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Abstract. We describe two conjectures, one strictly stronger than the other,
that give descriptions of the integral Bernstein center for GLn(F ) (that is, the

center of the category of smooth W (k)[GLn(F )]-modules, for F a p-adic field

and k an algebraically closed field of characteristic ` different from p) in terms
of Galois theory. Moreover, we show that the weak version of the conjecture

(for m ≤ n) implies the strong version of the conjecture for GLn. In a com-
panion paper [HM] we show that the strong conjecture for n − 1 implies the

weak conjecture for n; thus the two papers together give an inductive proof of

both conjectures. The upshot is a description of the Bernstein center in purely
Galois theoretic terms; previous work of the author shows that this description

implies the conjectural “local Langlands correspondence in families” of [EH].

1. Introduction

In [EH], Emerton and the author describe a conjectural “local Langlands cor-
respondence in families” for the group GLn(F ), where F is a p-adic field. More
precisely, we show that given a suitable coefficient ring A (in particular complete
and local with residue characteristic ` different from p), and a family of Galois
representations ρ : GF → GLn(A), there is, up to isomorphism, at most one admis-
sible A[GLn(F )]-module π(ρ) that “interpolates the local Langlands correspondence
across the family ρ” and satisfies certain technical hypotheses. (We refer the reader
to [EH], Theorem 1.1.1 for the precise result.) We further conjecture that such a
representation π(ρ) exists for any ρ.

The paper [H2] gives an approach to the question of actually constructing π(ρ)
from ρ. The key new idea is the introduction of the integral Bernstein center, which
is by definition the center of the category of smooth W (k)[GLn(F )]-modules. More
prosaically, the integral Bernstein center is a ring Z that acts on every smooth
W (k)[GLn(F )]-module, compatibly with every morphism between such modules,
and is the universal such ring. The structure of Z encodes deep information about
“congruences” between W (k)[GLn(F )]-modules (for instance, if two irreducible rep-
resentations of GLn(F ) in characteristic zero become isomorphic modulo `, the ac-
tion of Z on these two representations will be via scalars that are congruent modulo
`.)

Morally, the problem of showing that π(ρ) exists for all ρ amounts to showing- for
a sufficiently general notion of “congruence”- that whenever there is a congruence
between two representations of GF , there is a corresponding congruence on the
other side of the local Langlands correspondence. It is therefore not surprising
that one can rephrase the problem of constructing π(ρ) in terms of the structure of
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Z. Indeed, Theorem 7.4 of [H2] reduces the question of the existence of π(ρ) to a
conjectured relationship between the ring Z and the deformation theory of mod `
representations of GF (Conjecture 7.2 of [H2].)

The primary goal of this paper, together with its companion paper [HM], is
to prove a version of this conjecture, and thus establish the local Langlands cor-
respondence in families. More precisely, we introduce a collection of finite type
W (k)-algebras Rν that parameterize representations of the Weil group WF with
fixed restriction to prime-to-` inertia, and whose completion at a given maximal
ideal is a close variant of a universal framed deformation ring. We then conjec-
ture that there is a map Z → Rν that is “compatible with local Langlands” in
a certain technical sense (see Conjecture 10.2 below for a precise statement and
discussion.) This conjecture, which we will henceforth call the “Weak Conjecture”,
becomes Conjecture 7.2 of [H2] after one completes Rν at a maximal ideal, and
hence implies both that conjecture and the existence of π(ρ).

If a map Z → Rν of the conjectured sort exists it is natural to ask what the
image is. The “Strong Conjecture” (Conjecture 10.3 below) gives a description
of this image (and in fact gives a description of the direct factors of Z in purely
Galois-theoretic terms.) As the names suggest, the “Strong Conjecture” implies
the “Weak Conjecture.”

The main result of this paper is that if the “Weak Conjecture” holds for all
GLm(F ), with m less than or equal to a fixed n, then the “Strong Conjecture”
holds as well for the groups GLm(F ). In the companion paper [HM], we will show
that the “Strong Conjecture” for GLn−1(F ) implies the “Weak Conjecture” for
GLn(F ). Since the case n = 1 is easy (it is essentially local class field theory), the
two papers together will establish both conjectures for all n, and hence the local
Langlands correspondence for GLn in families.

Our approach in this paper is motivated by considerations from the representa-
tion theory of finite groups of Lie type, and in particular from the representation
theory of GLn(Fq). We detail these considerations in section 2. In particular, we use
the Deligne-Lusztig induction and restriction functors of Bonnafé-Rouquier [BR] to
give a description of the endomorphism ring of the Gelfand-Graev representation of
GLn(Fq) in terms of a ring Aq,n constructed from the group rings of (the Fq-points
of) the maximal tori of GLn over Fq.

In the context of p-adic groups the natural analogue of the Gelfand-Graev repre-
sentation is the space of Whittaker functions. In [H2] it is shown that the Bernstein
center Z is the full ring of endomorphisms of this space of Whittaker functions. It
is thus natural to expect a p-adic analogue of this finite group result that relates
the ring Z to maximal tori of GLn over F . In sections 3 and 4 we construct a
p-adic analogue AF,n,1 of the ring Aq,n, and give criteria for a family of maps to
rings AF,n,1 (with F fixed and n varying) to be isomorphisms.

These criteria were mostly verified for the centers Zn of the categories of smooth
W (k)[GLn(F )]-modules in [H1]; section 5 is devoted to recalling the necessary
facts. The upshot is that if one has suitable maps Zn → AF,n,1, then they must
be isomorphisms. On the other hand it is not at all clear a priori how to construct
such maps; in the setting of finite groups this is done via Deligne-Lusztig theory and
there is no suitable analogue of this theory for p-adic groups. On the other hand it
turns out that the rings Rν admit subalgebras Rinv

ν that do admit naturally defined
maps to AF,n,1, and it is not hard to show that the conjctured map Zn → Rν
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factors through Rinv
ν . Sections 6, 7, 8 and 9 are devoted to constructing these

Rν and establishing their basic properties, including the existence of the maps to
AF,n,1. In particular, if the Weak Conjecture holds and one has maps Zn → Rν ,
then they fit into a sequence:

Zn → Rinv
ν → AF,n,1,

and the results of section 4 show that the composition of such maps is an isomor-
phism (and hence that the Strong Conjecture follows.)

Throughout this paper we adopt the following conventions: F is a p-adic field
with residue field Fq, k is an algebraically closed field of characteristic `, K is the

field of fractions of W (k), and K is an algebraic closure of K. Algebraic groups over
F with be denoted by uppercase mathcal letters T , G, etc.; for any such group the
corresponding uppercase letters T , G, etc. will denote the groups of F -points of T ,
G, and so forth. In particular there is an implicit dependence of T on T ; thus if S
is a set of tori, then ∏

T ∈S
T

denotes the product of the F -points of the tori in S.
Acknowledgements We are grateful to Jean-Francois Dat, Vincent Secherre, David

Ben-Zvi, and Richard Taylor for helpful conversations and suggestions, and to Gil
Moss for his comments on an earlier draft of this paper. This research was partially
supported by NSF grant DMS-1161582 and EPSRC grant EP/M029719/1.

2. Finite groups

We motivate our approach to the description of the Bernstein center by studying
an analogous problem in the representation theory of finite groups. Most of the ideas
in this section originally appear in work of Bonnafé-Kessar [1], but we reproduce
them here (with a slightly different point of view) in order to draw parallels with
our approach to the analogous questions for p-adic groups.

Fix distinct primes p and `, and a power q of p. Let G be the group GLn over Fq,
and let G = G(Fq). We will consider the representation theory of G over the Witt
ring W (k), where k is an algebraic closure of F`. Let K be the field of fractions of
W (k), and fix an algebraic closure K of K.

Our principal object of study in this section will be the Gelfand-Graev represen-
tation Γ of G, with coefficients in W (k). Fix a Borel B in G, with unipotent radical
U , and let B, U denote the Fq-points of B and U respectively. Also fix a generic

character Ψ : U → W (k)×. Then, by definition, we have Γ = c-IndG
U

Ψ, where Ψ

is considered as a W (k)[G]-module that is free over W (k) of rank one, with the
appropriate action of U . The module Γ is then independent of the choice of Ψ, up
to isomorphism.

The objective of this first section is to study the endomorphism ring of Γ. Our
main tool for doing so will be the Deligne-Lusztig induction and restriction functors
of Bonnafé-Rouquier [BR]. Let L be the subgroup of G consisting of the Fq-points of

a (not necessarily split) Levi subgroup L of GLn, and choose a parabolic subgroup
P of GLn whose Levi subgroup is L. Let RepW (k)(G) and RepW (k)(L) denote the
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categories of W (k)[G]-modules and W (k)[L]-modules, respectively. Then Deligne-
Lusztig induction and restriction are functors:

iGL⊆P : Db(RepW (k)(L))→ Db(RepW (k)(G))

rL⊆P
G

: Db(RepW (k)(G))→ Db(RepW (k)(L)).

We will be concerned exclusively with the case where L is a maximal torus in
G. In this case the effect of Deligne-Lusztig restriction on Γ has been described by
Bonnafé-Rouquier when L is a Coxeter torus and by Dudas [Du] in general.

Theorem 2.1 (Bonnafé-Rouquier, Dudas). When L is a torus, there is a natural
isomorphism:

rL⊆P
G

Γ ∼= W (k)[L](−`(w))

in Db(RepW (k)(L)), where w is the element of the Weyl group of G giving the

GLn(Fq)-conjugacy class of the Borel P, and `(w) is its length.

Proof. This is the main theorem of [Du]. �

An immediate consequence of this result is that, when T is the Fq-points of a

torus in GLn, then an endomorphism of Γ gives rise, by functoriality of Deligne-
Lusztig restriction, to an endomorphism of W (k)[T ] (or, equivalently, an element
of W (k)[T ].) We thus obtain homorphisms:

ΦT : EndW (k)[G](Γ)→W (k)[T ]

for each torus T in G. These are integral versions of the classical “Curtis homo-
morphisms”.

Over K, it is not difficult to describe the structure of Γ⊗ K, its endomorphism
ring, and the associated Curtis homomorphisms. Recall that an irreducible repre-
sentation π of G is said to be generic if π contains the character Ψ, or, equivalently,
if there exists a nonzero map from Γ to π. The irreducible generic representations

of G over K are indexed by semisimple conjugacy classes s in G
′
, where G

′
is the

group of Fq-points in the group G′ that is dual to G. More precisely, given such an

s, there exists a unique irreducible generic representation Sts in the rational series
attached to s.

The association of rational series to semisimple conjugacy classes in G
′

depends
on choices which we now recall: let µ(p) denote the prime-to-p roots of unity in K,
let (Q/Z)(p) denote the elements of order prime to p in (Q/Z), and fix isomorphisms:

µ(p) ∼= (Q/Z)(p) ∼= F×q .

Now let t be a semisimple element in G
′
, let T ′ be a maximal torus containing

s, and let T be the dual torus in G. Let X and X ′ denote the character groups of

T and T ′ respectively. We have isomorphisms:

T (Fq) ∼= Hom(X/(Frq −1)X,Gm)

T ′(Fq) ∼= Hom(X ′/(Frq −1)X ′,Gm)

where Frq is the endomorphism induced by q-power Frobenius. We also have a nat-

ural duality X/(Frq −1)X ∼= Hom(X ′/(Frq −1)X ′, (Q/Z)(p)). The identifications
we fixed above then give rise to isomorphisms:

T ′(Fq) ∼= Hom(X ′/(Frq −1)X ′,Gm) ∼= X/(Frq −1)X ∼= Hom(T (Fq), µ(p)).
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In this way we associate, to any semisimple element t of G′(Fq), and any T ′ con-

taining s, a character θT ′,t : T (Fq)→ K
×

.

It is immediate (by applying the idempotent of K[G] corresponding to the ratio-
nal series attached to s to Theorem 2.1) that we then have:

Proposition 2.2. Let T be a maximal torus of G, and let B be a Borel containing
T . Then, up to a cohomological shift depending only on B, we have:

rT ⊆B
G

Sts ∼=
⊕

t∼s;t∈T ′
θT ′,t.

Returning to Γ, we have a direct sum decomposition:

Γ⊗K ∼=
⊕
s

Sts

It follows immediately that the endomorphism ring of Γ⊗K is isomorphic to a

product of copies of K, indexed by the semisimple conjugacy classes s in G
′
. As the

endomorphism ring EndW (k)[G](Γ) of Γ embeds in this product, we see immediately

that EndW (k)[G](Γ) is reduced and commutative.

Indeed, it is not difficult to describe the maps ΦT ⊗K. The isomorphism:

Γ⊗K ∼=
⊕
s

Sts

where s runs over semisimple conjugacy classes in G
′
, gives rise to an isomorphism:

EndW (k)[G](Γ)⊗K ∼=
∏
s

K.

On the other hand we have a direct sum decomposition:

W (k)[T ] ∼=
⊕
t

θT ,t

of W (k)[T ]-modules, and hence an algebra isomorphism:

W (k)[T ] ∼=
∏
t

K.

