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Abstract. The Asai (or twisted tensor) L-function of a Bianchi modular form Ψ is the
L-function attached to the tensor induction to Q of its associated Galois representation.
In this paper, when Ψ is ordinary at p we construct a p-adic analogue of this L-function:
that is, a p-adic measure on Z×p that interpolates the critical values of the Asai L-function
twisted by Dirichlet characters of p-power conductor. The construction uses techniques
analogous to those used by Lei, Zerbes and the first author in order to construct an Euler
system attached to the Asai representation of a quadratic Hilbert modular form.

1. Introduction

1.1. Background Several of the most important conjectures in modern number theory,
such as the Bloch–Kato and Beilinson conjectures, relate the special values of L-functions to
arithmetic data. In much of the work on these conjectures to date, an important role has been
played by p-adic L-functions: measures or distributions on Z×p , for a prime p, interpolating the
special values of a given complex L-function and its twists by Dirichlet characters of p-power
conductor. Such functions are expected to exist in wide generality, but in practice they can
be difficult to construct, and there are large classes of L-functions which at present are not
known to have a p-adic analogue. In this paper, we provide such a construction for a new class
of L-functions: the Asai, or twisted tensor, L-functions attached to Bianchi modular forms
(automorphic forms for GL2/F , where F is imaginary quadratic).

In order to construct our p-adic L-function, we use the Betti cohomology of a locally symmetric
space associated to GL2/F . Work of Ghate [Gha99] shows that the critical values of the
Bianchi Asai L-function and its twists are computed by certain special elements in Betti
cohomology, which are pushforwards of cohomology classes for GL2/Q associated to Eisenstein
series. However, interpolating such classes p-adically is not straightforward. The key novelty
in our construction is to simultaneously vary two parameters: the choice of Eisenstein series,
and the choice of embedding of GL2/Q in GL2/F . This allows us to reduce the interpolation
problem to a (much simpler) compatibility property of the GL2/Q Eisenstein series.

Our construction uses techniques that are closely related to those those found in [LLZ14]
and [LLZ16], in which Lei, Zerbes and the first author constructed Euler systems (certain
compatible families of étale cohomology classes) for Rankin–Selberg convolutions of modular
forms, and for the Asai representation of a Hilbert modular form over a real quadratic field.
In the Bianchi setting, there is no étale cohomology to consider, since Bianchi manifolds (the
symmetric spaces associated to GL2/F ) are not algebraic varieties. However, we show in this
article that applying the same techniques in this setting instead gives compatible families of
classes in the Betti cohomology of these spaces. Hence the same techniques used to construct
an Euler system for GL2/F when F is real quadratic also give rise to a p-adic L-function when
F is imaginary quadratic.

We hope that these techniques can be extended to build other new p-adic L-functions as
“Betti counterparts” of known Euler system constructions; in particular, we are presently

2010 Mathematics Subject Classification. Primary 11F41, 11F67, 11F85, 11S40; Secondary 11M41.
Supported by Royal Society University Research Fellowship “L-functions and Iwasawa theory” (Loeffler).

1



Bianchi p-adic Asai L-functions David Loeffler and Chris Williams

exploring applications of this method to the standard L-function of (possibly non-self-dual)
cohomological automorphic representations of GL3 /Q.

Note While working on this project, we learned that Balasubramanyam, Ghate and Vangala
have also been working on a construction of p-adic Asai L-functions for Bianchi cusp forms
[BGV]. Their work is independent of ours, although both constructions rely on the same prior
work [Gha99] of Ghate.

1.2. Outline of the construction We give a brief outline of the construction in the sim-
plest case, when Ψ is a Bianchi modular eigenform of weight 0 (i.e. contributing to cohomology
with trivial coefficients) for some imaginary quadratic field F , and the Hecke eigenvalues λm
of Ψ for ideals m are in Z (as in the case of the eigenforms conjecturally associated to elliptic
curves). We assume that the level n of Ψ is divisible by all primes p | p of F .

The Asai L-function of Ψ is defined by1

LAs(Ψ, s) ..= L(εΨ,Q, 2s− 2)
∑
n≥1

λnOF
n−s,

where εΨ,Q is the restriction to Ẑ× of the nebentypus character of Ψ, and λm is the Hecke
eigenvalue of Ψ at the ideal m. It is the L-function of the Asai representation of Ψ, that is,
the tensor induction to Q of the Galois representation attached to Ψ.

We assume that Ψ is ordinary at p (i.e. λpOF
is a p-adic unit). From Ψ we construct a class

φ∗Ψ ∈ H1
c(Y ∗F,1(n),Zp), where Y ∗F,1(n) is a Bianchi manifold with appropriate level structure.

This cohomology group is Poincaré dual to H2(Y ∗F,1(n),Zp)/(torsion). In [Gha99], Ghate
showed that critical values of the Asai L-function can be obtained by pairing φ∗Ψ with certain
classes in this H2 coming from classical weight 2 Eisenstein series. The main new ideas in the
present paper arise in controlling integrality of these Eisenstein classes as the level varies, thus
putting them into a compatible family from which we build a p-adic measure.

The first input in our construction is a collection of maps, one for each m ≥ 1 and a ∈ OF ,
defined by

YQ,1(m2N)
ι

−−−−−→ Y ∗F,1(m2n)
κa/m

−−−−−→ Y ∗F,1(n),
where ι is the natural embedding, and κa/m is obtained by twisting the natural quotient map
by
( 1 a/m

0 1

)
. Here YQ,1(m2N) is the usual (open) modular curve for GL2/Q of level m2N ,

where N = n ∩ Z.

The second input is a collection of special cohomology classes (“Betti Eisenstein classes”)
cCm2N ∈ H1(YQ,1(m2N),Z). These are constructed using Siegel units. The theory of Siegel
units shows that these classes satisfy norm-compatibility properties as m varies, and that
their images in de Rham cohomology are related to the Eisenstein series used in [Gha99].
(The factor c refers to an auxiliary choice of integer which serves to kill off denominators from
these classes).

With these definitions, we set

cΞm,n,a ..= (κa/m ◦ ι)∗ (cCm2N ) ∈ H2(Y ∗F,1(n),Z),

cΦrn,a ..=
∑

t∈(Z/prZ)
cΞpr,n,at ⊗ [t] ∈ H2(Y ∗F,1(n),Z)⊗ Zp[(Z/pr)×].

The key theorem in our construction (Theorem 3.13) is that the classes cΦrn,a satisfy a norm-
compatibility relation in r. Both the statement of this norm-compatibility relation, and its

1This should not be confused with the standard L-function Lstd(Ψ, s) ..=
∑

mEOF
λm Nm(m)−s. The con-

struction of a p-adic counterpart of the standard L-function of a Bianchi eigenform is the main result of the
paper [Wil17] of the second author.
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proof, are very closely analogous to the norm-compatibility relations for Euler system classes
in [LLZ14,LLZ16].

From this, it follows that (after renormalising using the Hecke operator Up) the classes cΦrn,a
form an inverse system. In particular, they fit together to define an element

cΦ∞n,a ∈ eordH2(Y ∗F,1(n),Z)⊗ Zp[[Z×p ]],

where eord is Hida’s ordinary projector, which we view as bounded measure on Z×p with values
in the ordinary part of H2(Y ∗F,1(n),Z). We then define the p-adic Asai L-function to be the
measure

cL
As
p (Ψ) ..= 〈φ∗Ψ, cΦ∞n,a〉 ∈ Zp[[Z×p ]].

That this measure interpolates the critical values of the (complex) Asai L-function then follows
from [Gha99] together with certain twisting maps (to obtain twisted L-values).

The case of higher-weight Bianchi forms (contributing to cohomology with non-constant coef-
ficients) is similar, although unavoidably a little more technical. Suppose Ψ is such a form of
weight (k, k). Using [Gha99] and the same twisting methods as in the weight (0, 0) case, one can
prove algebraicity for the critical value LAs(Ψ, χ, j+1), where 0 ≤ j ≤ k and χ(−1)(−1)j = 1,
by pairing with classes in H2 arising from Eisenstein series of weight 2k − 2j + 2. For each
such j, we define a compatible system of cohomology classes with coefficients in a suitable al-
gebraic representation of GL2/F by applying a p-adic moment map to our Siegel-unit classes,
obtaining classes cΦ∞,jn,a analogous to cΦ∞n,a in the weight (0, 0) construction. Again, this is
a “Betti analogue” of a construction for étale cohomology which is familiar in the theory of
Euler systems [Kin15,KLZ17].

Pairing φ∗Ψ with cΦ∞,jn,a gives a p-adic measure on Z×p , as above. Using Kings’ theory of p-
adic interpolation of polylogarithms, it turns out that after a twist by the norm this measure
is actually independent of j, and we define the p-adic Asai L-function cL

As
p (Ψ) to be the

measure for j = 0. Moreover, the class cΦ∞,jn,a can be explicitly related to weight 2k − 2j + 2
Eisenstein series, so that integrating the function χ(x)xj against cLAs

p (Ψ) computes the value
LAs(Ψ, χ, j + 1) (under the parity condition above). The above can be summarised in the
following theorem, which is the main result of this paper.

Theorem 1.1. Let Ψ be an ordinary cuspidal Bianchi eigenform of weight (k, k) and level n,
where n is divisible by the primes of F above p. Let R be the ring of integers in the finite
extension L/Qp generated by adjoining the Hecke eigenvalues of Ψ. Then there exists a p-adic
measure

cL
As
p (Ψ) ∈ R[[Z×p ]]

on Z×p satisfying the following interpolation property: if χ is a Dirichlet character of conductor
pr, and 0 ≤ j ≤ k, then we have∫

Z×p
χ(x)xjdcLAs

p (Ψ)(x) =
{

(∗)LAs(Ψ, χ, j + 1) : χ(−1)(−1)j = 1,
0 : χ(−1)(−1)j = −1,

where (∗) is an explicit factor (which is always non-zero if r ≥ 1).

