitats and the species' range size 

(Kendall's tau = -0.0002). We then calculated the Kendall's correlation between family species 

richness and both the number of habitats and number of major habitats. 

In order to explore the effects of area on the temporal patterns of recent diversification within 

mammals, we identified two sets of monophyletic clades from the mammal supertree (Bininda-

Emonds et al., 2007, 2008), excluding monotypic clades. One set had crown ages younger than 

20 My (421 clades), the other had crown ages younger than 10 My (616 clades) and was nested 

inside the older set. We recorded each clade’s species richness, stem-group age and present-day 

area (either the total area of all TDWG level 4 provinces or of all biotic regions (finest scale) in 

which the component species occurred). We then fitted a suite of six models of diversification 

rate across each set (Phillimore, 2010; Rabosky, 2009b). The most complex model is an 

extension of those outlined in Rabosky (2009b) and Phillimore (2010) and fits an exponential 

decline in diversification with rate z over clade age (t) from an initial diversification rate (λ), but 

where log present-day area (A) contributes to both initial λ (scaling by c) and the rate of decline 

(scaling by p); the overall diversification rate is always scaled by the relative extinction rate (ε): 

ri = λ+c log Ai)( e
−(z+ p log Ai )t i 1 −ε( ) 

We also fitted five simplifications of this model by fixing sets of parameters at zero: a constant 

diversification rate across clades (c, z and p fixed), a constant diversification rate scaled by 

individual clade area (z and p fixed), an exponential decline in rate within clades (c and p fixed), 

an exponential decline from an initial λ scaled by area (p fixed) and an exponential decline at a 

rate z scaled by area (c fixed). We optimized parameter estimates for the free variables in each 
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model by maximizing the sum of log likelihoods of the observed species richness (n) across 

clades given clade age and the model estimates (following Bokma, 2003; Phillimore, 2010; 

Ricklefs, 2009). The models were not nested and we therefore used AIC to assess relative model 

support. As the two methods to define regions gave qualitatively similar results, we report only 

the TDWG analysis here. 

Section 1: A verbal model for clade diversification in space 

Diversity-dependent models of diversification have two main features: a growth phase, where the 

clade in question diversifies until it reaches an external limit; and an equilibrium phase, where 

species identity turns over but clade size fluctuates about that limit (Alroy, 1998; Sepkoski, 

1978). The precise shape of diversity-dependent diversification has been debated (Nee et al., 

1992; Rabosky, 2009a), but the exact shape of the diversification trajectory should not change 

the broad-scale implications of the existence of diversity-dependent diversification. There is 

taxonomic, phylogenetic, and paleontological evidence to support the existence of diversity-

dependent diversification in many cases, described variously as “ecological limits on diversity,” 

“diversification slowdowns,” and “diversity equilibria” (Alroy, 1998; Cardillo, in press; Nee et 

al., 1992; Purvis et al., in press; Rabosky, 2009a; Rabosky & Lovette, 2008; Sepkoski, 1976; 

Vamosi & Vamosi, 2010). 

A variety of processes could generate diversity-dependent diversification. Perhaps the most 

commonly referenced is a model of ecological limits wherein, as available niches are filled, 

speciation declines and new species are only added to a region following extinctions and release 

of sufficient niche space (McKinney, 1998; Rabosky, 2009a). Such a mechanism would provide 

a link between the ecological processes typically associated with SARs and the evolutionary 
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processes being proposed here.  Alternatively, reduction of both population and range sizes as 

diversity increases could lead to decreased rates of speciation and increased rates of extinction 

and thus a diversification slowdown conceivably divorced from any niche-based mechanism 

(Pigot et al., 2010; Rosenzweig, 1975).  

Within our diversity-dependent framework, there are only three features of a clade’s 

diversification curve that can vary: the speed at which a region initially accumulates species 

(figure A1.1a), the diversity limit (or equilibrium species richness, figure A1.1b), and the age at 

which diversification begins (figure A1.1c) (see also Rabosky, 2009a). Before equilibrium is 

reached, the richness of clades depends only on their age and their rate of diversification. In 

contrast, clade sizes at equilibrium depend on their diversity limits, which are controlled by the 

interaction of external factors with clade traits (Mallet, submitted and see below). SARs will 

emerge from this model whenever diversification rates and/or diversity limits are higher in larger 

regions (figure A1.2). When a clade inhabits multiple separate regions of different areas, the 

species richness of that clade will be higher in the larger regions, creating a SAR.  

Globally, mammalian species richness shows strong scaling with area between non-nested 

provinces for both TDWG and clustered regions at all four scales (figure A1.3). These are well 

described by power laws but there are differences between the two region types (figure A1.3a): 

clustered regions show consistent slopes across changing scales (0.41 - 0.43), whereas TDWG 

regions show a decline in slope from 0.47 to 0.24 with increasing subdivision. These slopes lie 

within the range of 65 previously reported slopes from mammal power law SARs (figure A1.3b; 

Drakare et al., 2006), but the higher values fall toward the top of the reported range (92% 

quantile). The changes in slope between TDWG scales is accompanied by higher intercepts 

(table S1.1, figures S1.3-4) and is primarily driven by small political units, such as the Vatican 
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City and Likoma, within species-rich areas (figure A1.3c); these outliers are not found in small 

regions based on mammalian biotas (figure A1.3d). In all cases, endemic species also show 

significant scaling with area but with reduced slopes compared to total and non-endemic species 

richness (figure A1.3b-c, table S1.1, figures S1.3-4).  

We also tested how well area explains variation in diversification rate across sets of mammalian 

clades. For both sets of clades (crown group age < 20 My and < 10 My, table A1.2), an 

exponential decline in diversification rate is best supported, demonstrating apparent limits to 

diversity. For clades younger than 20 My, the most complex model was best supported, with 

clades occupying larger areas having increased initial diversification rates and decreased rate of 

decline. For clades < 10 My, a simpler model, with area affecting only the rate of decline, could 

not be rejected. These results suggest that for mammals the decline in diversification rate as a 

region fills is more strongly affected by available area than the initial rate. Nevertheless, support 

for an effect of available area on initial rate was still found for both clade sets and the similar 

likelihoods for the younger clades may simply reflect individual clade differences within the set 

tested (see also Cardillo et al., 2005; Linder, 2008).  

Section 2: Generating SARs in an evolutionary framework 

In explanations of SARs, area is frequently viewed as a proxy or summary variable (Hubbell, 

2001) acting only indirectly via other variables, such as population size and habitat diversity that 

are highly correlated with area (MacArthur & Wilson, 1967). The individual effects of area and 

such correlated factors are difficult to separate in practice (Kallimanis et al., 2008; Triantis et al., 

2003), and their relative importance is likely to vary depending on the taxon concerned (Ricklefs 
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& Lovette, 1999; Rosenzweig, 1995). However, we believe that area could conceivably have 

some direct effects, and we discuss these first.  

Direct effects of area 

We can see only two ways that area could control diversity directly (i.e., without invoking 

increased population sizes or habitat variety). Firstly, extinction rates should be lower in larger 

regions, in which refuge populations are more likely to survive after any catastrophic disturbance 

affecting only part of the region (Wiley & Wunderle, 1994). Secondly, if populations are 

patchily distributed, speciation rates should be higher in larger areas (Losos & Schluter, 2000), 

where distances between populations can be larger and barriers that can cause vicariant 

speciation are likely to be larger and more numerous (Rosenzweig, 1995). It could be argued that 

the effect of barriers is really an indirect effect of area via fragmentation, and we discuss this 

point further below. Greater geographic isolation between populations will lead to higher 

speciation rates if: 1) there is sufficient selection pressure and/or genetic drift to drive population 

divergence through to reproductive isolation (although there is no evidence for speciation via 

genetic drift on its own: Coyne & Orr, 2004); 2) gene flow is the main force preventing 

population divergence and speciation (Slatkin, 1987); and 3) the regions considered are large 

enough for  populations to be sufficiently isolated to permit speciation. The definition of ‘large 

enough’ will depend on the dispersal ability of the organism and the strength of selection relative 

to gene flow, as poorer dispersers will attain sufficient isolation in smaller regions (Kisel & 

Barraclough, 2010), as will species whose populations experience stronger divergent selection 

(Slatkin, 1973, 1985).  
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Effects of area via population size 

Because larger regions are able to support greater total numbers of individuals (Brown, 1995), 

and thus are also likely to have species with larger population sizes, the effects of population size 

on diversification can contribute to the generation of SARs. In fact, many of the effects of 

population size that we describe below have previously been described as direct effects of area 

itself (MacArthur & Wilson, 1967; Ricklefs & Lovette, 1999). It is well established that larger 

populations are less likely to go extinct, as they are more buffered from the effects of 

demographic stochasticity, environmental disasters, and habitat loss (Lande, 1993; Rosenzweig, 

1995). Additionally, there are three ways that larger population size may drive higher speciation 

rates. First, new beneficial mutations will arise faster in larger populations (Willi et al., 2006), 

allowing faster divergence between separated populations if mutation limits speciation (Schluter, 

2009). Second, larger populations hold more standing genetic variation (Frankham, 1996; Leimu 

et al., 2006) for selection to work on (Schluter & Conte, 2009; Weber, 1990). Third, newly 

isolated populations resulting from the break-up of larger populations will also be larger, and 

therefore more likely to survive long enough to diverge into new species (Chown & Gaston, 

2000).  In addition to effects on rates of diversification, the total abundance of individuals 

supported by a region places a hard limit on the number of species that the region can hold. If we 

assume that all species are ecologically identical and so have the same minimum viable 

population size (Gilpin & Soule, 1986; Hubbell, 2001), then larger regions will be able to 

support more species at sustainable equilibrium population sizes. 
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Effects of area via habitat diversity and fragmentation 

Some authors have suggested that SARs are only a proxy for the scaling of species richness with 

habitat diversity (Baldi, 2008; Losos & Parent, 2010; MacArthur & Wilson, 1967; Triantis et al., 

2003), and indeed habitat diversity and area are typically very highly correlated.  Along steep 

environmental gradients, and in heterogeneous habitats, populations can more easily become 

specialised to different habitats, making ecological speciation more likely and perhaps more 

rapid (Schluter, 2009). Regions with high habitat diversity also have a higher number of possible 

distinct niches or niche combinations (Hutchinson & MacArthur, 1959), thus increasing the 

number of species that can coexist at equilibrium.  

High levels of regional fragmentation can also elevate diversification rate and diversity limits, by 

providing a textured landscape with subunits that are physically isolated from one another but 

environmentally equivalent. Barrier formation can occur through many processes, including river 

formation, mountain building, sea-level fluctuation, volcanic uplift, and habitat fragmentation, 

and is more likely in larger regions. Barriers elevate diversification rate by separating  previously 

interacting populations, which are then more likely to evolve reproductive isolation 

(Rosenzweig, 1995). In addition, fragmentation can boost equilibrium diversity, as ecologically 

equivalent species can be maintained in separated sub-regions (Shmida & Wilson, 1985; Orme et 

al. in prep). For example, Esselstyn et al. (2009) suggest that tree shrew diversity in the 

Philippines has arisen predominantly via speciation in allopatry on newly formed islands, with 

limited apparent morphological or ecological differentiation. One particularly important measure 

of regional fragmentation is topographic complexity, as environmental turnover along altitude 

gradients is a barrier to many species’ ranges (McInnes et al., 2009). The richness of uniquely 

adapted, restricted-range endemics found along altitudinal transects in tropical mountains is 
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perhaps the classic example of such fine-scale spatial partitioning (Janzen, 1967; Rahbek & 

Graves, 2001). 

The effects of fragmentation on species richness will show a complex relationship to the total 

summed area of the subunits. While greater fragmentation of a region may permit more species 

to exist within the same total area, it may also push the area of the component fragments below a 

size which can maintain viable populations (Gilpin & Soule, 1986; Maurer & Nott, 1998) or 

generate endemics (Kisel & Barraclough, 2010; Losos & Schluter, 2000). Thus, plots of species 

richness against total area occupied may not yield significant relationships unless the degree of 

fragmentation is also considered and total area is scaled appropriately (see Orme et al. in prep). 

In addition, the dispersal ability of a clade in combination with the geographic structure of the 

fragments will influence the number of fragments that can be occupied. Finally, the effect of 

barriers will depend on the average range sizes of species in a region: if the average range size is 

small, barriers need not be large or bisect an entire region to cause speciation (Rosenzweig, 

1975).  

Attesting to the importance of environmental features in the generation of SARs, increased 

elevational range is associated with higher diversity in both geopolitical and biotic regions; 

habitat diversity also drives higher diversity, but only in geopolitical regions (table A1.3, figure 

S1.5). This arises from differences between the clustering methods: areas with similar habitat are 

likely to be biotically homogenous and therefore form a single biotic region, whereas political 

boundaries are more likely to cut across such regions. As a result, Simpson’s index (1 - D) of 

habitat diversity is low in biotic clusters and scales extremely weakly with region area (intercept:  

0.227, se = 0.042, t=3.83; slope: 0.018, se = 0.014, t = 1.27; df = 148) whereas in TDWG regions 

it is higher and scales strongly with area (intercept:  0.356, se = 0.025, t=14.39; slope: 0.055, se = 
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0.005, t = 10.27; df = 578). In all these models, the high relative magnitude of the standardized 

parameter estimate for area also implies it is not simply acting as a proxy for either variable.  

Section 3: Abiotic factors modulating the species-area relationship 

Some abiotic factors, such as energy availability, do not correlate closely with area but may still 

affect diversification rates or diversity limits of different regions, leading to departures from 

SARs that depend on a region’s prevailing environmental conditions. 

Energy availability is one of the key variables thought to contribute to large-scale spatial patterns 

of diversity, and has mainly been discussed for its part in generating latitudinal differences in 

diversity (reviewed in Mittelbach et al., 2007; Willig et al., 2003 and see Davies et al., in press). 

On average, energy availability (either ambient, e.g., temperature, or productive, e.g., plant 

biomass) explains 60% of the variation in broad-scale richness across a range of plant and animal 

groups (Hawkins et al., 2003 and see Davies et al., in press).  This variation should lead to 

consistent differences between SARs of high- and low-energy regions. 

As expected, increases in both mean annual temperature and mean NDVI act to significantly 

elevate both overall mammal diversity and slopes of mammalian SARs (table A1.3, figure S1.5). 

Again though, as in analyses including habitat and topographical diversity, the relative 

magnitudes of standardized regression coefficients show that area is the main driver of diversity 

within regions.  