It follows immediately from the previous paragraph that ΦT maps the factor of

K of EndW (k)[G](Γ) corresponding to s identically to each factor of W (k)[T ] that

corresponds to a t in the G
′
-conjugacy class s, and to zero in the other factors.

Now let T range over all tori in G, and consider the product map:

Φ : EndW (k)[G](Γ)→
∏
T

W (k)[T ].

For each pair (T ′, t), where t is an element of T
′
, we have a map:

ξT ′,t :
∏
T

W (k)[T ]→ K

given by composing the projection onto W (k)[T ] with the map: θT ′,t : W (k)[T ]→
K.
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Define an equivalence relation on such pairs by setting (T ′1, t1) ∼ (T ′2, t2) if t1
and t2 are conjugate in G

′
. Then our description of each ΦT shows that, when

(T ′1, t1) ∼ (T ′2, t2), one has ξT ′1,t1
◦ Φ = ξT ′2,t2

◦ Φ.

This suggests the following definition:

Definition 2.3. An element x of
∏
T W (k)[T ] is coherent if for all pairs (T ′1, t1) ∼

(T ′2, t2), one has ξT ′1,t1
(x) = ξT ′2,t2

(x). Let Aq,n denote the subalgebra of coherent

elements of
∏
T W (k)[T ].

In this language, the above discussion amounts to the assertion that the image
of Φ is contained in Aq,n. In fact, we have:

Theorem 2.4. The map Φ : EndW (k)[G](Γ)→ Aq,n is an isomorphism.

Proof. Since every semisimple t in G
′

is contained in some maximal torus T ′, one
easily sees from our description of Φ⊗K that Φ⊗K (and hence Φ itself) is injective.
On the other hand, as a K-vector space, the dimension of Aq,n ⊗K is equal to the

number of equivalence classes of pairs (T ′, t), where t is an element of T
′
. This

is simply the number of semisimple conjugacy classes in G
′
, and hence also the

dimension of EndW (k)[G](eΓ) ⊗ K. Thus Φ ⊗ K is an isomorphism onto Aq,n ⊗ K.

Since K is faithfully flat over K it follows that Φ⊗K is an isomorphism onto Aq,n⊗K.

It remains at this point to show that Φ is surjective onto Aq,n. Since Φ becomes

so after inverting `, it suffices to show that if x is in Aq,n, and `x is in the image of
Φ, then x is as well. Equivalently, it suffices to show that Φ is injective modulo `;
that is, that Φ⊗ k is injective.

Let x be an element of the kernel of Φ⊗k. We may regard x as an endomorphism
of Γ ⊗ k. The condtion that x is in the kernel of Φ implies that x annihilates the
Deligne-Lusztig restriction of Γ⊗ k to any torus in G. In particular, x annihilates

RHomk[T ](k[T ], rT ⊆B
G

(Γ ⊗ k)) for any Borel B with maximal torus T . By the ad-

junction of Deligne-Lusztig induction and restriction, this implies that x annihilates

RHomk[G](i
G
T ⊆Bk[T ],Γ⊗ k).

On the other hand, a result of Bonnafé-Rouquier ([BR], Théorème A), shows that

the set of all complexes of the form iGL⊆Bk[T ], as T varies over all maximal tori in

G, generates the subcategory of perfect complexes in Db(Repk(G)). It thus follows
from the previous paragraph that x annihilates Γ⊗ k. Hence Φ⊗ k is injective as
claimed. �

It will be necessary for us to understand the interaction of Φ with certain idem-

potents of W (k)[G]. An `-regular semisimple conjugacy class s in G
′

gives rise, via
the choices we have made above, to an idempotent es in W (k)[G], that acts by the
identity on the rational series corresponding to those s′ in G with `-regular part s,
and zero elsewhere. Similarly, for any T , the primitive idempotents of W (k)[T ] are
in bijection with `-regular elements of T . It is not difficult to verify (for instance,
via the description of ΦT ⊗K above) that for the idempotent es of G corresponding
to s, one has:

ΦT (es) =
∑
t∼s

et
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where t runs over the elements of T that are G-conjugate to s. Denote ΦT (es) by
es,T .

The idempotent Φ(es) of Aq,n projects to es,T for every T . Let Aq,n,s =

Φ(es)Aq,n. We then have product decompositions:

EndW (k)[G](Γ) ∼=
∏
s

EndW (k)[G](esΓ)

Aq,n ∼=
∏
s

Aq,n,s

compatible with the map Φ. In particular, we have:

Proposition 2.5. The map Φ induces isomorphisms:

EndW (k)[G](esΓ) ∼= Aq,n,s

for every s.

We will primarily be interested in understanding Aq,n,s in the case where there

is a cuspidal representation of G over k that is not annihilated by es. This occurs

precisely when s is the `-regular part of an element s′ of G
′

whose characteristic
polynomial is irreducible over Fq. For any t in s the characteristic polynomial of
t is a power of an irreducible polynomial over Fq, of degree d dividing n, and the

normalizer G′t of t in G′ is isomorphic to ResF
qd
/Fq GLn

d
/Fqd .

Let Gt be the dual of G′t; it is a Levi in G. Each maximal torus T ′ in G′t is thus

also a maximal torus of G′ containing the element t, and every maximal torus of G′

containing an element in s is conjugate to some T ′ containing t.
We thus have an isomorphism

Θ : Aq,n,s → Aqd,nd ,s

such that, for each x in Aq,n,s, and each maximal torus T s in Gs, the projection of

Θ(x) to W (k)[T s] is equal to the projection of x to W (k)[T ], where we now regard
T as a maximal torus in G. “Twisting” this isomorphism by the inverse of the
character θT ′,t of T we obtain an isomorphism of Aq,n,s with Aqd,nd ,1.

It is not hard to describe what this isomorphism does on K-points. Indeed, maps

Aq,n,s → K are in bijection with semisimple conjugacy classes s′ in G
′
with `-regular

part s. Similarly, maps Aqd,nd ,1 are in bijection with semisimple conjugacy classes

ζ in G
′
s with trivial `-regular part. The map ζ 7→ tζ is a bijection between the

latter and the former, and, under the bijections above, gives the map on K-points
induced by the isomorphism of Aq,n,s with Aqd,nd ,1.

3. The ring AF,n,1

It is tempting, given the analogy between the Bernstein center and the endomor-
phisms of the Gelfand-Graev module in the finite group setting, to ask if one can
establish an analogue of the results of the previous section in the context of smooth
W (k)[GLn(F )]-modules, for a p-adic field F . The approach of the previous section
is not available to us in this new context, as there are at present no satisfactory
analogues of Deligne-Lusztig induction or restriction for smooth representations of
p-adic groups.
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We are thus forced to take a more circuitous approach. The first step will be to
construct a suitable analogue of the ring Aq,n in the p-adic setting.

Let T be a maximal torus of G = GLn /F that is split by an unramified extension
of F . (In what follows, we will refer to such T as unramified maximal tori.) Let T

and G denote the F -points of T and G. Let θ : T → K× be a smooth character.
We may associate to θ a semisimple representation of WF as follows: the group T
is isomorphic to a product of groups of the form ResFi/F Gm where each Fi is a
finite unramified extension of F . This gives a corresponding decomposition of T as
a product of groups F×i . With respect to the latter, the character θ decomposes as

a product of characters θi : F×i → K
×

, and we may regard each θi as a character
of the corresponding Weil group WFi . Define a representation ρT ,θ of WF by:

ρT ,θ =
⊕
i

IndWF

WFi
θi.

One checks easily that the representation ρT ,θ is semisimple. Note that the repre-
sentation ρT ,θ depends, up to isomorphism, only on T and θ.

We will be primarily interested in this construction for those θ whose ramification

has `-power order. More precisely, we call a θ : T → K× `-ramified if, for each i,
θi(IF ) has `-power order, where IF is the inertia group of F , regarded as a subgroup
of F×i . It is easy to see:

Lemma 3.1. Suppose that θ is `-ramified. Then ρT ,θ(IF ) has `-power order.

Proof. This is an easy consequence of the Mackey induction-restriction formula. �

Define an equivalence relation on pairs (T , θ), where θ is a smooth character of

T with values in K×, by setting (T1, θ1) ∼ (T2, θ2) if ρT1,θ1 = ρT2,θ2 .

For each unramified maximal torus T , let T (`) denote the maximal compact
subgroup of T of order prime to `, and let ZT,1 denote the group ring W (k)[T/T (`)].

Then K-points of SpecZT,1 are in bijection with `-ramified characters θ : T → K×.
We may now define the ring AF,n,1, an analogue for p-adic groups of the ring

Aq,n,1 of the previous section.

Definition 3.2. An element x of the product
∏
T ZT,1 (where T ranges over all

unramified maximal tori of GLn(F )) is coherent if, for all pairs (T1, θ1) ∼ (T2, θ2),
the projections xT1 and xT2 of x to ZT1,1 and ZT2,1 satisfy θ1(xT1) = θ2(xT2). We
denote the subring of coherent elements of

∏
T ZT,1 by AF,n,1.

We begin our study of AF,n,1 by constructing certain natural elements. Observe:

Lemma 3.3. Let w be an element of WF . There exists an element trT ,w of ZT,1
with the property that for all `-ramified θ : T → K, θ(trT ,w) is equal to the trace of
ρT ,θ(w).

Proof. Write T as a product of F×i , with Fi/F unramified, and decompose θ as a
product of characters θi of F×i according to this identification.

For each i, choose a set of representatives wi,1, . . . , wi,d for the cosets of wFi in
WF . For each coset fixed by right multiplication by w; that is, for each j such that
wi,jw lies in WFiwi,j , let ti,j be the image of wi,jww

−1
i,j under the map WFi → F×i .

Then the trace of w on IndWF

WFi
θi is equal to the sum of the θi(ti,j).
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Let t̃i,j be the element of T that (under our identification of T with the product
of F×i ) is equal to ti,j on the factor Fi and one on the other factors. Then the sum
of all the t̃i,j projects to an element of ZT,1 with the desired property. �

The element trw of
∏
T ZT,1 whose projection to each ZT,1 is trT ,w then lies in

AF,n,1.

Next we will describe the K-points of SpecAF,n,1.

An equivalence class (T , θ) gives rise to a map ξT ,θ : SpecAF,n,1 → K defined by
ξT ,θ(x) = θ(xT ); it follows immediately from the definition of coherence that this
only depends on (T , θ) up to equivalence. In fact we have:

Proposition 3.4. The map (T , θ) 7→ ξT ,θ is a bijection between equivalence classes

of (T , θ) and K-points of SpecAF,n,1.

Because the equivalence relation on pairs (T , θ) is defined in terms of the map
(T , θ) 7→ ρ(T ,θ), Proposition 3.4 can be interpreted as giving a bijection between

the K-points of SpecAF,n,1 and isomorphism classes of representations ρ : WF →
GLn(K) that are of the form ρ(T ,θ) for some (T , θ) with θ `-ramified. On the

other hand, it is easy to see that any semisimple representation ρ : WF → GLn(K)
such that ρ(IF ) has `-power order is of the form ρ(T ,θ) for some unramified T and
`-ramified θ. We thus have:

Corollary 3.5. There is a unique bijection between K-points of SpecAF,n,1 and

semisimple representations ρ : WF → GLn(K) such that ρ(IF ) has `-power order
that takes ξT ,θ to ρT ,θ for all pairs (T , θ).

In order to prove Proposition 3.4, we first observe:

Lemma 3.6. The map AF,n,1 → ZT,1 makes ZT,1 into a finitely generated AF,n,1-
module. In particular, the map SpecZT,1 → SpecAF,n,1 is proper.

Proof. Let Z ′ be the subalgebra of ZT,1 generated over W (k) by elements of the
form trT,w for w ∈ WF . Then ZT,1 is a finitely generated Z ′-module. (Indeed, it
is straightforward to see that ZT,1 is even finitely generated over the subalgebra
generated by trT,Fr, trT,Fr2 , . . . , trT,Frn , where Fr is a Frobenius element of WF .)
Since such elements are in the image of the map AF,n,1 → ZT,1, the claim is
clear. �

Proof of Proposition 3.4: Suppose that we have (T1, θ1) and (T2, θ2) such that
ξT1,θ1 = ξT2,θ2 . Then in particular these maps agree on the elements trw of Aq,n,1.
It follows that for any element w of WF , the traces of w on ρT1,θ1 and ρT2,θ2 agree,
and hence that these two semisimple representations of WF are isomorphic. Thus
(T1, θ1) is equvalent to (T2, θ2), and we have proven injectivity.

Conversely, the ring AF,n,1 embeds in the product of the rings ZT,1 as T varies
over a (finite) set of representatives for the conjugacy classes of maximal tori. It
follows that the image of the map∐

T
SpecZT,1 → SpecAF,n,1

is dense. But since this map is proper, it is surjective on K-points. �
Having classified the K-points of SpecAF,n,1, we turn to other fundamental struc-

tural questions about the ring AF,n,1. In particular we will show that it is possible
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to define the ring AF,n,1 in terms of a considerably smaller number of maximal tori
than we are currently considering.