The assumption that all primes p | p of F divide n leads to no loss of generality, since we do
not require that Ψ be a newform, and hence we may apply our results to p-stabilisations of
newforms of level prime to p. The precise interpolation theorem is Theorem 7.4 of the main
text.

It is possible to remove the dependence on c, at the cost of possibly passing to a slightly larger
space of “pseudo-measures”, which may be interpreted as meromorphic (rather than analytic)
functions on p-adic weight space. The details of this are contained in §6.2. We show that the
resulting element of FracR[[Z×p ]] has at worst two simple poles, and in many important cases
it has none at all (i.e. it is a measure).
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2. Preliminaries and notation

2.1. Basic notation We fix notation for a general number field K, which will either be Q
or an imaginary quadratic field. (We’ll generally denote this imaginary quadratic field by F
to distinguish it from the rationals in the notation). Denote the ring of integers by OK , the
adele ring by AK and the finite adeles by AfK . We let ÔK ..= Ẑ ⊗Z OK be the finite integral
adeles, and K×+ the totally-positive elements of K× (so that K×+ = K× for K = F ).

Let H ..= {z ∈ C : Im(z) > 0} be the usual upper half-plane, with GL2(R)+ (the group of
2 × 2 matrices of positive determinant) acting by Möbius transformations in the usual way;
we extend this to all of GL2(R) by letting

(−1
1
)
act via x+ iy 7→ −x+ iy.

Define the upper half-space to be
H3 ..= {(z, t) ∈ C× R>0},

with GL2(C) acting via(
a b
c d

)
· (z, t) =

(
(az + b)(cz + d) + ac̄t2

|cz + d|2 + |c|2t2 ,
|ad− bc|t

|cz + d|2 + |c|2t2

)
.

We embed H in H3 via x + iy 7→ (x, y), which is compatible with the actions of GL2(R) on
both sides.

Throughout, p will denote a rational prime. Let F be an imaginary quadratic field of dis-
criminant −D, with different D = (

√
−D), and fix a choice of

√
−D in C. Let n ⊂ OF be

an ideal of F , divisible by all the primes of F above p; this will be the level of our Bianchi
modular form. We assume throughout that n is small enough to ensure that the relevant
locally symmetric space attached to n is smooth (see Proposition 2.6). Let N be the natural
number with (N) = Z ∩ n as ideals in Z (noting that p | N).

For an integer n ≥ 0 and a ring R, define Vn(R) to be the space of homogeneous polynomials
of degree n in two variables X,Y with coefficients in R, with GL2(R) acting on the right via
(f | γ)(X,Y ) = f(γ · (X,Y )).

2.2. Locally symmetric spaces

Definition 2.1. Let U be an open compact subset of GL2(ÔK). We define locally symmetric
spaces of level U as follows:

• If K = Q we set

YQ(U) ..= GL2(Q)+\
[
GL2(AfQ)×H

]
/U,

where GL2(Q)+ acts from the left on both factors in the usual way, and U acts on the
right of GL2(AfQ).

• If K = F is imaginary quadratic, we set

YF (U) ..= GL2(F )\
[
GL2(AfF )×H3

]
/U.

• Again forK = F , we write GL∗2(AfF ) = {g ∈ GL2(AfF ) : det(g) ∈ (AfQ)×} and similarly
GL∗2(F )+ = {g ∈ GL2(F ) : det(g) ∈ Q×,det(g) > 0}, and define

Y ∗F (U) ..= GL∗2(F )+\
[
GL∗2(AfF )×H3

]
/U∗,

where U∗ ..= U ∩GL∗2(AfF ).
4
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Remark 2.2: Respectively, these spaces correspond to the algebraic groups GL2, G ..=
ResF/QGL2, and G∗ ..= G ×D Gm, where D ..= ResF/QGm and the map G → D is deter-
minant. We will always work explicitly with (adelic or global) points of these groups.

Each of these spaces has finitely many connected components, each of which is the quotient of
H or H3 by a discrete subgroup of PSL2(R) (resp. PGL2(C)). If U is sufficiently small, these
discrete subgroups will act freely, so in particular the quotient is a manifold.

Definition 2.3. Let m, n and a be ideals in OK , and define:

(ii) UK(m, n) ..= {γ ∈ GL2(ÔK) : γ ≡ I (mod ( m m
n n ))},

(iii) UK(m(a), n) ..= {γ ∈ GL2(ÔK) : γ ≡ I (mod ( m ma
n n ))},

We write YK(m, n) ..= YK(U(m, n)) and similarly YK(m(a), n). We will be particularly inter-
ested YK(m, n) for m = (1), which we abbreviate as YK,1(n).

Example 2.4: The following three locally symmetric spaces are of particular importance in
the sequel, so here we describe them explicitly (and record some of their other basic properties)
for reference later in the paper. In particular, if F is an imaginary quadratic field:

(i) YQ,1(N) is the usual (open) modular curve of level Γ1(N). It has one connected
component, isomorphic to Γ1(N)\H.

(ii) The space Y ∗F,1(n) also has a single connected component, isomorphic to Γ∗F,1(n)\H3,
where

Γ∗F,1(n) ..= GL∗2(F )+ ∩ UF,1(n)
=
{(

a b
c d

)
∈ SL2(OF ) : c = 0, a = d = 1 mod n

}
.

(iii) Since det(UF,1(n)) = Ô×K , the space YF,1(n) has hF connected components, where hF
is the class number of F . The identity component is isomorphic to ΓF,1(n)\H3, where

ΓF,1(n) ..= GL2(F ) ∩ UF,1(n).

Suppose N = n ∩ Z. Then there are natural maps

YQ,1(N)
ι

−−−−−→ Y ∗F,1(n)


−−−−−→ YF,1(n)

induced by the natural maps H ↪→ H3 and GL∗2(AfF ) → GL2(AfF ) respectively. The compo-
sition  ◦ ι is never injective, since

(−1 0
0 1
)
∈ Γ1(n) acts on H by x + iy 7→ −x + iy, and the

(distinct) images of ±x + iy in YQ,1(N) are identified when mapped to YF,1(n). Indeed, we
see directly that:

Proposition 2.5. The map  : Y ∗F,1(n) → YF,1(n) has image equal to the identity component
ΓF,1\H3. Its fibres are the orbits of the finite group

{
( ε 0

0 1 ) : ε ∈ O×F
}
acting on Γ∗F,1\H3.

By contrast, we do have injectivity of ι, providing a key reason for introducing the space
Y ∗F,1(n).

Proposition 2.6. If n is divisible by some integer q ≥ 4, then Y ∗F,1(n) is a smooth manifold,
and

ι : YQ,1(N) ↪→ Y ∗F,1(n)
is a closed immersion.

Proof. First, the smoothness assertion. It suffices to prove that Γ∗F,1(n) has no non-trivial
torsion elements. Since Γ∗1(n) is a subgroup of SL2(OF ), any torsion element γ must have
eigenvalues ζ, ζ−1 where ζ is a (non-trivial) root of unity, defined over an extension of F of
degree at most 2. Since ζ + ζ−1 = a + d = 2 mod n, we conclude that n divides ζ + ζ−1 − 2.
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A case-by-case check shows that this implies ζ has order 2, 3, 4 or 6, and n must contain one
of the integers 1,2,3.

Let us now prove the injectivity assertion. Let z, z′ ∈ H3 be such that γz = z′, for some
γ ∈ Γ∗1(n). Then γ−1γ̄z = z, so either γ−1γ̄ = id, or γ−1γ̄ is a non-trivial torsion element in
SL2(OF ). Since γ is upper-triangular modulo some integer q ≥ 4, the same is true of γ̄ and
thus also of γ−1γ̄; but we have just seen that Γ∗F,1(q) has no torsion elements for q ≥ 4.

We can therefore conclude that γ−1γ̄ = id, in other words that γ ∈ Γ∗F,1(n)∩SL2(Z) = ΓQ,1(N).
Hence z = z′ as elements of YQ,1(N). �

Remark: Henceforth, we will always assume that n is divisible by such a q, or, more generally,
is small enough to avoid the possibility that these spaces are (non-smooth) orbifolds.

2.3. Hecke correspondences We can define Hecke correspondences on the symmetric
spaces YK,1(n), for n an ideal of OK , as follows. Firstly, we have diamond operators 〈w〉 for
every w ∈ (OK/n)×, which define an action of (OK/n)× on YK,1(n); this even extends to an
action of the narrow ray class group modulo n, although we shall not use this.

Secondly, let a be a square-free ideal of OK . Consider the diagram
YK(1(a), n)

YK,1(n)

π2

<
YK,1(n),

π1
>

where π1 is the natural projection map, and π2 is the ‘twisted’ map given by the right-
translation action of ($ 1 ) on GL2(AfK), where $ ∈ ÔK is any integral adèle which generates
the ideal aÔK . (If K = Q and $ = a is the positive integer generating a, then this map π2
corresponds to z 7→ z/a on H.) We then define

(Ta)∗ ..= (π2)∗ ◦ (π1)∗

(Ta)∗ ..= (π1)∗ ◦ (π2)∗

as correspondences on YK,1(n). When a divides the level n, we denote these operators instead
by (Ua)∗ and (Ua)∗. The definition may be extended to non-squarefree a in the usual way.

