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Abstract—Long-term monitoring of epilepsy patients require
low-power systems that can record and transmit electroen-
cephalogram data over extended periods of time. Since seizure
events are rare, long-term monitoring inherently results in large
amounts of data that are recorded and hence need to be reduced.
This paper presents an ultra-low power integrated circuit imple-
mentation of a data reduction algorithm for epilepsy monitoring,
specific to seizure events. The algorithm uses line length of the
electroencephalogram signals as the key discriminating feature
to classify epochs of data as seizure or non-seizure events. It is
implemented in AMS 0.18 µm CMOS technology and its output
is connected to a Bluetooth Low Energy transceiver to wirelessly
transmit potential seizure events. All the modules of the algorithm
have been implemented on chip to use small number of clock
cycles and remain mostly in an idle mode. The algorithm, on the
chip, achieves 50% of data reduction with a sensitivity of 80%
for capturing seizure events. The overall power consumption of
the chip is measured to be 23 µW while the full system with
wireless transmission consumes 743 µW. The results in this paper
demonstrate the feasibility of a long-term seizure monitoring
system capable of running autonomously for over two weeks.

Index Terms—Epilepsy, seizure detection, wearables, low-
power biomedical system, electroencephalography.

I. INTRODUCTION

EPILEPSY is a major neurological disorder affecting over

50 million people worldwide [1]. It often manifests in the

form of spontaneous seizures and has a profound impact on the

day to day lives of those effected by it. These seizures, ranging

in severity, can cause physical and psychological damage and

may even be fatal in some cases [2]. The healthcare costs

associated with the monitoring, diagnosis, and treatment of

epilepsy are very high. It is estimated that the total indirect

costs of epilepsy amount to over 15 billion USD annually in

the United States [3]. Similarly, high costs have been reported

in the EU [4] and the UK [5]. As a result, access to these

expensive procedures and treatments is severely limited.

Diagnosis of epilepsy involves the use of electroencephalog-

raphy (EEG) for monitoring brain activity [6]. During this,

several electrodes are placed on the scalp of a patient in order

to detect an abnormal activity in the brain. This provides useful

information such as the type and extent of seizure acitivity,

that is needed to decide on the right form of treatment. For

S. A. Imtiaz, S. Iranmanesh and E. Rodriguez-Villegas are
with the Circuits and Systems Group, Electrical and Electronic
Engineering Department, Imperial College London, UK. Email:
({anas.imtiaz,s.iranmanesh10,e.rodriguez}@imperial.ac.uk)). Telephone:
+44(0)20 7594 6297.

The research leading to these results has received funding from the

European Research Council under the European Community’s 7th Framework
Programme (FP7/2007-2013) / ERC grant agreement no. 239749.

the purpose of diagnosis, however, monitoring seizure events

at the right time is very difficult. Patients are often admitted

and monitored for a few days in hospitals in an attempt to

catch the seizure event on an EEG trace. However, in most

cases the onset of an epileptic seizure is not predictable nor

does it recur frequently. Therefore, long-term EEG monitoring

of epileptic patients is preferred such that EEG data over few

months can be collected and observed. Long-term monitoring

of epileptic patients has been floated as an idea over the

last three decades and potential benefits of this approach in

detecting difficult seizure events as well as its clinical use have

been discussed in great detail [7]–[10]. Recently, it has also

been reported that long term monitoring of epileptic patients

would reduce dependence on self-reporting and hence improve

diagnosis [11].

While the idea of long-term EEG monitoring has been

floated before, it has only been made possible with the

recent advancements in technology. The approach necessitates

devices that can be used by patients at the convenience of

their homes without requiring major lifestyle changes. The

concept of wearable EEG has been previously proposed and

the constraints associate with the design of such devices

discussed [12]. Based on this, it can be concluded that a

wearable EEG device for seizure monitoring needs to have the

following features: long battery life, low power consumption,

light weight, and easiness of use.

While these features impose severe constraints on the design

of a wearable device, they are also a springboard for research

and innovation. As an example, for long-term usage a battery

with large capacity is needed. However, the small size and

weight requirements of the device prohibits the use of a

battery that is physically large in size. These two competing

requirements mean that a small battery must be used without

having a negative impact on the usability of the system. The

result of this is that the electronics and processing algorithms

have to be designed in such a way that they consume small

amounts of power while being able to satisfy all the functional

requirements.

In the context of long-term epilepsy monitoring, a large

amount of data is generated of which very little is useful i.e.

the interesting sections of data are the ones where a seizure

event is happening and these events are rare. A single channel

EEG, sampled at 256 Hz with a resolution of 10-bits, will

generate over 2.3 GB worth of data for a period of 90 days.

This may either be stored on the system using flash memory or

wirelessly transmitted to a receiving device. While on-system

storage may result in lower power consumption in certain
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cases, wireless transmission of data has several advantages.

It allows real-time access to data enabling remote monitoring

and also saves space on the circuit board since no flash

memory is needed. Additionally, since the receiving device is

not constrained by the same low-power requirements, complex

algorithms can be implemented on it to parse the EEG data

in real-time.

It has been shown that wireless data transmission is a

viable option, in terms of power consumption, if data to

be transmitted can be reduced [13]. This makes even more

sense in the case of epilepsy monitoring where useful data is

sparse. The two common approaches of reducing data being

transmitted are described as follows.

• Compress data prior to transmission. Using this ap-

proach, all sampled data is compressed and transmitted.

Depending on the compression scheme, a reduction of up

to 60-80% can be achieved. On the receiving end, data

must be de-compressed and analysed either automatically

or manually for the presence of seizures.

• Discontinuous transmission of interesting data. This ap-

proach relies on an algorithm prior to data transmission

such that only data with increased likelihood of con-

taining seizure information is transmitted. This approach

has been extensively detailed in our previous works [12],

[14] and can result in up to 50% data reduction while

preserving most seizure events.