To formulate the problem more precisely, suppose we have a collection S of
tori in GLn(F ), and define AF,n,S,1 to be the subring of

∏
T ∈S ZT,1 consisting

of those xT such that, for all pairs (T1, θ1) ∼ (T2, θ2), with T1, T2 in S, we have
θ1(xT1) = θ2(xT2).

There is an obvious map AF,n,1 → AF,n,1,S that simply projects to the factors
of AF,n,1 corresponding to tori in S.

Proposition 3.7. Suppose that for each unramified maximal torus T of GLn(F )
that is not conjugate to a torus in S, we have a map φT : AF,n,1,S → ZT,1 for which
the composition

AF,n,1 → AF,n,1,S → ZT,1

coincides with the usual projection of AF,n,1 onto ZT,1. Then the projection:

AF,n,1 → AF,n,1,S

is an isomorphism.

Proof. We define a map AF,n,1,S → AF,n,1 as follows: given an element x = {xT } :
T ∈ S of AF,n,1,S , define an element y of AF,n,1 by setting yT = φT (x) if T is not
conjugate to an element of S, and yT = gxT ′g

−1 if T = gT ′g−1 for some T ′ ∈ S.
This is independent of the choice of g since for x ∈ AF,n,1,S , xT is fixed by the
normalizer of T in G for all T . The compositions

AF,n,1,S → AF,n,1 → AF,n,1,S

AF,n,1 → AF,n,1,S → AF,n,1

are clearly the identity by construction. �

It will be useful to us to give a certain reinterpretation of the conclusion of
Proposition 3.7 in terms of properties of the map AF,n,1 →

∏
T ∈S ZT,1.

Definition 3.8. Let f : A ↪→ B be an embedding of finitely generated, reduced,
`-torsion free W (k)-algebras. We say that an element b of B is f -consistent if for
any pair of maps g1, g2 : B → K such that g1 ◦f = g2 ◦f , we have g1(b) = g2(b). We
say that f is K-saturated (or A is K-saturated in B) if every f -consistent element
of B lies in A.

Note that b ∈ B is f -consistent if, and only if, `b is f -consistent, so a K-saturated
map is saturated in the usual sense (i.e. b is in the image if, and only if, `b is.)

Proposition 3.9. Under the hypotheses of Proposition 3.7, the map:

AF,n,1 →
∏
T ∈S

ZT,1

is K-saturated.

Proof. By Proposition 3.7 this map is an embedding, and its image is AF,n,1,S . The

set of K-points of
∏
T ∈S ZT,1 is in bijection with pairs (T , θ), with T ∈ S and θ a

character of T whose restriction to T (`) is trivial. The map SpecZT,1 → SpecAF,n,1
takes a pair (T , θ) to the point of AF,n,1 corresponding to ρ(T ,θ). Thus the consistent
elements of

∏
T ∈S ZT,1 are those x such that xT (θ) = xT ′(θ

′) whenever ρ(T ,θ) =
ρ(T ,θ′); these are precisely the elements of AF,n,1,S . �
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We now describe a reduction on the set of tori that need to be considered. Note
that the conjugacy classes of unramified maximal tori in G are in bijection with
partitions ν of n, where the partition ν = (ν1, . . . , νr) corresponds to a torus whose
F -points are isomorphic to

∏
i F
×
i with Fi/F unramified of degree νi.

We will call a partition ν relevant if each νi lies in the set {1, eq, `eq, `2eq, . . . },
where eq is the order of q modulo `. Given a partition ν, define the associated
relevant partition ν′ by replacing each νi with νi/mi copies of mi, where mi is the
largest element of the set {1, eq, `eq, `2eq} dividing νi.

The importance of relevant partitions stems from the following result:

Lemma 3.10. Let ν be a partition of n, and ν′ the associated relevant partition.
Let T and T ′ be unramified tori in the conjugacy classes associated to ν and ν′,
respectively. Let NT ′ be the subgroup of F -points in the normalizer of T ′. Then

there is a map: Z
NT ′
T ′,1 → ZT,1 such that the composition:

AF,n,1 → Z
NT ′
T ′,1 → ZT,1

takes the K-point of SpecZT,1 corresponding to a character θ to the point of SpecAF,n,1
corresponding to ρT,θ.

Proof. One reduces easily to the case where ν is the one-element partition {n} of
n. Let m be the largest element of {1, eq, `eq, . . . } dividing n, and set j = n

m , so
that ν′ is the partition {m,m, . . . ,m} of n. Let a be the largest integer such that
`a divides qm − 1; then `a is also the largest power of ` dividing qn − 1.

Let Fm and Fn be the unramified extensions of F of degree m and n, respectively,
and fix a uniformizer $n of Fn such that $j

n is a uniformizer of Fm. Let ζ be a
primitive `a-th root of unity in Fn; then ζ lies in Fm and generates the subgroups
of `-power roots of unity in both fields. We thus have isomorphisms:

ZT,1 ∼= W (k)[ζ,$±1n ]/〈ζ`
a

− 1〉

ZT ′,1 ∼=
[
W (k)[ζ,$±1m ]/〈ζ`

a−1〉
]⊗j

.

Let Qi denote the element $m in the ith tensor factor of ZT ′,1, and let ζi denote
the element ζ in the ith tensor factor, and consider these as elements of ZT ′,1 by
tensoring them with 1 in the other tensor factors.

Let θ be an `-ramified character: WFn → K
×

. Then θ extends, in j different
ways, to a character of WFm (corresponding to the j distinct jth roots of θ($n)),
and the induction of θ to a representation of WFm is the direct sum of these j
characters.

Define a map ZT ′,1 → ZT,1[Q]/〈Qj − $n〉 by sending each ζi to ζ, and Qi to
ηiQ, where η is a primitive jth root of unity in ZT,1. (Note that such a root always
exists.)

The restriction of this map to the NT ′ -invariant elements of ZT ′,1 has image
in ZT,1. Indeed, let Z ′ be the subalgebra of ZT ′,1 generated by the ζi and the
elementary symmetric functions in the Qi. Then the image of Z ′ is clearly contained
in ZT,1. On the other hand, any NT ′ -invariant element in ZT ′,1 is the sum of an
element of Z ′ and an element of the ideal of ZT,1 generated by ζi − ζj , and the
latter elements all map to zero in ZT,1. We thus obtain a map

Z
NT ′
T ′,1 → ZT,1

and one easily verifies that this map has the desired property. �



12 DAVID HELM

Corollary 3.11. Let S be any subset of the unramified maximal tori of G such
that, for all relevant maximal tori T of G, S contains a conjugate of T . Then the
map AF,n,1 → AF,n,1,S is an isomorphism, and the embedding

AF,n,1 →
∏
T ∈S

ZT,1

is K-saturated.

Proof. For any unramified maximal torus T of G, the map AF,n,1,S → ZT,1 factors
through the NT -invariants of ZT,1. Thus the maps of Lemma 3.10 give rise to maps
AF,n,1,S → ZT,1 for any maximal torus T in G. The claim then follows immediately
from Proposition 3.7. �

We now consider a certain natural class of maps relating the rings AF,n,1 as n
varies. Given a partition ν of n, let AF,ν,1 denote the tensor product

AF,ν,1 :=
⊗
i

AF,νi,1.

When ν is a partition of n, there are natural maps Indν : AF,n,1 → AF,ν,1 which
we now describe. First note that there is an embedding:

AF,ν,1 ↪→
∏

T1,...,Tr

⊗
i

ZTi,1

where T1, . . . , Tr runs over all sequences of `-ramified maximal tori Ti of GLνi(F ).
Given such a sequence, we let T be the product of the Ti, and we then have a map:

AF,n,1 → ZT,1 ∼=
⊗
i

ZTi,1.

Taking the product of these maps over all sequences T1, . . . , Tr gives a map:

AF,n,1 →
∏

T1,...,Tr

⊗
i

ZTi,1

and one verifies easily that this map factors through the image of AF,ν,1 in this
product.

Note that a K-point of SpecAF,ν,1 corresponds to a sequence ρi of representations

WF /I
(`)
F → GLνi(K). The map Indν takes such a point to the point of SpecAF,n,1

corresponding to the direct sum of the ρi.
In certain cases we can say quite a lot about the image and kernel of the map

Indν . Given n, define the maximal relevant partition νmax(n) to be the coarsest
possible partition of n, all of whose elements lie in {1, eq, `eq, `2eq, . . . }; since each
element of this set divides the next largest, this is well-defined, and every relevant
partition of n refines νmax(n). When n is clear from the context, we will denote
νmax(n) simply by νmax.

Proposition 3.12. The map Indνmax : AF,n,1 → AF,νmax,1 is injective, and K-
saturated.

Proof. Let M be the standard Levi of G given by the partition νmax, and let S
be the set of all unramified tori of G that are contained in M . Each such torus T



CURTIS HOMOMORPHISMS AND THE INTEGRAL BERNSTEIN CENTER FOR GLn 13

factors as a product Ti, where each Ti is a maximal torus of the factor GLνmax
i

(F )
of M . We have maps:

AF,n,1 → AF,νmax,1 ↪→
⊗
i

∏
Ti

ZTi,1
∼=
∏
T ∈S

ZT,1

and the composition is the natural map AF,n,1 →
∏
T ∈S ZT,1. Since S contains all

relevant tori, this natural map is injective and K-saturated. Moreover, each map in
the chain induces a surjection on K-points. Thus every element of AF,νmax,1 that

is K-consistent is also K-consistent when considered as an element of
∏
T ∈S ZT,1,

and thus lies in AF,n,1 as required. �

Now let n be an element of {1, eq, `eq, . . . } (so that νmax(n) = {n}). Suppose
that n > 1, and let m be the largest element of {1, eq, `eq, . . . } that is strictly less
than n. Set j = n

m , and let ν be the partition of n consisting of j copies of m. We
then have the map

Indν : AF,n,1 → AF,ν,1 = A⊗jF,m,1.

Proposition 3.13. Let T be a maximal torus of GLn(F ), such that T is isomorphic
to the multiplicative group of the unramified extension of F of degree n. Then the
natural map:

AF,n,1 → ZT,1 ×AF,ν,1
is injective and K-saturated.

Proof. Let M be the standard Levi of G given by the partition ν, and let S be
the set of all unramfied tori of G that are contained in M , plus the torus T . The
argument now proceeds in precisely the same way as the proof of Proposition 3.12,
using the chain of maps:

AF,n,1 → ZT,1 ×AF,ν,1 → ZT,1 ×
j⊗
i=1

∏
Ti

ZTi,1
∼=
∏
T ∈S

ZT,1.

�

As a consequence, note that projection onto ZT,1 identifies the kernel of Indν
with a subset of ZT,1. In order to obtain a description of this kernel in these terms,

we will construct a subalgebra of AF,n,1 that is isomorphic to Aq,n,1. For a torus
T , let T c denote the maximal compact subgroup of the F -points T of T , and let
ZcT,1 denote the subring W (k)[T c/T (`)] of ZT,1. Similarly, let AcF,n,1 denote the
subalgebra of AF,n,1 consisting of all elements x such that, for all unramified tori
T , the element xT of ZT,1 lies in ZcT,1. We will show that we can identify AcF,n,1
with Aq,n,1 in a natural way.

For any positive integer m, let Om denote the ring of integers of the unramified
extension of degree m of F . For a partition ν = {ν1, . . . , νr} of m, define Oν to
be the product

∏
iOνi . For each such partition ν of n, fix an OF -basis of Oν ; this

gives rise to an F -linear isomorphism Oν⊗OF F ∼= Fn and an Fq-linear isomorphism

Oν ⊗OF Fq ∼= Fnq . We then obtain tori Tν and T ν , over F and Fq respectively, as
the automorphisms of Oν ⊗OF F (resp. Oν ⊗OF Fq) that commute with the action
of O×ν .
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Note that for each ν, the quotient T cν/T
(`)
ν is (via reduction modulo a uniformizer

of F ), canonically isomorphic to the group of `-power torsion elements in T ν . This
gives us a natural isomorphism:

e1ZT ν
∼= ZcTν ,1.

Taking the product of all of these, we obtain an isomorphism:∏
ν

e1ZT ν
∼=
∏
ν

ZcTν ,1

and we regard the target as a subalgebra of
∏
ν ZTν ,1.

Proposition 3.14. Let S be the collection of tori {Tν} as ν varies over the parti-
tions of n. Let x be an element of

∏
ν e1ZT ν , and let x be its image in

∏
ν ZTν ,1.

Then x lies in AF,n,1,S if, and only, if, x lies in the image of the map:

Aq,n,1 →
∏
ν

e1ZT ν .

In particular, there is a unique map:

Aq,n,1 → AF,n,1

making the diagrams:

Aq,n,1 → AF,n,1
↓ ↓

e1ZT ν → ZTν ,1

commute for all ν.

Proof. As in section 2, fix isomorphisms:

µ(p) ∼= (Q/Z)(p) ∼= F×q .

This gives rise to a bijection, for each T ν , between elements s of T
′
ν and characters

θs of T ν .