We expect energy to affect SARs through both diversification rates and diversity limits. First, it 

could affect speciation rates through faster rates of molecular evolution, with increased 

metabolic rates in higher-energy regions leading to both shorter generation times and higher 
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mutation rates (Bromham, in press; Rohde, 1992). There has been mixed evidence for this 

molecular rate hypothesis, with particularly weak support in endotherms (Cardillo et al., 2005) 

and no support in angiosperms (although a direct effect of energy on species richness is 

supported: Davies et al., 2004). However, Gillman et al. (2009) recently presented evidence for 

higher rates of microevolution in tropical mammals and explained this as an indirect 

consequence of more rapid co-evolution with other tropical ectotherms (see also Fischer, 1960; 

Schemske, 2002). Energy is also expected to increase diversification rates through effects on 

population dynamics, as aseasonal and elevated productive energy can support larger 

populations, resulting in increased speciation and reduced extinction, as described above (and see 

Davies et al., in press). Such an aseasonal and high-energy environment will also increase the 

equilibrium diversity limit by increasing resource availability, facilitating specialisation to very 

narrow niches, and thus increasing the number of distinct niches available (Janzen, 1967). 

Conversely, seasonal habitats in temperate regions may select for more motile, generalist 

species. These traits should decrease both speciation rate and the number of species that can be 

supported in a region (Dynesius & Jansson, 2000; Sheldon, 1996). Although not attempted here, 

incorporating ecological covariates into our diversification models could lend insight into the 

effects of, for example, energy availability on the diversification trajectory of clades in different 

regions (Vamosi & Vamosi, 2010).  

Section 4: Clade traits modulating the species-area relationship 

So far our framework has considered species richness within a region as an outcome of solely 

environmental and geographic influences, taking a neutral view of the organisms themselves 

(MacArthur & Wilson, 1967). However, there is abundant research (reviewed in Coyne & Orr, 

2004) indicating that species traits affect clade diversity.  Any clade traits that affect diversity 
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will give rise to clade-specific SARs, and create scatter around SARs that aggregate species 

richness across multiple clades. The effects of clade traits on SARs are reflected in the clear 

differences between mammalian orders in the scaling of species richness with area: order-

specific slopes vary between -1.71 to 0.59 with medians of 0.16 for clustered regions and 0.11 

for geopolitical regions (table S1.2; because regions are not nested, negative slopes arise simply 

where orders have high diversity in small regions). 

According to our general model, clade traits can modulate SARs by modifying the net rate of 

diversification (figure A1.1a) and/or the diversity limit (figure A1.1b). It is not straightforward to 

assign traits to one of these mechanisms. Firstly, data are lacking: studies analysing differences 

between clades in diversification (reviewed in: Jablonski, 2008b; Rabosky & McCune, 2010) 

have not discriminated between effects on diversification rate and effects on diversity limits (but 

see Vamosi & Vamosi, 2010), and studies of diversification slowdowns in phylogenies (e.g., 

Phillimore & Price, 2008) have not investigated the influence of species’ traits. Secondly, 

individual traits are unlikely to act solely through modification of either diversification rates or 

diversity limits (Mallet, submitted). Finally, many clade traits are strongly correlated (e.g., 

geographic range size, dispersal distance and body size: Jablonski, 2008b; Jones et al., 2009) and 

so any traits acting through one mechanism are likely to be associated with traits acting through 

the other. Below, we discuss traits expected to influence SARs, with particular emphasis on 

those that affect species’ use of space. 

While most traits are likely to influence both diversification rates and diversity limits, life history 

traits are perhaps the only class of traits expected to influence only diversification rate. 

Typically, r selected species exhibit higher net rates of diversification than K selected species, 

and several mechanisms have been proposed to explain this (Bromham, in press; Marzluff & 
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Dial, 1991; Mayhew, 2007). Short generation times are associated with high rates of population 

increase and the ability to rapidly exploit favourable conditions (Mayhew, 2007), conferring 

resilience to disturbance and leading to lower rates of extinction. They are also associated with 

increased rates of evolution due to shorter nucleotide generation times (Bromham, in press; 

Martin & Palumbi, 1993; Mittelbach et al., 2007), higher metabolic rates (Bromham, in press; 

Martin & Palumbi, 1993), larger population sizes and increased fecundity (Bromham, in press), 

in all cases leading to higher rates of speciation. In addition, the larger population sizes 

associated with r selection should directly increase speciation rates and decrease extinction rates, 

as discussed in Section 2. 

Clade traits that determine how space is occupied within a region also affect both the generation 

and maintenance of SARs. Larger species’ ranges are associated with lower clade diversity limits 

as well as reduced rates of extinction (e.g., Jablonski, 2008a; Payne & Finnegan, 2007), and 

increased rates of speciation (Phillimore et al., 2006, but see Jablonski & Roy, 2003). Regarding 

diversity limits, there is evidence from both mammals (Orme et al. in prep) and birds (Phillimore 

et al., 2008) that increasing species’ range overlap is a stronger predictor of increased species 

richness than decreased median range size. 

Similarly to species’ range size, several aspects of narrow niche breadth, such as ecological 

specialisation, high host specificity and narrow environmental tolerances, have been associated 

with increased diversity limits as well as increased rates of extinction and speciation (Davies et 

al., in press; Jablonski, 2008b). Increased clade diversity is also associated with greater niche 

overlap rather than decreased niche breadth (see also Safi et al., in press). Ricklefs (2009) has 

shown that South American bird families of varying species richness do not differ in the average 

number of habitats occupied by species, suggesting that niche overlap between species increases 
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as family size increases. We find the same in mammals, using simple measures of the number of 

habitats used by species. There is no significant correlation between the richness of mammalian 

families and either the average total number of habitats occupied (tau = -0.076, p=0.21) or the 

average number of major habitats occupied (tau = -0.043, p=0.49) nor is there a decrease in mean 

species range size with increasing family richness (tau=-0.001, p=0.99).   

Finally, increased dispersal ability has been found to reduce speciation and extinction rates in 

some cases (Xiang et al., 2004), while in others it has been shown to increase diversification rate 

(Phillimore et al., 2006; Phillimore & Price, 2009). With respect to diversity limits, high 

dispersal ability may lead to low equilibrium diversity within a region if it leads to clades 

consisting of few species with large ranges (Davies et al., in press).  At the other extreme, strong 

philopatry, where individuals retain or return to natal locations, might both increase rates of 

diversification by accelerating rates of genetic differentiation (Peterson, 1992) and increase 

equilibrium diversity by impeding range expansion and boosting the number of equivalent 

species that can persist in a region (Seehausen, 2006; Shmida & Wilson, 1985). Alternatively, 

high dispersal ability can increase the rate at which new regions are occupied, increasing clade 

richness through occupation of multiple regions. Such long-distance dispersal may significantly 

distort SARs if newly colonised regions harbour clades with higher diversity due to competitive 

release (Purvis et al., in press).  

Section 5: Historical and temporal effects on the species area relationship 

In general, diversification in any region is influenced by the climatic, geological, and 

biogeographical history of the region (Esselstyn et al., 2009; Purvis et al., in press; Springer et 

al., in press), and as a result, SARs should be affected by history as well. SARs will be clearest 
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when clades have reached equilibrium throughout their ranges, but this requires that they have 

had enough time to diversify to their limit in each region that they occupy. Thus, in parts of the 

world where the current habitat has only recently become available, current diversity is likely to 

be lower than expected (e.g., a recently-formed island, Esselstyn et al., 2009, or a recently 

deglaciated region, Davies et al., in press; Pielou, 1979) and may be biased toward large-ranged 

generalists (Davies et al., in press; Dynesius & Jansson, 2000; Safi et al., in press). In contrast, a 

comparison of mammalian sister taxon pairs with disjunct distributions across two realms 

indicated that sisters remaining in the realm unambiguously reconstructed as ancestral (DIVA: 

Ronquist, 1997) are significantly less species rich (12 out of 41, binomial p = 0.004 table S1.3) 

than sisters that dispersed. This suggests a diversification burst in newly colonized regions, 

driven by competitive release (more in Purvis et al., in press). Finally, if a region is subject to 

frequent extrinsic perturbations (such as an archipelago subject to repeated sea-level changes), 

fluctuating extinction rates make it unlikely that equilibrium diversity will ever be reached or 

maintained (Esselstyn et al., 2009; Whittaker et al., 2008). Indeed, explanations for high tropical 

diversity, such as the time-for-speciation effect (Stephens & Wiens, 2003) and reduced 

extinction due to long-term climatic stability (Fischer, 1960), are compatible with tropical 

regions being able to more closely approach diversity limits (more in Davies et al., in press). 

Diversity may also transiently over- or under-shoot the diversity limit of a region if speciation or 

extinction occurs very rapidly, or if perturbations occur that suddenly alter clade diversity limits 

(Gavrilets & Vose, 2005). Alternatively, non-ecological modes of speciation (e.g., via sexual 

selection or polyploidy), may produce transient species that are unable to persist in the long-term 

given the niche space available, and thus are committed to eventual extinction (Chesson, 2000; 

McPeek, 2008; Rosenzweig, 1995). This may also apply to ecologically equivalent species 
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formed in allopatry, if the barriers separating them are themselves transient. Transient dynamics 

are now thought to be crucial in predicting biodiversity responses to current global change 

(recently reviewed in Jackson & Sax, 2010); though the changes will likely not be as 

immediately apparent as for ecological processes such as community assembly, evolutionary 

clade dynamics will certainly be affected as well (Rosenzweig, 2001).  

Conclusions 

We have presented a framework, based on a diversity-dependent model of clade diversification, 

for understanding how evolutionary processes contribute to the creation of large-scale SARs. 

This framework is supported by analyses on mammals using data from the PanTHERIA database 

(Jones et al., 2009). SARs themselves result from direct and positive effects of area on 

diversification rates and diversity limits, as well as indirect effects of area through population 

size, habitat diversity, and habitat fragmentation. We found that these effects are apparent in the 

histories of mammal diversification – clades occupying larger areas had higher initial 

diversification rates and lower rates of decline in diversification. We also confirmed that habitat 

and topographical diversity are significant predictors of regional diversity in mammals, but 

found that neither is a proxy for area - the most predictive models of diversity always include 

area as well. Environmental factors and clade traits that are not tightly correlated with area also 

cause systematic differences in SARs between clades or regions, and cause scatter around any 

general SAR generated without accounting for them. We tested the influence of energy 

availability on mammal diversity and showed that high energy availability significantly increases 

the slopes and intercepts of SARs. In addition, mammal orders vary greatly in the slopes of their 

SARs. Finally, we provide evidence that historical contingencies impact SARs, demonstrating 
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that mammal clades able to colonize new, competitor-free regions are more diverse than their 

stay-at-home sisters. 

Schoener (1976) referred to the species-area relationship as the phenomenon closest to attaining 

rule status in ecology, and SARs are indeed one of the most general diversity patterns, existing 

for a wide range of organisms across a range of spatial scales. However, we argue here that in 

addition to the processes most discussed in the ecological literature – immigration, local 

extinction and species coexistence - SARs are also influenced by macroevolutionary processes, 

in particular speciation and global extinction. None of these processes operates in isolation, and 

every SAR is the result of interplay between both ecological and evolutionary processes. 

Diversity limits, for instance, must ultimately result from ecological limits on the number of 

species that can coexist in a region, though the speed at which they are reached may depend on 

evolutionary processes. We suggest that a full understanding of species-area relationships will 

require integrating both ecological and evolutionary perspectives on the processes that generate 

and constrain diversity.  
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Tables 

Table A1.1. Summary of factors affecting diversification rates and diversity limits. 

Type of factor Factor 

Effects on speciation 

rate 

Effects on extinction 

rate 

Effects on  

diversity limits 

  

Area 

 
↑ potential for 
geographic isolation of 
separated populations 
 

 
↓ by ↑ survival of 
refuge populations 

 

 
Environmental 
factors strongly 
correlated with 
area 

 

Population Size 

 
↑ rate of appearance of 
beneficial mutations, 
standing genetic 
variation, persistence of 
incipient species 

 
↓ by buffering 
populations from 
demographic 
stochasticity, 
environmental 
disasters, habitat loss 

 
↑ number of species with 
viable populations 
supported 

  

Habitat Diversity 

 
↑ population divergence 
through local adaptation 

  
↑ niche space available 

  

Fragmentation 

/Topographic 

Diversity 

 
↑ isolation of 
populations; however 
past a certain point, will 
↓ speciation by ↓ 
population size 

 
if fragmentation 
results in too small 
patches of area or 
habitat, will ↑ 
extinction rate 

 
↑ by allowing more 
ecologically equivalent 
species to be supported 
 
 
 

 
Environmental 
factors not 
strongly correlated 
with area 
 

 

Energy 

availability 

 
↑ rate of molecular 
evolution, rate of co-
evolutionary dynamics, 
size of populations 
supported 

  
↑ by facilitating 
specialization to narrow 
niches 

 
Clade traits 

 

Life history traits 

 
faster life cycle ↑ 
speciation by increasing 
mutation rate 

 
faster life cycle ↓ 
extinction by ↑ 
resilience to 
disturbance  

  

  

Range size 

 
larger range sizes ↑ 
speciation by ↑ potential 
for isolation of 
populations 

 
larger range sizes ↓ 
extinction by ↑ 
survival of refuge 
populations 

 
smaller range sizes ↑ 
diversity limit by allowing 
more species to pack into 
same area 

  

Niche breadth 

 
narrower niche breadths 
associated with ↑ 
speciation  

 
narrower niche 
breadths associated 
with ↑ extinction  

 
narrower niche breadths ↑ 
diversity limit by allowing 
finer subdivision of niche 
space  

  

Dispersal  

 
↓ by reducing potential 
isolation of populations, 
but can also ↑ speciation 
rate by ↑ rate at which 
species colonize new 
regions 

 
↓ by ↑ resilience to 
disturbance 

 
↓ if high dispersal ability is 
associated with large, non-
overlapping species ranges 
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Table A1.2. Summary of diversification models fitted to mammalian clades. Models were fit using 

TDWG Level 4 data to calculate present clade distribution area, for clades with crown ages younger 

than (a) 20 or (b) 10 million years before present. Six models of diversification were fitted 

representing: (1) constant rate, (2) constant rate scaled by region area, (3) exponential decline, and 

exponential decline with region area scaling (4) initial rate, (5) rate of decline or (6) both. In each 

case, the maximum likelihood estimate of the model is reported for each free parameter within the 

bounds shown. Dashed parameter estimates were fixed at zero. The overall best-fit model for each set 

of clades is shown in bold. 