The same construction is valid for the more general symmetric spaces YK(m, n), but it is no
longer independent of the choice of generator $ of a (it depends on the class of $ modulo
1 + mÔK). We will only use this in the case where a is generated by a positive integer a, in
which case we of course take $ = a. With this convention, the Hecke operators (Ta)∗ and
(Ta)∗ for positive integers a also make sense on the “hybrid” symmetric spaces Y ∗F,1(m, n).

Remark: The maps (Ta)∗ and (Ua)∗ are perhaps more familiar, as their action on automorphic
forms is given by simple formulae in terms of Fourier expansions, as we shall recall below. The
lower-star versions (Ta)∗ and (Ua)∗ are the transpose of the upper-star versions with respect
to Poincaré duality; this duality explains the key role played by (Up)∗ in our norm relation
computations.

2.4. Bianchi modular forms and Asai L-functions We briefly recall the definition of
Bianchi modular forms; for further details see [Wil17, §1]. As above, let F be an imaginary
quadratic field, and U an open compact subgroup of GL2(AfF ). Then, for any k ≥ 0, there is
a finite-dimensional C-vector space Sk,k(U) of Bianchi cusp forms of weight (k, k) and level
U , which are functions

Ψ : GL2(F )\GL2(AF )/U −→ V2k+2(C)
6
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transforming appropriately under the subgroup C× ·SU2(C), and satisfying suitable harmonic-
ity and growth conditions.

These forms can be described by an appropriate analogue of q-expansions (cf. [Wil17, §1.2]).
Let eF : AF /F → C× denote the unique function whose restriction to F ⊗ R ∼= C is

x∞ 7−→ e2πiTrF/Q(x∞),

and let W∞ : R → V2k+2(C) be the real-analytic function defined in 1.2.1(v) of op.cit. (in-
volving the Bessel functions Kn).

Theorem 2.7. Let Ψ be a Bianchi modular form of weight (k, k) and level U . Then there is
a Fourier–Whittaker expansion

Ψ
((

y x
0 1

))
= |y|AF

∑
ζ∈F×

Wf (ζyf ,Ψ)W∞(ζy∞)eF (ζx),

whereWf (−,Ψ) is a vector in the Kirillov model, that is, a locally constant function on (AfF )×,
with support contained in a compact subset of AfF .

If U = UF,1(n) for some n, then Wf (−,Ψ) is supported in D−1ÔF . For m an ideal of OF , we
define a coefficient c(m,Ψ) as the value Wf (yf ,Ψ) for any yf generating the fractional ideal
D−1mÔF ; this is independent of the choice of yf .

Exactly as for elliptic modular forms, the space Sk,k(UF,1(n)) has an action of (commuting)
Hecke operators (Tm)∗ for all ideals m; and if Ψ is an eigenvector for all these operators,
normalized such that c(1,Ψ) = 1, then the eigenvalue of the m-th Hecke operator on Ψ is
c(m,Ψ).

We end this subsection by defining the Asai L-function. The space Sk,k(UF,1(n)) has an action
of diamond operators 〈d〉, for all d ∈ (OF /n)×; and on any Hecke eigenform Ψ these act via a
character εΨ : (OF /n)× → C×. Let εΨ,Q denote the restriction of this character to (Z/NZ)×.

Definition 2.8. Let Ψ be a normalized eigenform in Sk,k(UF,1(n)), and χ a Dirichlet character
of conductor m. Define the Asai L-function of Ψ by

LAs(Ψ, χ, s) ..= L(mN)(χ2εΨ,Q, 2s− 2k − 2) ·
∑
n≥1

(m,n)=1

c(nOF ,Ψ)χ(n)n−s,

where L(mN)(−, s) is the Dirichlet L-function with its Euler factors at primes dividing mN
removed.

Remark: This Dirichlet series converges for <(s) > k+ 2, and has meromorphic continuation
to all s ∈ C. As we have defined it, LAs(Ψ, χ, s) may not satisfy a functional equation
(because it may have the wrong local factors at primes dividing mND). However, if Π is the
automorphic representation of GL2(AF ) generated by Ψ, then we can write

LAs(Ψ, χ, s) = LAs(Π, χ, s)
∏

`|mND

C`(Ψ, χ, s)

where C`(Ψ, χ, s) is a polynomial in {`s, `−s} and the “primitive” L-function LAs(Π, χ, s)
satisfies a functional equation relating LAs(Π, χ, s) and LAs(Π, ε−1

Π χ−1, 2k+ 3− s). If Π is not
of dihedral type and not a twist of a base-change from GL2/Q, then LAs(Π, χ, s) is entire.

2.5. The modular symbol attached to Ψ The Bianchi modular forms we consider in
this paper are cohomological, in the following sense.

Definition 2.9. Let A be an F -algebra, and let Vkk(A) ..= Symk(A2) ⊗F Symk(A2)σ be the
F [GL2(F )]-module on which γ ∈ GL2(F ) acts in the usual way on the first component and
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via its complex conjugate γσ on the second component. Via this action, the space Vkk(A)
gives rise to a local system on YF,1(n).

Theorem 2.10 (Eichler–Shimura–Harder). There is a Hecke-equivariant injection
Sk,k(UF,1(n)) ↪→ H1

c(YF,1(n), Vkk(C))
whose cokernel is Eisenstein. In particular, this map is an isomorphism after restriction to
the Ψ-eigenspaces for the Hecke operators.

Proof. See [Har87]. �

If Ψ ∈ Sk,k(UF,1(n)), write ωΨ for the associated cohomology class. This can be described
concretely as the class of a harmonic Vkk-valued differential form constructed from Ψ; for a
summary of the construction using our conventions, see [Wil17, §2.4].

We want to work with integral rather than rational coefficients, but in the above, we defined
the local systems Vkk(A) only for F -algebras A. We extend this as follows.

Definition 2.11. Let I1, ..., Ih be a complete set of class group representatives for F , with
each Ii coprime to pn. There is a decomposition YF,1(n) = ti∈ClF Γi\H3 into connected
components, where Γi ..= {

(
a b
c d

)
∈ GL2(F ) : a, d ∈ 1 + n, b ∈ Ii, c ∈ nI−1

i }. Now let E be
the number field generated by the Hecke eigenvalues of Ψ. Fix a finite extension L/Qp large
enough that E embeds into L, and fix such an embedding; this distinguishes a prime P of L
above p. Let R′ be the valuation ring in E corresponding to P; this is integrally closed and,
under our fixed embedding, has image in the ring of integers R of L. Each of the arithmetic
groups Γi acts on Vkk(R′) in the same manner as before, giving rise to a local system on each
Γi\H3 and hence on YF,1(n).

Proposition 2.12 (Hida). Let Ψ be a Bianchi modular form of weight (k, k) that is an eigen-
form for all the Hecke operators. Let R′ ⊂ E be as above. There exists a complex period
ΩΨ ∈ C× such that

φΨ ..= ωΨ/ΩΨ ∈ H1
c(YF,1(n), Vkk(R′)).

Proof. The H1
c of a manifold with coefficients in a torsion-free locally constant sheaf is torsion-

free, and hence the extension of scalars map
H1

c(YF,1(n), Vkk(R′)) −→ H1
c(YF,1(n), Vkk(C))

is injective. In particular, we view the former as a lattice in the latter. In [Hid94], just
after equation (8.5), Hida shows that the Ψ-eigenspace H1

c(YF,1(n), Vkk(R′))[Ψ] is free of rank
one over R′. By multiplicity one, the analogous eigenspace in H1

c(YF,1(n), Vkk(C)) is one-
dimensional over C, and is generated by ωΨ. We let φΨ denote a basis element of the integral
cohomology; since this also generates the complex cohomology, the existence of ΩΨ follows
immediately. �

Remarks: (i) Hida actually defines the space H1
cusp(YF,1(n), Vkk(R′)) and shows that

the Ψ-eigenspace for this is 1-dimensional. From the definition (§5 op. cit.), however,
and the fact that the extension of scalars map is injective on compactly supported
cohomology, one sees that this eigenspace is simply equal to H1

c(YF,1(n), Vkk(R′))[Ψ].
(ii) All of the above can be seen more explicitly in this setting using “modular symbols”.

In particular, for very general local systems M , there is a Hecke-equivariant isomor-
phism between H1

c(Γi\H3,M) and the space of Γi-equivariant maps Div0(P1(F ))→M
(see [BSW17, Lemma 8.4], generalising [AS86, Proposition 4.2]). The torsion-free
statement, and injectivity of extension of scalars maps, follow easily.

After extending scalars, we view this class as having R-coefficients. The pullback φ∗Ψ
..=

∗(φΨ) lies in H1
c(Y ∗F,1(n), Vkk(R)). Note that this is independent of any choice of class group

representatives made in defining the local system.
8
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3. Siegel units and weight 2 Asai–Eisenstein elements

3.1. Modular units Let U ⊂ GL2(Ẑ) be an open compact subgroup, with associated
symmetric space YQ(U). In this section, we work exclusively over Q, so we shall drop the
subscript Q from the notation. As is well known, the manifolds Y (U) are naturally the
complex points of algebraic varieties defined over Q.

Definition 3.1. A modular unit on Y (U) is an element of O(Y (U))×, that is, a regular
function on Y (U) with no zeros or poles. (This corresponds to a rational function on the
compactification X(U) whose divisor is supported on the cusps).

Modular units are motivic in the sense that there are realisations of modular units in various
cohomology theories. In particular, to a modular unit φ ∈ O(Y1(N))× one can attach:

• its de Rham realisation CdR(φ) ∈ H1
dR(Y1(N),Q), which is the class of the differential

form d log φ = dφ
φ ;

• its Betti realisation C(φ) ∈ H1(Y1(N),Z), which is the pullback along φ : Y1(N)(C)→
C× of the generator of H1(C×,Z) ∼= H1(S1,Z) ∼= Z.