While the first approach uses compression algorithms to

send all recorded data, the second approach uses intelligent

methods to process EEG signals so that only the relevant

sections are transmitted. These may include detection of the

seizure onset, seizure termination, seizure event itself or just

the sections of data with higher likelihood of the presence of

seizure events. In this paper, we use the latter approach to

develop a light-weight algorithm for identifying data sections

with seizure events, which in turn acts as the core method

for reducing the amount of data that needs to be transmitted.

This data reduction algorithm is then implemented on an

integrated circuit and subsequently interfaced with a Bluetooth

Low Energy (BLE) [15] transmitter to wirelessly stream EEG

data whenever indicated by the algorithm. The choice of the

transmitter is primarily dictated by the fact that it provides

maximum compatibility with most smartphones and tablets

that can act as a receiver. This reduces the overall development

cost for such a system while making it easier to use by the

patients. Fig. 1 shows an overview of the proposed system.

The figure depicts a single EEG channel as an input, which is

ideal for wearable use. However, the digital processor shown

has been designed to process data from four EEG channels.

Fig. 1. An overview of the proposed seizure data reduction system.

The work presented in this paper discusses the design and

implementation of a wearable epilepsy monitoring system with

discontinuous data transmission. Section II presents a review

of the different methods relevant to seizure data reduction.

In Section III, the data reduction method used in this paper

is briefly discussed followed by a description of database and

methods used for its verification. Section IV details the circuit-

level implementation of the algorithm, explaining the design

choices for each module within the system. The results of this

implementation, its classification accuracy, and a full system

demonstration is presented in Section V.

II. SEIZURE DETECTION AND MONITORING OVERVIEW

Automatic identification of seizures from EEG recordings

is a very active research area as it helps to reduce manual

workload, quickly detect seizures, and allows for the possi-

bility of real-time feedback for nerve stimulation applications.

Other signals from the brain such as intracranial EEG (iEEG)

or electrocorticogram (ECoG) provide more information re-

garding a seizure thanks to their higher resolution. However,

they are invasive, and are generally used with patients at

a more advanced stage when they are not responding to

medications or prior to surgery. Hence, in this paper, the focus

is on real-time data reduction while preserving seizure events

using scalp EEG signals. This is achieved by using a light-

weight seizure-specific algorithm for compressing data that is

implemented on an integrated circuit (IC). An algorithm for IC

implementation for a wearable system differs from others due

to the processing constraints (discussed earlier). Hence, this

section presents a review of only such methods that have either

been implemented on an integrated circuit level or designed

for wearable applications. For an in-depth review of seizure

detection methods, the reader is directed to [16] and [17]

Verma et al. [18] presented one of the earliest complete

integrated system on chip (SoC) for seizure detection. Their

system followed the algorithm described in [19] to extract

features from single-channel EEG. These features were then

read out, requiring physical connection to the chip, and classi-

fied off-chip using a support vector machine (SVM) classifier.

Implementing the same algorithm, Yoo et al. [20] presented

an eight-channel EEG-based seizure onset detecion system

featuring data acquisition, feature acquistion, and classification

- all on the same chip. Additionally, their system included a

64KB RAM to store EEG data whenever a seizure event is

detected, and could be read via an external interface. Further

improving the system, Altaf et al. [21] presented a 16-channel

EEG-based seizure onset and terminal detection system. It

included analog circuitry for sampling data from 16 channels,

feature extraction engine, and a linear SVM-based classifier for

detecting seizure onset and termination events. It also included

64KB RAM on chip to store seizure events, potentially storing

events up to 10 seconds in duration (when sampling at 256 Hz

with a resolution of 12 bits). In a further modification to this

system, Altaf and Yoo [22] used a non-linear SVM classifier to

design an 8-channel seizure detection system, including 96KB

of on-chip memory to save seizure events .

Salam et al. [23] proposed an implantable seizure onset

detector by processing intracranial EEG signals. The advan-

tage of this approach is the availability of much cleaner
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signals. However the chip would require a surgical procedure

to be implanted. In their system, the onset of seizure would

be indicated by the output of logic gates which in turn

could be used to drive an alarm system. This system was

later improved with programmable parameters for extracting

seizure onset information and presented in [24]. Chen et

al. [25] develop an eight-channel SoC for real-time seizure

detection with intracranial EEG signals. Their system was

designed to be used for closed-loop seizure suppression using

electrical stimulation whenever a relevant event was detected.

This system also included an on-chip wireless transceiver to

transmit the intracranial EEG signals continuously for real-

time monitoring. Another integrated circuit for intracranial

EEG-based seizure detection was presented by Shoaran et al.

[26]. In this circuit, feature extraction involved computing the

line length [27] on a signal compressed using compressive

sensing [28]. The advantage of this approach is that low

computational resources are needed to process a compressed

signal, provided the compression scheme is not too expensive

in the first place. Do Valle et al. [29] also presented an 8-

channel implantable seizure detector and counter capable of

operating in either a diagnosis or counter mode. In diagnosis

mode, this system used a sampling rate of 1280 Hz, and

required a seizure to be identified by a doctor in order to train

the system. In counter mode, it sampled at a rate of 256 Hz,

and recorded a seizure event upto 10 seconds in duration on

flash memory. An external device is then required to retrieve

this data from the implanted chip.

Sridhara et al. [30] designed a low-power processor based

on an ARM Cortex-M3 microcontroller for use in various

medical applications. The authors demonstrated its usage for

seizure onset detection by using EEG data sampled off-chip

and loaded on the SoC using an SPI interface. Although not

clear from this paper, there is 32KB of data memory available

on the system, part of which could be used to store EEG

data. Qian et al. [31] designed a programmable analog front

end for sampling EEG data in seizure detection applications.