Now, given a partition ν and a character θ of Tν/T
(`)
ν , the restriction of θ to T cν

is naturally a character of T ν , and thus corresponds to an element s of T
′
ν , which

we regard as a semisimple element of G
′
.

Let T1 and T2 be tori in S, and let θ1 and θ2 be characters of T1 and T2 re-

spectively. We have semisimple elements s1 and s2 of G
′

attached to (T1, θ1) and

(T2, θ2). It is now straightforward to check that s1 and s2 are conjugate in G
′

if,
and only if, the restriction of ρT1,θ1 to IF is isomorphic to the restriction of ρT2,θ2
to IF . Note that this defines a bijection between n-dimensional representations of

IF /I
(`)
F that extend to WF and semisimple conjugacy classes in G

′
.

Fix a T ∈ S and a character θ of T/T (`); then the pair (T , θ) gives rise via this
process to a pair (T , s). By construction we have xT (θ) = xT (s); i.e. the image of

xT under the map ZT,1 → K corresponding to θ is equal to the image of xT under
the map corresponding to s.

In particular, if x lies in Aq,n,1, then xT 1
(s1) = xT 2

(s2) whenever s1 and s2 are

conjugate, and this implies that xT1(θ1) = xT2(θ2) whenever ρT1,θ1 is isomorphic to
ρT2,θ2 . Thus x lies in Aq,n,1,S . The converse is equally straightforward. �
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As S contains a representative of every conjugacy class of unramified torus, we
have an isomorphism AF,n,1,S ∼= AF,n,1. We thus obtain a natural map Aq,n,1 →
AF,n,1 whose image is precisely AcF,n,1; since the tori {T ν} represent all conjugacy

classes of tori in GLn /Fq, this map is injective. As AcF,n,1 is, by definition, saturated

in AF,n,1, we have obtained a natural injection Aq,n,1 → AF,n,1, with saturated

image. On K-points, we can describe this map explicitly. In particular, if ρ is an

n-dimensional representation of WF /I
(`)
F , and s is the semisimple element of G

′

that corresponds to the restriction of ρ to IF via the bijection described in the
proof of Proposition 3.14, then the injection Aq,n,1 → AF,n,1 takes the K-point of

SpecAF,n,1 corresponding to ρ to the K-point of SpecAq,n,1 corresponding to s.
Now fix a uniformizer $ of F . The scalar $In in G lies in every maximal torus

of G, and hence gives rise to an element of ZT,1 for all `-ramified maximal tori T .
Let Qn be the element of

∏
T ZT,1 such that (Qn)T = $In for all `-ramified tori

T , and zero otherwise. One verifies easily that Qn lies in A×F,n,1.

Note that although Qn depends on the choice of $, the subalgebra Aq,n,1[Q±1n ]
of AF,n,1 does not. (If $′ = u$ for a unit u, and Q′n is the unit corresponding to

$′, let u denote the reduction mod ` of u. Then there is an element of Aq,n,1 that

projects to uIn on every torus of G, and this element is equal to Q−1n Q′n.)
We now have:

Proposition 3.15. Let m,n be consecutive elements of {1, eq, `eq, . . . }, and let
j = n

m . Let ν be the partition of n consisting of j copies of m. Then the kernel of
the map:

Indν : AF,n,1 → AF,ν,1

is contained in Aq,n,1[Q±1n ].

Proof. We have an embedding:

AF,n,1 → ZT,1 ×AF,ν,1,

where T is a Coxeter torus and the map to the second factor is Indν . Thus projec-
tion to ZT,1 is injective on the kernel of Indν .

Let `a be the largest power of ` dividing qn−1, and note that ZT,1 is isomorphic

to W (k)[ζ,Q]/〈ζ`a−1〉, via the map that sends the class of a uniformizer in T/T (`)

to Q and the class of a generator of the `-power roots of unity of F×n to ζ.
Let `b be the largest power of ` dividing qm − 1 (so in particular b < a) and

let I be the ideal of ZT,1 generated by ζ`
b − 1. If x is in I, then x vanishes on all

characters θ of T such that θ(T c) has order dividing `b; note that these are precisely
the characters of T/T (`) such that ρT ,θ is reducible. If in addition x is invariant
under the automorphism ζ 7→ ζq, Q 7→ Q of ZT,1 then x(θ2) = x(θ1) whenever
ρT ,θ1 = ρT ,θ2 . It follows that the element (x, 0) of ZT,1 ×AF,ν,1 lies in AF,n,1, and
is moreover in the kernel of Indν .

Conversely, if x lies in the projection of the kernel of Indν to ZT,1, then x vanishes

on all reducible n-dimensional representations ρ of WF /I
(`)
F (as the dimensions of

irreducible representations of WF /I
(`)
F lie in the set {1, eq, `eq, . . . }). Thus x lies

in I. Moreover, as x arises by projection from an element of Aq,n,1, x must be
invariant under ζ 7→ ζq, Q 7→ Q. In particular, if we express x as a polynomial in
Q, i.e. x =

∑
xiQ

i, then each xi lies in I and is invariant under the automorphism
ζ 7→ ζq of W (k)[ζ]/〈ζ`a − 1〉. Thus (xi, 0) lies in the kernel of Indν . Moreover, as
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xi is supported on T c for all i, each (xi, 0) lies in AcF,n,1 and hence in Aq,n,1. Thus

(x, 0) lies in Aq,n,1[Q±1n ] as claimed. �

We conclude by establishing the following useful technical result:

Lemma 3.16. The ring Aq,n,1[Q±1n ] is saturated in AF,n,1.

Proof. It is clear that Aq,n,1 is saturated in AF,n,1, and hence that QinAq,n,1 is
saturated in AF,n,1 for all integers i.

We introduce a natural grading on AF,n,1, induced by natural gradings on each
ZT,1, for unramified T . Choose an isomorphism T ∼= F×i , with Fi/F unramified,
and note that T/T c is a free abelian group, with a basis given by the classes of the
uniformizers $i of the Fi. We declare any element of ZT,1 supported on the T c-
coset of T corresponding to the formal sum

∑
ri[$i] to be homogeneous of degree∑

ri[Fi : F ].

For α ∈ K×, let χα be the character that sends an element xi ∈
∏
i F
×
i to αv(xi),

where v(xi) is the sum of the valuations of NFi/F (xi). Then the elements of degree

d in ZT,1 are precisely those x that satisfy x(θχα) = αdx(θ) for any character

θ : T/T (`) → K.
From this homogeneity property it is easy to conclude that AF,n,1 has a grading

in which the homogeneous elements of degree d are those elements x such that
x(ρ ⊗ ξα) = αdx(ρ), where ξα is the unramified character of WF that takes the
values α on a uniformizer. Note that Qn is homogeneous of degree n in this grading,
and that AF,n,1 is homogeneous of degree zero. Now each QinAq,n,1 is saturated in

the homogeneous elements of degree ni, so Aq,n,1[Q±1n ] is saturated in AF,n,1. �

4. Isomorphisms to AF,n,1

In this section, we consider a family of W (k)-algebras BF,n, together with maps
BF,n → AF,n,1 satsfying certain axioms, and show that when such axioms are
satisfied the maps BF,n → AF,n,1 are isomorphisms.

Our purpose in doing this is of course to verify this set of axioms for certain
blocks of the Bernstein center, and thereby use our theory of the rings AF,n,1 to
obtain an explicit description of the Bernstein center. We will carry this program
out in the next several sections.

We suppose we are given the following data:

• For each n, a finitely generated, reduced, `-torsion free W (k)-algebra BF,n.

• For each n, a map fn : BF,n → AF,n,1 that induces a bijection on K-points.
• For each n, a map:

Indνmax : BF,n →
⊗
i

BF,νmax
i

,

where νmax is the maximal relevant partition of n.
• For each n > 1 ∈ {1, eq, `eq, . . . }, a map:

Indm,n : BF,n → B⊗jF,m

where m is the largest element of {1, eq, `eq, . . . } less than n and j = m
n .

• For each m ∈ {1, eq, `eq, . . . }, a map φm : Aq,m,1[T, T−1]→ BF,m.

We require that this collection has the following properties:
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(1) For each n, the map Indνmax is injective, K-saturated, and fits into a com-
mutative diagram:

BF,n → AF,n,1
↓ ↓⊗

iBF,νmax
i

→ AF,νmax,1

where the right hand vertical map is the natural map: Indνmax : AF,n,1 →
AF,νmax,1.

(2) For each pair of consecutive elements m,n in {1, eq, `eq, . . . }, with j = n
m ,

the map Indm,n fits into a commutative diagram:

BF,n → AF,n,1
↓ ↓

B⊗jF,m → A⊗jF,m,1

(3) The map f1 : BF,1 → AF,1,1 is an isomorphism.
(4) For each m ∈ {1, eq, `eq, . . . }, the composition:

Aq,m,1[T, T−1]→ BF,m → AF,m,1

takes T to the unit Qn in AF,m,1 and restricts to the inclusion of Aq,m,1
in AF,m,1 constructed in Proposition 3.14.

(5) For any pair of consecutive elements m,n in {1, eq, `eq, . . . , }, the image

of the map Indm,n : BF,n → B⊗jF,m is “large” in the following sense: for

any y in B⊗jF,m such that `by lies in the image of Indm,n for some b ≥ 0,

there exists ỹ in BF,n, x ∈ Aq,n,1[T±1], a ≥ 0 such that Indm,n(φn(x)) =
`a(y − Indm,n(ỹ)).

(6) For any pair of consecutive elementsm,n in {1, eq, `eq, . . . }, the map Indm,n :

BF,n[ 1` ]→ B⊗jF,m[ 1` ] is K-saturated.

Proposition 4.1. If the above conditions are satisfied for all m ≤ n, then the map
fm : BF,m → AF,m,1 is an isomorphism.

Proof. We proceed by induction on n; the case n = 1 is trivial. Suppose that the
claim holds for all m < n. If n does not lie in the set {1, eq, `eq, . . . }, we have a
sequence of injections:

BF,n →
⊗
i

BF,νmax
i
→
⊗
i

AF,νmax
i ,1

where the first map is K-saturated and the second is an isomorphism by the induc-
tive hypothesis. Thus BF,n is K-saturated in AF,νmax

i ,1, and is thus equal to all of
AF,n,1.

Suppose now that n > 1 lies in {1, eq, `eq, . . . }, and as usual let m be the largest
element of this set strictly less than n, and j = n

m . We have a commutative diagram:

BF,n → B⊗jF,m
↓ ↓

AF,n,1 → A⊗jF,m,1

and by the inductive hypothesis the right-hand vertical map is an isomorphism.
This, together with (6) above, implies that the saturation of the image of BF,n in

A⊗jF,m,1 is K-saturated in A⊗jF,m,1. In particular (as the map BF,n → AF,n,1 is a
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bijection on K-points), the saturation of the image of BF,n in A⊗jF,m,1 contains the

image of AF,n,1 in A⊗jF,m,1.

Now let z be an element of AF,n,1, and let y be its image in A⊗jF,m,1. Then, by

(5), there exists an element ỹ of BF,n, an x ∈ Aq,n[T±1] and an a > 0 such that
Indm,n(φn(x)) = `a(y − Indm,n(ỹ)). Let z′ be the image of ỹ in AF,n,1. Then the

images of x and `a(z− z′) in A⊗jF,m,1 coincide. Since both fn(φn(x)) and the kernel

of the map AF,n,1 → A⊗jF,m,1 are contained in Aq,n,1[Q±1n ], we find that `a(z − z′)
is contained in Aq,n,1[Q±1n ]. On the other hand, the latter is saturated in AF,n,1,

so z − z′ must lie in Aq,n,1[Q±1n ], and hence in the image of BF,n. As z′ is in the
image of BF,n by construction, we find that z must be as well. �

5. The integral Bernstein center

We now turn to the main object of interest in this paper: the integral Bernstein
center. As in the preceding sections let G = GLn(F ), and denote by RepW (k)(G)

(resp. RepK(G)) the category of smooth W (k)[G]-modules (resp. the category of

smooth K[G]-modules.)
By the phrase “integral Bernstein center” we mean the center of the category

RepW (k)(G). We recall what this means:

Definition 5.1. The center of an Abelian category A is the ring of natural trans-
formations IdA → IdA.

By definition, if Z is the center of A, then specifying an element of Z amounts to
specifying an endomorphism of every object of A, such that the resulting collection
commutes with all arrows inA. The center ofA is thus a commutative ring that acts
naturally on every object in A, and this action is compatible with all morphisms
in A.

Bernstein-Deligne [BD], give a complete and explicit description of the center Z̃
of RepK(G). We briefly summarize their results: first, define an equivalence relation
on pairs (M, π̃), where M is a Levi of G and π is an irreducible supercuspidal
representation of M over K by declaring (M1, π̃1) to be inertially equivalent to
(M2, π̃2) if π̃1 is G-conjugate to an unramified twist of π̃2. One then has:

Theorem 5.2 ([BD], Proposition 2.10). There is a bijection (M, π̃) 7→ e(M,π̃) be-

tween inertial equivalence classes of pairs (M, π̃) over K and primitive idempotents

of Z̃, such that for any irreducible smooth representation Π of G over K e(M,π̃) acts
via the identity on Π if Π has supercuspidal support in the inertial equivalence class
of (M, π̃), and by zero otherwise.