  lambda c z p epsilon ∆AICc likelihood 
  [-1,1] [-0.2,0.2] [-0.2,0.2] [-0.2,0.2] [0.5,0.999]     
a) 20 MY           
1 0.340 --- --- --- 0.990 222.4 -1410.0 
2 -0.300 0.040 --- --- 0.990 136.8 -1366.2 
3 0.790 --- -0.030 --- 0.990 187.2 -1391.4 
4 -0.300 0.040 -0.030 --- 0.610 53.1 -1323.3 
5 0.474 --- -0.138 0.007 0.814 19.1 -1306.3 
6 -0.260 0.040 -0.100 0.004 0.610 0.0 -1295.8 

b) 10 MY      
1 0.265 --- --- --- 0.999 164.2 -1578.3 
2 -0.223 0.030 --- --- 0.990 93.4 -1541.9 
3 0.530 --- -0.043 --- 0.999 110.6 -1550.5 
4 -0.193 0.031 -0.043 --- 0.520 30.0 -1509.1 
5 0.377 --- -0.232 0.012 0.711 0.0 -1494.1 

6 -0.064 0.023 -0.120 0.005 0.500 1.16 -1493.7 
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Table A1.3. Multivariate SARs, with mammal species richness regressed against area and other 

environmental variables.  

    a) geopolitical regions   b) biotic regions   

  estimate SE  estimate SE  

a) n 580     150     

 intercept 1.7419 0.0186 *** 1.2670 0.0342 *** 

 habitat diversity 0.0234 0.0194  -0.0649 0.0340  

 log area 0.3407 0.0203 *** 0.7608 0.0352 *** 

 interaction 0.0410 0.0152 ** -0.0340 0.0325  

b) n 578     200     

 intercept 1.6810 0.0202 *** 1.0211 0.0391 *** 

 log elevation range 0.0533 0.0297  0.2383 0.0573 *** 

 log area 0.3956 0.0237 *** 0.5869 0.0478 *** 

 Interaction 0.1114 0.0162 *** 0.1923 0.0343 *** 

c) n 477     130     

 intercept 1.8201 0.0160 *** 1.0802 0.0496 *** 

 NDVI 0.0142 0.0174  0.1947 0.0521 *** 

 log area 0.3075 0.0218 *** 0.8997 0.0536 *** 

 interaction 0.1007 0.0218 *** -0.0442 0.0550  

d) n 525     196     

 intercept 1.7463 0.0158 *** 1.1339 0.0343 *** 

 temperature 0.0577 0.0168 *** 0.2750 0.0407 *** 

 log area 0.4110 0.0201 *** 0.8411 0.0341 *** 

 interaction 0.0979 0.0179 *** -0.0545 0.0432  

 

In addition to area, models included (a) habitat diversity, (b) log range in elevation, (c) mean annual 

temperature and (d) mean NDVI. The models were fitted to log 10 species richness within both 

geopolitical and biotic regions and the explanatory covariates in all models were centred and 

standardized to facilitate model comparison. The statistical significance of each parameter is given  

(* p < 0.05, ** p < 0.01, *** p < 0.001), as well as the number of regions with available data (n) for 

each model. 



208 

Figures 

Figure A1.1. Variation in patterns of clade diversification from a) initial rate of diversification, b) 

equilibrium diversity, c) clade age and d) reinforcing (solid grey) and opposing (dashed grey) 

combinations of rate and equilibrium diversity. Sampling clade diversity at the time specified by the 

vertical line demonstrates the variation possible.  

Figure A1.2. Development of the species area relationship. a) The development of a species area 

relationship (SAR) across three regions (X, Y, Z), in which both initial rate of diversification and 

equilibrium diversity increase with area. b) The resulting SAR across regions exhibits power law 

scaling both before (dashed line) and after (solid line) the regions have reached equilibrium diversity. 

It is important to discriminate between the clade diversification curves (a) and SARs (b); each region 

will follow a particular diversification trajectory but contributes a single point to the SAR. 

Figure A1.3. Species area relationships in mammals across scales. a) Slopes and their standard 

errors of species area relationships (SARs) for 4560 terrestrial mammals at four different scales 

across geopolitical regions (T 1-4) and biotic regions (C 1-4). b) Distribution of power law 

exponents from mammalian SARs showing the range of non-nested region sizes considered 

(grey lines – data from Drakare et al. (2006); black lines – values from panel above).  

Scatterplots show the distribution and least squares fit of SARs for T4 (c) and C4 (d) for total 

(black) and endemic species richness (grey). See also table S1.1 and figures S1.3-4. 
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Figure A1.1 

 

Figure A1.2. 
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Figure A1.3 
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Supporting information for Appendix 1. 

How diversification rates and diversity limits combine to create large-scale species-area 

relationships 

Tables 

Table S1.1. Parameters of linear regression models of log species richness as a function of log 

region area for two region types at four scales for all, for only endemic and for only non-endemic 

species within each region. 

 

  Clustering   TDWG    

  50 100 150 200 L 1 L 2 L 3 L 4 

all int -0.855 -0.653 -0.617 -0.488 -0.591 -0.273 0.197 0.721 

 se 0.15 0.108 0.086 0.081 0.089 0.083 0.072 0.059 

 p *** *** *** *** *** ** ** *** 

 slope 0.425 0.427 0.429 0.412 0.474 0.4 0.329 0.237 

 se 0.036 0.028 0.02 0.019 0.024 0.019 0.015 0.013 

 p *** *** *** *** *** *** *** *** 

endemic int -0.818 -0.915 -0.709 -0.555 -1.009 -0.762 -0.388 -0.329 

 se 0.309 0.168 0.148 0.15 0.09 0.089 0.09 0.084 

 p * *** *** *** *** *** *** *** 

 slope 0.365 0.397 0.326 0.26 0.39 0.306 0.168 0.142 

 se 0.062 0.037 0.030 0.030 0.024 0.021 0.019 0.018 

 p *** *** *** *** *** *** *** *** 

non-endemic int -0.849 -0.609 -0.610 -0.477 -0.454 -0.166 0.37 0.898 

 se 0.150 0.112 0.090 0.086 0.117 0.1 0.08 0.06 

 p *** *** *** *** *** . *** *** 

 slope 0.406 0.402 0.416 0.402 0.421 0.368 0.293 0.201 

 se 0.034 0.028 0.021 0.019 0.029 0.022 0.017 0.013 

 p *** *** *** *** *** *** *** *** 
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Table S1.2. Slopes of SARs for mammalian orders for both (a) geopolitical and (b) biotic regions. 

 a) TDWG  b) Clustering  

 Slope SE N Slope SE N 

Afrosoricida -0.015 0.077 37 -0.733 0.382 5 

Artiodactyla 0.112 0.013 482 0.304 0.033 79 

Carnivora 0.106 0.009 498 0.304 0.027 92 

Chiroptera 0.131 0.014 557 0.285 0.021 167 

Cingulata 0.183 0.040 129 0.111 0.068 18 

Dasyuromorphia 0.311 0.047 11 0.372 0.057 15 

Dermoptera 0.000 0.000 16 0.000 0.000 7 

Didelphimorphia 0.127 0.031 160 0.091 0.066 19 

Diprotodontia 0.302 0.058 26 0.334 0.046 31 

Erinaceomorpha 0.035 0.010 199 0.115 0.071 30 

Hyracoidea -0.006 0.021 72 0.130 0.067 9 

Lagomorpha 0.079 0.010 416 0.175 0.042 57 

Macroscelidea 0.053 0.028 39 -0.685 0.681 5 

Microbiotheria 0.000 0.000 5 0.000 0.000 3 

Monotremata 0.001 0.049 12 0.096 0.069 12 

Notoryctemorphia 0.623 0.546 3 0.396 0.268 4 

Paucituberculata 0.099 0.203 5 0.388 0.067 4 

Peramelemorphia 0.174 0.035 17 0.127 0.054 18 

Perissodactyla 0.022 0.020 142 0.240 0.074 30 

Pholidota 0.037 0.011 132 0.079 0.030 23 

Pilosa 0.212 0.032 70 0.041 0.042 9 

Primates 0.120 0.023 230 0.217 0.043 51 

Proboscidea 0.075 0.018 73 0.182 0.079 11 

Rodentia 0.209 0.011 547 0.403 0.025 132 

Scandentia 0.036 0.023 63 0.038 0.040 24 

Soricomorpha 0.111 0.013 406 0.274 0.033 65 

Tubulidentata 0.000 0.000 53 0.000 0.000 6 
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Table S1.3. Dispersal analysis. Sister clade pairs identified using DIVA that show unambiguous reconstructed 

ancestral ranges and where one sister clade retains that ancestral range and the other occupies a differing new range. 

Italicized rows show clades with higher species richness in the new range. 

Family 

Mammal Tree 

Node Ancestral Area New Area 

Species in 

Ancestral Area  Species in New Area 

Bovidae -1008 IndoMalay Nearctic, Palearctic 1 2 

Bovidae -940 Afrotropics Palearctic 12 22 

Bovidae -973 Afrotropics Palearctic 4 3 

Canidae -1217 Palearctic Neotropics 1 9 

Canidae -1225 Palearctic Afrotropics 9 1 

Canidae -1226 Palearctic Nearctic 9 2 

Cercopethicidae -780 Afrotropics IndoMalay 8 11 

Cercopethicidae -790 IndoMalay Australasia 2 4 

Cercopethicidae -801 Afrotropics IndoMalay 9 23 

Cervidae -1029 Palearctic Neotropics 1 14 

Cervidae -1023 Palearctic IndoMalay 5 18 

Emballonuridae -1429 Australasia Neotropics 7 18 

Emballonuridae -1417 Australasia Afrotropics 7 2 

Equidae -1116 Palearctic Afrotropics 2 3 

Erinaceidae -1788 Palearctic IndoMalay 11 6 

Heteromyidae -891 Nearctic Neotropics 4 31 

Leporidae -878 Afrotropics Nearctic 6 15 

Loridae -909 Afrotropics IndoMalay 3 3 

Manidae -1328 Afrotropics IndoMalay 3 4 

Molossidae -1513 Afrotropics Neotropics 2 3 

Molossidae -1524 Neotropics 
Australasia, 
IndoMalay 15 4 

Molossidae -1538 Neotropics Afrotropics 15 22 

Muridae -68 IndoMalay Palearctic 2 20 

Muridae -881 Afrotropics IndoMalay 11 4 

Mustelidae -1138 Palearctic Neotropics 3 2 

Mustelidae -1159 IndoMalay Neotropics 2 3 

Mustelidae -1164 IndoMalay Afrotropics 1 2 

Mustelidae -1166 IndoMalay Neotropics 4 8 

Myoxidae -670 Palearctic Afrotropics 2 14 

Ochotonidae -783 Palearctic Nearctic 2 2 

Pteropodidae -1342 Australasia IndoMalay 14 21 

Pteropodidae -1357 Australasia Afrotropics 60 28 

Rhinolophidae -1474 IndoMalay Australasia 3 14 

Rhinolophidae -1476 Australasia Afrotropics 1 2 

Rhinolophidae -1491 Afrotropics Australasia 2 5 

Sciuridae -503 Nearctic Palearctic 2 11 

Sciuridae -617 IndoMalay Nearctic 4 2 

Tapiridae -1111 IndoMalay Neotropics 1 3 

Vespertilionidae -1631 IndoMalay Palearctic 5 7 

Viverridae -1310 Afrotropics IndoMalay 1 2 

Viverridae -1312 Afrotropics IndoMalay 1 5 
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Figures 

Figure S1.1. Geographic distributions of biotic clusters defined by between-cell Jaccard 

distances (a – 50, b – 100, c –150 and d – 200 clusters). 
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Figure S1.2. Size distributions of geopolitical (TDWG) and clustered biotic regions used to 

measure species-area relationships. 
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Figure S1.3. Species-area relationships for geopolitical regions at four spatial scales from TDWG 

Level 1 (a) to TDWG Level 4 (d) for all (black circles and line, SA), widespread (grey crosses 

and dashed grey line, SW) and endemic (grey dots and grey solid line, SE) species in each region. 

See also table S1.1. 
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Figure S1.4. Species-area relationships for clustered biotic regions at four spatial scales from 50 

(a) to 200 (d) clusters for all (black circles and line, SA), widespread (grey crosses and dashed 

grey line, SW) and endemic (grey dots and grey solid line, SE) species in each region. See also 

table S1.1.  
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Figure S1.5. Prediction surfaces from models of log species richness. Four variables (Simpson’s diversity index in 

habitat diversity, log elevational range, mean NDVI and mean temperature) with regions were fitted in turn as a 

covariate with regional area with the model including the interaction between each pair. The coloured surface shows 

the predicted diversity (white – high, red – low) and the relative size of the points show the observed diversity. 

Model coefficients were estimated using scaled and centred covariates (bottom and left axes) but these plots also 

show the variables on their original scale (top and right axes). 
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Appendix 2. Supporting information for chapter 2 
 

Climatic niche conservatism and the evolutionary dynamics in species’ range boundaries: global 

congruence across mammals and amphibians 

2.1 – Latitude analysis 

Mean temperature of the coldest quarter is latitudinally structured (r = -0.934, p <0.0001). Thus, 

we found phylogenetic signal in absolute latitude to be similar in magnitude to the most highly 

conserved climatic variable in both taxa. We investigated whether latitude and our climatic 

variables may both be acting as proxies for an as yet unidentified additional variable or suite of 

variables (Hawkins & Diniz-Filho, 2004). We extracted the first axis of a principal components 

analysis of the four BioClim variables in our dataset. This component had high loadings for the 

two temperature components and was highly correlated with latitude. We performed a partial 

regression to extract the independent contribution of the climatic variables and latitude to PC1. 

We found that most variation was shared between the two sets of variables but that 22.9% could 

be independently attributed to climate and 0% to latitude. This reassured us that our results could 

be interpreted as a real signal of the tolerances in the climatic variables under test. While latitude 

can be used as a proxy for environmental variation in the absence of the variables themselves 

(e.g., Roy et al., 2009), we show here that it does not provide any additional information.  
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2.2 – Range size analysis 

The geographic range size for each species was calculated as the number of 0.1º grid cells 

occupied, and species were divided into range-size quartiles.  We extracted approximate 95% 

confidence intervals for the restricted maximum likelihood variance components estimates and 

used box plots to assess whether variance explained at each taxonomic level differed among 

quartiles. We found this was not the case. Thus, our findings on the conservatism of cold 

tolerance are not driven by differences between narrow- and wide-ranging species, further 

underlining the robustness of our results. In particular, the confidence intervals on the variance 

components for mean temperature in the coldest quarter overlapped between the species from the 

most narrowly distributed and the most widely distributed quartiles in both mammals and 

amphibians (figure A2.2). This indicates that the strong signals we identify are not driven by a 

subset of species or by non-physiological dispersal limitations, but rather have a broader basis. 