This sytem can be programmed by entering commands via SPI

interface. The interface is also used to read the digitised data

samples which could then be processed off-chip using a low-

power microcontroller. Finally, Yang et al. [32] addressed the

need for fast and low-power processing in ICA-based seizure

detection algorithms. They presented the design of an ICA

processor that would extract features from EEG signals that

would subsequently be used for seizure classification.

It can be seen from the brief overview above that the

different seizure-related circuits and systems have been de-

signed to target various applications within the broad area of

seizure detection. Some of these focus on real-time seizure

detection for diagnosis while others aim for real-time treat-

ment of epilepsy through closed-loop instantaneous seizure

suppression and symptom alleviation. In this paper, our aim

is to develop a system for long-term wearable use to monitor

EEG signals and record them for potential seizure events that

are reviewed by expert clinicians. From the point of view of

patients, in order to make it usable for them, such a system

needs to be comfortable and easy to use. Thus it needs to be

small in size, light in weight, record as much data as possible

without requiring an external device to manually download

or read from the chip, and operate over long period of time

without requiring frequent battery charging. From the point of

view of clinicians, the key issue with long-term monitoring

is the huge amounts of data that need to be reviewed by

them. We tackle all of these issues in this paper by creating

a low-power integrated circuit that has an intelligent data

reduction algorithm which reduces the amount of data that is

transmitted by discarding most of the background EEG. This

approach not only reduces the expert analysis time but also

reduces the amount of data to be transmitted thus reducing the

power consumption of the transmitter, consequently reducing

the size and increasing the operating lifetime of the system. In

comparison to the other systems discussed above, our approach

is fundamentally different since we are not aiming to carry out

automated diagnosis but instead aiming to make the system

more usable and also make it easier for neurologists to analyze

relevant data and perform the diagnosis.

Long-term usage requires minimum disruption to the patient

in order to encourage them to use the system. It is, therefore,

important to use smaller number of channels, record as much

data as possible without requiring an external device to man-

ually download or read from the chip, and have a system that

operates over long period of time. Although reducing the num-

ber of channels is not always an option since, in many cases,

different areas of the brain need to be monitored, it still makes

sense to use lower number of channels and only increase them

when needed. Thus, the system presented in this paper focuses

on single EEG channel for analysing potential seizure events,

although it can accommodate input from four channels. It also

transmits data wirelessly whenever an event of interest has

occurred. Additionally, it uses Bluetooth Low Energy P2P [15]

for wireless communication allowing seamless integration with

most modern smartphones and tablets and hence does not

require any additional accessory for reading data from the

chip. The rest of this paper explains the algorithm that is

implemented for data reduction, details the design of each

block within the algorithm, and presents the validation of the

circuit-level implementation of this algorithm.

III. MATERIAL AND METHODS

A. Seizure Data Reduction Algorithm

A block diagram of the seizure data reduction algorithm,

to be implemented on chip, is shown in Fig. 2. It shows

the different stages of the algorithm that are required to

intelligently detect sections of data containing seizures, and

thus to be transmitted.

The first stage of the algorithm involves certain preprocess-

ing steps to improve the signal quality that gets processed. At

this stage, the first step consists of a high-pass filtering stage

with a cutoff frequency of 0.16 Hz [33] in order to remove dc

offset from the signal. Next, a third-order Bessel low-pass filter

with a cutoff frequency of 10 Hz is used to limit the signal

bandwidth in the frequency of interest for seizure detection.

The resulting signal is consequently downsampled to 20 Hz

which also helps to reduce the processing workload in other

blocks further down the pipeline.
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Fig. 2. Block diagram of the seizure data reduction algorithm.

The filtered EEG signal is then used to extract a single

time-domain feature known as the line length [27], that is

highly useful in discriminating between seizure and non-

seizure events [34]. It is also advantageous since it has a low

computational complexity and is thus suitable for use in low-

power and wearable systems. In this algorithm, the line length

is continuously computed for the downsampled signal in non-

overlapping epochs of 2 seconds as follows:

F (e) =

S
∑

k=1

|w(k − 1)− w(k)| (1)

where F (e) is the line length for an epoch e, w is the

downsampled signal, and S is the total number of samples in

a 2-second epoch.

Since the energy level in the EEG signal varies considerably

between different people, it is important to normalize the line

length in order to make it subject-independent. Normalization

is performed by dividing the computed line length with an

estimation of the background activity, z(e). This is computed

by applying a moving average filter on the B previous line

lengths, as shown below, while λ is a decay constant and

z(e−1) is the background estimate calculated for the previous

epoch.

z(e) =(1− λ)× Moving Average{F (e− 1) · · ·F (e−B)}

+ λ× z(e− 1) (2)

The background estimate, z(e), is calculated over the last

64 epochs (approximately 2 minutes). The line length is

normalized by dividing the feature F (e) with the background

estimate z(e), resulting in the normalized feature A(e).

A(e) = F (e)/z(e) (3)

Finally, the normalized feature is compared against a de-

tection threshold α. This threshold is a variable parameter in

this algorithm that can be modified in order to tune the overall

sensitivity.

DFn(e) =

{

1, if A(e) ≥ α

0, otherwise
(4)

If A(e) exceeds this threshold, the epoch e being processed

is classified to contain a seizure event and a flag is raised

to transmit this signal. Otherwise, the epoch data is discarded

and no signal gets transmitted. If more than one EEG channels

are used, the processing pipeline remains the same, however a

decision stage is used to collate the classification results from

individual channels.

B. Database

The performance of the data reduction algorithm has already

been validated in a study consisting of 168 hours of EEG data

obtained from 21 adult subjects, sampled at a frequency of

at least 200 Hz [14]. This data was obtained from recordings

at the Epilepsy Society (UK), Katholieke Universiteit Leu-

ven (Belgium) [35], [36] and Freiburg University Hospital

(Germany). While the algorithm performance has already

been validated, its on-chip implementation necessiates certain

changes that can accumulate error during various numerical

computations. Hence, its performance after implementation

will be re-validated using the same dataset.