These are closely related:

Proposition 3.2. There is a comparison isomorphism
H1(Y1(N),Z)⊗Z C ∼= H1

dR(Y1(N),Q)⊗Q C
that sends

2πi · C(φ) 7−→ d log φ.

3.2. Eisenstein series The de Rham realisations of modular units give rise to weight 2
Eisenstein series in the de Rham cohomology. In the next section, we’ll exhibit a canonical
system of modular units – the Siegel units – whose de Rham realisations can be written down
very explicitly in terms of the following Eisenstein series.

Definition 3.3 (cf. [Kat04, §3]). Let τ ∈ H, k an integer ≥ 2, and α ∈ Q/Z, with α 6= 0 if
k = 2. Define

F (k)
α (τ) ..= (k − 1)!

(−2πi)k
∑′

(m,n)∈Z2

e2πiαm

(mτ + n)k ,

where the prime denotes that the term (m,n) = (0, 0) is omitted. This is a modular form of
weight k and level Γ1(N), for any N such that Nα = 0.

3.3. Siegel units

Definition 3.4. For N ≥ 1, and c > 1 an integer coprime to 6N , let

cgN ∈ O(Y1(N))×

be Kato’s Siegel unit (the unit denoted by cg0,1/N in the notation of [Kat04, §1]).

Slightly abusively, we shall use the same symbol cgN for the pullback of this unit to Y (M,N),
for any M ≥ 1 (we shall only need this when M | N).

As in op.cit., we note that if c, d are two integers that are both > 1 and coprime to 6N , then
we have the identity
(1) (d2 − 〈d〉)cgN = (c2 − 〈c〉)dgN .
It follows that the dependence on c may be removed after extending scalars to Q: there is an
element gN ∈ O(Y1(N))× ⊗Q such that cgN = (c2 − 〈c〉) · gN for any choice of c.

Proposition 3.5.
9
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(i) The Siegel units are norm-compatible, in the sense that if N ′|N and prime(N) =
prime(N ′), where prime(N) is the set of primes dividing N , then under the natural
map

pr : Y (M,N) −→ Y (M,N ′)
we have

(pr)∗(cgN ) = cgN ′ .

(ii) The de Rham realisation of gN is the Eisenstein series

d log(gN )(τ) = −2πi F (2)
1/N (τ) dτ.

Proof. The first part is proved in [Kat04], Section 2.11. The second part is Proposition 3.11(2)
op.cit.. �

One important use of Siegel units comes in the construction of Euler systems; for example,
see [Kat04], [LLZ14], and [KLZ17]. The basic method in each of these cases is similar; one
takes cohomology classes attached to Siegel units under the realisation maps and pushes them
forward to a different symmetric space, then exploits the norm compatibility to prove norm
relations for these cohomology classes. We will do something similar in the Betti cohomology.
In particular, we make the following definition:

Definition 3.6. Let cCN ..= C(cgN ) ∈ H1(Y1(N),Z) be the Betti realisation of cgN .

From Proposition 3.5(i), we see that if p | N , the classes cCNpr for r ≥ 0 are compatible under
push-forward, and define a class

cCNp∞ ∈ lim←−
r

H1(Y1(Npr),Zp).

Lemma 3.7. The class cCN is invariant under the involution of Y1(N) given by τ 7→ −τ̄ on
H.

Proof. This follows from the fact that there is a canonical model of Y1(N) as the C-points of
an algebraic variety over Q such that the above involution is complex conjugation; and, with
respect to this model, the units cgN are defined over Q. �

3.4. Asai–Eisenstein elements in weight 2 Now let F be an imaginary quadratic field,
and n an ideal of OF divisible by some integer ≥ 4. Recall that we have

Y ∗F,1(n) = Γ∗F,1(n)\H3,

and that we showed in Proposition 2.6 that the natural map
ι : YQ,1(N) ↪→ Y ∗F,1(n)

is a closed immersion. We also need the following map:

Definition 3.8. Let m ≥ 1 and a ∈ OF . Consider the map
κa/m : Y ∗F,1(m2n)→ Y ∗F,1(n)

given by the left action of
( 1 a/m

0 1

)
∈ SL2(F ) on H3. This is well-defined2, since it is easy to

see that (
1 a/m
0 1

)
Γ∗F,1(m2n)

(
1 −a/m
0 1

)
⊂ Γ∗F,1(n),

and it depends only on the class of a modulo mOF .

2 Note that κa/m is not in general well-defined on YF,1(m2n), since(
1 a/m
0 1

) (
−1 0
0 1

) (
1 −a/m
0 1

)
=
(
−1 2a/m
0 1

)
,

which is not in ΓF,1(n) if 2a /∈ mOF .
10
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The elements we care about are the following. Assume that n is divisible by some integer
q ≥ 4, as above.

Definition 3.9. For a ∈ OF /mOF , m ≥ 1, and c > 1 coprime to 6mN , define

cΞm,n,a ∈ H2 (Y ∗F,1(n),Z
)

to be the pushforward of cCm2N under the maps

YQ,1(m2N) ↪→ Y ∗F,1(m2n)
κa/m

−−−−−→ Y ∗F,1(n).

Note that the pushforward of cCN to Y1(n) lands in the second degree Betti cohomology, since
the locally symmetric space Y ∗F,1(n) is a 3-dimensional real manifold.

Proposition 3.10. We have
(−1

1
)∗ · cΞm,n,a = cΞm,n,−a.

Proof. It is clear that
(−1

1
)
◦κa/m = κ−a/m◦

(−1
1
)
as maps Y ∗F,1(m2n)→ Y ∗F,1(n). Moreover,

the action of
(−1

1
)
on Y ∗F,1(m2n) preserves the image of YQ,1(m2N), and the involution of

YQ,1(m2N) it induces preserves the class cCm2N , by Lemma 3.7. �

Definition 3.11. Define

cΦrn,a ∈ H2
(
Y ∗F,1(n),Z

)
⊗Z Zp[(Z/pr)×]

by
cΦrn,a ..=

∑
t∈(Z/pr)×

cΞpr,n,at ⊗ [t].

Lemma 3.12. If n | n′ are two ideals of OF with the same prime factors, then pushforward
along the map YF,1(n′)→ YF,1(n) sends cΦrn′,a to cΦrn,a (for any valid choices of c, a, r).

Proof. This is immediate from the norm-compatibility of the Siegel units; compare [LLZ14,
Theorem 3.1.2]. �

We now come to one of the key theorems of this paper, which shows that if m = pr with r
varying, then the above elements fit together p-adically into a compatible family. We now
impose the assumption that n is divisible by all primes v | p of OF .

Theorem 3.13. Let r ≥ 1, let a be a generator of OF /(pOF + Z), and let
πr+1 : H2(Y ∗F,1(n),Z)⊗Z Zp[(Z/pr+1)×] −→ H2(Y ∗F,1(n),Z)⊗Z Zp[(Z/pr)×]

denote the map that is the identity on the first component and the natural quotient map on
the second component. Then we have

πr+1(cΦr+1
n,a ) = (Up)∗ · cΦrn,a,

where the Hecke operator (Up)∗ acts via its action on H2(Y ∗F,1(n),Z). Similarly, when r = 0
we have

π1(cΦ1
n,a) = ((Up)∗ − 1) · cΦ0

n,a.

Remark: Before embarking on the proof, which will occupy the next section of the paper,
we pause to give a brief description of how this is important for the construction of p-adic
Asai L-functions, in the simplest case of a Bianchi eigenform of weight (0, 0). Define eord ..=
limn→∞(Un!

p )∗ to be the ordinary projector on cohomology with Zp coefficients, so that (Up)∗
is invertible on the (p-ordinary) space eordH2(Y1(n),Zp). Given the theorem, we see that the
collection

[(Up)−r∗ eord · cΦrn,a]r≥1

forms an element cΦ∞n,a in the inverse limit

e′ordH2(Y ∗F,1(n),Zp)⊗ Zp[[Z×p ]].
11
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If we pair this with a modular symbol in H1
c(Y ∗F,1(n),OE) arising from a p-ordinary weight

(0,0) Bianchi eigenform Ψ, then we obtain a measure on Z×p with values in OE⊗Zp. This will
be our p-adic L-function. By construction, its values at finite-order characters are given by
integrating Ψ against linear combinations of Eisenstein series on YQ,1(m2N); and these will
turn out to compute the special values of the Asai L-series.

4. Proving the norm relations (Theorem 3.13)

Theeorem 3.13 is directly analogous to the norm-compatibility relations for Euler systems
constructed from Siegel units; specifically, it is the analogue in our context of [LLZ14, Theorem
3.3.2]. Exactly as in op.cit., it is simplest not to prove the theorem directly but rather to deduce
it from a related result concerning cohomology classes on the symmetric spaces Y ∗F (m,mn),
analogous to Theorem 3.3.1 of op.cit.. Note that these symmetric spaces are not connected
for m > 2, but have φ(m) connected components; this will allow us to give a tidy conceptual
interpretation of the sum over j ∈ (Z/prZ)∗ appearing in the definition of cΦrn,a.

4.1. Rephrasing using the spaces Y ∗F (m,mn)

Proposition 4.1. For any a ∈ OF , the element
(

1 a
0 1

)
normalises U∗(m,mn) ⊂ GL∗2(AfF ).