Our results also agree with recent studies reporting that even wide-ranging European amphibians 

are limited by current climate (Araújo et al., 2008) and that, among New World mammals, both 

widespread and restricted-range species are similarly limited by minimum winter temperatures 

(Szabo et al., 2009). Our results apparently contradict the expectation that competitive 

interactions and dispersal lags also contribute to the patterning of range limits in space, as these 

should differ between narrowly-distributed and wide-ranging species (Jetz & Rahbek, 2002; 

Szabo et al., 2009).  
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Figure A2.2. Variance explained at the species level across range-size quartiles (with 95% 

confidence intervals) for mean temperature of coldest quarter and absolute latitude. Range size 

increases from left to right for each summary statistic. Top bar: amphibians, bottom bar: 

mammals.  
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2.3 – Amphibian phylogeny construction 

The amphibian supertree was constructed by hand as a consensus of published molecular 

phylogenies from many sources. The family backbone followed (Frost et al., 2006) with these 

updates: their Amphignathodontidae and Cryptobatrachidae were included in Hemiphractidae 

(Guayasamin et al., 2008; Wiens et al., 2007) , so the Nobleobatrachia consist of the newly-

defined Hemiphractidae and Meridianura; the Meridianura consist of Athesphatanura and 

Terrarana (Hedges et al., 2008), which corresponds to Frost et al.’s (2006) Brachycephalidae; 

family relationships within Terrarana follow Hedges et al. (2008), those within 

Leptodactyliformes follow Grant et al. (2006). Family relationships within Natatanura follow 

different sources: Ptychadenidae were placed basally (Bossuyt et al., 2006; Frost et al., 2006; 

Van Bocxlaer et al., 2006; Wiens et al., 2009); Africanura and Aglaioanura were preserved as 

valid clades (Bossuyt et al., 2006; Van Bocxlaer et al., 2006); and the Victoranura constituted a 

polytomy of Africanura, Aglaioanura, Ceratobatrachidae, Micrixalidae, Nyctibatrachidae, and 

Ranixalidae due to disagreement and low branch support values in the literature (Bossuyt et al., 

2006; Van Bocxlaer et al., 2006; Wiens et al., 2009). Within families, we followed a range of 

published sources for between-genera relationships (Fritz & Rahbek, unpublished manuscript), 

and species were added on as within-genera polytomies, assuming monophyly of genera. 
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2.4 – Character-dependent diversification analyses 

The best model in character-dependent diversification analyses was one in which the escapee 

species have a slightly higher speciation rate (λ1=0.0880 versus λ0=0.0759), but zero extinction 

rates, identical to non-escapee species (table A2.4). The analysis suggests that escapees have 

slightly higher speciation rates than non-escapees.  However, the analysis also suggested that 

reversions from escapee to non-escapee are much more rapid (four-fold higher) than initial 

evolution of escapee status. These differences would be interesting if real, but could arise 

through either of two artefacts.  First, loss of power through the number of terminal polytomies 

could have led to elevated estimates of reversion rate.  Second, escapee status could depend on 

underlying continuous traits with a threshold; because many escapee species are recent escapees, 

they will tend to be near the threshold value of the underlying trait and so have high reversion 

rates, whereas a large proportion of the non-escapee clades would be far from the threshold. 
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Table A2.4.  Comparing character-dependent diversification models. The full model includes six 

parameters (two speciation rates, two extinction rates, and transition rates between state 0 to 1 

and 1 to 0). Escapee species are coded with character state 1. Constrained models are compared 

to the full model using a likelihood ratio test; p values reported are the results of a χ2 test.  AIC 

and log likelihoods (LnLik) are also reported. The best model (that with extinction rates 

constrained to be equal), is highlighted.  

 

Model n AIC LnLik P 

λ0=0.0759, λ1=0.0879, µ0=0.0, µ1=0.0, p01=0.00696, p10=0.0297 6 26074 -13031  

λ0=0.0759, λ1=0.0880, µ0=µ1=0.0, p01=0.00696, p10=0.0297 5 26072 -13031 0.973 

λ0= λ1=0.0802, µ0=0.0, µ1=0.0, p01=0.00792, p10=0.0270 5 26081 -13036 0.00235 

λ0= λ1=0.0802, µ0=µ1=0.0, p01=0.00796, p10=0.0270 4 26079 -13036 0.00985 

λ0= λ1=0.0802, p01=0.00795, p10=0.0269 3 26077 -13036 0.0263 
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2.5 – Variance components obtained from nested ANOVAS 

Table A2.5. Variance components obtained from nested ANOVAs. Variance is partitioned 

among taxonomic levels (family, genus and species) using linear mixed-effects models fitted 

using a restricted maximum likelihood algorithm. In each case, except log10 (range size), we 

provide variance estimates for three summary statistics characterizing species’ climatic niches: 

maxima, minima and means. We highlight those estimates where higher-level taxonomy (family 

+ genus) explains >50% of the variance. 

Taxon   Level  Climatic variables Latitude Range 
size 

      Temp. 
Warm 

Temp. 
Cold 

Annual 
precipitation 

Precipitation 
seasonality 

NDVI     

Amphibians Max. Family 0.202 0.438 0.135 0.142 0.108 0.562 0.125 
Genus 0.268 0.237 0.176 0.260 0.219 0.242 0.254 
Species 0.530 0.325 0.689 0.598 0.673 0.196 0.621 

Min. Family 0.075 0.400 0.120 0.084 0.105 0.508   

Genus 0.217 0.239 0.225 0.271 0.219 0.240   

Species 0.707 0.362 0.655 0.645 0.676 0.251   

Mean Family 0.176 0.485 0.257 0.136 0.125 0.572   

Genus 0.299 0.249 0.290 0.301 0.284 0.228   

Species 0.524 0.266 0.453 0.563 0.591 0.201   

Mammals Max. Family 0.193 0.261 0.368 0.243 0.235 0.367 0.205 
Genus 0.187 0.361 0.201 0.128 0.204 0.388 0.160 
Species 0.620 0.378 0.431 0.630 0.561 0.245 0.635 

Min. Family 0.233 0.210 0.182 0.112 0.225 0.208   
Genus 0.136 0.293 0.182 0.111 0.153 0.333   
Species 0.631 0.497 0.636 0.777 0.623 0.458   

Mean Family 0.186 0.246 0.294 0.083 0.277 0.258   
Genus 0.322 0.412 0.340 0.196 0.340 0.394   
Species 0.493 0.342 0.366 0.721 0.383 0.348   
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2.6 – Ancestral state reconstructions using one-parameter maximum likelihood (Brownian 

motion) models. 

Figure A2.6. Mean assemblage (grid cell) values for independent evolution in cold tolerance 

calculated as the average deviation from reconstructed ancestral values for the species occurring 

in each cell. (a) Mammals; (b) amphibians and (equal-intervals above and below zero are used in 

the colour scale). (c) their difference (amphibians minus mammals). Only extreme differences 

are coloured; brown cells are unoccupied by amphibians; grey cells are those where the 

difference is small. We used the mammal supertree (Fritz et al., 2009) and a newly-constructed 

genus-level undated amphibian supertree (see above Appendix 2.3).  
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Figure A2.6 
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 Appendix 3. Supporting information for chapter 3 

 
Where do species’ geographic ranges stop and why? Landscape impermeability and the 

Afrotropical avifauna 

 

3.1 – References used in the construction of the distribution maps  

Brown, L., Urban, E. & Newman, K. (eds.) The Birds of Africa: Vol 1 (Academic Press, London, 
1982). 

 
Fry, C. & Keith, S. (eds.) The Birds of Africa: Vol 7 (Academic Press, London, 2004). 
 
Fry, C., Keith, S. & Urban, E. (eds.) The Birds of Africa: Vol 6 (Academic Press, London, 2002). 
 
Keith, S. & Fry, C. (eds.) The Birds of Africa: Vol 4 (Academic Press, London, 1992). 
 
Keith, S., Urban, E. & Fry, C. (eds.) The Birds of Africa: Vol 3 (Academic Press, London, 2002). 
 
Urban, E., Fry, C. & Keith, S. (eds.) The Birds of Africa: Vol 2 (Academic Press, London, 1982). 
 
Urban, E., Keith, S. & Fry, C. (eds.) The Birds of Africa: Vol 5 (Academic Press, London, 1997). 
 

 3.2 – References used to construct the predictor variables 

Human population density: Center for International Earth Science Information Network 

(CIESIN) (2003) Gridded Population of the World (GPW), Version 2. Available at 

http://sedac.ciesin.columbia.edu/plue/gpw. 

Mean annual temperature: New M., Lister D., Hulme M., Makin I. 2002 A high-resolution data 

set of surface climate over global land areas. Climate Research, 21, 1-25. 

Mean annual actual evapotranspiration: University of Delaware Global Climate Resource Pages 

(UD GCRP) Available at http://climate.geog.udel.edu/~climate/html_pages/download.html. 
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Mean elevation: US Geological Survey (USGS) National Center for Earth Resources 

Observation & Science (2003) Global 30-arc-second elevation data set (GTOPO30). Available at 

http://edcdaac.usgs.gov/gtopo30/gtopo30.asp. 

Landscape heterogeneity: US Geological Survey (USGS) National Center for Earth Resources 

Observation & Science (2003) global land cover characterisation data base v2.0 (GLCC). 

Available at http://edc2.usgs.gov/glcc/globe_int.php. There are 96 land cover types in the GLCC 

v.2 database.  

 

3.3 – Preliminary analyses to determine the minimum adequate model 

Single-predictor ordinary least squares (OLS) regression was carried out to assess the 

consistency and robustness of the multivariate analyses subsequently performed and to compare 

the significance and directions of slopes obtained from each mode of analysis (table A3.3.1). 

Human population density is included here although ultimately was not used in the main 

analyses. 

With one categorical and six continuous variables, there are a great many higher-order and 

interaction terms possible in the maximal model. To restrict analyses to manageable levels, 

preliminary studies were made to identify which terms were sensible and relevant to include. 

Single-predictor analyses by biome indicated the significant modulating effect of this factor 

(tables A3.3.2a,b). 
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Variables which are repeatedly found nested together in tree models are potential candidates for 

interaction terms. Following tree modelling, two additional interaction terms were included in 

the maximal model, AET with temperature and AET with elevational range (figure A3.3.1). 

Generalised additive models (GAMs) were also used to determine whether any of the 

explanatory variables required higher-order terms to describe their relationship with ω. GAMs fit 

non-parametric smoothers through the data and their graphical representation facilitates decisions 

on whether a higher-order term or a transformation is necessary. This, plus the increase in 

degrees of freedom necessary to fit the smoother, indicates whether or not a linear term is 

sufficient. A multivariate GAM was fitted using all of the continuous variables as well as 

interaction terms identified through tree modelling. The GAMs indicated that no relationship 

benefited from description using higher-order terms (figure A3.3.2). 

 

Table A3.3.1. Regression statistics for the single-predictor non-spatial analyses. Elevational 

range and human population density have been log-transformed. Significance codes: p<0.0001 

***, 0.0001≤p<0.001 **, 0.001≤p<0.01 *, 0.01≤p<0.05 ·, p≥0.05 n.s. 

Predictor Slope ±SE  F 1,2016 T P R
2
 

Mean elevation 0.00014 0.00003 18.85 4.34 *** 0.00927 
Mean annual AET -0.00071 0.00004 329.10 -18.14 *** 0.14030 
Mean annual temperature 0.00600 0.00413 2.11 1.45 n,s 0.00105 
Elevational range 0.16734 0.01412 140.50 11.85 *** 0.06516 
Landscape heterogeneity -0.01651 0.00367 20.28 -4.50 *** 0.00947 
Biome heterogeneity 0.19294 0.01400 190.00 13.79 *** 0.08614 
Human population density -0.00117 0.00925 0.02 -0.13 n.s 0.00001 
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Table A3.3.2. Analyses by biome. (A) Mean values of each predictor by biome. Shaded values 

are not significantly different from one another under TukeyHSD criteria. For logit (ω), biomes 1 

and 7 and biomes 10 and 13 are not significantly different from each other. (B) Regression 

statistics for single predictor analyses by biome (residual degrees of freedom for each biome: (1) 

299, (7) 1446, (10) 70, (13)195). Biomes: 1. Tropical & subtropical moist broadleaf forests; 7. 

Tropical & subtropical grasslands, savannas & shrublands; 10. Montane grasslands & savannas; 

13. Deserts & xeric shrublands. 

Abbreviations as follows: ELEV: mean elevation (metres); AET: mean annual actual 

evapotranspiration (mm); TEMP: mean annual temperature (°C); ELEVR: elevational range 

(log(metres)); LandHet: landscape heterogeneity (number of co-occurring ecosystem types); 

BiomeHet: biome heterogeneity (number of biome edges); HPD: human population density 

(log(people per km2)). 

(A) 

Biome ELEV AET TEMP ELEVR LandHet BiomeHet HPD Logit (ω) 

1 622 1173.4 24.0 5.961 11.27 0.9203 2.6885 -0.7837 

7 666 705.9 25.1 5.988 8.52 0.5753 2.3346 -0.6881 

10 1686 702.2 16.8 7.349 12.03 1.6389 1.0274 -0.4003 

13 1044 312.9 20.6 6.559 5.55 0.6091 0.6380 -0.2865 
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(B) 

  Slope ±SE  F  P R
2
 

Biome/Predictor ELEV      

1 0.00058 0.00009 40.95 *** 0.12050 

7 -0.00014 0.00004 12.39 *** 0.00850 

10 0.00004 0.00009 0.21 ns 0.00295 

13 0.00030 0.00015 3.98 ns 0.02002 

 AET      

1 -0.01408 0.00020 52.02 *** 0.14820 

7 -0.00082 0.00005 278.00 *** 0.16130 

10 0.00026 0.00039 0.46 ns 0.00647 

13 -0.00032 0.00033 0.91 ns 0.00467 

  TEMP      

1 -0.20038 0.01838 29.83 *** 0.09072 

7 0.03918 0.00518 57.31 *** 0.03812 

10 0.02759 0.01830 2.27 ns 0.03146 

13 0.08930 0.01587 31.66 *** 0.13970 

  ELEVR      

1 0.34557 0.02796 152.70 *** 0.33810 

7 0.02039 0.01764 1.34 ns 0.00092 

10 0.29120 0.05220 31.12 *** 0.30780 

13 0.51583 0.04976 107.50 *** 0.35530 

  LandHet      

1 0.04421 0.01232 12.88 *** 0.0381 

7 -0.02136 0.00431 24.61 *** 0.0085 

10 0.04016 0.01011 15.77 *** 0.1722 

13 -0.00571  0.01537 0.138 ns 0.0007 

  BiomeHet      

1 0.30170 0.03256 85.88 *** 0.22310 

7 0.20986 0.01649 161.90 *** 0.10070 

10 0.08229 0.03186 6.67 ns 0.08701 

13 -0.02473 0.05940 0.17 ns 0.00089 

  HPD      

1 0.22519 0.02629 73.35 *** 0.19700 

7 -0.06729 0.01129 35.53 *** 0.02398 

10 0.02454 0.04398 0.31 ns 0.06644 

13 0.23779 0.02558 86.47 *** 0.30720 

 



233 

Figure A3.3.1. Tree diagram of the seven hypothesised predictor variables.  Only the first four 

splits are shown. The tips of the tree show mean logit(ω) under the specified splitting criteria.  