IV. HARDWARE IMPLEMENTATION

Fig. 3 shows the six main blocks of the seizure data reduc-

tion algorithm: 1) high pass filter; 2) low pass filter; 3) line

length calcuation; 4) moving average filter; 5) classification;

and 6) wireless transmission; together with other supporting

blocks. In a complete system-on-chip implementation, an ana-

logue front end would be needed to digitize the EEG signals at

some point either before the filters or after, depending on the

chosen architecture. The hardware implementation described

in this paper does not include an analogue front end. A review

of front end systems suitable for this application can be found

in [37].

In Fig. 3, the digitized EEG signal is first processed using a

series of filters. Following this, the line length is continuously

computed until the sample count reaches 400 (equivalent to

2 second epoch with a sampling frequency of 200 Hz). A

moving average filter is used to compute the background

activity which subseqeuently normalizes the line length. This

normalized value is compared with a detection threshold,

alpha, which can be can be varied by passing the relevant

control bits from an external interface. The output of the chip

is connected to a Nordic nRF52832 Bluetooth Low Energy

(BLE) transceiver [38] via an SPI interface. A control signal

from the chip to the MCU acts as an enable signal for the

microcontroller (MCU). While an epoch is being processed it
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Fig. 3. Top-level block diagram of the algorithm implementation on chip showing the main modules.

is also buffered in a set of registers so that it can be transmitted

if deemed as potential seizure at the classification stage.

The following sections explain the hardware implementation

and the architecture of the individual processing blocks in

detail.

A. High Pass Filter

The high pass filter used in the algorithm is a simple first

order IIR filter with the following difference equation.

y[k] = 0.9975x[k]− 0.9975x[k − 1] + 0.9950y[k − 1] (5)

where x and y are the input and output samples, to and from

the filter, respectively. For the hardware implementation of

this filter, three multiplication operations are needed. However,

since the filter coefficient for x[k] and x[k−1] are the same, the

result of the multiplication with x[k] can be stored and used in

the next cycle. Hence, overall, two multipliers and two adders

are used for this filter, together with two registers with a depth

of four that are needed to store the values of the previously

multiplied input and the filtered output sample from up to

four channels of input data. Both multipliers are implemented

to perform 16-bit integer multiplication since the filter coeffi-

cients are represented as 16-bit fixed-point numbers. The filter

is gated at the input and starts its computation only when a

valid sample is available for each channel. When its operation

is complete, the result is registered and a control signal raised

to indicate the availability of valid data at its output.

B. Low Pass Filter

The low pass filter is a third order Bessel filter which is

realized as a cascade of first and second order filters, as shown

in the equations below.

u[k] = 0.1000y[k] + 0.1000y[k − 1] + 0.7423u[k − 1]

v[k] = 0.1000u[k] + 0.1999u[k − 1] + 0.0999u[k − 2]

+1.5452v[k − 1]− 0.6283v[k − 2] (6)

This filter involves several more arithmetic operations than

its predecessor in the processing pipeline. Hence, it is imple-

mented as a multi-cycle operation such that the multipliers and

adders can be shared between clock cycles. This implementa-

tion uses three multipliers and two adders with multiplexers at

their input to select the correct filter coefficients and data input

based on the clock cycle. Similar to the High Pass Filter, this

filter also uses registers with a depth of four to accommodate

data from up to four input channels.

When a valid sample is available at its input, this block

is enabled and the first stage of filtering is performed in the

first clock cycle. This intermediate result is buffered and used

in the next two cycles to complete the process. At the end

of the third clock cycle, a valid signal is raised to indicate

that data is ready to be used. Additionally, since the signal is

downsampled by a factor of 10, a counter is used to set the

valid signal at the output after every 10 samples only.

C. Line Length Calculation

The line length for each epoch is calculated as the sum of

the absolute differences between the subsequent samples in

the epoch, as described in Eq. (1). This is implemented in

hardware using an accumulate operation where the difference

gets added to a registered value, that is inialized with zero at

the beginning.

Fig. 4 shows a block diagram of the line length calculation

block, implementing the following equations.

p[k] = v[k]− v[k − 1] (7)

q[k] = abs(p[k])

F [e] = sum(q[k].....q[k − n])

where F [e] is the line length for an epoch e and n is the

number of samples in the epoch.

At the start of the calculation for each epoch, a register is

initialized to zero. At the same time, another register to hold

the previous sample value is also reset to zero. When a valid

data sample is available at the input, the absolute difference

between the new sample and the previous sample is computed

and added to the value already stored in the line_length

register, for each channel. The new sample is also used to

replace the value in the register holding the previous sample

for the corresponding channel, so that it could be used in

the next iteration. After the values are updated a counter is
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Fig. 4. Block diagram of the Line Length Calculation module.

incremented to track how many samples in the given epoch

have been received and processed. Once the required number

of samples for an epoch are processed, a valid signal is raised

indicating that the line length value in the register is ready to

be used.

The architecture used in this implementation allows the line

length calculation as soon as a new sample is received rather

than having to wait for all the samples in an epoch (which

would also require more registers to buffer the filtered epoch).

D. Moving Average Filter

The moving average filter is used to calculate the back-

ground estimate, z(e). For its implementation, an exponen-

tially weighted moving average (EWMA) filter is used. This

approximates the response of the linear moving average filter

very well and has no negative impact on the performance of

the algorithm. A further benefit of using this filter is that it

is much simpler to implement in hardware and obviates the

need for a buffer to hold all the previous line length values.

The EWMA filter is represented by the following equation.