The upshot is that Z̃ decomposes as an infinite product of the rings e(M,π̃)Z̃ as

(M, π̃) runs over all inertial equivalence classes of pairs. Denote e(M,π̃)Z̃ by Z̃(M,π̃).
Then Bernstein and Deligne give a complete description of the ring structure of
Z̃(M,π̃) that we now explain.

Let M0 be the smallest subgroup of M containing every compact open subgroup
of M . Then M/M0 is a free abelian group of finite rank, and SpecK[M/M0] is a

torus whose K-points are in bijection with the characters M/M0 → K
×

. Let H be
the subgroup of these characters consisting of those characters χ such that π̃ ⊗ χ
is isomorphic to χ. Then H is a finite abelian group that acts on K[M/M0]. The
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torus SpecK[(M/M0)]H is a quotient of SpecK[M/M0]; its K-points correspond to
H-orbits of characters of M/M0.

Now let WM be the subgroup of the Weyl group of G consisting of w such that
wMw−1 = M . Let WM (π̃) be the subgroup of WM consisting of w such that the
representation π̃w of M is an unramified twist of π̃. Then we have a natural action
of WM (π̃) on K[(M/M0)]H , characterized by π̃ ⊗ χw ∼= (π̃ ⊗ χ)w for characters χ
of M/M0. We then have:

Theorem 5.3 ([BD], Théorème 2.13). There is a unique natural isomorphism:

Z̃(M,π̃)
∼=
(
K[(M/M0)]H

)WM (π̃)

such that, for any irreducible representation Π over K whose supercuspidal support
has the form π̃ ⊗ χ, Z̃(M,π̃) acts on Π via the map:(

K[(M/M0)]H
)WM (π̃) → K[M/M0]→ K

corresponding to the character χ : M/M0 → K
×

. In particular Z̃(M,π̃) is a reduced,

finitely generated, and normal K-algebra.

In particular, Z̃ acts on irreducible two representations Π, Π′ of G via the same
map Z̃ → K if, and only if, Π and Π′ have the same supercuspidal support. This
defines, for each (M, π̃), a bijection between the K-points of Spec Z̃(M,π̃) and su-
percuspidal supports in the inertial equivalence class of (M, π̃); that is, unramified
twists of π̃ considered up to WM (π̃)-conjugacy.

Now let L be a Levi in GLn; then L factors as a product of Li isomorphic to
GLni(F ). For each i, let Mi be a Levi in Li, and π̃i an irreducible supercuspidal
K-representation of Mi. We then have isomorphisms:

Z̃Mi,π̃i
∼=
(
K[(Mi/(Mi)0)]Hi

)WMi
(π̃i)

.

Let M be the product of the Mi; we may regard it as a Levi of L and hence as a
Levi of GLn(F ). Let π̃ be the tensor product of the π̃i. The quotient M/M0 factors
naturally as a product of Mi/(Mi)0, and this induces a map:(

K[(M/M0)]H
)WM (π̃) →

⊗
i

(
K[(Mi/(Mi)0)]Hi

)WMi
(π̃i)

and hence a map

Ind{(Mi,π̃i)} : Z̃(M,π̃) →
⊗
i

Z̃(Mi,π̃i).

On K-points this takes the K-point of the tensor product that corresponds to the
collection of supercuspidal supports {(Mi, π̃i ⊗ χi)} to the point of Spec Z̃(M,π̃)

corresponding to the supercuspidal support (M,⊗i(π̃i ⊗ χi)).
We will have need of the following, nearly trivial, observation about this map:

Lemma 5.4. The map Z̃(M,π̃) →
⊗

i Z̃(Mi,π̃i) is K-saturated.

Proof. Embed both Z̃(M,π̃) and
⊗

i Z̃(Mi,π̃i) in
⊗

iK[Mi/(Mi)0] as above. The tar-
get has an action of WM (π̃), and hence also an action of the subgroup

∏
iWMi

(π̃i),

and Z̃(M,π̃) and
⊗

i Z̃(Mi,π̃i) are identified with those elements invariant under
WM (π̃) or this subgroup, respectively. But one can check whether an element
in
⊗

iK[Mi/(Mi)0] is invariant simply by looking at its values on K-points, so the
result is immediate. �
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We now turn to the study of RepW (k)(G); let Z denote the center of this category.
In this setting there is an analogue of the Bernstein-Deligne characterization of
the primitive idempotents of Z. By [H1], Theorem 11.8, such idempotents are
parameterized by inertial equivalence classes of pairs (L, π), where π is now an
irreducible supercuspidal representation of L over k.

If we let e[L,π] denote the idempotent of Z corresponding to (L, π), RepW (k)(G)[L,π]
the corresponding block, and Z[L,π] the corresponding factor of the Bernstein center,
then one has the following basic structure results:

Theorem 5.5 ([H1], Theorem 12.8). The ring Z[L,π] is a finitely generated, reduced,
flat W (k)-algebra.

It is important to note that, in contrast to the situation over K, the ring Z[L,π]

is in general very far from being normal.
We also have a description of Z[L,π]⊗K in terms of Z̃. This can be made precise

as follows: if (M, π̃) is a pair over K, and Π is an irreducible integral representation
of G over K with supercuspidal support in the inertial equivalence class of (M, π̃),
then there exists a (possibly proper) Levi subgroup L of M , and an irreducible
supercuspidal representation π of L, such that every irreducible subquotient of
the mod ` reduction of Π has supercuspidal support (L, π). Moreover, the inertial
equivalence class of (L, π) depends only on that of (M, π̃), and not on the particular
choice of π. We say that (M, π̃) reduces modulo ` to (L, π); this defines a finite-to-
one map from inertial equivalence classes over K to inertial equivalence classes over
k. One then has:

Theorem 5.6 ([H1], Proposition 12.1). The natural map Z ⊗ K → Z̃ induces an
isomorphism:

Z[L,π] ⊗K ∼=
∏

(M,π̃)

Z̃(M,π̃),

where the product is over all pairs (M, π̃), up to inertial equivalence, that reduce
modulo ` to the pair (L, π).

From this and the description of the K-points of Spec Z̃(M,π̃) one immediately
deduces:

Corollary 5.7. The K-points of SpecZ[L,π] are in bijection with the supercupidal

supports of irreducible smooth K-representations in RepW (k)(G)[L,π].

We now give a more precise description of Z[L,π]. We first reduce to a more
easily studied special case:

Definition 5.8. A pair (L, π) is simple if there exist r,m such that n = rm, L is
isomorphic to GLm(F )r, and π, up to unramified twist, is of the form (π′)⊗r for an
irreducible supercuspidal representation π′ of GLm(F ).

Note that any pair (L, π) factors uniquely as a product of simple pairs (Li, πi),
with πi ∼= (π′i)

⊗ri , such that no π′i is an unramified twist of any other. One then
has:

Theorem 5.9 ([H1], Theorem 12.4). Let {(Li, πi)} be the natural decomposition
of (L, π) as a product of simple pairs. Then there is a natural isomorphism:

Z[L,π]
∼=
⊗
i

Z[Li,πi]
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such that, for any sequence {(M i, π̃i)} reducing modulo ` to {(Li, π̃i)}, the diagram:

Z[L,π] ⊗K → [
⊗

i Z[Li,πi]]⊗K
↓ ↓

Z̃(M,π̃) →
⊗

i Z̃(Mi,π̃i)

commutes, where (M, π̃) is the product of the (Mi, π̃i), and the bottom horizontal
map is the map Ind{(Mi,π̃i)} described above.

We thus focus our attention on the case where (L, π) is simple. Fix an integer
n1 and an irreducible supercuspidal representation π′ of GLn1(F ) over k. For
each m > 0, let Lm be a Levi of GLn1m(F ) isomorphic to GLn1(F )m, and let
πm be the representation (π′)⊗m of Lm. We can then consider the family of rings
Zm := Z[Lm,πm] as n varies.

Section 13 of [H1] contains detailed information about the structure of the family
Zm. In particular this structure theory is closely related to the endomorphism rings
of certain projective objects PKm,τm for particular m. More precisely, consider the
group of unramified characters χ of GLn1

(F ) such that π′ ⊗ χ is isomorphic to
π′. This is a finite group; denote its order by f ′. Then attached to the system
of pairs (Lm, πm) we have a system of projective objects PKm,τm , where m lies in
the set {1, eqf′ , `eqf′ , `2eqf′ , . . . }. (We refer the reader to Sections 7 and 9 of [H1]

for a construction and structure theory of these objects.) For brevity, denote the
representation PKm,τm by Pm.

For such m, let Em denote the endomorphism ring of Pm. Then, by Corol-
lary 9.2 of [H1], Em is a reduced, finite type, `-torsion free W (k)-algebra. More-
over, we have a map Zm → Em that gives the action of Zm on the object Pm of
RepW (k)(GLn1m(F ))[Lm,πm].

If m is arbitrary, the relationship between the rings Zm and Em is more com-
plicated. Let ν be the maximal relevant partition of m with respect to the set
{1, eqf′ , `eqf′ , . . . } (relevant partitions were called admissible in [H1]). Let Mν

and Pν be the standard Levi and (upper triangular) parabolic subgroups of GLn
attached to n1ν, so that Mν is a product of GLn1νi(F ), and consider the represen-

tation
⊗

i Pνi of Mν . Then Zm acts on the parabolic induction i
GLn1m

(F )

P ν

⊗
i Pνi ,

and we have:

Theorem 5.10 ([H1], Theorem 13.7). The action of Zm on i
GLn1m

(F )

P ν

⊗
i Pνi fac-

tors through the action of
⊗

iEνi on
⊗

i Pνi . Moreover, the resulting map:

Zm →
⊗
i

Eνi

is injective with saturated image, and is an isomorphism if m lies in {1, eqf′ , `eqf′ , . . . }.
(Note that in this case ν is the one-element partition {m} of m.)

For m in {1, eqf′ , `eqf′ , . . . } we thus have a natural identification of Zm with Em.

For arbitrary m, we can regard the map Zm →
⊗

iEνi as a map Zm →
⊗

i Zνi .
Denote this map by Indν . We then have:

Lemma 5.11. The map Indν is K-saturated.

Proof. This is immediate from the fact that the image of Indν is saturated, together
with Lemma 5.4. �
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For m in {1, eqf′ , `eqf′ , . . . }, the results of Sections 7 and 9 of [H1] give very
precise information about Em, and hence Zm. In particular there is an integer
f dividing f ′, and a a cuspidal k-representation σm of GLmf′

f

(Fqf ) (attached to

an `-regular conjugacy class (s′1)m with s′1 irreducible of degree f ′ over Fqf ), such

that the projective Pm is a compact induction c-Ind
GLn1m

(F )

Km
κ̃m ⊗Pσm , where κ̃m

comes from type theory and Pσm is the projective envelope of σm, inflated to a
representation of Km via a natural map Km → GLmf′

f

(Fqf ).

Section 5 of [H1] shows that Pσm is the projection of the Gelfand-Graev repre-
sentation of GLmf′

f

(Fqf ) to the block containing σm. In particular, the results of

section 2 identify the endomorphisms of Pσm with Aqf′ ,m,1.

We thus obtain an embedding of Aqf′ ,m,1 in Em for such m. Furthermore, section

9 of [H1] constructs an invertible element Θm,m of Em. We thus obtain a map

Aqf′ ,m,1[T, T−1]→ Em

taking T to Θm,m. It follows easily from the description of Em as a Hecke algebra
in section 9 of [H1] that the image of this map consists of the elements of Em
supported on double cosets of the form Kmz

r
m,mKm for various r. (In particular,

this image is saturated in Em.)
The image of Aqf′ ,m,1 in Zm is easy to describe. Indeed, we have:

Proposition 5.12. Let m lie in {1, eqf′ , `eqf′ , . . . }, and let x be an element of

Aqf′ ,m,1, where the latter is considered as a subalgebra of Zm. Then for any irre-

ducible K-representations Π,Π′ of GLn1m(F ) in the same block of RepK(GLn1m(F )),
the action of x on Π and Π′ is via the same scalar.

Proof. The ring Zm annihilates both Π and Π′ unless Π and Π′ belong to a block of
the form RepK(GLn1m(F ))(Ms,πs) for a suitable s, in the notation of [H1], section
9. In this case the action of Zm on Π and Π′ factors through the action of Zm on

the summand c-Ind
GLn1m

(F )

Km
κ̃m⊗Sts of c-Ind

GLn1m
(F )

Km
κ̃m⊗Pσm⊗K. In particular

the action of x on Π and Π′ factors through the action of x on Sts, which is by a
scalar. �

We also make the following observation about the action of Θm,m ∈ Zm:

Proposition 5.13. Let P be a parabolic subgroup of GLn1m(F ), with Levi subgroup
M , and let π be an irreducible cuspidal K-representation of M such that iGPπ lies
in the block corresponding to Lm, πm. Suppose that M decomposes as a product of
groups Mi = GLn1mi(F ), and let χ be an unramified character of M , of the form
⊗i(χi ◦ det), where we regard (χi ◦ det) as a character of Mi.