Abbreviations as table A3.3.2. 
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Figure A3.3.2. Generalised additive models. Plots of a generalised additive model including each 

continuous explanatory variable plus the two interaction terms, AET and temperature and AET 

and elevational range. Abbreviations as table A3.3.2. 

The figures given on the y axis are the degrees of freedom necessary to fit the smoothed term. 

BiomeHet was not included in the GAM as, although it can be represented as a continuous 

variable, it has only 5 values (the integers between 0 and 4) and >4 degrees of freedom are 

necessary to fit a non-parametric smoother. The smoothers indicate that no term is clearly 

demonstrating an easily parameterized non-linear relationship with ω, suggesting that linear 

terms will be sufficient in multiple regression analyses. The rugs at the base of the plot represent 

the distribution of the actual values of the explanatory variable to which the plot applies. 
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3.4 – Exploring spatial autocorrelation in response and explanatory variables and in the 

best-fit models 

Plotted (figure A3.4.1a) are correlograms for all continuous predictor variables and for the 

response, logit ω. Climatic variables (AET, TEMP) exhibit high spatial autocorrelation (SA) up 

to distances of 4000km (TEMP). Conversely, variables capturing habitat heterogeneity display 

only short-range SA, up to distances of <2000km. SA in the response is also visible up to 

2000km.  

A comparison of residual SA between models including only AET (the most significant predictor 

in non-spatial analyses) and the best-fit models indicates that inclusion of all identified 
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significant predictors substantially reduces SA but that SA remains in the shortest distance class 

(up to 600km), upholding the decision to fit spatially-explicit models (figure A3.4.1b). 

Finally, comparison of residual SA between the top spatial model (Akaike weight = 0.810) and a 

non-spatial model including the same set of predictors indicates that the remaining spatial 

structure of the data has been adequately accounted for in the spatial model (figure A3.4.1c). 

Here, standardised residuals (pre-multiplied by the inverse square-root factor of the estimated 

error correlation matrix) are used rather than the raw residuals. GLS incorporates spatial 

structure directly into model residuals in order to estimate the “true” regression coefficients with 

the raw residuals now containing a strong spatial component.  

 



237 

Figure A3.4.1. Moran’s I correlograms of (A) the explanatory and response variables, (B) the residuals from non-spatial models including AET only and from the 

best-fit non-spatial model (wi = 0.184) and (C) the standardised residuals from the best-fit spatial model (wi = 0.810) and an equivalent model not considering the 

effect of space. The study area was divided into 20 distance classes. Rather than ensure constant intervals, lags were defined to maximize the similarity of the 

number of comparisons within each lag, each lag containing ~100000 pairwise comparisons. Distance classes (km) were as follows: 616, 922, 1166, 1395, 1612, 

1816, 2023, 2226, 2436, 2641, 2858, 3081, 3309, 3557, 3824, 4109, 4440, 4839, 5388, 8211. Abbreviations as table A3.3.2. 

(A) 
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(B) 

 

(C) 
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3.5 – F ratios for each term retained in the (A) non-spatial and (B) spatial models 

Table A3.5.1. F ratios for each term retained in the (A) non-spatial and (B) spatial models. The significance of each term does not change across the different 

models of the non-spatial set and is indicated only once. For continuous main effects, significance shows the sign of the slope with ω. Elevational range is log-

transformed and the Akaike weights and AICc of all models are also shown (p<0.0001 ***, 0.0001≤p<0.001 **, 0.001≤p<0.01 *, 0.01≤p<0.05 ·, p≥0.05 n.s.). 

    (A) Non-spatial                   (B) Spatial     

Main effects                 

Biome *** 61.54 61.50 61.38 61.40 61.37 61.40 61.20 61.17 61.32 61.28  -  -  

Mean elevation n.s. 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05  -  -  

Mean annual AET +++ 497.82 497.52 496.48 496.70 496.44 496.69 495.07 494.79 496.03 495.68  -  -  

Mean annual temperature +++ 124.42 124.35 124.09 124.14 124.08 124.14 123.74 123.66 123.97 123.89  -  -  

Elevational range +++ 359.28 359.07 358.32 358.48 358.29 358.47 357.30 357.10 357.99 357.74  33.59 +++ -  

Landscape heterogeneity n.s. 0.30 0.30 - - 0.29 0.29 - - 0.29 0.29  23.86 +++ 28.58 +++ 

Biome heterogeneity +++ 204.74 204.61 204.19 204.28 204.17 204.27 203.61 203.49 204.00 203.86  50.61 +++ 61.74 +++ 

Mean annual AET2 --- 291.32 291.14 284.56 284.69 290.51 290.66 283.75 283.59 290.27 290.07  -  -  

Elevational range2 +++ 40.68 40.66 43.90 43.92 40.57 40.59 43.77 43.75 40.54 40.51  -  19.47 +++ 

Biome interactions                 

Mean elevation *** 15.48 15.47 15.22 15.23 15.43 15.44 15.18 15.17 15.42 15.41  -  -  

Mean annual AET *** 26.41 26.40 26.07 26.09 26.34 26.35 26.00 25.98 26.32 26.30  -  -  

Mean annual temperature *** 19.12 19.10 19.48 19.49 19.06 19.07 19.43 19.42 19.05 19.03  -  -  

Elevational range *** 41.99 41.96 42.91 42.93 41.87 41.89 42.79 42.76 41.84 41.81  -  -  

Landscape heterogeneity *** 6.37 6.37 - - - - - - 6.48 6.48  -  -  

Biome heterogeneity ** 3.87 3.87 3.85 3.86 3.86 3.86 - - - -  -  -  

Mean annual AET2 *** 18.15 18.14 17.73 17.74 17.72 17.73 18.47 18.46 18.81 18.80  -  -  

Elevational range2 *** 8.42 8.41 11.20 11.21 11.20 11.20 11.34 11.34 8.26 8.25  -  -  

Mean annual AET: Mean 
annual temperature --- 17.47 17.46 21.13 21.14 21.92 21.93 19.96 19.95 16.49 16.48  -  -  

Mean annual AET: 
Elevational range +++ 2.19 - - 1.90 - 2.01 2.14 - 2.38 -   -   -   

Akaike weights  0.1842 0.1705 0.1703 0.1594 0.0923 0.0909 0.0278 0.0264 0.0237 0.0199  0.8100  0.1540  

AICc   2578.13 2578.28 2578.29 2578.42 2579.51 2579.54 2581.91 2582.02 2582.23 2582.57   -47.16   -43.84   
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3.6 – Analysis of species in the largest range size quartile 

Table A3.6.1. F ratios for largest range size quartile, for each term retained in the (A) non-spatial and (B) spatial models constituting the 95% confidence set for analyses 
including only species in the largest range size quartile.  The significance of each term is indicated and, for continuous main effects, significance also shows the sign of the 
slope with ω. Elevational range is log-transformed and the Akaike weights and AICc of all models are also shown (p<0.0001 ***, 0.0001≤p<0.001 **, 0.001≤p<0.01 *, 
0.01≤p<0.05 ·, p≥0.05 n.s.). 

  (A) Non-spatial                   

Main effects               

Biome 134.84 *** 134.64 *** 134.55 *** 134.51 *** 134.42 *** 134.73 *** 134.37 *** 

Mean elevation 34.71 *** 34.66 *** 34.64 *** 34.63 *** 34.61 *** 34.68 *** 34.59 *** 

Mean annual AET 870.41 +++ 869.09 +++ 868.53 +++ 868.30 +++ 867.72 +++ 869.69 +++ 867.37 +++ 

Mean annual temperature 259.79 +++ 259.40 +++ 259.23 +++ 259.16 +++ 258.99 +++ 259.57 +++ 258.88 +++ 

Elevational range 205.11 +++ 204.79 +++ 204.66 +++ 204.61 +++ 204.47 +++ 204.94 +++ 204.39 +++ 

Landscape heterogeneity 1.46 n.s. -  1.46 n.s. 1.46 n.s. -  1.46 n.s. -  

Biome heterogeneity 141.19 +++ 140.97 +++ 140.88 +++ 140.84 +++ 140.75 +++ 141.07 +++ 140.69 +++ 

Mean annual AET2 251.50 --- 252.19 --- 250.96 --- 250.89 --- 251.79 --- 251.29 --- 251.69 --- 

Elevational range2 10.54 ++ 10.86 ++ 10.52 ++ 10.52 ++ 10.85 ++ 10.53 ++ 10.84 ++ 

Biome interactions               

Mean elevation 24.63 *** 24.34 *** 24.58 *** 24.57 *** 24.30 *** 24.61 *** 24.29 *** 

Mean annual AET 32.52 *** 32.38 *** 32.45 *** 32.44 *** 32.33 *** 32.50 *** 32.32 *** 

Mean annual temperature 14.28 *** 14.40 *** 14.24 *** 14.24 *** 14.38 *** 14.26 *** 14.38 *** 

Elevational range 55.70 *** 55.44 *** 55.58 *** 55.56 *** 55.35 *** 55.65 *** 55.33 *** 

Landscape heterogeneity -  -  -  - *** -  1.91 n.s. -  

Biome heterogeneity 4.58 ** 4.61 ** 4.57 ** 4.57 ** 4.60 ** 4.58 ** 4.60 ** 

Mean annual AET2 16.23 *** 16.12 *** 16.20 *** 16.19 *** 16.10 *** 16.44 *** 16.09 *** 

Elevational range2 11.88 *** 11.86 *** 11.86 *** 11.85 *** 11.84 *** 10.50 *** 11.84 *** 

Mean annual AET: Mean 
annual temperature 11.17 --- 8.81 -- 11.14 --- -  -  10.18 -- 8.80 -- 

Mean annual AET: 
Elevational range 5.30 ++ 4.95 + -  10.62 ++ 9.62 ++ 5.34 + -  

                              

Akaike weight 0.4772  0.1750  0.0911  0.0700  0.0606  0.0424  0.0399  

AICc 2683.27   2685.28   2686.58   2687.11   2687.40   2688.12   2688.23   
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  (B) Spatial                       

             

Main effects             

Biome -  -  -  -  -  -  

Mean elevation -  -  -  -  -  -  

Mean annual AET -  -  -  -  -  -  

Mean annual temperature -  -  -  -  -  -  

Elevational range 20.81 +++ 20.68 +++ -  -  -  -  

Landscape heterogeneity 13.27 +++ -  16.04 +++ 16.13 +++ -  -  

Biome heterogeneity 23.00 +++ 22.86 +++ 28.86 +++ 29.01 +++ 28.85 +++ 28.65 +++ 

Mean annual AET2 -  -  -  -  -  -  

Elevational range2 -  -  -  11.77 +++ 15.16 +++ -  

             

Biome interactions             

Mean elevation -  -  -  -  -  -  

Mean annual AET -  -  -  -  -  -  

Mean annual temperature -  -  -  -  -  -  

Elevational range -  -  -  -  -  -  

Landscape heterogeneity -  -  -  -  -  -  

Biome heterogeneity -  -  -  -  -  -  

Mean annual AET2 -  -  -  -  -  -  

Elevational range2 -  -  -  -  -  -  

Mean annual AET: Mean 
annual temperature -  -  -  -  -  -  

Mean annual AET: 
Elevational range -  -  -  -  -  -  

                          

Akaike weight 0.4966  0.2765  0.1038  0.0394  0.0297  0.0146  

AICc 241.16   242.33   244.29   246.23   246.79   248.21   
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Appendix 4. Supporting information for chapter 4 
 

Global patterns and inter-realm differences in mammalian landscape impermeability 

4.1 – Distributions of variables included in the models. For sources see Appendix 3.2. 

(A) Mean annual temperature (ºC) (B) Mean annual actual evapotranspiration (mm) (C) 
Biome heterogeneity (count of biome edges) (D) Landscape heterogeneity (count of habitat 
types) (E) Mean elevation (metres) (F) Mean elevation range (metres) (G) Biomes (for biome 
codes see table 4.2) (H) Realms (1. Australasia, 2. Afrotropics, 3. Indomalaya, 4. Nearctic, 5. 
Neotropics, 6. Palearctic) 

   

  

A 

 

B 

 

C 

 

D 

 

E 

 

F 

 

G 

 

H 
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4.2 – The use of spatially-explicit models to control for spatial autocorrelation 

Figure A4.2.1. Moran’s I correlograms of the top OLS model versus the top SAR model in each realm. Moran’s I was calculated for model 
residuals in distance classes from 50km to 2500km in increments of 50km. Grey line: OLS model; black line: SAR model. 
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Appendix 5. Supporting information for chapter 5 

Can landscape impermeability be co-opted into a measure of species’ relative occupancy? 

5.1 – Tables for single predictor models of relative occupancy 

Table A5.1.1. Results of models predicting ωi. The number of species in each model (n), 

coefficient estimate (Slope), standard error (Error), t-value (t), p-value (p), degrees of 

freedom (d.f.), adjusted R2 (Adj. R
2) and optimised  λ are given. All λ values were 

significantly different from one (χ2 test, all p < 0.001); this result is not presented to save 

space. Results comparing λ to zero using χ2 tests are given (pλ0). All variables as described in 

table 5.2. BM refers to models fitted with body mass as a covariate. 