Proof. Easy check. �

We can therefore regard right-translation by ( 1 a
0 1 ) as an automorphism of Y ∗F (m,mn), and we

can consider the composite map

ιm,n,a : Y ∗Q (m,mN) ↪→ Y ∗F (m,mn)

( 1 −a
0 1

)
−−−−−→ Y ∗F (m,mn),

where the first arrow is injective (as soon as mn is divisible by some integer ≥ 4) by the same
argument as in Proposition 2.6. Note also that the components of Y ∗F (m,mn) are indexed
by (Z/mZ)∗, with the fibre over j corresponding to the component containing the image of(
j

1
)
∈ GL∗2(AfF ); and the action of ( 1 a

0 1 ) preserves each component.

Remark: The change of sign appears because we are comparing left and right actions.

Definition 4.2. We define cZm,n,a to be the image of cCmN ∈ H1(YQ(m,mN),Z) under
pushforward via ιm,n,a, and cZm,n,a(j) the projection of cZm,n,a to the direct summand of
H1(Y ∗F (m,mn),Z) given by the j-th component, so that

cZm,n,a =
∑
j

cZm,n,a(j).

Exactly as in the situation of Beilinson–Flach elements, these Z elements turn out to be closely
related to the Φ’s defined above (compare [LLZ14, Proposition 2.7.4]). We consider the map

sm : Y ∗F (m,mn)→ Y ∗F,1(n)

given by the action of
(
m 0
0 1

)
(corresponding to (z, t) 7→ (z/m, t/m) on H3).

Proposition 4.3. We have (sm)∗ (cZm,n,a(j)) = cΞm,n,ja, and hence

cΦrn,a =
∑
j

(spr )∗ (cZpr,n,a(j))⊗ [j].

Before proceeding to the proof, we note the following lemma:
12
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Lemma 4.4. The pushforward of cCm2N along the map

YQ,1(m2N)→ YQ(1(m),mN),

given by z 7→ mz on H, is cCmN .

Proof. This follows from the well-known norm-compatibility relations of the Siegel units, cf.
[Kat04, Lemma 2.12]. �

Proof of Proposition 4.3. For each j ∈ (Z/mZ)×, we have a diagram

Y ∗F (m,mN)(1)
( 1 −ja

0 1
)

> Y ∗F (m,mn)(1)

Y ∗F (m,mN)(j)

(
j 0
0 1
)

∨ ( 1 −a
0 1

)
> Y ∗F (m,mn)(j)

(
j 0
0 1
)

∨ .

In other words, if we identify Y ∗F (m,mN)(j) with Γ∗F (m,mN)\H3 via
(
j 0
0 1
)
, the restriction

to this component of the right action of
( 1 −a

0 1
)
on the adelic symmetric space corresponds to

the left action of
( 1 ja

0 1
)
on H3.

With these identifications, we see that the map

κja/m : Y ∗F,1(m2n)→ Y ∗F,1(n)

used in the definition of Ξm,n,ja factors as

Y ∗F,1(m2n)
( 1 0

0 m )
−−−−−→ Y ∗F (1(m),mn)
∼=

−−−−−→ Y ∗F (m,mn)(j)( 1 −a
0 1

)
−−−−−→ Y ∗F (m,mn)(j)

sm

−−−−−→ Y ∗F,1(n).

Pushforward along the first map is compatible with pushforward along the corresponding map
on H, which sends cCm2N to cCmN by the previous lemma. �

Corollary 4.5. The classes cΞm,n,a and cZm,n,a depend only on the image of a in the quotient
OF /(mOF + Z).

Proof. If b ∈ Z, the action of ( 1 b
0 1 ) on YQ(m,mN) fixes the cohomology class cCmN , as this

class is the pullback of a class on YQ,1(mN). Since the actions of ( 1 b
0 1 ) on YQ(m,mN) and

Y ∗F (m,mn) are compatible, we see that cZm,n,a = cZm,n,a+b for any a ∈ OF and b ∈ Z, as
required. The corresponding result for cΞm,n,a now follows from the previous proposition. �

4.2. A norm relation for zeta elements In this section, we formulate and prove a norm
relation for the zeta elements cZm,n,a which is analogous to Theorem 3.13, but simpler to
prove.

Definition 4.6. For p prime, define a map

τp : Y ∗F (pm, pmn) −→ Y ∗F (m,mn)

by composing the right-translation action of
(
p 0
0 1
)
∈ GL∗2(AfF ) with the natural projection.

Theorem 4.7. Suppose p is a prime with p | m, and suppose that a ∈ OF maps to a generator
of the quotient OF /(pOF + Z) ∼= Z/pZ. Then we have the norm relation

(τp)∗(cZpm,n,a) = (Up)∗(Zm,n,a).
13
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For simplicity, we give the proof under the slightly stronger hypothesis that p | n (rather than
just that every prime above p divides n, which is our running hypothesis). This only makes
a difference if p is ramified in F , and the proof can be extended to handle this extra case at
the cost of slightly more complicated notation; we leave the necessary modifications to the
interested reader.

Firstly, note that there is a commutative diagram

(2)

Y ∗F (pm, pmn)
pr1

> Y ∗F (pm,mn)
pr2

> Y ∗F (m(p),mn)

Y ∗F (m,mn)

π2

<

τp
>

Y ∗F (m,mn)

π1

∨

,

where the top maps are the natural projection maps, τp is the twisted degeneracy map of the
previous section, and π1, π2 are the degeneracy maps of Section 2.3.

Lemma 4.8. Let n′ = (p)−1n. Under pushforward by the natural projection map

pr1 : Y ∗F (pm, pmn) −→ Y ∗F (pm,mn) = Y ∗F (pm, pmn′),

we have
(pr1)∗(cZpr+1,n,a) = cZpr+1,n′,a.

Proof. This is immediate from the corresponding norm-compatibility property of the Siegel
units, which is Proposition 3.5. Compare [LLZ14, Theorem 3.1.1]. �

So we need to compare the classes Zpm,n′,a and Zm,n,a. Note that these both involve the same
Siegel unit cg0,1/mN . Let us write ua for the element

( 1 −a
0 1

)
.

Definition 4.9. (i) Let αpm,n,a denote the composition of the maps

YQ(pm,mN) ↪→ Y ∗F (pm,mn)
ua

−−−−−→ Y ∗F (pm,mn)
pr2

−−−−−→ Y ∗F (m(p),mn).

(ii) Let ιm,n,a denote, as above, the composition of the maps

YQ(m,mN) ↪→ Y ∗F (m,mn)
ua

−−−−−→ Y ∗F (m,mn).

The following lemma is the key component in the proof of Theorem 4.7.

Lemma 4.10. Suppose that a ∈ OF is a generator of OF /(pOF + Z). Then:

(i) The map αpm,n,a is injective.
(ii) The diagram

YQ(pm,mN) ⊂
αpm,n,a

> Y ∗F (m(p),mn)

YQ(m,mN)
∨

⊂
ιm,n,a

> Y ∗F (m,mn)

π1
∨

is Cartesian, where the left vertical arrow is the natural projection.

The proof of this lemma is taken essentially verbatim from [LLZ16, Lemma 7.3.1], where the
analogous result is proved for real quadratic fields.

Proof. To prove part (i), note that the image of αpm,n,a is the modular curve of level

GL2(AfQ) ∩ u−1
a UF (m(p),mn)ua.
14
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This intersection is the set of ( r st u ) ∈ GL2(Ẑ) such that(
r − at s+ a(r − u)− a2t
t at+ u

)
≡ I mod

(
m pm
mn mn

)
.

We want to show that this is equal to UQ(pm,mN). Clearly, any ( r st u ) in the intersection
satisfies (

r s
t u

)
≡
(

1 ∗
0 1

)
mod

(
m ∗
mN mN

)
,

whilst
s+ a(r − 1) ≡ 0 (modmp).

Suppose m = pqm′ with m′ coprime to p. We know that both summands are zero modulo m,
so it suffices to check that they are both zero modulo pq+1. Since a generates OF /(pOF +Z),
{1, a} is a basis of (OF /pq+1OF ) ⊗ Zp as a module over Z/pq+1Z; so both summands must
be individually zero modulo pq+1. But this means precisely that ( r st u ) ∈ UQ(mp,mN), as
required.

Part (ii) follows from the observations that the horizontal maps are both injections and that
both vertical maps are finite of degree p2. �

Remark: Since this lemma is crucial to the proof, we expand slightly on what part (i) really
says. The map αmp,n,a is p-to-1 on connected components, in the sense that the preimage
of a single component of Y ∗F (pr(p), prn) contains p connected components of Y ∗F (pr+1, prN).
The condition on a ensures that the map ua ‘twists’ these p components away from each
other inside that single component of the target space, so that their images are disjoint. In
particular, the result would certainly fail without this condition; for instance, if a = 0 then
the map factors through YQ(m(p),mN).

Proof of Theorem 4.7. The Cartesian diagram of Lemma 4.10 shows that
(αmp,n,a)∗(cCmN ) = (π1)∗(cZm,n,a).

But by definition,
(αmp,n,a)∗(cCmN ) = (pr2)∗(cZmp,n′,a)

= (pr2)∗(pr1)∗(cZmp,n,a),(3)

where the second equality follows from Lemma 4.8. From the commutative diagram (2), we
know that (τp)∗ = (π2)∗(pr2)∗(pr1)∗, whilst by definition (Up)∗ = (π2)∗(π1)∗. Hence applying
(π2)∗ to equation (3) gives the result. �

We can now deduce the proof of the main theorem:

Proof of Theorem 3.13. We need to show that, for each j ∈ (Z/prZ)×, we have

(†)
∑

k∈Z/pr+1Z
k=j mod pr

cΞpr+1,n,ka = (Up)∗ · cΞpr,n,ja.