Let x ∈ K× be the scalar by which Θm,m acts on iGPπ. Then Θm,m acts on

iGPπ ⊗ χ via x
∏
i χ

f ′

i ($F ).

Proof. For some s, the pair (M,π) is conjugate to an unramified twist of one of the
pairs (Ms, πs) described in section 9 of [H1]. Thus, by Theorem 9.4 of [H1], the
action of Θm,m on π is via the element θm,s of ZMs,πs defined in section 9 of [H1],
and the claim is immediate from the definition of θm,s in that section. �
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Finally, let m′ and m be two consecutive elements of {1, eqf′ , `eqf′ , . . . }, and set

j = m
m′ . Theorem 13.5 of [H1] then provides a map:

Indm′,m : Zm → Z⊗jm′ ,

that is compatible with parabolic induction, in the sense that the action of x in

Zm on i
GLn1m(F )

P π (where P = MU is a parabolic such that M is isomorphic to
GLn1m′(F )j) is induced by the action of Indm′,m(x) on π. We then have:

Proposition 5.14. The image of Zm ⊗K in Z⊗jm′ ⊗K is K-saturated.

Proof. This is an easy consequence of Lemma 5.4. �

It is necessary to invert ` to obtain saturation results such as the one above.
Indeed, without inverting `, the best that can be said is:

Theorem 5.15 ([H1], Theorem 13.6). Let y be an element of Z⊗jm′ such that, for
some a, `ay lies in the image of Indm′,m. Then there exists an element ỹ of Zm,

an element x of Aqf′ ,m,1[T±1], and an integer b > 0 such that Indm′,m(ỹ) = `b(y−
Indm′,m(x)).

6. The ring Rq,n

The upshot of the previous section is that the rings Zm admit many of the
structures described in section 4. What is missing are maps Zm → AF ′,m,1 for
a suitable extension F ′ of F . We will show how such maps can be constructed,
conditionally on a conjecture (Conjecture 10.2 below) relating the rings Zm to
Galois theory.

We begin by studying a family of rings with close connections to both Galois
theory and the rings AF,n,1. Let Xq,n be the affine W (k)-scheme paramaterizing

pairs of invertible n by n matrices (Fr, σ) such that Frσ Fr−1 = σq, and let X0
q,n be

the connected component of Xq,n containing the k-point Fr = σ = Idn. Let Rq,n
be the ring of functions on X0

q,n, so that X0
q,n = SpecRq,n.

Lemma 6.1. Let L be an algebraically closed field that is a W (k)-algebra and x be
an L-point of Xq,n corresponding to a pair (Frx, σx) of elements of GLn(L). Then
x lies in X0

q,n if, and only if, the eigenvalues of σx are `-power roots of unity.

Proof. Consider the map Xq,n → AnW (k) that takes a point x to the coefficients

of the characteristic polynomial of σx. Let Y be the image of this map. Let
Ỹ ⊂ AnW (k) be the space of diagonal matrices that are conjugate to their qth powers;

we then have a map Ỹ → AnW (k) that sends such a matrix to the coefficients of its

characteristic polynomial. It is easy to see that (set-theoretically) the image of Ỹ

is equal to Y . On the other hand, Ỹ (K) is a finite collection of points; indeed, the
entries of any diagonal matrix that is conjugate to its qth power are roots of unity.
Thus the “coordinates” of each K-point of Ỹ are integral over W (k), and every

point of Ỹ (k) is in the closure of some point of Ỹ (K). It follows that the same is
true for Y ; in particular Y is the closure of a finite set of K-points, and the closure of
any K-point of Y meets the special fiber of Y . Therefore, the connected component
Y 0 of Y containing the image of X0

q,n is the closure of the set of K-points of Y that
“specialize” mod ` to the characteristic polynomial (X−1)n of the identity matrix.
The only k-point of this component arises from the characteristic polynomial of the



24 DAVID HELM

identity matrix, and the K-points of this component correspond to characteristic
polynomials of elements of Ỹ (K) whose roots reduce to 1 modulo `. The roots of
such a polynomial are `-power roots of unity. Therefore, for x in X0

q,n(L) the roots
of the characteristic polynomial of σx are `-power roots of unity, as required.

Conversely, let x be an L-point of Xq,n, and suppose that the eigenvalues of
σx are `-power roots of unity. Note that GLn(L) acts on Xq,n(L), by conjugation
on both F and σ, and this action preserves the connected components. We may
thus assume σx is in Jordan normal form; in particular its entries lie in k or an
integral extension O of W (k). Moreover, for a fixed σx, the set of Frx such that
Frx σx = σqx Frx is a linear space; there is thus an invertible Fr′x whose entries lie
in k or W (k), such that Fr′x σx = σqx Fr′x and (Fr′x, σx) lies on the same connected
component as x.

If L has characteristic `, the above construction yields a k-point of Xq,n in the
same connected component as x. If L has characteristic zero, the closure of the
point (Fr′, σ) constructed above contains a k-point (Fr′′, σ′) of Xq,n in the same
connected component as x. Moreover, σ′ is unipotent. We may again assume σ′′ is
in Jordan normal form; then in the closure of orbit of (Fr′, σ′′) under conjugation
by diagonal matrices there is a point where σ is the identity. It is clear that such a
point lies in the connected component of the k-point x where Frx = σx = Idn. �

The ring Rq,n is rather well-behaved from an algebraic standpoint. In particular,
one has:

Proposition 6.2. The ring Rq,n is reduced and locally a complete intersection.
Moreover, Rq,n is flat as a W (k)-algebra.

Proof. This argument is a slight elaboration of an argument due to Choi [Ch]. We
give a sketch here.

First note that Xq,n is given by n2 relations in a space of dimension 2n2 + 1.

Consider the map Xq,n → An2

W (k) that sends a point x to the matrix σx. Let L be

an algebraically closed field that is a W (k)-algebra, and let x be an L-point. of
SpecSq,n.

The group GLn(L) acts on the set of L-points of SpecSq,n by conjugation. Con-

sider the locally closed subset Uσx of SpecAn2

L consisting of those σ′ conjugate to
σx. For any L-point σ′ of Uσx , the fiber of Xq,n ×W (k) L over σ′ consists of pairs

(Fr′ h, σ′), where Fr′ is a fixed element of GLn such that Fr′ σ′(Fr′)−1 = (σ′)q and
h commutes with σ′

In particular, the dimension of the preimage of Uσ in Xq,n ×W (k) L is equal to
the dimension of Uσ plus the dimension of the stabilizer of σ under conjugation;
this is clearly n2. As σ varies over a finite list of conjugacy classes, the preimages
of the Uσ cover Xq,n ×W (k) L; thus Xq,n ⊗W (k) L is equidimensional of dimension

n2. On the other hand the dimension of Xq,n is at least n2 + 1. It follows that the
Zariski closures of the preimages of sets Uσ are irreducible components of Xq,n, and
that no irreducible component of Xq,n is contained in the special fiber (as it would
then be a component of Xq,n ⊗W (k) k of dimension at most n2.) It also follows

that every irreducible component of Xq,n has dimension n2 + 1, because if we had

a component of larger dimension then its base change to K would have dimension
greater than n2. In particular Xq,n is a complete intersection. It follows that Rq,n
is a local complete intersection.
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An argument of Choi ([Ch], Theorem 3.0.13) shows that for any maximal ideal
m of Rq,n, (SpecRq,n)m[ 1` ] is generically smooth; in particular X0

q,n is generically

reduced. By the unmixedness theorem the local complete intersection X0
q,n has no

embedded points, so Rq,n is reduced. As the generic points of SpecRq,n all have
characteristic zero, we may conclude that Rq,n is flat over W (k). �

We have a universal pair of matrices (Fr, σ) in GLn(Rq,n). The above result
immediately implies:

Corollary 6.3. There exists a power `a of ` such that σ`
a

is unipotent in GLn(Rq,n).

Proof. Since Rq,n is reduced and flat over W (k), it suffices to check that σ`
a

is
unipotent for some a at each of the generic points of SpecRq,n, all of which lie in
characteristic zero. This is an immediate consequence of Lemma 6.1. �

Let L be a finite extension of K. We call an L-point of X0
q,n integral if the

corresponding map Rq,n → L factors through the ring of integers OL.

Lemma 6.4. Let x be an L-point of X0
q,n, and suppose that the eigenvalues of of

Fx are integral over W (k). Then there is an integral point of X0
q,n in the GLn-orbit

of x.

Proof. Extending L if necessary, we may assume that the eigenvalues of σx are in
L, and hence OL. Then (for instance, by putting σx in Jordan normal form) we
can find an OL-sublattice M of Ln preserved by σx. Using Frx σx Fr−1x = σqx, we
find that FrxM , Fr2xM , etc. are also preserved by σx. Consider the lattice M ′

given by M + FrxM + · · · + Frn−1x M ; it is clearly preserved by σx. On the other
hand, since Frx is annihilated by a polynomial with integral coefficients, FrnxM is
contained in M ′, and hence FrxM

′ is contained in M ′. Thus M ′ is stable under
both Frx and σx. Choosing a basis for M ′, we find an integral point of X0

q,n in the
same GLn-orbit as x. �

Proposition 6.5. The images of the integral points of X0
q,n are dense in X0

q,n.

Proof. Since the integral points of GLn are dense in GLn, the closure of the integral
points of X0

q,n is a union of GLn-orbits, and hence, by the previous lemma, equal to
the closure of the set of points x such that Frx has integral eigenvalues. We must
show that such points are dense. But for any σx, the set of invertible Frx such that
Frx σ = σq Frx is an open subset of an affine space, so this is clear. �

Corollary 6.6. The ring Rq,n is `-adically separated; that is, the intersection of
the ideals `iRq,n is zero.

Proof. Let f be an element of Rq,n that is divisible by `i for all i. Then, for any
integral point x : Rq,n → OL, the image x(f) is divisible by `i for all i and is
therefore zero. In other words, f vanishes on a dense subset of X0

q,n. Since X0
q,n is

reduced, f is zero. �

Now fix a Frobenius element F̃r in WF , and a topological generator σ̃ of the

quotient IF /I
(`)
F . Corollary 6.3 implies that there is a unique `-adically continuous

representation ρF,n : WF → GLn(Rq,n) that takes F̃r to Fr and σ̃ to σ. (Recall that
for an `-adically separated ring A, a representation ρ : WF → GLn(A) is `-adically
continuous if, for all i, the preimage of the subgroup Id +`iMn(A) of GLn(A) is
open in WF .)
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The pair (Rq,n, ρF,n) has the following universal property, which is easily seen
to characterize the pair up to isomorphism:

Proposition 6.7. For any finitely generated, `-adically separated W (k)-algebra A,

and any framed, `-adically continuous representation ρ : WF /I
(`)
F → GLn(A), there

is a unique map: Rq,n → A such that ρ is the base change of ρF,n.

Proof. Given ρ, we have a pair of matrices (ρ(Fr), ρ(σ̃)) in GLn(A), satisfying

ρ(Fr)ρ(σ̃)ρ(Fr)−1 = ρ(σ̃)q,

and hence a map Sq,n → A. Moreover, since the restriction of ρ to IF factors

through IF /I
(`)
F and is `-adically continuous, the eigenvalues of ρ(σ̃) are `-power

roots of unity. Thus the map Sq,n → A factors through Rq,n and the result follows.
�

If we regard the K-points of X0
q,n as framed representations of WF /I

(`)
F , then

one can show:

Proposition 6.8. Let x be an K-point of X0
q,n. Then there is a point y in the

closure of the GLn-orbit of x such that the representation ρy is semisimple.

Proof. Replacing x with a point in the same GLn-orbit, we may assume that the
framing on ρx is such that ρx is block upper triangular, with block sizes n1, . . . nr,
and that for 1 ≤ i ≤ r, the restriction ρi of ρx to the ith diagonal block is irreducible.
Let M be the block diagonal matrix whose ith block is given by ti times the ni by
ni identity matrix, for some parameter t. Then the limit, as t approaches zero, of
MρxM

−1 exists and is semisimple. �

We will later need the following observation about the representation ρF,n.

Proposition 6.9. As x varies over the K-points of X0
q,n, the restriction of ρssx to

IF is constant on connected components of X0
q,n ×W (k) K.

Proof. The restriction of ρssx to IF is determined by the characteristic polyomial of
σx; since the eigenvalues of σx have bounded `-power order there are only finitely
possible characteristic polynomials of σx. �

7. Relating Rq,n to AF,n,1

The ring Rq,n and its associated representation ρF,n turn out to be quite closely
related to AF,n,1. In particular Rq,n has a natural subring Rinv

q,n consisting of GLn-

invariant functions on X0
q,n; we will show that this subring admits a natural map

to AF,n,1.
The key is to consider certain natural subschemes of X0

q,n. Fix a permutation w
in Sn, considered as an n by n permutation matrix, and let Xw

q,n denote the closed
subscheme of Xq,n consisting of pairs (Fr, σ) such that wFr and σ are diagonal. Let
Rwq,n be the ring of regular functions on Xw

q,n. Then Rwq,n is naturally a quotient of
Rq,n.