M [e] = M [e− 1] + γ(F [e]−M [e− 1]) (8)

where M is the output of the filter and γ is the weighting

parameter. In this case, γ is set to be 1/64.

The corresponding hardware implementation of this filter is

shown in Fig. 5. It requires just one shifter which performs

the divide-by-64 operation, one adder, and one subtractor. An

additional register is used to store the output value, from each

channel, that is needed in the next iteration when the previous

value of the filter output is needed.

Fig. 5. Block diagram of the EWMA Filter module.

The output of the EWMA filter together with its previous

value, are used to estimate the background activity using a

decaying memory, as shown in Eq. (2).

E. Classification

The final stage of the algorithm is classification which in-

volves assigning an epoch with a seizure or non-seizure label.

For this, the line length calculcated as F [e] is normalized by

dividing with the background estimate z[e], and the resultant

value compared against a detection threshold α.

F [e]

z[e]
> α (9)

The threshold α is a fixed value that is used for classifying

potential seizure events. It is not a patient-specific parameter

and, instead, controls the sensitivity of the algorithm i.e. it

determines how much of data is to be transmitted. Hence, it is

implemented to be a variable parameter that can be selected

at the start to allow user control based on desired accuracy.

Fig. 6 depicts the classification stage where a multiplexer

is used to select α from sixteen different values of stored in

the ROM by writing to a register via the SPI interface. Eq.

(9) is rearranged so that a fixed point multiplier can be used

rather than a divider and a comparator is used to determine

the result of the following result.

F [e] > α× z[e] (10)

If the epoch being compared is classified as a seizure, a

control signal is asserted high. This indicates the epoch buffer

to begin serial transmission of data, and remains high until the

epoch has been written out to the MCU. If four EEG channels

are used, the control signal is asserted high when the epoch

is classified as seizure in at least two of the input channels.

Fig. 6. Block diagram of the Classification module.

F. Epoch Buffer

The epoch buffer is simply a register bank to store the

samples of the epoch that is currently being processed. This is

to ensure that this data is available if the epoch is classified as

a potential seizure and can therefore be wirelessly transmitted.

If the detection stage returns a non-seizure classification, data

in the epoch buffer is discarded. Additionally, the input of

the epoch buffer is multiplexed such that it can store either

raw data or the output from any one of the stages in the

processing pipeline. The epoch buffer stores samples from

one EEG channel only. If multiple input channels are used,
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the channel from which samples need to be stored can be

selected by the user.

G. SPI Interface

SPI is a synchronous serial communication interface pop-

ularly used in embedded systems and microcontrollers to

transfer data between devices. Typically, it consists of one

master device and one or more slave devices. The master

device configures the communication clock frequency and

initiates the transfer of data. SPI has spearate lines to transmit

and receive data. When a bit of data written by the master,

it is received and read by the slave which then responds by

writing a bit of data to the master. Hence there is always two-

way synchronous communication between the devices.

In this work, an SPI module has been added to the seizure

data reduction chip to enable communication with the BLE

transceiver. This module has been designed to act as a slave

while the BLE transceiver will act as the master device. It

writes and reads the most significat bit (MSB) first. Reading

happens on the first clock edge (low-to-high transition), while

writing happens at the following edge. While these parameters

are fixed on the slave, the master device (which is a micro-

controller in this case) is configurable and can be adjusted

to match the communication requirements. Additionally, the

module is used only when there is data to transmit and is

disabled to save power when no transmission is needed.

The SPI module on the chip is used to transmit data in the

epoch buffer to the nRF52832 microcontroller. It also receives

data from the microcontroller to configure what needs to be

written into the epoch buffer, select the detection threshold α,

and to enable debug mode where a known sequence of data

is written into the epoch buffer.

H. Wireless Transmission

In order to wirelessly transmit EEG data with potential

seizures, a number of different transmission protocols can be

used. In this work, however, we opted to use Bluetooth Low

Energy (BLE) for two reasons:

1) It allows maximum compatibility with existing devices

such as smartphones, tablets, and laptops due to which

no special receiver needs to be designed.

2) The BLE standard has been specifically developed for

applications that require sporadic transmission transmis-

sion making it a natural fit for our algorithm.

For BLE transmission, the Nordic nRF52832 chip is used

which includes an ARM-Cortex M4 processor with integrated

BLE radio in a small form factor. This microcontroller is

programmed to receive serial data from the chip using its

SPI interface and to transmit it using the BLE radio. This

happens only when there is valid data available at its input

interface, indicated by a signal from the chip. At other times

the microcontroller stays in a low-power sleep mode waiting

for a valid data event to happen at its input, thereby consuming

little active power when inactive.

I. Data Receiver

To receive data from the BLE transmitter, an Apple iPhone

6 is used to act as a receiver. An application has been

written to discover the specific BLE peripheral device and

establish a connection with it. This application logs the time

and stores data in a file whenever it receives EEG samples.

A list of seizure events with timestamps is presented to the

user to select and view the EEG data for a particular event.

In continuous transmission mode, it is possible to save and

view the data being received in real-time. It is also possible to

simulatenuously upload the received data to a cloud platform

which can provide real-time and on-demand access to a

healthcare practitioner and thus enable remote monitoring of

seizure events.

V. RESULTS

A. Classification Accuracy

The classification performance of the algorithm on chip has

been validated by using the same database which was used

previously in [14]. The database consists of over 168 hours of

EEG recording from 21 different patients using 16 channels. It

includes 34 marked seizure events with a total duration of 4150

seconds obtained from the Epilepsy Society (UK), Freiburg

University Hospital (Germany) and Katholieke Universiteit

Leuven (Belgium) [35], [36]. Of these 16 channels, Fp1-

A2 is used to test the accuracy of the algorithm on chip.