We have a commutative diagram⊔
k

Y ∗F (pr+1, pr+1n)(k) τp
> Y ∗F (pr, prn)(j)

Y ∗F,1(n)

spr+1

∨
> Y ∗F,1(n).

spr

∨

The left-hand side of (†) is exactly the pushforward of
∑
k cZpr+1,n,a(k) along the left ver-

tical arrow (where again we are using the notation x(k) for the projection of x to the k-
th component). Theorem 4.7 shows that the pushforward of the same element along τp is

15
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(Up)∗cZpr,n,a(j). So it suffices to check that the operators (Up)∗ on Y ∗F (pr, prn)(j) and on
Y ∗F,1(n) are compatible under spr , which is clear by inspecting a set of single-coset representa-
tives (using our running assumption that all primes above p divide n).

The case where r = 0 is a special case, since we must exclude the term cΞp1,n,0 from the
above sum, introducing the −1 term of the theorem. �

5. Asai–Eisenstein elements in higher weights

In the previous sections, we have defined compatible systems of classes in the Betti cohomology
of the spaces Y ∗F,1(n) with trivial coefficients. We now extend this to coefficients arising from
non-trivial algebraic representations.

We fix, for the duration of this section, a prime p and a finite extension L of Qp large enough
that F embeds into L (and we fix such an embedding). We let R be the ring of integers of
L. We also choose an ideal n of OF divisible by all primes above p. For convenience, we also
assume that n is divisible by some integer q ≥ 4; note that this is automatic if p is unramified
in F and p ≥ 5.

5.1. Coefficients and moment maps As above, we let Vk(R) = Symk R2 be the left
R[GL2(Z)]-module of symmetric polynomials in 2 variables with coefficients in R. We will be
interested in the dual Tk(R) = Vk(R)∗ (the module of symmetric tensors of degree k over R2).
We view this as a local system of R-modules on YQ,1(N), for any N ≥ 4, in the usual way.

Similarly, we have R[GL2(OF )]-modules Vkk(R) = Symk R2 ⊗ (Symk R2)σ, where GL2(OF )
acts on the first factor via the given embedding OF ↪→ R and on the second via its Galois
conjugate. We let Tkk(R) be the R-dual of Vkk(R). These give local systems on Y ∗F (U) and
YF (U) for sufficiently small levels U .

There is a canonical section

eF,k,r ∈ H0 (Y ∗F,1(npr), Vkk(R/pr)
)
,

and since R is p-adically complete, cup-product with this section defines a “moment” map

momkk : lim←−
t

H•(Y ∗F,1(npt),Z)⊗R→ H•(Y ∗F,1(n), Vkk(R)).

This is the Betti cohomology analogue of the moment maps in étale cohomology of modular
curves considered in [KLZ17, §4].

By Lemma 3.12, the family of classes
(

Φk,rnpt,a

)
t≥0

is compatible under pushforward, so it is a

valid input to the maps momkk (after tensoring over R with the group ring to R[(Z/pr)×]).

Definition 5.1. We let cΦk,rn,a ∈ H2
(
Y ∗F,1(n), Vkk(R)

)
⊗R R[(Z/pr)×] be the image of the

compatible system
(

Φk,rnpt,a

)
t≥0

under momkk.

The action of the Hecke operator (Up)∗ is well-defined both on H2
(
Y ∗F,1(n), Vkk(R)

)
and on

the inverse limit lim←−t H2(Y ∗F,1(npt),Zp), and the maps momkk commute with this operator
(cf. [KLZ17, Remark 4.5.3]). So we deduce immediately from Theorem 3.13 that the classes
cΦk,rn,a, for any fixed k ≥ 1 and varying r, satisfy the same norm-compatibility relation as the
k = 0 classes.
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5.2. Relation to the weight 2k Eisenstein class We will later relate the cΦk,rn,a to values
of L-functions. For this purpose the definition above, via a p-adic limiting process, is inconve-
nient; so we now give an alternative description of the same classes via higher-weight Eisenstein
series for GL2/Q, directly generalising the classes obtained in weight 2 from realisations of
Siegel units.

Let k ≥ 0. The local system Tk(Q) is exactly the flat sections of a vector bundle Tk,dR with
respect to a connection ∇ (the Gauss–Manin connection). There is a comparison isomorphism

H1(YQ,1(N), Tk(Q))⊗ C ∼= H1
dR (YQ,1(N), Tk,dR,∇)⊗ C.

Proposition 5.2. There exists a class EiskN ∈ H1(YQ,1(N), Tk(Q)) such that under the com-
parison isomorphism, we have

EiskN 7−→ −(2πi)k+1NkF
(k+2)
1/N (τ) dz⊗k dτ,

where dz⊗k is a basis vector of Tk,dR.

Proof. See [KLZ15, §4] for further details. �

These classes are in general not p-adically integral, but for any c > 1 as above, there exists a
class c EiskN ∈ H1(YQ,1(N), Tk(Z)) such that the equality

c EiskN =
(
c2 − c−k〈c〉

)
EiskN

holds in H1(YQ,1(N), Tk(Q)).

Letting R be as in the previous section, for any j ∈ {0, . . . , k} we can regard T2k−2j(R) as
a SL2(Z)-invariant submodule of the SL2(OF )-module Tkk(R), via the Clebsch–Gordan map
(normalised as in [KLZ15, §5.1]). Thus we obtain a map
(†) (ιm,n,a)∗ : H1(YQ(m,mN), T2k−2j(Zp)

)
⊗Zp

R→ H2(Y ∗F (m,mn), Tkk(R)
)
.

Definition 5.3. Let cΞk,jm,n,a ∈ H2(Y ∗F,1(n), Tkk(R)
)
be the image of (ιm,n,a)∗

(
c Eis2k−2j

mN

)
under restriction to the identity component followed by (sm)∗. We similarly write Ξk,jm,n,a
(without c) for the analogous element with L-coefficients, defined using EiskmN .

This definition is convenient for p-adic interpolation, but to relate this element to special
values it is convenient to have an alternative description involving pushforward along the map
κa/m : Y ∗F,1(m2n) → Y ∗F,1(n), as above. (Note that if p | m, this pushforward map only acts
on cohomology with coefficients in Tkk(L), not Tkk(R), since it corresponds to the action of a
matrix whose entries are not p-adically integral.)

Lemma 5.4. As elements of H2(Y ∗F,1(n), Tkk(L)
)
we have

Ξk,jm,n,a = mj · (κa/m)∗
(
ι∗(Eis2k−2j

m2N )
)
.

Proof. This follows in exactly the same way as Proposition 4.3 (which is the case j = k = 0),
noting that the Clebsch–Gordan maps at levels Y ∗F (m,mn) and Y ∗F,1(m2n) differ by the factor
mj ; compare the proof of [KLZ17, Theorem 5.4.1]. �

Proposition 5.5. For any r ≥ 0 we have

cΦk,rn,a =
∑

t∈(Z/pr)×
cΞk,0pr,n,at ⊗ [t]

=
(
c2 − c−2k[c]2〈c〉

)
·

∑
t∈(Z/pr)×

Ξk,0pr,n,at ⊗ [t],

17
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where the first equality takes place in H2(Y ∗F,1(n), Tkk(R))⊗R R[(Z/pr)×] and the second after
base-extension to L.

Proof. This proposition is very close to [KLZ17, Proposition 5.1.2] so we only briefly sketch
the proof. There is a GL2/Q moment map momk for any k ≥ 0, and one sees easily that
the maps momk and momkk are compatible via the inclusion YQ,1(N) ↪→ Y ∗F,1(n). However, a
theorem due to Kings shows that the higher-weight Eisenstein classes are exactly the moments
of the family of Siegel-unit classes cCNp∞ , up to a factor depending on c. �

There is an analogous statement for j 6= 0, but this can only be formulated after reduction
modulo pr:

Proposition 5.6. For r ≥ 1, as classes in H2(Y ∗F,1(n), Tkk(R/pr)) we have

cΞk,jpr,n,a = (a− aσ)jj!
(
k

j

)2

cΞk,0pr,n,a.

Proof. See [KLZ17, §6] and [LLZ16, §8]. �

6. The p-adic Asai L-function

In this short section, we put together the norm-compatibility and p-adic interpolation relations
proved above in order to define a measure, or more generally a finite-order distribution, on
Z×p with values in a suitable eigenspace of the Betti H2. This will be our p-adic L-function.

To ease the notation, we will assume for the rest of the paper that p is odd. Similar arguments
– with some additional care – should also hold for p = 2, but we leave this case to the interested
reader.

6.1. Constructing the measure Let L be a finite extension of Qp containing the Hecke
field E of the Bianchi modular form Ψ, fix a distinguished embedding of E into L compatibly
with the choices in §2 and §5, and write R for the ring of integers in L. In previous sections,
we defined the elements

cΦk,rn,a =
∑

t∈(Z/pr)×
cΞk,0pr,n,at ⊗ [t] ∈ H2(Y ∗F,1(n), Tkk(R)

)
⊗R[(Z/pr)×],

for k ≥ 0 and r ≥ 0. We also showed that if a is a generator of OF /(pOF + Z), then under
the natural projection maps in the second factor, we have

πr+1(cΦr+1
n,a ) = (Up)∗

(
cΦrn,a

)
for r ≥ 1.

Definition 6.1. Let us write

Lk(n, R) ..= H2(Y ∗F,1(n), Tkk(R))/(torsion),
and Lord

k (n, R) ..= e′ordLk(n, R),

where e′ord
..= limn→∞(Up)n!

∗ is the ordinary projector.