Variable n  λ pλ0 Slope Error t p d.f. Adj. R
2
 

AFROTROPICS                   
Gestation length (BM) 288 0.000 0.997 -0.276 0.078 -3.530 0.000 285 0.056 

Weaning age (BM) 222 0.000 0.987 -0.229 0.086 -2.656 0.008 219 0.021 
Population density (BM) 208 0.348 0.008 0.337 0.124 2.723 0.007 205 0.035 

Gestation length 288 0.000 0.999 -0.250 0.057 -4.357 0.000 286 0.059 
Weaning age 222 0.000 0.985 -0.271 0.065 -4.183 0.000 220 0.018 

Population density 208 0.351 0.006 0.349 0.107 3.264 0.001 206 0.037 
Generalism 266 0.315 0.000 -0.025 0.067 -0.372 0.710 264 -0.003 

Niche breadth 767 0.164 0.000 0.213 0.036 5.940 0.000 765 0.044 
Body mass 767 0.193 0.000 -0.059 0.074 -0.795 0.427 765 0.000 
Range size 767 0.173 0.000 -0.263 0.036 -7.399 0.000 765 0.066 

AUSTRALASIA 

Gestation length (BM) 84 0.000 0.993 0.207 0.110 1.886 0.063 81 0.059 
Weaning age (BM) 92 0.119 0.291 0.070 0.224 0.313 0.755 89 0.014 

Population density (BM) 46 0.000 0.988 0.290 0.195 1.488 0.144 43 0.007 
Gestation length 84 0.000 0.991 0.146 0.109 1.332 0.187 82 0.010 

Weaning age 92 0.136 0.140 0.234 0.151 1.555 0.124 90 0.015 
Population density 46 0.000 0.989 0.142 0.149 0.952 0.346 44 -0.002 

Generalism 64 0.010 0.874 -0.277 0.122 -2.259 0.027 62 0.063 
Niche breadth 160 0.081 0.089 0.176 0.077 2.280 0.024 158 0.024 

Body mass 160 0.093 0.014 0.179 0.103 1.738 0.084 158 0.013 
Range size 160 0.111 0.017 -0.192 0.077 -2.499 0.013 158 0.035 

INDOMALAYA                   
Gestation length (BM) 149 0.000 0.989 -0.074 0.093 -0.796 0.428 146 -0.009 

Weaning age (BM) 117 0.000 0.989 -0.125 0.118 -1.058 0.292 114 -0.012 
Population density (BM) 59 0.000 0.993 0.117 0.200 0.585 0.561 56 0.015 

Gestation length 149 0.000 0.989 -0.057 0.082 -0.696 0.487 147 -0.003 
Weaning age 117 0.000 0.990 -0.084 0.093 -0.902 0.369 115 -0.003 

Population density 59 0.000 0.993 0.207 0.130 1.600 0.115 57 0.026 
Generalism 185 0.000 0.988 -0.026 0.074 -0.353 0.725 183 -0.005 



245 

Niche breadth 431 0.054 0.076 0.139 0.048 2.926 0.004 429 0.017 
Body mass 431 0.033 0.255 -0.067 0.061 -1.104 0.270 429 -0.001 
Range size 431 0.028 0.142 -0.311 0.046 -6.760 0.000 429 0.090 

NEARCTIC 

Gestation length (BM) 203 0.252 0.036 0.345 0.114 3.023 0.003 200 0.097 
Weaning age (BM) 182 0.508 0.009 0.149 0.116 1.292 0.198 179 0.041 

Population density (BM) 176 0.000 0.985 0.306 0.111 2.743 0.007 173 0.039 
Gestation length 203 0.409 0.000 0.145 0.113 1.280 0.202 201 0.006 

Weaning age 182 0.576 0.000 0.032 0.109 0.296 0.768 180 -0.005 
Population density 176 0.000 0.986 0.198 0.074 2.661 0.009 174 0.036 

Generalism 202 0.560 0.000 -0.030 0.078 -0.389 0.698 200 0.009 
Niche breadth 329 0.438 0.000 -0.297 0.051 -5.850 0.000 327 0.105 

Body mass 329 0.437 0.000 -0.178 0.094 -1.894 0.059 327 0.019 
Range size 329 0.404 0.000 -0.544 0.045 -12.121 0.000 327 0.325 

NEOTROPICS                   
Gestation length (BM) 202 0.454 0.000 -0.290 0.132 -2.201 0.029 199 0.080 

Weaning age (BM) 178 0.472 0.000 -0.114 0.102 -1.113 0.267 175 0.036 
Population density (BM) 200 0.541 0.000 0.115 0.104 1.101 0.272 197 0.045 

Gestation length 202 0.457 0.000 -0.268 0.116 -2.310 0.022 200 0.084 
Weaning age 178 0.484 0.000 -0.146 0.091 -1.612 0.109 176 0.033 

Population density 200 0.545 0.000 0.140 0.093 1.510 0.133 198 0.041 
Generalism 456 0.494 0.000 0.107 0.049 2.170 0.031 454 0.013 

Niche breadth 832 0.635 0.000 0.150 0.034 4.407 0.000 830 0.029 
Body mass 832 0.643 0.000 -0.065 0.079 -0.830 0.407 830 0.003 
Range size 832 0.650 0.000 -0.551 0.029 -18.977 0.000 830 0.300 

PALEARCTIC 

         Gestation length (BM) 266 0.085 0.992 0.164 0.110 1.487 0.138 263 0.008 
Weaning age (BM) 216 0.380 0.017 -0.076 0.116 -0.651 0.516 213 -0.005 

Population density (BM) 119 0.428 0.000 -0.012 0.181 -0.067 0.946 116 0.018 
Gestation length 266 0.082 0.715 0.137 0.087 1.565 0.119 264 0.011 

Weaning age 216 0.390 0.003 -0.044 0.098 -0.443 0.658 214 -0.005 
Population density 119 0.445 0.000 -0.093 0.143 -0.651 0.516 117 -0.008 

Generalism 210 0.000 0.994 -0.025 0.069 -0.364 0.716 208 -0.004 
Niche breadth 663 0.000 0.979 -0.116 0.039 -2.993 0.003 661 0.011 

Body mass 663 0.000 0.980 0.017 0.039 0.436 0.663 661 -0.001 
Range size 663 0.014 0.662 -0.438 0.035 -12.384 0.000 661 0.194 

GLOBAL                   
Gestation length (BM) 980 0.472 0.000 -0.082 0.084 -0.980 0.327 977 -0.001 

Weaning age (BM) 826 0.503 0.000 -0.027 0.066 -0.400 0.689 823 -0.002 
Population density (BM) 703 0.502 0.000 0.206 0.064 3.227 0.001 700 0.013 

Gestation length 980 0.474 0.000 -0.068 0.074 -0.913 0.361 978 0.000 
Weaning age 826 0.503 0.000 -0.026 0.057 -0.463 0.644 824 -0.001 

Population density 703 0.506 0.000 0.186 0.058 3.227 0.001 701 0.013 
Generalism 1166 0.483 0.000 0.040 0.033 1.204 0.229 1164 0.000 

Niche breadth 2761 0.567 0.000 0.118 0.019 6.258 0.000 2759 0.013 
Body mass 2761 0.590 0.000 -0.031 0.049 -0.632 0.527 2759 0.000 
Range size 2761 0.611 0.000 -0.369 0.017 -21.582 0.000 2759 0.144 
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Table A5.1.2. Results of models predicting ωe including only those species with interior cells. 

Table as described in table A5.1.1. 

Variable n  λ pλ0 Slope Error t p d.f. Adj. R
2
 

AFROTROPICS                   
Gestation length (BM) 287 0.000 0.981 -0.137 0.081 -1.695 0.091 284 0.004 

Weaning age (BM) 221 0.000 0.984 -0.171 0.089 -1.914 0.057 218 0.015 
Population density (BM) 207 0.000 0.982 0.158 0.107 1.478 0.141 204 0.021 

Gestation length 287 0.000 0.985 -0.094 0.059 -1.594 0.112 285 0.005 
Weaning age 221 0.000 0.985 -0.154 0.067 -2.309 0.022 219 0.019 

Population density 207 0.000 0.981 0.174 0.069 2.535 0.012 205 0.026 
Generalism 265 0.000 0.994 -0.010 0.062 -0.165 0.869 263 -0.004 

Niche breadth 766 0.045 0.000 0.338 0.035 9.740 0.000 764 0.109 
Body mass 766 0.020 0.051 0.079 0.046 1.710 0.088 764 0.003 
Range size 766 0.031 0.031 -0.181 0.037 -4.926 0.000 764 0.030 

ωi 766 0.057 0.001 0.587 0.030 19.735 0.000 764 0.430 
AUSTRALASIA 

Gestation length (BM) 83 0.059 0.529 0.149 0.119 1.257 0.213 80 0.086 
Weaning age (BM) 91 0.138 0.402 -0.045 0.228 -0.199 0.843 88 0.044 

Population density (BM) 46 0.000 0.988 0.071 0.198 0.361 0.720 43 -0.027 
Gestation length 83 0.194 0.338 0.016 0.137 0.116 0.908 81 0.011 

Weaning age 91 0.163 0.132 0.220 0.157 1.397 0.166 89 0.012 
Population density 46 0.000 0.989 -0.041 0.151 -0.269 0.789 44 -0.021 

Generalism 63 0.000 0.989 -0.114 0.127 -0.897 0.373 61 -0.003 
Niche breadth 159 0.202 0.168 0.197 0.077 2.568 0.011 157 0.040 

Body mass 159 0.240 0.061 0.276 0.121 2.289 0.023 157 0.032 
Range size 159 0.393 0.031 -0.296 0.072 -4.084 0.000 157 0.082 

ωi 159 0.164 0.784 0.660 0.060 10.983 0.000 157 0.336 
INDOMALAYA                   

Gestation length (BM) 142 0.125 0.195 -0.208 0.122 -1.707 0.090 139 0.013 
Weaning age (BM) 112 0.000 0.991 -0.335 0.117 -2.869 0.005 109 0.053 

Population density (BM) 46 0.187 0.329 0.273 0.241 1.135 0.263 43 0.010 
Gestation length 142 0.162 0.079 -0.167 0.111 -1.505 0.134 140 0.007 

Weaning age 112 0.122 0.306 -0.200 0.111 -1.792 0.076 110 0.036 
Population density 46 0.186 0.330 0.293 0.162 1.809 0.077 44 0.032 

Generalism 167 0.000 0.987 0.176 0.077 2.293 0.023 165 0.025 
Niche breadth 396 0.000 0.992 0.611 0.040 15.307 0.000 394 0.370 

Body mass 396 0.024 0.605 -0.025 0.061 -0.410 0.682 394 -0.002 
Range size 396 0.028 0.502 0.061 0.051 1.209 0.227 394 0.001 

ωi 396 0.037 0.306 0.636 0.039 16.248 0.000 394 0.399 
NEARCTIC 

Gestation length (BM) 203 0.248 0.010 0.279 0.117 2.380 0.018 200 0.030 
Weaning age (BM) 182 0.376 0.001 0.203 0.113 1.792 0.075 179 0.014 

Population density (BM) 176 0.087 0.577 0.276 0.123 2.254 0.025 173 0.044 
Gestation length 203 0.295 0.005 0.125 0.106 1.176 0.241 201 -0.005 

Weaning age 182 0.418 0.002 0.089 0.104 0.858 0.392 180 -0.004 
Population density 176 0.109 0.306 0.215 0.092 2.326 0.021 174 0.042 

Generalism 202 0.497 0.000 0.012 0.082 0.151 0.880 200 -0.005 
Niche breadth 329 0.416 0.000 -0.170 0.054 -3.155 0.002 327 0.052 

Body mass 329 0.431 0.000 -0.176 0.096 -1.833 0.068 327 0.016 
Range size 329 0.329 0.004 -0.337 0.051 -6.601 0.000 327 0.155 

ωi 329 0.112 0.028 0.857 0.031 28.022 0.000 327 0.709 
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NEOTROPICS                   
Gestation length (BM) 201 0.560 0.000 -0.104 0.143 -0.728 0.468 198 0.015 

Weaning age (BM) 177 0.540 0.000 -0.062 0.104 -0.594 0.553 174 0.055 
Population density (BM) 199 0.554 0.000 0.156 0.106 1.465 0.145 196 -0.001 

Gestation length 201 0.564 0.000 -0.078 0.126 -0.615 0.539 199 0.017 
Weaning age 177 0.536 0.000 -0.045 0.092 -0.491 0.624 175 0.060 

Population density 199 0.559 0.000 0.115 0.095 1.217 0.225 197 0.003 
Generalism 455 0.509 0.000 0.138 0.049 2.836 0.005 453 0.007 

Niche breadth 830 0.705 0.000 0.565 0.027 21.254 0.000 828 0.354 
Body mass 830 0.691 0.000 0.037 0.081 0.456 0.648 828 0.003 
Range size 830 0.682 0.000 -0.141 0.032 -4.374 0.000 828 0.035 

ωi 830 0.282 0.000 0.776 0.021 36.116 0.000 828 0.624 
PALEARCTIC 

         Gestation length (BM) 266 0.441 0.003 0.066 0.145 0.458 0.647 263 0.029 
Weaning age (BM) 216 0.503 0.002 -0.003 0.119 -0.022 0.983 213 0.004 

Population density (BM) 119 0.172 0.122 -0.019 0.172 -0.109 0.913 116 0.036 
Gestation length 266 0.440 0.003 0.116 0.121 0.954 0.341 264 0.032 

Weaning age 216 0.503 0.002 0.010 0.102 0.101 0.920 214 0.008 
Population density 119 0.217 0.016 -0.134 0.131 -1.022 0.309 117 0.008 

Generalism 210 0.230 0.030 -0.040 0.081 -0.497 0.620 208 0.003 
Niche breadth 662 0.067 0.033 0.373 0.037 10.128 0.000 660 0.134 

Body mass 662 0.159 0.075 0.012 0.071 0.170 0.865 660 0.000 
Range size 662 0.183 0.003 -0.152 0.039 -3.900 0.000 660 0.019 

ωi 662 0.076 0.016 0.721 0.027 27.111 0.000 660 0.527 
GLOBAL                   

Gestation length (BM) 973 0.432 0.000 0.055 0.074 0.738 0.461 970 -0.001 
Weaning age (BM) 821 0.454 0.000 0.039 0.058 0.670 0.503 818 0.000 

Population density (BM) 691 0.427 0.000 0.126 0.061 2.085 0.037 688 0.006 
Gestation length 973 0.432 0.000 0.055 0.074 0.738 0.461 971 0.000 

Weaning age 821 0.452 0.000 0.044 0.057 0.770 0.441 819 0.000 
Population density 691 0.435 0.000 0.130 0.061 2.149 0.032 689 0.005 

Generalism 1148 0.391 0.000 0.068 0.034 2.014 0.044 1146 0.003 
Niche breadth 2725 0.568 0.000 0.416 0.018 23.136 0.000 2723 0.164 

Body mass 2725 0.632 0.000 0.028 0.051 0.546 0.585 2723 0.000 
Range size 2725 0.637 0.000 -0.107 0.018 -5.787 0.000 2723 0.012 

ωi 2725 0.302 0.000 0.764 0.013 59.725 0.000 2723 0.567 
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Table A5.1.3. Results of models predicting ωe using all species with available data. Table as 

described in table A5.1.1. 