Let D denote the standard maximal torus of GLn. The conjugation action of D
on Xq,n preserves Xw

q,n. Let Rw,invq,n denote the invariant elements of Rwq,n under the
action of D.

The ring Rw,invq,n is closely related to a certain torus in GLn(F ). In particular
(regarding w as an element of the Weyl group of GLn(F ), let Tw be a torus in
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the conjugacy class of unramified maximal tori of GLn(F ) corresponding to w.
(Concretely, Tw is then a product of F×i , where Fi is unramified over F and the
degrees of the Fi correspond to lengths of cycles in w.)

We then have:

Proposition 7.1. There is an isomorphism:

Rw,invq,n
∼= ZTw,1

such that the composition

Rinv
q,n → Rw,invq,n → ZTw,1

takes the K-point of SpecZTw,1 corresponding to the pair (Tw, θ) to the image in

SpecRinv
q,n of the K-point of SpecRq,n corresponding to ρTw,θ.

Proof. One easily reduces to the case when w consists of a single cycle; after conju-
gation by a suitable permutation matrix we may assume w(ei) = ei+1, w(en) = e1,
where the ei are the standard basis of GLn. Then the equations for Xw

q,n can be
made quite explicit: if f1, . . . , fn are the diagonal entries of wFr, and ζ1, . . . , ζn are
the diagonal entries of σ, then the equation Frσ Fr−1 = σq becomes the equations
ζqi = ζi+1, ζqn = ζ1 with respect to these coordinates. The diagonal matrix with

entries t1, . . . , tn acts by fixing each ζi, sending fi to tit
−1
i+1fi and sending fn to

tnt
−1
1 fn. Thus the ring Rw,invq,n is generated by ζ1 and f1f2 . . . fn, subject to the

relation ζ`
a

1 − 1 = 0, where `a is the largest power of ` dividing qn − 1.
On the other hand, by definition ZTw,1 is isomorphic to W (k)[(F ′)×/((F ′)×)(`)],

where F ′ is unramified over F of degree n. Our chosen elements F̃r and σ̃ of WF

correspond, via local class field theory, to a uniformizer $ of F ′ and an element ζ of
order `a in O×F ′ . Define a map from Rw,invq,n to ZTw,1 sending ζ1 to ζ and f1f2 . . . fn
to $.

Now let x be an K-point of Rwq,n, and let θ be the character of (F ′)× that takes $
to x(f1f2 . . . fn) and ζ to x(ζ1). It is then clear that the specialization ρx of ρF,n to
x is isomorphic to ρTw,θ, so the map Rw,invq,n → ZTw,1 has the claimed property. �

As an immediate consequence, we deduce:

Theorem 7.2. There is a unique injection

Rinv
q,n → AF,n,1

that takes the point of SpecAF,n,1 corresponding to a semisimple representation ρ
of WF to the image, in SpecRinv

q,n, of any point x of X0
q,n with ρssx isomorphic to ρ.

Moreover,

• the image of det Fr under this map is the element Qn of AF,n,1.
• Let r be an element Rinv

q,n such that r(x) depends only on the restriction of

ρx to IF . Then the image of r in AF,n,1 lies in the subalgebra Aq,n,1.

Proof. It is clear from the previous proposition that the product, over all w, of the
compositions:

Rinv
q,n → Rw,invq,n

∼= ZTw,1

is a map Rinv
q,n →

∏
w ZTw,1 whose image is contained in the image of Aq,n,1 in∏

w ZTw,1. It thus remains to prove the injectivity of the map Rinv
q,n → Aq,n,1. An

element r of the kernel of this map vanishes on all representations of WF of the
form ρT,θ. Since any semisimple `-ramified representation of WF has this form, r
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must vanish at every point of X0
q,n corresponding to a semisimple representation.

On the other hand, there is such a point in the closure of every GLn-orbit on X0
q,n.

Since r GLn-invariant, it must vanish at every K-point of X0
q,n; since the latter is

reduced and such points are dense we have r = 0.
It is clear from the construction of the maps Rinv

q,n → ZTw,1 that the image of
det Fr in ZTw,1 is the element $In of the latter. Moreover, for any r such that r(x)
depends only on the restriction of ρx to IF , the image of r in ZTw,1 is an element

rw of ZTw,1 such that the value of rw at a character θ : Tw → K
×

depends only on

the restriction of θ to T cw. Hence the image of r in AF,n,1 lies in Aq,n,1. �

8. Deformation theory

In this section we examine the local deformation theory of a representation ρ :

GF → GLn(k). As in previous sections, let I
(`)
F denote the prime to ` part of the

inertia group of F , and fix a topological generator σ̃ of IF /I
(`)
F and a Frobenius

element Fr in WF /I
(`)
F .

We first recall some results of Clozel-Harris-Taylor:

Proposition 8.1 ([CHT], Lemmas 2.4.11-2.4.13). Let τ be an irreducible repre-

sentation of I
(`)
F over k, and let Gτ be the subgroup of GF that preserves τ under

conjugation. Then:

(1) τ lifts uniquely to a representation τ of I
(`)
F over W (k).

(2) τ extends uniquely to a representation of IF ∩Gτ of determinant prime to
`.

(3) τ extends (non-uniquely) to a representation of Gτ .

If we fix a representation τ of Gτ as in part (3), we obtain an action of Gτ/I
(`)
F on

Hom
I
(`)
F

(τ, ρ) for any GF -module ρ. Moreover, we have a direct sum decomposition

of GF -modules:

ρ ∼=
⊕
[τ ]

IndGFGτ [Hom
I
(`)
F

(τ, ρ)⊗ τ ],

where τ runs over GF -conjugacy classes of irreducible representations of I
(`)
F over

k.

Fix, for each GF -conjugacy class of τ , a τ as in the proposition. Suppose we
are given a representation ρA : GF → GLn(A). We then obtain a direct sum
decomposition:

ρA =
⊕
[τ ]

IndGFGτ [Hom
I
(`)
F

(τ, ρA)⊗ τ ].

It is clear that Hom
I
(`)
F

(τ, ρA) is a free A-module for all τ , and that the collec-

tion of Gτ -representations Hom
I
(`)
F

(τ, ρ)A determines the representation ρA up to

isomorphism.

Definition 8.2. A pseudo-framing of a continuous representation ρA : GF →
GLn(A) is a choice, for each τ , of basis for each Hom

I
(`)
F

(τ, ρA). A pseudo-framed

deformation of a continuous representation ρ : GF → GLn(k) (together with a
chosen pseudo-framing) is a lift ρA : GF → GLn(A) of ρ, together with a pseudo-
framing of ρA that lifts the chosen pseudo-framing of ρ.
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Fix a ρ and a pseudo-framing of ρ, and, for each τ , let ρτ be theGτ -representation
Hom

I
(`)
F

(τ, ρ). Let R�ρ be the completed tensor product

⊗[τ ]R
�
ρτ

of the universal framed deformation rings of the ρτ . Over each such ring we have
the universal framed deformation ρ�τ of ρτ .

Using these, we construct a representation:

ρ� :=
⊕
[τ ]

IndGFGτ [ρ�τ ⊗ τ ]

that has a natural pseudo-framing induced by the universal framings of the rep-
resentations ρ�τ . One easily verifies that the pair R�ρ, ρ

� is a universal object for
pseudo-framed deformations of ρ.

For each τ , the formal group G�ρτ acts on Spf R�
ρτ by “change of frame”. Let G�ρ

be the product of the G�ρτ . Then G�ρ acts on Spf R�ρ by “change of pseudo-framing”.

For computational purposes it is often easier to work with R�ρ rather than R�
ρ ,

as R�ρ can be made quite explicit. The two rings are related in a natural way: one

has a ring R�,�
ρ that is universal for triples consisting of a deformation ρ of ρ, a

framing of ρ lifting that of ρ, and a pseudo-framing of ρ lifting that of ρ. Then

Spf R�,�
ρ is a (split) G�ρ -torsor over Spf R�

ρ and a (split) G�ρ -torsor over Spf R�ρ.
We immediately deduce:

Corollary 8.3. The ring R�
ρ is a reduced, `-torsion free local complete intersection.

Proof. The construction above shows that it suffices to prove the same claim with
R�
ρ replaced by R�ρ. But the latter is a completed tensor product of rings of the

form R�
ρτ

, and each of these is isomorphic to the completion of a ring of the form

Rq,n (with q and n depending on τ) at a maximal ideal. The result thus follows
from the results of section 6. �

Moreover, we may canonically identify both the G�ρ -invariant elements of R�
ρ

and the G�ρ -invariant elements of R�ρ with the G�ρ × G�ρ -invariant elements of R�,�
ρ .

In particular these spaces of invariants are naturally isomorphic.
Given a choice of framing of ρ�, we get a map R�

ρ → R�ρ. When restricted to

G�ρ -invariants this map is the isomorphism of
(
R�
ρ

)G�
ρ with

(
R�ρ
)G�ρ constructed

above. Summarizing, we have:

Lemma 8.4. For any choice of framing of ρ�, the induced map: R�
ρ → R�ρ iden-

tifies the G�ρ -invariant elements of R�
ρ with the G�τ -invariant elements of R�ρ. (In

particular the image of this set of invariant elements is saturated in R�ρ.)

9. The rings Rν

Let ρ : WF /I
(`)
F → GLn(k) be a representation. Then we have a corresponding

map x : Rq,n → k, with kernel m. It follows easily from the universal property of
the pair (Rq,n, ρF,n) that the completion (Rq,n)m is isomorphic to R�ρ, and that this

isomorphism is induced by the base change of ρF,n to (Rq,n)m. In other words, Rq,n
is a global object that interpolates the formal deformation rings R�ρ for ρ trivial on

I
(`)
F .
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We would like to construct similar objects for ρ whose restriction to I
(`)
F is

nontrivial. Let us define:

Definition 9.1. An `-inertial type is a representation ν of I
(`)
F over k that extends

to a representation of WF .

Note that (as I
(`)
F is a profinite group of pro-order prime to `), such a repre-

sentation lifts uniquely to a representation of I
(`)
F over W (k), and this lift also

extends to a representation of WF . We will thus consider an `-inertial type ν as a
representation over W (k) rather than over k whenever it is convenient to do so.

Now fix an `-inertial type ν, and for each irreducible representation τ of I
(`)
F

over k, let nτ be the multiplicity of τ in ν (note that nτ depends only on the WF -
conjugacy class of τ .) Let Wτ be the subgroup of WF that fixes τ under conjugation,
let Fτ be the fixed field of Wτ , and let qτ denote the cardinality of the residue field
of Fτ .

We define Rν to be the tensor product:

Rν :=
⊗
τ

Rqτ ,nτ

where τ runs over a set of representatives for the WF -conjugacy classes of irreducible
representations appearing in ν. For each τ we have a representation ρFτ ,nτ over
Rqτ ,nτ , which we regard as a representation over Rν in the obvious way.

Define the representation ρν : WF → GLn(Rν) as follows:

ρν :=
⊕
τ

IndWF

Wτ
ρFτ ,nτ ⊗ τ,

where τ runs over a set of representative for the WF -conjugacy classes of irreducible
representations appearing in ν, and for each such τ , we have chosen an extension
τ of τ to a representation WF → GLn(W (k)) as in Proposition 8.1. Note that ρν
inherits a pseudo-framing from the natural framings of the ρFτ ,nτ , and that the

restriction of ρν to I
(`)
F is given by ν.

For a map x : Rν → k, the specialization (ρν)x is a pseudo-framed representation

WF → GLn(k), whose restriction to I
(`)
F is given by ν. This defines a bijection

between k-points of SpecRν and such pseudo-framed representations. Moreover,
it follows directly from the constructions of Rν and R�(ρν)x that the completion of

Rν at the maximal ideal corresponding to x is naturally isomorphic to R�(ρν)x , in a

manner compatible with the universal family on the latter.
Moreover, the universal property for each Rqτ ,nτ immediately yields:

Proposition 9.2. For any finitely generated, `-adically separated W (k)-algebra A,
and any pseudo-framed, `-adically continuous representation ρ : WF → GLn(A)

whose restriction to I
(`)
F is isomorphic to ν, there is a unique map: Rν → A such

that ρ is the base change of ρν .

For each τ , the group GLnτ acts on Rqτ ,nτ . Let Gν be the product of the GLnτ ;
then Gν acts on SpecRν by “changing the pseudo-frame”.

10. Maps from Z[L,π] to Rν

Now fix a pair (L, π), where L is a Levi subgroup of GLn(F ) and π is an irre-
ducible supercuspidal k-representation of L. The mod ` semisimple local Langlands
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correspondence of Vigneras [Vi] attaches to π a semisimple k-representation ρ of

WF . Let ν be the restriction of ρ to I
(`)
F . Then ν lifts uniquely to a W (k)-

representation ν of I
(`)
F , and we have:

Proposition 10.1. The irreducible K-representations of GLn(F ) that are objects
of RepW (k)(GLn(F ))[L,π] correspond, via local Langlands, to the K-representations

of WF whose restriction to I
(`)
F is isomorphic to ν.