Clearly e′ordH2(Y ∗F,1(n), Tkk(R)) is an R-direct-summand of H2(Y ∗F,1(n), Tkk(R)), which is a
finitely-generated R-module, since Y ∗F,1(n) is homotopy-equivalent to a finite simplicial com-
plex. On this direct summand, (Up)∗ is invertible, so we may make the following definition:

Definition 6.2. Define

cΦk,∞n,a
..=
[
(Up)−r∗ e′ord(cΦk,rn,a)

]
r≥1 ∈ L

ord
k (n, R)⊗R R[[Z×p ]],

where R[[Z×p ]] = lim←−r R[(Z/pr)×] is the Iwasawa algebra of Z×p with R-coefficients.
18
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We can interpret R[[Z×p ]] as the dual space of the space of continuous R-valued functions on Z×p .
For µ ∈ R[[Z×p ]] and f a continuous function, we write this pairing as (µ, f) 7→

∫
Z×p
f(x)dµ(x).

Proposition 6.3. For j an integer with 0 ≤ j ≤ k, and χ : Z×p → C×p a finite-order character
of conductor pr with r ≥ 1, we have∫

Z×p
xjχ(x) d cΦk,∞n,a (x) = 1

(a− aσ)jj!
(
k
j

)2 (Up)−r∗ e′ord
∑

t∈(Z/pr)×
χ(t)cΞk,jpr,n,at

as elements of L(χ)⊗R Lord
k (n, R). For χ trivial we have∫

Z×p
xj d cΦk,∞n,a (x) = 1

(a− aσ)jj!
(
k
j

)2 (1− pj(Up)−1
∗ )e′ordcΞ

k,j
1,n,a.

Proof. For j = 0 this is immediate from the definition of cΦk,∞n,a (with the Euler factor in
the case of trivial χ arising from the fact that the norm of (Up)−1

∗ cΦk,1n,a is not cΦk,0n,a but
(1− (Up)−1

∗ ) cΦk,0n,a, by the base case of Theorem 3.13).

The case j ≥ 1 is more involved. It suffices to show the equality modulo ph for arbitrarily
large h. Modulo ph with h ≥ r, we have

(a− aσ)jj!
(
k

j

)2 ∫
Z×p
xjχ(x) d cΦk,∞n,a (x)

= (a− aσ)jj!
(
k

j

)2
(Up)−h∗ e′ord

∑
t∈(Z/ph)×

tjχ(t)cΞk,0ph,n,at
(definition of cΦk,∞n,a )

= (Up)−h∗ e′ord
∑

t∈(Z/ph)×
χ(t)cΞk,jphn,at

(Proposition 5.6)

= (Up)−h∗ e′ord
∑

t∈(Z/pr)×
χ(t)

( ∑
s∈(Z/ph)×
s=t mod pr

cΞk,jph,n,as

)
.

The bracketed term is (Up)h−r∗ cΞk,jpr,n,at if r ≥ 1, while for r = 0 it is (Up)h∗(1−pj(Up)−1
∗ )cΞk,j1,n,a,

by the same argument as the proof of Theorem 3.13. �

Now suppose Ψ is a Bianchi modular eigenform of parallel weight (k, k) and level UF,1(n).
Recall that if the Hecke eigenvalues of Ψ lie in a number field E, we attached an element

φ∗Ψ = ∗(ωΨ)/ΩΨ ∈ H1
c(Y ∗F,1(n), Vkk(OE)),

well-defined up to p-adically integral elements of E×. Enlarging L if necessary, we fix an
embedding E ↪→ L, and regard φ∗Ψ as an element of H1

c(Y ∗F,1(n), Vkk(R)).

Assumption 1: We shall assume that the Bianchi modular eigenform Ψ is ordinary with
respect to this embedding, i.e. that the Up-eigenvalue of Ψ lies in R×.

Since the adjoint of (Up)∗ is (Up)∗, this assumption implies that the linear functional on
Lk(n, R) given by pairing with φ∗Ψ factors through projection to the (Up)∗-ordinary part.

We also need to fix a value of a, which must generate the quotient OF⊗Zp

Zp
. It suffices to take

a = 1+
√
−D

2 if D = −1 mod 4, and a =
√
−D
2 if D = 0 mod 4; then we have OF = Z+Za, and

a− aσ =
√
−D.

Definition 6.4. Define the p-adic Asai L-function cL
As
p (Ψ) ∈ R[[Z×p ]] to be

cL
As
p (Ψ) ..=

〈
φ∗Ψ, cΦk,∞n,a

〉
19
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where 〈−,−〉 denotes the (perfect) Poincaré duality pairing

(4) H1
c(Y ∗F,1(n), Vkk(R))×

H2(Y ∗F,1(n), Tkk(R))
(torsion) −→ R.

Remark: If we relax the assumption that Ψ be ordinary, and let h = vp(λp(Ψ)) where λp(Ψ)
is the Up-eigenvalue (and the valuation is normalised such that vp(p) = 1), then we can still
make sense of cLAs

p (Ψ) as long as h < 1; however, it is no longer a measure, but a distribution
of order h. This can be refined to h < 1 + k using the same techniques as in [LZ16]. However,
if k = 0 and h ≥ 1 (as in the case of an eigenform associated to an elliptic curve supersingular
at the primes above p) then we are stuck.

Proposition 6.5. The class cLAs
p (Ψ) is invariant under translation by [−1] ∈ Z×p .

Proof. This follows from Proposition 3.10, since
(−1

1
)
∗ acts trivially on ωΨ (and thus on

φ∗Ψ). �

If we interpret R[[Z×p ]] as the algebra of R-valued rigid-analytic functions on the “weight
space” W = Hom(Z×p ,C×p ) parametrising characters of Z×p , then this proposition shows that
cL

As
p (Ψ) vanishes identically on the subspace W− ⊂ W parametrising odd characters.

We close this section by giving notation that will be useful when stating the interpolation
properties of LAs

p (Ψ).

Notation: Let χ be a Dirichlet character of conductor pr for some r ≥ 0, and let j be any
integer. We write

cL
As
p (Ψ, χ, j) ..=

∫
Z×p
χ(x)xj d cLAs

p (Ψ)(x).

6.2. Getting rid of c

Proposition 6.6. Suppose that the nebentypus character εΨ : (OF /n)× → R× of Ψ has non-
trivial restriction to (Z/NZ)×, and moreover this restriction does not have p-power conductor.
Then there exists a measure LAs

p (Ψ) ∈ L⊗R R[[Z×p ]] such that

cL
As
p (Ψ) = (c2 − c−2kεΨ(c)[c]2)LAs

p (Ψ)

for all valid integers c.

Proof. Some bookkeeping starting from (1) shows that if c, d are two integers > 1, both
coprime to 6Np, then the element

(d2 − d−2k[d]2εΨ(d)) · cLAs
p (Ψ)

is symmetric in c and d. Moreover, we can choose d in such a way that (d2 − d−2k[d]2εΨ(d))
is a unit in L⊗R R[[Z×p ]]. So if we define

LAs
p (Ψ) = (d2 − d−2kεΨ(d)[d]2)−1

dL
As
p (Ψ),

then this is independent of the choice of d and it has the required properties. �

If the restriction εΨ,Q of εΨ has p-power conductor, then the quotient LAs
p (Ψ) is well-defined as

an element of the fraction ring of R[[Z×p ]], i.e. as a meromorphic function onW with coefficients
in L. (We shall refer to such elements as pseudo-measures.) The only points of W at which
LAs
p (Ψ) may have poles are those corresponding to characters of the form z 7→ zk+1ν(z), where

ν2 = ε−1
Ψ,Q.
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Remark: Note that if p = 1 mod 4 and εΨ,Q(ρ) = (−1)k, where ρ is either of the square roots
of −1 in Zp, then both of the characters at which LAs

p could have a pole actually lie in W−,
so we see immediately that LAs

p is a measure.

In the remaining cases, where one or both potential poles are in W+, we suspect that these
potential poles are genuine poles if and only if the corresponding complex-analytic Asai L-
functions have poles (which can only occur if Ψ is either of CM type, or a twist of a base-change
form). However, we have not proved this.

7. Interpolation of critical L-values

In this section, we want to show that the values of the Asai p-adic L-function at suitable
locally-algebraic characters are equal to special values of the complex L-function.

7.1. Twisting maps We let Skk(U∗F,1(n)) denote the space of automorphic forms of weight
(k, k) for the group GL∗2(AF ). These correspond to automorphic representations of the group
G∗ defined in Remark 2.2, and are defined in the same way as above, with the group GL∗2(AF )
in place of GL2(AF ); that is, they are functions

GL∗2(F )+\GL∗2(AF )/U∗F,1(n)→ V2k+2(C)

transforming appropriately under R>0 · SU2(C), and with suitable harmonicity and growth
conditions. Since Y ∗F,1(n) is connected, an element F ∈ Skk(U∗F,1(n)) is uniquely determined
by its Fourier–Whittaker coefficients Wf (ζ,F) for ζ ∈ F×, which are zero unless ζ ∈ D−1.

Pullback via  gives a map ∗ : Skk(UF,1(n))→ Skk(U∗F,1(n)), whose image is contained in the
invariants for the action of the finite group

(
O×

F
1

)
.

Lemma 7.1. Let F ∈ Skk(U∗F,1(n)), χ a Dirichlet character of conductor m, and a ∈
OF /mOF . Then the function

Ra,χF =
∑

t∈(Z/m)×
χ(t)κ∗at/m(F)

is in Skk(U∗F,1(m2n)), and its Fourier–Whittaker coefficients for ζ ∈ D−1 are given by

Wf (ζ,Ra,χF) = G(χ) χ̄(trF/Q aζ)Wf (ζ,F),

where G(χ) ..=
∑
t∈(Z/m)× χ(t)e2πit/m is the Gauss sum of χ.