Digitized data from this channel of EEG recordings were

stored on a SD card. The test setup, shown in Fig. 7, includes

a microcontroller reading stored data from this SD card and

passing this on to the chip mimicking the output of an analog-

to-digital converter. The output of the chip is also connected

to one of the inputs of this microcontroller to record the

classification result. Whenever a valid output is available, it is

indicated by an output signal from the chip that goes from low

to high. This serves as an interrupt flag for the microcontroller

to register the output and store it on the SD card. As a result,

the sampled label for each processed epoch is stored on the SD

card. The final results are then interpreted in two ways. First,

the classification results are against the reference results in the

database to obtain the algorithm classification performance on

chip. Second, the results are compared against the algorithm

performance in MATLAB (version 2015a) using the same EEG

data as input to ascertain the differences occuring due to

integrated circuit implementation. The entire test procedure

was repeated for all the recordings using the sixteen different

values of alpha (detection threshold).

Fig. 7. Test setup where data from a SD card is loaded and used as input to
the chip.
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The classification performance of the algorithm are ex-

plained using the following performance metrics.

1) Event Sensitivity, which represents the fraction of

seizure events that are correctly identified by the algorithm.

EventSensitivity =
TPev

TPev + FNev

× 100% (11)

2) Epoch Sensitivity, which represents the fraction of 2-s

seizure epochs that are correctly identified by the algorithm.

EpochSensitivity =
TPep

TPep + FNep

× 100% (12)

3) Specificity/Data Reduction, which is the fraction of 2-s

non-seizure epochs correctly rejected by the algorithm).

Specificity =
TNep

TNep + FPep

× 100% (13)

In the equations above,

• TPev is the number of correctly identified seizure events.

• FNev is the number of seizure events missed by the

algorithm.

• TPep is the number of correctly identified seizure epochs.

• FNep is the number incorrectly rejected seizure epochs.

• TNep is the number of correctly rejected non-seizure

epochs.

• FPep is the number epochs incorrectly identified as

seizure.

Note that two variants of the sensitivity metric are used

here to highlight the performance of the algorithm for both

seizure event and epoch detection. These are epoch sensitivity

and event sensitivity. For epoch sensitivity, the ground truth is

taken to be the total number of epochs enclosing all the seizure

events marked by experts. It effectively measures the fraction

of total seizure duration correctly identified by the system. In

case of event sensitivity, the reference used is the total number

of seizure events expertly marked in the test database. For its

computation, a detection is condered to be a true positive event

if there is an overlap of at least one epoch between the detected

event and the corresponding seizure event in the reference.

The specificity is only for epochs and corresponds to data

reduction in this case since any epoch correctly classified as

non-seizure represents data reduction without any loss. The

results from the chip showing the sensitivity against specificity

are shown in Fig. 8 for the different 16 detection thresholds

(0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8,

3.0, 3.2).

These results show that the algorithm is able to detect up

to 97% of seizure events with data reduction of 90%. For

epoch-based metrics, it achieves data reduction of 50% while

preserving 80% of seizure epochs across all seizure events

from one EEG channel. In the ROC curve where the event

sensitivity is 100%, the corresponding specificity is about

74%. This means that 74% of the epochs were correctly

rejected as non-seizure epochs while 26% of the EEG epochs

were transmitted. This corresponds to 44.3 hours of data (out

of 168h of total recordings) being transmitted including 0.7

hours of seizure data. These results are consistent with those
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Fig. 8. Classification performance of the algorithm on chip.

previously discussed earlier in [14] where the performance

metrics are also explained in further detail.

The classification performance of the chip was also vali-

dated against the reference algorithm in Matlab using the full

database. Of the 304125 epochs tested with the 16 thresholds

(4866000 epochs effectively), only 526 were misclassified on

hardware (99.9892% accuracy). These were mainly due to the

numerical differences resulting as a consequence of using 16-

bit fixed-point as opposed to 64-bit floating-point arithmetic

and an exponentially weighted moving average filter instead

of the linear moving average filter. Further, only three seizure

epochs were misclassified as non-seizure in this comparison.

As a result there was virtually no difference in event and epoch

sensitivities as well as specificity between the results obtained

on hardware and in Matlab. This represents a very robust on-

chip implementation after taking into considerations the chip-

level trade-offs and fully validates its performance.

B. Patient-specific Performance

The previous section showed the overall performance of

the system using data from different patients using a single

global threshold. However, the optimal threshold to achieve

the best performance for individual patients may be differ-

ent, as show in the patient-specific results in Table I. This

difference in thresholds could be due to a number of reasons

including the seizure location, data quality, filter settings on the

recording eqipment, etc. For this reason, the proposed system

has variable thresholds that can be changed to achieve the

desired performance after deciding on the specific trade-off

between sensitivity and the amount of data reduction. Further,

it should also be noted that while the epoch sensitivity also

differs for each patient, the event sensitivity for all patients is

100% i.e. all the seizure events were at least partially detected

and transmitted.

C. Chip Measurements

The algorithm is implemented on chip using the AMS

0.18µm process technology with 6 metal layers and measures

0.26 mm2 in die area. It is powered using a single 1.8 V
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TABLE I
PATIENT-SPEICIFIC PERFORMANCE OF THE SEIZURE DATA

REDUCTION SYSTEM

Patient Threshold Ep Sen (%) Ep Spe (%)

01∗ 1.4 N/A 90.95

02∗ 1.4 N/A 88.87

03∗ 3.2 N/A 89.22

04∗ 1.4 N/A 85.09

05 1.8 93.33 89.43

06∗ 1.6 N/A 91.4

07 1.2 67.08 74.91

08 1.4 68.89 73.27

09 1 61.9 63.54

10 1.2 76.31 76.44

11 1.2 86.5 74.88

12 0.8 56.25 40.81

13 1.2 92 73.93

14 1 75 61.6

15∗ 1.4 N/A 89.59

16∗ 1.4 N/A 86.19

17 1 77.08 69.77

18 1.2 72.49 60.21

19 0.8 72 57.69

20 0.6 79.71 65.79

21 1 59.09 69.87

Ep Sen - Epoch sensitivity; Ep Spe - Epoch specificity.
∗ denotes recordings with no seizure events; N/A - Not applicable.

supply and its average power consumption is 23 µW while

operating at a clock frequency of 125 kHz. This clock fre-

quency is used to make the SPI module compatible with most

microcontrollers. Internally, the seizure algorithm functions at

a much lower frequency obtained by dividing the SPI clock

by 4,8,16 or 32. This is user selectable and depends on the

sampling frequency of the input signal as well as the number

of input channels used.