Proof. This is an easy consequence of the compatibility of Vigneras’ mod ` corre-
spondence with reduction mod `. �

This proposition shows that for any K-point x of SpecRν , the representation
ρx corresponds, via local Langlands (and Frobenius semsimplification if necessary)
to an irreducible K-representation Πx in RepW (k)(GLn(F ))[L,π], and hence to a

K-point of SpecZ[L,π]. It is a natural question to ask whether this map is induced
by a map Z[L,π] → SpecRν . Indeed, we conjecture:

Conjecture 10.2 (Weak local Langlands in families). There is a map Z[L,π] → Rν
such that the induced map on K-points takes a point x of SpecRν to the K-point of
Z[L,π] that gives the action of Z[L,π] on the representation Πx corresponding to ρx
by local Langlands. (We will say such a map is compatibile with local Langlands.)

Since Rν is reduced and `-torsion free, such a map is unique if it exists. Note
also that the image of any element of Z[L,π] under such a map is invariant under

the action of Gν , and so any such map must factor through the subalgebra Rinv
ν of

Gν-invariant elements of Rν . We further conjecture:

Conjecture 10.3 (Strong local Langlands in families). There is an isomorphism
Z[L,π]

∼= Rinv
ν such that the composition

Z[L,π] → Rinv
ν → Rν

is compatible with local Langlands.

If one completes at a maximal ideal of Rν , corresponding to a representation
ρ of WF over k, and uses Lemma 8.4 to relate the invariant elements of R�

ρ and

R�ρ, one recovers Conjectures 7.5 and 7.6 of [H2]. In particular (c.f. Theorem 7.9

of [H2]), Conjecture 10.2 above implies the “local Langlands in families” conjecture
of Emerton-Helm (conjecture 1.1.3 of [EH]).

These conjectures should be viewed as relating “congruences” between admis-
sible representations (which are in some sense encoded in the structure of Z[L,π])
with “congruences” between representations of WF (encoded in Rν). Since invert-
ing ` destroys information about such congruences, one expects such conjectures
to be relatively straightforward with ` inverted. We will show that, at least for
Conjecture 10.2, this is indeed the case.

First, note that any map:

Z[L,π] ⊗K → Rν ⊗K
that is compatible with local Langlands is Galois equivariant, and hence descends
to a map

Z[L,π][
1

`
]→ Rν [

1

`
]

compatible with local Langlands. It thus suffices to show:
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Theorem 10.4. There is a map Z[L,π] ⊗K → Rν ⊗K compatible with local Lang-
lands (and therefore a corresponding map over K.)

To prove this, we first work on the level of connected components. We have an
isomorphism:

Z[L,π] ⊗K ∼=
∏
M,π̃

Z̃(M,π̃),

by Theorem 5.6, where (M, π̃) varies over the inertial equivalence classes of pairs
that reduce modulo ` to (L, π). Thus the connected components of SpecZ[L,π]⊗K
are in bijection with the pairs (M, π̃). Via local Langlands, these correspond to
representations of IF . More precisely, let Π be an admissible representation of G, let
ρ : WF → GLn(K) correspond to Π via local Langlands, and let ρ̃ : WF → GLn(K)
be the representation of WF corresponding to π̃ via local Langlands. Then Π
belongs to the block corresponding to (M, π̃) if and only if the restriction of ρss to
IF coincides with the restriction of ρ̃ to IF .

On the other hand, it is an easy consequence of Proposition 6.9 that as x varies
over K-points of SpecRν , the restriction of ρssν,x to IF is constant on connected

components of SpecRν ⊗ K. We can thus let Rρ̃ν be the direct factor of Rν ⊗ K
corresponding to the union of the connected components of SpecRν ⊗K on which
the restriction of ρssν,x to IF is isomorphic to the restriction of ρ̃ to IF .

It then suffices to construct, for each (M, π̃), a map:

Z̃(M,π̃) → Rρ̃ν

compatible with local Langlands. Since (M, π̃) is only well-defined up to inertial
equivalence, we may assume that π̃ has the form:

π̃ ∼=
⊗
i

π̃⊗rii ,

where the π̃i are pairwise inertially inequivalent representations of GLni(F ). Un-

winding the Bernstein-Deligne description of Z̃(M,π̃), we obtain an isomorphism:

Z̃(M,π̃)
∼=
⊗
i

K[X±1i,1 , . . . , X
±1
i,ri

]Sri ,

where the symmetric group Sri acts by permuting the elements Xi,1, . . . , Xi,ri .

For each i, and any α ∈ K, let χi,α denote the unramified character of GLni(F )
that takes the value α on any element of GLni(F ) with determinant $F . An
irreducible Π in RepK(M, π̃) has supercuspidal support (M, π̃′) for some π̃′ of the
form:

π̃′ ∼=
⊗
i

ji⊗
r=1

π̃i ⊗ χi,αi,j

for suitable αi,j . Then the dth elementary symmetric function in Xi,1, . . . , Xi,ri ,

considered as an element of Z̃(M,π̃), acts on Π via the dth elementary symmetric

function in the α
f ′i
i,1, . . . , α

f ′i
i,ri

, where f ′i is the order of the group of unramified
characters χ such that π̃i ⊗ χ is isomorphic to π̃i.

For each i, the irreducible representation ρ̃i of WF corresponding to π̃i via local
Langlands decomposes, when restricted to IF , as a direct sum of distinct irreducible
representations of IF , all of which are WF -conjugate. Fix an irreducible representa-
tion τ̃i of IF contained in ρ̃i, and let Wi be the normalizer of τ̃i in WF . Then there
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is a unique way of extending τ̃i to a representation of Wi such that the induction
of the resulting extension to WF is isomorphic to ρ̃i. (Note that this implies that
Wi has index f ′i in WF .)

This choice of extension of τ̃i to Wi gives rise to an action of Wi on the space
HomIF (τ̃i, ρν). The quotient of this space that lives over Rρ̃ν is a free Rρ̃ν-module of
rank ri, with an unramified action of Wi.

Let Fri be a Frobenius element of Wi, and let Pi(x) =
ri∑
i=0

aiX
i be the character-

istic polyomial of Fri on HomIF (τ̃i, ρν) (over Rρ̃ν). Consider the map Z̃(M,π̃) → Rρ̃ν
that sends the dth elementary symmetric function in Xi,1, . . . , Xi,ri to the element
(−1)dai−d of Rρ̃ν . One verifies easily that this map is compatible with local Lang-
lands, establishing Theorem 10.4.

It is not hard to go slightly further, and show:

Theorem 10.5. The image of Z[L,π] in Rν [ 1` ] under the map of Theorem 10.4 lies
in the normalization of Rν .

Proof. Fix an element x of Z[L,π], and let y be its image in Rν [ 1` ]. Let A be a discrete
valuation ring that is a W (k)-algebra, with field of fractions K of characteristic zero,
and fix a map Rν → A. This corresponds to a pseudo-framed representation ρA of
WF . Let ΠK denote the admissible K-representation corresponding to ρA ⊗A K
via local Langlands. Since ρA⊗AK admits an A-lattice, so does ΠK . In particular
the action of x on ΠK is via an element of A, so y maps to an element of A under
the map Rν [ 1` ]→ K. Since this is true for every A and every map Rν → A, y lives
in the normalization of Rν as claimed. �

11. Main results

The main objective of the paper is to show the following:

Theorem 11.1. Suppose that Conjecture 10.2 holds for all GLm(F ), m ≤ n. Then
Conjecture 10.3 holds for GLn(F ).

We first note that we have tensor factorizations:

Z[L,π]
∼=
⊗
i

Z[Li,πi]

Rν ∼=
⊗
τ

Rqτ ,nτ

where the [Li, πi] are simple blocks. The former factorization is compatible with
parabolic induction and the latter arises from the direct sum decomposition:

ρν =
⊕
τ

IndWF

Wτ
ρFτ ,nτ ⊗ τ.

Since simple blocks correspond to types ν with only one nτ nonzero, these fac-
torizations are compatible, in the sense that if we have maps Z[Li,πi] → Rνi for
each i that are compatible with local Langlands, then their tensor product gives
a map Z[L,π] → Rν compatible with local Langlands. Thus both Conjecture 10.2
and Conjecture 10.3 reduce to the corresponding conjectures on simple blocks. We
thus henceforth assume that [L, π] is of the form [Ln, πn] with πn ∼= π⊗n1 for a
supercuspidal representation π1. Following section 5 we set Zn = Z[Ln,πn]. The
corresponding Rνn is then isomorphic to Rqτ ,n for some fixed τ .
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Suppose now that Conjecture 10.2 holds for Z[Lm,πm], with m ≤ n. We then
have maps:

Zm → Rinv
νm
∼= Rinv

qτ ,m → AFτ ,m,1

the composition takes the K-point of AFτ ,m,1 corresponding to an `-ramified rep-

resentation ρ of WFτ /I
(`)
F to the K-point of Zm giving the action of Zm on the

irreducible representation Π that corresponds, via local Langlands, to the represen-
tation IndWF

Wτ
ρ⊗τ of WF . (In particular, since the points of SpecZm correspond to

supercuspidal supports, and hence to semisimple representations of WF , this map
is a bijection on K-points.) Moreover, we have commutative diagrams:

Zm → AFτ ,m,1
↓ ↓⊗
ν Zνi → AFτ ,ν,1

for any partition ν of m. (In particular the maps Indνmax and Indm,n constructed
in section 5 satisfy the compatibilities required in section 4.)

The maps Zm → ZFτ ,m,1, together with the maps Indνmax and Indm,n con-
structed in section 5 thus satisfy conditions (1), (2), (5), and (6) of section 4. Thus
we will have proven Theorem 11.1 if we can also satisfy conditions (3) and (4).

Recall from section 5 that f ′ is the order of the group of unramified characters
χ such that π ⊗ χ is isomorphic to π. By compatibility of local Langlands with
twists, this is equal to the degree of Fτ over F . We may thus identify Aqf′ ,m,1 with

Aqτ ,m,1 for all m. Unfortunately, we cannot prove that the map

Aqf′ ,m,1[T±1]→ Zm

of section 5 satisfies condition (4) of section 4. (We strongly suspect, however, that
this is the case.)

Fortunately, there is a workaround: we first note, by Proposition 5.12 and The-
orem 7.2, the image of the composition:

Aqf′ ,m,1 → Zm → Rinv
qτ ,m → AFτ ,m,1

lies in Aqτ ,m,1 (which equals Aqf′ ,m,1). We then invoke:

Lemma 11.2. Let A be a finite rank, reduced, `-torsion free W (k)-algebra, and let
f : A→ A be an injection. Then f is an isomorphism.

Proof. Clearly f is an isomorphism after inverting `. On the other hand, the
hypotheses guarantee that A[ 1` ] is a product of finite extensions of K, and f is an
automorphism of this product. In particular there is some power of f that is the
identity. �

Thus all of Aqf′ ,m,1 is in the image of the map Zm → AFτ ,m,1. Moreover,

we may adjust the map Aqf′ ,m,1 → Zm so that the composition with the map

Zm → Aqf′ ,m,1 is the identity. To extend this to a map Aqf′ ,m,1[T±1] → Zm
satisfying condition (4) of section 4, we must show there is an element of Zm that
maps to the element Qm of AFτ ,m,1, or, equivalently, that maps to the element
det Fr of Rqτ,m . Let Θ be the image of Θn,n in Rqτ ,m. Then, by Proposition 5.13

and Theorem 7.2, the element Θ−1 det Fr of Rinv
qτ ,m maps to an invertible element

of Aqf′ ,m,1 under the map Rqτ ,m → AFτ ,m,1. This element lies in the image of Zm,

and therefore so does the image of det Fr. There is thus an element Θ′ of Zm that
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maps to det Fr in Rqτ ,m and to Qm in AFτ ,m,1; we extend the map Aqf′ ,m,1 → Zm

to a map on Aqf′ ,m,1[T±1] by sending T to Θ′. The newly constructed map clearly

satifies condition (4) of section 4.
It remains to verify condition (3) of section 4. On the other hand, note that

AFτ ,1,1 is generated over its subalgebra Aqτ ,1,1 by Q±11 , and that both Aqτ ,1,1 and
Q1 are in the image of Z1. Thus the map Z1 → AFτ ,1,1 is an isomorphism.

The results of section 4 now allow us to conclude that the composition:

Zn → Rinv
qτ ,n → AFτ ,n,1

is an isomorphism. On the other hand, the map Rinv
qτ → AFτ ,n,1 is injective, so each

of the individual maps must be isomorphisms.

References

[BD] J. Bernstein and P. Deligne, Le “centre” de Bernstein, in Representations des groups redutifs

sur un corps local, Traveaux en cours, (P. Deligne ed.), Hermann, Paris, 1–32.
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