Variable n  λ pλ0 Slope Error t p d.f. Adj. R
2
 

AFROTROPICS                   
Gestation length (BM) 314 0.000 0.391 -0.134 0.079 -1.697 0.091 311 0.003 

Weaning age (BM) 237 0.000 0.892 -0.173 0.087 -2.001 0.047 234 0.019 
Population density (BM) 232 0.000 0.918 0.261 0.100 2.601 0.010 229 0.064 

Gestation length 314 0.000 0.983 -0.087 0.056 -1.539 0.125 312 0.004 
Weaning age 237 0.000 0.984 -0.165 0.064 -2.571 0.011 235 0.023 

Population density 232 0.000 0.988 0.269 0.064 4.239 0.000 230 0.068 
Generalism 300 0.112 0.017 -0.069 0.062 -1.105 0.270 298 0.001 

Niche breadth 1024 0.152 0.000 0.074 0.031 2.379 0.018 1022 0.005 
Body mass 1024 0.148 0.000 0.001 0.064 0.008 0.993 1022 -0.001 
Range size 1024 0.055 0.006 -0.365 0.030 -11.979 0.000 1022 0.122 

AUSTRALASIA 

Gestation length (BM) 113 0.054 0.007 0.012 0.104 0.120 0.905 110 0.038 
Weaning age (BM) 133 0.105 0.156 0.170 0.188 0.905 0.367 130 0.020 

Population density (BM) 82 0.000 0.627 -0.077 0.131 -0.584 0.561 79 -0.020 
Gestation length 113 0.204 0.157 -0.088 0.121 -0.728 0.468 111 -0.004 

Weaning age 133 0.156 0.193 0.265 0.134 1.975 0.050 131 0.021 
Population density 82 0.000 0.988 -0.044 0.112 -0.395 0.694 80 -0.011 

Generalism 101 0.000 0.990 0.121 0.100 1.213 0.228 99 0.005 
Niche breadth 244 0.361 0.005 -0.101 0.062 -1.623 0.106 242 0.007 

Body mass 244 0.343 0.080 0.191 0.111 1.712 0.088 242 0.008 
Range size 244 0.311 0.010 -0.450 0.057 -7.953 0.000 242 0.204 

INDOMALAYA                   
Gestation length (BM) 199 0.101 0.007 -0.284 0.114 -2.499 0.013 196 0.021 

Weaning age (BM) 158 0.000 0.011 -0.430 0.098 -4.365 0.000 155 0.098 
Population density (BM) 75 0.128 0.132 0.033 0.182 0.184 0.855 72 -0.001 

Gestation length 199 0.149 0.014 -0.208 0.098 -2.133 0.034 197 0.018 
Weaning age 158 0.128 0.064 -0.282 0.094 -2.991 0.003 156 0.048 

Population density 75 0.109 0.218 0.147 0.129 1.145 0.256 73 0.004 
Generalism 225 0.107 0.128 0.126 0.078 1.627 0.105 223 0.007 

Niche breadth 613 0.359 0.000 0.351 0.036 9.775 0.000 611 0.134 
Body mass 613 0.308 0.000 -0.018 0.089 -0.200 0.842 611 -0.002 
Range size 613 0.282 0.000 -0.083 0.040 -2.098 0.036 611 0.006 

NEARCTIC 

         Gestation length (BM) 246 0.381 0.000 0.416 0.120 3.477 0.001 243 0.043 
Weaning age (BM) 216 0.457 0.000 0.342 0.102 3.360 0.001 213 0.047 

Population density (BM) 212 0.279 0.004 0.192 0.123 1.564 0.119 209 0.003 
Gestation length 246 0.400 0.000 0.248 0.104 2.383 0.018 244 0.019 

Weaning age 216 0.496 0.000 0.233 0.094 2.487 0.014 214 0.024 
Population density 212 0.287 0.005 0.150 0.102 1.472 0.143 210 0.005 

Generalism 280 0.503 0.000 -0.078 0.068 -1.156 0.249 278 0.001 
Niche breadth 485 0.495 0.000 -0.342 0.041 -8.425 0.000 483 0.126 

Body mass 485 0.543 0.000 -0.176 0.090 -1.961 0.051 483 0.006 
Range size 485 0.400 0.000 -0.537 0.036 -14.894 0.000 483 0.313 

NEOTROPICS                   
Gestation length (BM) 246 0.627 0.000 -0.024 0.141 -0.172 0.863 243 -0.008 

Weaning age (BM) 214 0.615 0.000 -0.054 0.098 -0.550 0.583 211 -0.008 
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Population density (BM) 242 0.609 0.000 0.220 0.095 2.317 0.021 239 0.014 
Gestation length 246 0.627 0.000 -0.027 0.122 -0.222 0.824 244 -0.004 

Weaning age 214 0.614 0.000 -0.048 0.087 -0.553 0.581 212 -0.003 
Population density 242 0.617 0.000 0.181 0.086 2.103 0.036 240 0.014 

Generalism 573 0.492 0.000 0.130 0.043 3.019 0.003 571 0.014 
Niche breadth 1234 0.762 0.000 0.362 0.023 15.444 0.000 1232 0.162 

Body mass 1234 0.441 0.000 -0.235 0.035 -6.783 0.000 1232 -0.001 
Range size 1234 0.363 0.000 -0.273 0.080 -3.422 0.001 1232 0.092 

PALEARCTIC 

Gestation length (BM) 340 0.306 0.001 0.154 0.128 1.207 0.228 337 0.004 
Weaning age (BM) 265 0.449 0.000 0.043 0.116 0.369 0.713 262 -0.006 

Population density (BM) 148 0.000 0.002 0.159 0.125 1.268 0.207 145 0.068 
Gestation length 340 0.298 0.001 0.187 0.106 1.766 0.078 338 0.006 

Weaning age 265 0.447 0.000 0.060 0.098 0.618 0.537 263 -0.002 
Population density 148 0.110 0.103 -0.142 0.108 -1.309 0.193 146 0.005 

Generalism 291 0.249 0.001 -0.050 0.072 -0.693 0.489 289 -0.002 
Niche breadth 937 0.209 0.000 0.121 0.032 3.725 0.000 935 0.014 

Body mass 937 0.227 0.000 -0.019 0.073 -0.255 0.799 935 -0.001 
Range size 937 0.174 0.004 -0.284 0.032 -8.928 0.000 935 0.078 

GLOBAL                   
Gestation length (BM) 1122 0.467 0.000 0.068 0.074 0.922 0.357 1119 -0.001 

Weaning age (BM) 948 0.528 0.000 0.068 0.057 1.197 0.232 945 -0.001 
Population density (BM) 822 0.542 0.000 0.144 0.056 2.584 0.010 819 0.006 

Gestation length 1122 0.468 0.000 0.067 0.074 0.913 0.361 1120 0.000 
Weaning age 948 0.528 0.000 0.068 0.056 1.201 0.230 946 0.000 

Population density 822 0.542 0.000 0.142 0.056 2.552 0.011 820 0.007 
Generalism 1409 0.431 0.000 0.063 0.030 2.057 0.040 1407 0.002 

Niche breadth 3767 0.687 0.000 0.001 0.004 0.303 0.762 3765 0.000 
Body mass 3767 0.672 0.000 0.014 0.047 0.293 0.769 3765 0.000 
Range size 3767 0.659 0.000 -0.045 0.003 -15.680 0.000 3765 0.061 
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Table A5.1.4. Results of models predicting ωe with ωi as a covariate in all models. Table as 

described in table A5.1.1. 

Variable n  λ pλ0 Slope Error t p d.f. Adj. R
2
 

AFROTROPICS                   
Gestation length (BM) 287 0.000 0.984 -0.012 0.073 -0.166 0.869 283 0.206 

Weaning age (BM) 221 0.000 0.989 -0.063 0.080 -0.793 0.429 217 0.235 
Population density (BM) 207 0.000 0.987 0.058 0.091 0.637 0.525 203 0.295 

Gestation length 287 0.000 0.988 0.022 0.054 0.401 0.689 284 0.207 
Weaning age 221 0.000 0.990 -0.023 0.061 -0.369 0.713 218 0.237 

Population density 207 0.000 0.987 0.054 0.060 0.908 0.365 204 0.299 
Generalism 265 0.018 0.636 -0.001 0.055 -0.022 0.982 262 0.233 

Niche breadth 766 0.066 0.000 0.171 0.031 5.533 0.000 763 0.362 
Body mass 766 0.000 0.976 0.138 0.029 4.734 0.000 763 0.351 
Range size 766 0.056 0.001 -0.062 0.031 -1.988 0.047 763 0.339 

AUSTRALASIA 

Gestation length (BM) 83 0.000 0.988 0.081 0.081 1.008 0.316 79 0.519 
Weaning age (BM) 91 0.000 0.984 -0.060 0.114 -0.528 0.599 87 0.521 

Population density (BM) 46 0.000 0.989 -0.123 0.155 -0.796 0.431 42 0.404 
Gestation length 83 0.000 0.987 0.047 0.078 0.606 0.546 80 0.510 

Weaning age 91 0.000 0.985 0.057 0.074 0.775 0.441 88 0.517 
Population density 46 0.000 0.989 -0.136 0.115 -1.179 0.245 43 0.418 

Generalism 63 0.000 0.995 0.045 0.114 0.393 0.695 60 0.262 
Niche breadth 159 0.000 0.998 0.061 0.061 0.999 0.319 156 0.441 

Body mass 159 0.000 0.984 0.130 0.059 2.206 0.029 156 0.455 
Range size 159 0.289 0.503 -0.170 0.058 -2.939 0.004 156 0.455 

INDOMALAYA                   
Gestation length (BM) 142 0.029 0.642 -0.137 0.084 -1.626 0.106 138 0.329 

Weaning age (BM) 112 0.000 0.987 -0.266 0.096 -2.789 0.006 108 0.372 
Population density (BM) 46 0.215 0.131 0.182 0.171 1.060 0.295 42 0.519 

Gestation length 142 0.061 0.345 -0.095 0.080 -1.187 0.237 139 0.324 
Weaning age 112 0.000 0.998 -0.165 0.076 -2.161 0.033 109 0.360 

Population density 46 0.246 0.097 0.100 0.121 0.827 0.413 43 0.525 
Generalism 167 0.000 0.987 0.163 0.061 2.682 0.008 164 0.386 

Niche breadth 396 0.041 0.290 0.443 0.036 12.438 0.000 393 0.568 
Body mass 396 0.033 0.371 0.029 0.050 0.590 0.555 393 0.399 
Range size 396 0.023 0.593 0.124 0.039 3.191 0.002 393 0.413 

NEARCTIC 

         Gestation length (BM) 203 0.000 0.986 -0.119 0.049 -2.424 0.016 199 0.668 
Weaning age (BM) 182 0.185 0.022 0.039 0.068 0.572 0.568 178 0.614 

Population density (BM) 176 0.000 0.987 0.054 0.064 0.849 0.397 172 0.695 
Gestation length 203 0.084 0.514 -0.037 0.050 -0.743 0.458 200 0.661 

Weaning age 182 0.180 0.013 0.032 0.058 0.555 0.580 179 0.617 
Population density 176 0.000 0.987 0.051 0.043 1.209 0.228 173 0.696 

Generalism 202 0.000 0.985 0.102 0.038 2.683 0.008 199 0.715 
Niche breadth 329 0.143 0.008 0.070 0.031 2.226 0.027 326 0.706 

Body mass 329 0.117 0.029 -0.010 0.039 -0.250 0.803 326 0.704 
Range size 329 0.120 0.023 0.025 0.034 0.743 0.458 326 0.704 

NEOTROPICS                   
Gestation length (BM) 201 0.374 0.000 0.097 0.089 1.094 0.275 197 0.507 

Weaning age (BM) 177 0.405 0.001 0.019 0.070 0.266 0.790 173 0.532 
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Population density (BM) 199 0.275 0.006 0.052 0.059 0.871 0.385 195 0.675 
Gestation length 201 0.367 0.000 0.106 0.078 1.365 0.174 198 0.510 

Weaning age 177 0.394 0.002 0.057 0.062 0.920 0.359 174 0.531 
Population density 199 0.385 0.001 -0.019 0.053 -0.363 0.717 196 0.660 

Generalism 455 0.193 0.000 0.070 0.033 2.093 0.037 452 0.538 
Niche breadth 830 0.313 0.000 0.355 0.019 18.822 0.000 827 0.726 

Body mass 830 0.267 0.000 0.086 0.037 2.311 0.021 827 0.614 
Range size 830 0.246 0.000 0.149 0.022 6.853 0.000 827 0.634 

PALEARCTIC 

Gestation length (BM) 266 0.000 0.988 0.111 0.064 1.742 0.083 262 0.435 
Weaning age (BM) 216 0.000 0.994 0.121 0.065 1.854 0.065 212 0.493 

Population density (BM) 119 0.052 0.769 -0.043 0.128 -0.334 0.739 115 0.345 
Gestation length 266 0.000 0.986 0.112 0.046 2.417 0.016 263 0.437 

Weaning age 216 0.000 0.995 0.090 0.049 1.858 0.064 213 0.494 
Population density 119 0.097 0.338 -0.104 0.094 -1.106 0.271 116 0.339 

Generalism 210 0.130 0.100 -0.029 0.061 -0.480 0.632 207 0.377 
Niche breadth 662 0.032 0.245 0.258 0.026 10.083 0.000 659 0.589 

Body mass 662 0.064 0.086 0.052 0.040 1.298 0.195 659 0.527 
Range size 662 0.068 0.035 0.052 0.028 1.844 0.066 659 0.528 

GLOBAL                   
Gestation length (BM) 973 0.268 0.000 0.114 0.049 2.331 0.020 969 0.441 

Weaning age (BM) 821 0.203 0.006 0.059 0.037 1.606 0.109 817 0.490 
Population density (BM) 691 0.241 0.003 -0.038 0.037 -1.013 0.311 687 0.577 

Gestation length 973 0.269 0.000 0.114 0.049 2.326 0.020 970 0.441 
Weaning age 821 0.204 0.003 0.062 0.037 1.693 0.091 818 0.489 

Population density 691 0.240 0.003 -0.038 0.037 -1.024 0.306 688 0.577 
Generalism 1148 0.141 0.000 0.037 0.023 1.597 0.111 1145 0.509 

Niche breadth 2725 0.292 0.000 0.219 0.013 17.233 0.000 2722 0.610 
Body mass 2725 0.243 0.000 0.069 0.026 2.651 0.008 2722 0.571 
Range size 2725 0.293 0.000 0.028 0.013 2.245 0.025 2722 0.568 
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Appendix 6. Supporting information for chapter 6 
 

Detecting shifts in diversity limits from molecular phylogenies: what can we know? 