The performance summary of the chip is listed in Table II

and a die photograph is shown in Fig. 9 along with its

dimensions. The power consumption of the nRF52832 MCU

was measured during the different transmit and sleep modes

of operation. Assuming a 60-second seizure event happening

every 15 minutes, and taking the algorithm performance at

97% sensitivity / 90% specificity point on the ROC curve,

only 10% of background data and 50% of seizure epochs are

transmitted resulting in BLE transceiver power consumption

of 720 µW. Hence, the the average power consumption of the

complete system with the data reduction chip was estimated

to be 743 µW.

Thus, considering a state-of-the-art analog front end for

EEG signals [39], and using a 310 mAh hearing aid bat-

tery [40], the system can then operate autonomously for about

15 days. Using the same battery with four input channels, the

system can operate for just under 10 days.

TABLE II
PERFORMANCE SUMMARY OF THE ALGORITHM ON CHIP

Technology AMS 0.18 µm CMOS (C18A6)

Power Supply 1.8 V

Die Area 0.26 mm2

Clock Frequency 125 kHz

Total Power Consumption 743 µW

Seizure Chip 23 µW

BLE Transceiver 720 µW

Fig. 9. Picture of the fabricated chip with the seizure algorithm in the
rectangle.

D. System Demonstration

To demonstrate the working of the complete system includ-

ing both the EEG processing and data transmission, the seizure

algorithm chip is connected to the nRF52832 MCU and data

received on a mobile phone in real-time. Fig. 10 shows three

different sections of EEG data that is processed on the chip.

These are a representative demonstration of the system, using

data that was known to contain seizure sections. The figure

shows outputs from the intermediate stages of data processing

that were obtained by selecting the input to the epoch buffer.

The figure also shows the valid signal which goes from low

to high whenever an epoch is classified as seizure.

VI. DISCUSSION

This paper discusses the implementation of a wearable

epilepsy monitoring system for capturing seizure events in

real-time. It uses a low-complexity algorithm to pre-select data

segments that are likely to contain seizure events and transmits

only those segments. This algorithm has been implemented on
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Fig. 10. Three different examples of 400-second EEG data being processed and seizure epochs identified by the system. In each of the examples, the first
plot shows the raw EEG signal, second plot shows the filtered EEG signal after passing through HPF and LPF stage, third plot shows the normalized line
length and the fourth plot shows the detection stage with seizures being identified at the shaded area.

chip to classify EEG data segments in epochs of 2 seconds,

and stays in an idle mode when there is no data to process.

It has been designed to save as much power as possible

by gating each module in the system, sharing arithmetic

resources, and using fixed-point computations. The output

from the chip is then connected to a BLE transceiver to enable

data transmission on to smartphones and tablets, and can also

be read out instead by using its SPI interface.

The main objective of this work is to demonstrate the

advantages of discontinuous data transmission for reduction

power consumption in the context of long-term epilepsy

monitoring. The algorithm used in this paper is one of many

that can be used to identify seizure-related events. It is

implemented on chip to show its low power consumption

that translates directly into long-term continuous monitoring.

Several other algorithms and their circuit-level implementation

have also been published for seizure detection using different

approaches.

A comparison of the proposed system with other related

state-of-the-art seizure detection systems is shown in Table III.

It shows the design and implementation aspects of different

seizure monitoring/detection systems as well as their clas-

sification targets and detection accuracies. The comparison

between different systems is not straightforward though since

the constraints and objectives when designing for seizure data

reduction and automated seizure detection systems are differ-

ent. For example, some of the systems in this comparison have

been designed for applications such as implantable seizure

detectors, hence the trade-offs and requirements in them are

bound to be different. The algorithmic detection results are

all over 90% however, the data used in different systems and

their duration is different thus the statistical significance is

not the same. An additional factor to note in comparison of

these systems is the number of channels they use. Most of

these systems have been designed to use a higher number

of data channels to detect and store seizure events that are

subsequently retrieved using read-out circuitry. Using a larger

number of channels is necessary in cases to identify seizures
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from different areas of the brain. However, the focus of this

work is primarily to realise a wearable monitoring system

for long-term usage. To aid the development of user-friendly

system, the number of input EEG channels is limited to a

maximum of four while any seizure data detected is wirelessly

transmitted.

The approach of discontinuous transmission is beneficial

only if the total power consumption of classifying and trans-

mitting EEG data segments is lower than transmitting raw EEG

data continuously. Assuming a seizure event occuring every

15 minutes, the power consumption of the proposed system

is 743 µW. For the same scenario, continuous transmission

of data using the same BLE transceiver requires 4.5 mW

of power. This translates to a 6 times increase in operating

time, using the proposed system, powered with a hearing

aid battery. It should also be noted that an integrated circuit

implementation here results in a power consumption that is

an order of magnitude lower than what is achievable using an

off-the-shelf microcontroller, as previously demonstrated [14].