Proof. That Ra,χF is an automorphic form of level U∗F,1(m2n) is clear. So it suffices to compute
its Fourier–Whittaker coefficients. We have

Wf (ζ,Ra,χF) = Wf (ζ,F)
∑

t∈(Z/m)×
χ(t)eF (ζat/m)

= Wf (ζ,F)
∑

t∈(Z/m)×
χ(t)e2πit tr(aζ)/m.

This is 0 unless the integer tr(aζ) is a unit modulo m, in which case it is χ(tr(aζ))−1G(χ), as
required. �

7.2. An integral formula for the Asai L-function In this section, we describe an inte-
gral formula for the Asai L-function of a Bianchi eigenform twisted by a Dirichlet character
χ. This is a generalisation of the work of Ghate in [Gha99] (who considers the case where χ
is trivial), and we shall prove our theorem by reduction to his setting using the twisting maps
Ra,χ.
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Let 0 ≤ j ≤ k, and define

IjΨ,b,m
..=
〈
φ∗Ψ, (κb/m)∗ι∗F (2k−2j+2)

1/m2N (τ) dz⊗2k−2j dτ
〉
,

where 〈−,−〉 denotes the pairing of equation (4), φ∗Ψ = ∗φΨ as before, and we view the
Eisenstein class as an element of the Betti cohomology (with complex coefficients) using the
standard comparison isomorphism.

Theorem 7.2. Let χ be a Dirichlet character of odd conductor m, and let 0 ≤ j ≤ k. Let
a ∈ OF be the value we chose in the remarks before Definition 6.4 (so that a − aσ =

√
−D).

Then ∑
t∈(Z/mZ)×

χ(t)IjΨ,at,m =
{

C′(k,j)G(χ)
(m2N)2k−2jΩΨ

LAs(Ψ, χ, j + 1) if (−1)jχ(−1) = 1,
0 if (−1)jχ(−1) = −1,

where

C ′(k, j) =
(
k

j

)2 (k − 1)!2

(2k − 1)!(k − 1− j)!
i1+j+2k(

√
−D)j+1

πj+122k−j+4 .

We begin by explaining how to reduce the theorem to the case m = 1. Note that the definition
of the Asai L-series depends only on the pullback ∗Ψ, and in fact makes sense for any
F ∈ Skk(U∗F,1(n)), whether or not it is in the image of ∗, as long as it is an eigenvector
for the operators 〈x〉 for x ∈ (Z/NZ)×. If these operators act on F via the character ε, then
we can define

LAs(F , s) ..= L(N)(εQ, 2s− 2k − 2)
∑
n≥1

Wf

(
n/
√
−D,F

)
n−s.

One sees easily that if χ is a Dirichlet character of odd conductor, and a is the value we chose
above (so that a− aσ =

√
−D), then
LAs(Ra,χ∗Ψ, s) = G(χ) · LAs(Ψ, χ, s).

Proposition 7.3. Let F ∈ Skk(U∗F,1(n)), and let N = n ∩ Z. Then we have〈
ωF , ι∗F

(2k−2j+2)
1/N (τ) dz⊗2k−2j dτ

〉
=
{
C′(k,j)
N2k−2j L

As(F , j + 1) if
(−1

1
)∗ F = (−1)jF ,

0 if
(−1

1
)∗ F = (−1)j+1F .

The proof of the proposition is identical (modulo minor differences of conventions) to the
work of Ghate in [Gha99]. Applying this proposition to Ra,χ∗Ψ and dividing by ΩΨ proves
Theorem 7.2, since

(−1
1
)∗ acts on Ra,χ∗Ψ as χ(−1).

7.3. Interpolation of critical values We now use the integral formula of Theorem 7.2 to
relate the values of the measure LAs

p (Ψ) to critical values of the classical Asai L-function.

Theorem 7.4. Let p be an odd prime. Let Ψ be an ordinary Bianchi eigenform of weight
(k, k) and level UF,1(n), where all primes above p divide n, with Up-eigenvalue λp. Let χ be a
Dirichlet character of conductor pr, and let 0 ≤ j ≤ k.

(a) If χ(−1)(−1)j = 1, then

LAs
p (Ψ, χ, j) = C(k, j)Ep(Ψ, χ, j)G(χ)

ΩΨ
· LAs(Ψ, χ, j + 1),

where

C(k, j) ..= (−1)j+k
√
D(2πi)2k−3j−1(k − 1)!2

22k−j+2(2k − 1)!(k − 1− j)! π, Ep(Ψ, χ, j) ..=
{(

1− pj

λp

)
if r = 0,(

pjλ−1
p

)r if r > 0.
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(b) If χ(−1)(−1)j = −1, then
LAs
p (Ψ, χ, j) = 0.

Proof. For convenience, let e[r] denote the operator (U−rp )∗e′ord if r ≥ 1, and (1−pj(U−1
p )∗)e′ord

if j = 0. By the definition of the measure and Proposition 6.3, we have

LAs
p (Ψ, χ, j) = 1

√
−Dj

j!
(
k
j

)2 ∑
t∈(Z/pr)×

χ(t)
〈
φ∗Ψ, e[r]Ξ

k,j
pr,n,at

〉
.

We know that (Up)∗ is the adjoint of (Up)∗, and φ∗Ψ is a (Up)∗ eigenvector with unit eigenvalue
λp; thus the adjoint of e[r] acts on φ∗Ψ as p−jrEp(Ψ, χ, j), so we have

LAs
p (Ψ, χ, j) = Ep(Ψ, χ, j)

pjr
√
−Dj

j!
(
k
j

)2 ∑
t∈(Z/pr)×

χ(t)
〈
φ∗Ψ,Ξ

k,j
pr,n,at

〉
.

Now, by Lemma 5.4, we have Ξk,jpr,n,at = pjr(κat/pr )∗ι∗
(

Eis2k−2j
p2rN

)
, and hence〈

φ∗Ψ,Ξpr,n,at

〉
= pjr

〈
ι∗κ∗at/pr (φ∗Ψ),Eis2k−2j

p2rN

〉
,

where the first cup product is at the level of Γ∗F,1(n)\H3, and the second cup product is at
the level of Γ1(p2rN)\H. Now work at the level of complex coefficients. We know that

Eis2k−2j
p2rN = Eis2k−2j

p2rN

= −(2πi)(2k−2j+1)(p2rN)2k−2jF
(2k−2j+2)
1/p2rN (τ) dz⊗2k−2j dτ,

Accordingly, we see that

LAs
p (Ψ, χ, j) = − (2πi)2k−2j+1(p2rN)2k−2jEp(Ψ, χ, j)

√
−Dj

j!
(
k
j

)2 ∑
t∈(Z/pr)×

χ(t)IjΨ,at,pr ,

where IjΨ,b,m is as defined in the previous section. Using Theorem 7.2, we see that this
expression vanishes unless χ(−1)(−1)j = 1, in which case we have

LAs
p (Ψ, χ, j) = − (2πi)2k−2j+1Ep(Ψ, χ, j)

ΩΨ
√
−Dj

j!
(
k
j

)2 × C ′(k, j)G(χ)LAs(Ψ, χ, j + 1)

= C(k, j)Ep(Ψ, χ, j)G(χ)
ΩΨ

· LAs(Ψ, χ, j + 1),

which completes the proof of the theorem. �

As an immediate corollary, we get an identical interpolation formula for cL
As
p (Ψ) with the

additional factor (c2 − c2j−2kεΨ(c)χ(c)2).

Remark:

(i) The factor Ep(Ψ, χ, j) is non-zero if r ≥ 1. If r = 0 then this factor vanishes if and
only if k = 0, Ψ is new at the primes above p, and εΨ(p) = 1. In this case the p-adic
L-function has an exceptional zero at the trivial character. For exceptional zeroes of
the standard p-adic L-function of a Bianchi cusp form, a theory of L-invariants was
developed in [BSW17]; it would be interesting to investigate analogues of this for the
Asai L-function.

(ii) The measure LAs
p (Ψ) depends on the choice of

√
−D fixed at the start; indeed, this

choice was used to pick a value of a ∈ OF , which in turn was used to construct
the Asai–Eisenstein elements. This choice is further encoded by the appearance of√
D = i

√
−D in the interpolation formula. Choosing the other square root simply

scales the measure by −1. The measure also depends on the choice of period ΩΨ, and
again a different choice changes the measure up to a scalar.
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(iii) If the Bianchi eigenform Ψ (or, more precisely, the automorphic representation it
generates) is the base-change lift of an elliptic modular eigenform f of weight k + 2
and character εf , then the complex Asai L-function factors as

LAs(Ψ, χ, s) = L(Sym2 f, χ, s)L(χεfεF , s− k − 1),
where εK is the quadratic character associated to K. Note that all three L-functions
in the above formula have critical values at integer points s = 1 + j with 0 ≤ j ≤ k
and (−1)jχ(−1) = 1. By a comparison of interpolating properties at these points,
one can verify that if f is ordinary at p, then there is a corresponding factorisation
of LAs

p (Ψ) as a product of a shifted p-adic Dirichlet L-function and Schmidt’s p-adic
L-function for Sym2 f .

This factorisation shows, in particular, that the possibility of poles of the p-adic
Asai L-function is a genuine aspect of the situation, rather than a shortcoming of our
method: if εfεF = 1, then one of these factors is the p-adic Riemann zeta function
ζp(s − k − 1), which has a simple pole at s = k + 2. If f has CM by an imaginary
quadratic field K (with K 6= F , so that Ψ = BC(f) is cuspidal), then there is a second
abelian factor L(χεfεK , s− k− 1); this gives rise to examples where both of the zeros
of the factor c2 − c−2kεΨ(c)[c]2 correspond to genuine poles of LAs

p (Ψ).
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