 
6.1 – Assessing alternative diversification scenarios 

Methods 

To explore the performance of my methods more broadly, I simulated trees under a range of 

diversity-independent models (figure A6.1). Specifically, I use two null models – the pure 

birth and the constant-rate birth-death – and a third model where the rule change is an 

increase in net diversification rate.  

For consistency with the rest of my simulations, all trees have a tree age (T) of 110 My and I 

identity parameters that are expected to produce ~500 or 1000 extant lineages (N) at the 

present day.  

For the pure birth trees, I used ln(N)/T to identify appropriate speciation rates: ln(500)/110 = 

0.0565 and ln(1000)/110 = 0.06280. To test a range of rates I use λ = 0.03, 0.06 and 0.09. 

This upper bound is similar to that estimated by Magallon & Sanderson (2001) for 

angiosperms in the absence of extinction.  

For the constant-rate birth-death trees, I used the method of moments estimator (cited in 

Magallon & Sanderson, 2001) to obtain appropriate net diversification rates:  

r = (1/T) * log(N(1-ε) +ε) 

Here ε = the extinction fraction (µ /λ). I used three values of ε (0.2, 0.5, 0.8) with the two 

values of N (500, 1000) to produce six parameter combinations (λ = 0.068, 0.100, 0.210, 

0.0760, 0.113, 0.241; µ =0.0136, 0.0500, 0.1680, 0.0152, 0.0565, 0.1928). 
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Finally, I simulate a set of “rate-increase” trees using λ = 0.1 and extinction fraction = 0.5, 

but after T1 = 55 My I introduce a rule change: an increase in net diversification rate (r) such 

that both speciation and extinction rates increase by some factor between 1.2 and 2 (different 

runs differing by steps of 0.2). The simulations continue at these new rates for T2 = 55 My. 

Because diversity is not constrained under this scenario, the rule change is not expected to be 

associated with a pulse of diversification. I wanted to know if this alternative scenario would 

nevertheless produce a similar signal of pulsed diversification.  

I assess Type I error rates as the proportion of null simulations in which a significant shift in 

diversification rate was detected at 55 My (i.e., the end of T1). For the “rate-increase” trees, I 

assessed the power of my methods by calculating the number of simulations showing a 

significant change at the end of T1, minus the corresponding Type I error rate from the 

corresponding null simulations. For all parameter combinations, I simulate 100 replicate 

trees. In total 1400 trees were analysed. 

Incorporating lineage-specific rate heterogeneity 

As a simple means of assessing the effects of lineage-specific rate heterogeneity on my 

ability to recover rule changes, I simulated trees where only a fraction of clades extant at the 

time of the rule change are affected by the change in M. Biologically, such a scenario could 

occur if only a fraction of lineages enter new ecospace while the remaining lineages persist in 

the original area.  

I retain most features from my original logistic diversity-dependent model of diversification 

including the parameters: b = 1, T1 = 55 My, T2 = 55 My, M1 = 500 (and see text of chapter 

6). At the end of T1, I randomly select a proportion of lineages and update their 

diversification rate to incorporate the new M (M2 = 1000). The remaining lineages continue to 
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diversify under the original M (M1).  I test proportions of 0.2, 0.5 and 0.8 and extinction rates 

between 0.1 and 0.5 in steps of 0.1 (see figure A6.1).  

I am only interested here in determining whether rule changes can still be detected when they 

affect only a subset of lineages. Therefore, I choose lineages randomly rather than according 

to some relatedness rule. Because my methods do not depend on tree topology, but only on 

the temporal clustering of nodes, the power of my methods should be similar whether or not 

responding lineages are clustered or located randomly on the tree.  

Results & discussion 

Type I error rates were reasonable for all the diversity-independent null simulations (table 

A6.1.1). Furthermore, my methods did not consistently recover a diversification pulse in the 

“rate-increase” trees (table A6.1.2). These results underline that my methods are robust to 

alternative diversification scenarios and provide assurance that when an interval is identified 

as significant in empirical data it really is likely to stem from a diversification pulse localised 

to that interval.  

Power was high to detect diversification pulses when only a proportion of lineages are 

affected by the rule change (table A6.1.2). In fact, as the proportion of lineages affected 

decreases, my ability to detect the pulse increases. Because most lineages at the present day 

(and thus present in the reconstructed phylogeny) are derived from that small proportion that 

responded to the rule change, the pulse appears more pronounced and remains detectable 

even in the face of high turnover rates.  
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Figure A6.1. Example lineage-through-time plots for alternative diversification scenarios. A. Yule model, λ = 

0.06. B. Constant-rate birth-death model, λ = 0.113, µ = 0.565. C. Birth-death model with rate shift at 55 My, λ 

= 0.1, µ = 0.5, rate multiplier = 2. D. Diversity-dependent model with a subset of lineages responding, b = 1, d = 

0.3, M1= 500, M2 = 1000 (for those responding), proportion responding: 0.2 (solid lines), 0.5 (dashed lines), 0.8 

(dotted lines). In all plots black lines include all lineages, grey lines include only lineages extant at the present 

day.   
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Table A6.1.1. Type I error rates of diversity-independent null simulations. For details of 

parameters involved in the simulations, see text.  

Yule       λ 0.03 0.06 0.09 

  GAM  0.06 0.04 0.02 

    ∆γ   0.13 0.01 0.08 

Birth-death   Extinction fraction 0.2 0.5 0.8 

 Expected N = 500  GAM  0.06 0.06 0.07 

    ∆γ   0.00 0.04 0.16 

 Expected N = 1000  GAM  0.05 0.06 0.12 

    ∆γ   0.02 0.04 0.04 
 

Table A6.1.2. Power of alternative diversification scenarios to detect rule changes at the end 

of T1 (55 My ago). For details of parameters involved in the simulations and how power was 

calculated, see text.  

Birth-death with 
rate shift   Diversification rate multiplier 1.2 1.4 1.6 1.8 2.0 

  GAM  0.05 0.00 0.01 0.04 0.03 

  ∆γ  0.02 0.01 0.01 0.02 0.01 

Prop. of clades 
responding     Prop./µ 0.1 0.2 0.3 0.4 0.5 

  GAM 0.2 0.97 0.95 0.86 0.92 0.79 

   0.5 0.97 0.89 0.8 0.77 0.56 

   0.8 0.97 0.84 0.51 0.5 0.23 

    1 0.97 0.71 0.33 0.21 0.12 

  ∆γ 0.2 0.96 0.96 0.88 0.85 0.76 

   0.5 0.96 0.84 0.66 0.66 0.44 

   0.8 0.95 0.71 0.45 0.35 0.25 

      1 0.95 362 0.35 0.18 0.16 
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6.2 – Correcting for multiple tests 

When conducting multiple tests (i.e., assessing the significance of each time interval in the 

absence of any a priori hypothesised intervals of interest), it is necessary to adjust the level at 

which a result is considered significant to avoid inflating type I errors (the more intervals 

tested, the more likely one will be considered significant by chance). The sequential 

Bonferroni adjusts the threshold p value (α) to reflect the number of tests (n) being made. 

Thus the most significant interval must be more significant than α/n, the second most 

significant by α/n-1, and so on (Holm, 1979). However, because such corrections consider 

each test independent the enforced penalties may be unduly conservative (Moran, 2003). In 

autocorrelated data such as these, a less conservative method is to determine the effective 

sample size using the autocorrelation coefficient or, as here, estimating the spectral density at 

frequency zero after fitting an autoregressive model to the time series (Plummer et al., 2010). 

Specifically, I removed intervals identified as significant using my unadjusted test (as I found 

they otherwise removed all apparent autocorrelation) and then calculated the effective sample 

size (ESS) of the remaining intervals. To this value I added the number of intervals removed, 

to obtain a conservative ESS. I then used this value in a modified sequential Bonferroni 

correction. 
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6.3 – Validity testing 

Table A6.3. Validity testing. For each parameter combination, the proportion of false positives was calculated. Validity was assessed using a 

binomial test where the alternative hypothesis is that the proportion of false positives is greater than 0.05. 

  0.1 0.2   0.3 0.4 0.5 

GAM K2 Prop. p Prop. p Prop. p Prop. p Prop. p 

600 0.068 0.000 0.069 0.000 0.076 0.000 0.084 0.000 0.090 0.000 

 
700 0.059 0.001 0.069 0.000 0.065 0.000 0.079 0.000 0.085 0.000 

800 0.050 0.530 0.065 0.000 0.065 0.000 0.074 0.000 0.080 0.000 

 
900 0.042 1.000 0.061 0.000 0.065 0.000 0.067 0.000 0.075 0.000 

1000 0.032 1.000 0.057 0.004 0.067 0.000 0.067 0.000 0.073 0.000 

∆γ K2                     

600 0.050 0.551 0.050 0.464 0.058 0.001 0.056 0.012 0.055 0.027 

 
700 0.049 0.616 0.053 0.155 0.051 0.421 0.054 0.067 0.054 0.067 

800 0.060 0.000 0.049 0.716 0.051 0.400 0.051 0.338 0.052 0.212 

 
900 0.057 0.004 0.055 0.039 0.053 0.131 0.054 0.074 0.056 0.019 

  1000 0.064 0.000 0.049 0.657 0.050 0.442 0.053 0.168 0.055 0.024 

      
 

                

    0.1 0.2   0.3 0.4 0.5 

GAM   Prop. p Prop. p Prop. p Prop. p Prop. p 

Doubling-in-M 0.035 1.000 0.057 0.007 0.063 0.000 0.069 0.000 0.076 0.000 

  Mass extinction 0.025 1.000 0.057 0.004 0.058 0.002 0.064 0.000 0.069 0.000 

∆γ                       

Doubling-in-M 0.055 0.031 0.053 0.131 0.055 0.031 0.061 0.000 0.062 0.000 

  Mass extinction 0.061 0.000 0.050 0.530 0.053 0.131 0.053 0.100 0.050 0.573 
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GAM   0.1 0.2 0.3 0.4 0.5 

  T2 Prop. p Prop. p Prop. p Prop. p Prop. p 

10 0.017 1.000 0.026 1.000 0.039 1.000 0.056 0.032 0.064 0.000 

20 0.017 1.000 0.039 1.000 0.055 0.046 0.059 0.001 0.064 0.000 

30 0.019 1.000 0.045 0.973 0.063 0.000 0.066 0.000 0.065 0.000 

40 0.023 1.000 0.049 0.716 0.062 0.000 0.064 0.000 0.065 0.000 

50 0.027 1.000 0.056 0.012 0.065 0.000 0.066 0.000 0.071 0.000 

60 0.031 1.000 0.064 0.000 0.066 0.000 0.066 0.000 0.069 0.000 

70 0.042 0.999 0.065 0.000 0.068 0.000 0.067 0.000 0.081 0.000 

80 0.045 0.979 0.065 0.000 0.071 0.000 0.079 0.000 0.083 0.000 

90 0.051 0.379 0.065 0.000 0.075 0.000 0.089 0.000 0.091 0.000 

  100 0.053 0.120 0.070 0.000 0.077 0.000 0.090 0.000 0.096 0.000 

∆γ T2 

10 0.086 0.000 0.073 0.000 0.064 0.000 0.043 0.988 0.052 0.256 

20 0.067 0.000 0.053 0.127 0.044 0.979 0.045 0.972 0.037 1.000 

30 0.059 0.000 0.050 0.485 0.042 0.999 0.040 1.000 0.041 1.000 

40 0.061 0.000 0.046 0.936 0.047 0.845 0.044 0.992 0.050 0.464 

50 0.062 0.000 0.057 0.005 0.051 0.358 0.049 0.594 0.056 0.014 

60 0.059 0.001 0.055 0.024 0.054 0.091 0.051 0.400 0.055 0.043 

70 0.060 0.000 0.051 0.400 0.052 0.212 0.052 0.182 0.052 0.182 

80 0.053 0.120 0.053 0.100 0.053 0.109 0.057 0.003 0.049 0.657 

90 0.057 0.004 0.050 0.573 0.054 0.054 0.056 0.009 0.056 0.009 

  100 0.053 0.120 0.057 0.004 0.058 0.001 0.058 0.001 0.056 0.008 
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6.4 – Exploring downshifts 

Figure A6.4. Exploring downshifts. ML rate estimates are plotted against time for five exemplar trees simulated with b = 1, M1 =1000, M2 = 500, 

T1 = 55 My, T2 = 55 My and d = 0.1 to 0.5 in steps of 0.1.  
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6.5 – Empirical results tables 

Table A6.5. Significant intervals identified in the angiosperm and mammal supertrees. Bold values are those that remain significant when p 

values are adjusted for multiple testing according to all three methods. Italicised values remain significant only under my modified sequential 

Bonferroni method.  

 1My 2My 5My 

GAM    
All mammals 99, 97, 92, 90, 89, 86, 83, 48, 30 100, 92, 90, 48 100, 90, 85 

Atlantogenata 70, 56, 26 70, 56, 26 70, 55 

Euarchontoglires 48, 29 48 65, 50 

Laurasiatheria 62, 33, 26 34 --- 

Marsupials 34, 30 56, 46, 34 --- 

Angiosperms 130, 125, 121, 118, 105, 103, 78 126, 118, 106, 104 105  

∆γ    
All mammals 99.2, 83.2, 62.2, 48.2, 47.2, 46.2, 41.2, 40.2, 

35.2, 33.2, 32.2, 31.2, 30.2, 26.2, 24.2 
100.2, 52.2, 50.2, 48.2, 46.2, 36.2, 34.2, 
32.2, 30.2 

101.2,  96.2, 91.2,  26.2,  21.2 

Atlantogenata 71.9, 57.9, 40.9, 27.9, 22.9 72.9, 58.9, 28.9 28.9, 23.9 

Euarchontoglires 64.9, 48.9, 47.9, 45.9, 38.9, 31.9, 30.9, 29.9, 23.9 51.9, 49.9, 47.9, 45.9, 29.9 56.9, 51.9, 26.9, 21.9 

Laurasiatheria 62.5, 61.5, 60.5, 41.5, 40.5, 34.5, 33.5, 32.5, 
27.5, 26.5 

62.5, 36.5, 34.5, 32.5, 30.5 43.5, 38.5, 23.5 

Marsupials 46.5, 45.5, 30.5, 23.5 36.5, 34.5 37.5 

Angiosperms 118.1, 103.1, 80.1, 78.1, 68.1, 67.1, 66.1, 58.1, 
27.1 

106.6, 104.6, 92.6, 80.6, 78.6, 68.6, 58.6 107.1, 72.1 
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6.6 – Signal from mass extinction 

Figure A6.6. Comparing lineage-through-time plots for doubling-in-M (black points) versus mass extinction (red points) trees (see text for 

details). Mean lineage number (from 100 replicate trees) is plotted every 5 My.  
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