This can be improved further by implementing more efficient

filters on chip, either in digital or analog domain (prior to

digitization), as well as using RAM macros instead of the

register banks to buffer data prior to transmission. Apart from

the huge savings in power, and thus increased battery life, the

system presented in this paper has several other advantages. It

transmits data wirelessly which allows easy access to data for

real-time monitoring, and does not require special data read-

out procedures. Specifically, it uses a BLE transceiver which

enables maximum compatibility with existing smartphones and

tablets. Using the system with familiar mobile device improves

its usability since the user can control the system using a

mobile application. For example, an application can be used to

turn the system on or off, change its operating modes, query

its battery status, and even raise an alert if a cluster of events

are detected in a short period of time. Another advantage of

this system is the use of a data selection selection algorithm

which results in 50% data reduction while identifying 80%

of seizure events [14]. This performance may be improved

further by using more discriminatory features together with

more complex classifiers. However, this may come at the cost

of additional power consumption thus affecting the battery life.

Further, it also saves time for neurologists by reducing the

amount of time needed to analyse this data.

The system presented in this paper is intended to be used

with data from one EEG channel for processing and classifying

seizure events. While this improves the usability of the system

being handled by a patient, it may not be sufficient in cases

where more information is required and also affect the reliabil-

ity of the data being obtained due to poor electrode contact.

Hence, although demonstrated using one EEG channel, the

system has been designed to accommodate a maximum of four

EEG input channels. Additionally, the approach of discontin-

uous data transmission has an inherent limitation since any

data not transmitted, due to misclassification, is completely

lost. In contrast, if a lossless compression scheme is used, all

data can be reliably recovered at the receiver end. However,

these limitations are greatly outweighed by the advantages

discussed earlier. The use of just one channel vastly improves

the usability of the system that patient needs to wear for few

months as opposed to eight or sixteen channels that are not

only difficult to attach but also uncomfortable for long-term

use.

The system can also be adapted for use in cases where

higher number of channels is definitely needed. This is pos-

sible since it has the circuitry (registers, multiplexers, etc.)

to handle data from four EEG channels on the same chip.

Multiple modules of the 4-channel system can be combined

together to increase the number of channels while using

the on-chip SPI interfaces to transmit data to a single BLE

transceiver that acts as the central hub. The increase in number

of channels would however lead to a higher volume of data

to be transmitted. The maximum number of channels that

can be used will be dictated by the data rate that can be

achieved by the BLE transceiver. Hence, while the system

has been designed to be ideally used with a small number

of channels, its modular approach lends it to scale up in

order to acquire data from a higher number of channels. It

should be noted though that regardless of the number of

channels, the algorithm performance is dependant on acquiring

EEG signals of sufficient quality. That, in turn, depends on

proper placement of electrodes and the physical set up of the

equipment [42]. Thus, for long term use, it is important to

ensure that this aspect is taken into account to maintain the

algorithmic performance.

While there are many other complex algorithms out there

for seizure detection, the work presented in this paper com-

plements these since the focus is on intelligently reducing

data. From the perspective of wearable EEG systems (in

epilepsy), an ideal system would require multiple algorithms

to detect different characteristics of seizures and in many

cases focus purely on reducing data without actual detection.

However, having more than one algorithm running would only

make sense if they consume very little power. In a scenario

where our proposed system is used with an offline or remote

algorithm for seizure detection, it can serve as a gateway to

reduce power consumption of the wearable part of the system.

The classification of seizures using a more complex algorithm

can then happen at a remote computer or in cloud where the

power constraints of the wearable system are not applicable.

In other words, our system provides benefit by reducing the

power consumption, extending the battery life and improving

the overall user experience regardless of how the seizure events

are classified at the end. Hence, in that sense this work also

demonstrates a low-power and light-weight component for a

much larger system.

VII. CONCLUSION

The integrated circuit presented in this paper has been

designed to intelligently reduce EEG data in wearable epilepsy

monitoring systems. It uses a small number of datapath

components to implement a seizure data reduction algorithm

such that only EEG segments with potential seizure events

are preserved and transmitted wirelessly while others are

discarded. It is then interfaced with a BLE transceiver to

maximise compatiblity with existing smartphones and tablet
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TABLE III
COMPARISON OF PERFORMANCE WITH OTHER RELATED SYSTEMS.

Verma [18] Mirzaei [24] Lee [41] Chen [25] Altaf [22] This Work
JSSC 2010 TBCAS 2013 JSSC 2013 JSSC 2014 TBCAS 2016

Signal EEG iEEG EEG iEEG EEG EEG

# Channels 1 8 1 8 8 1

Feature Extraction o x o o o o

On-chip
x o o o o o

Classification

On-chip AFE x o x o o x

Read-out Circuit Serial x x Wireless Serial SPI

Supply (V) 1.0 - 1.2 1.8 1.8 1.8

Feature(s)
Spectral energy x Band-limited Entropy and Filter banks Line length

signal components power spectrum coefficients

Classifier x Thresholding SVM LLS NL-SVM Thresholding

Patient-sepcific
- o o o o x

Training Needed

Avg. Power/channel 9 µJ/feature 1.5 µW 273 µJ/class 162 µW 19.6 µW 23 µW

Technology 0.18µm 0.13µm 0.13µm 0.18µm 0.18µm 0.18µm

Classification Target Eye state (alpha) Seizure Seizure Seizure Seizure Seizure

Detection Accuracy 100% 100% - 92% 95% 97%

Test Data Details
5 minutes 34 recordings - 72 hours 906 hours 168 hours

(1 recording) (2 patients) (4 Long-Evans rats) (24 patients) (21 patients)

device. Both the integrated circuit and transceiver stay in an

idle mode at most times, waking up only when processing or

transmission are required. This, together with an on-chip im-

plementation, greatly reduces the power and area requirements

that are heavily constrained in a wearable device. The overall

power consumption of this system is 743 µW, and with a

suitable analog front end, results in an effective battery life of

15 days using a single hearing aid battery. This demonstrates

the potential of our work to be used as an effective wearable

system for long-term epilepsy monitoring and diagnosis.
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