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Upstream open reading frames (uORFs) are tissue-specific cis-regulators of protein trans-

lation. Isolated reports have shown that variants that create or disrupt uORFs can cause

disease. Here, in a systematic genome-wide study using 15,708 whole genome sequences,

we show that variants that create new upstream start codons, and variants disrupting stop

sites of existing uORFs, are under strong negative selection. This selection signal is sig-

nificantly stronger for variants arising upstream of genes intolerant to loss-of-function var-

iants. Furthermore, variants creating uORFs that overlap the coding sequence show signals of

selection equivalent to coding missense variants. Finally, we identify specific genes where

modification of uORFs likely represents an important disease mechanism, and report a novel

uORF frameshift variant upstream of NF2 in neurofibromatosis. Our results highlight uORF-

perturbing variants as an under-recognised functional class that contribute to penetrant

human disease, and demonstrate the power of large-scale population sequencing data in

studying non-coding variant classes.
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Upstream open reading frames (uORFs) are ORFs encoded
within the 5’ untranslated regions (5’UTRs) of protein
coding genes. uORFs are found upstream of around half

of all known genes1, and are important tissue-specific cis-reg-
ulators of translation. Active translation of a uORF typically
reduces downstream protein levels by up to 80%1. There are
strong signatures of negative selection acting on these elements,
with fewer upstream start codons (uAUGs) present in the human
genome than would be expected by chance1–3. In addition, the
start codons of uORFs have been shown to be the most conserved
sites in 5’UTRs1, supporting the importance of uORFs in the
regulation of protein levels.

In humans, translation is initiated when the small ribosomal
subunit, which scans from the 5’ end of the mRNA, recognises an
AUG start codon4. The likelihood of an AUG initiating transla-
tion is dependent on local sequence context, and in particular the
degree of similarity to the Kozak consensus sequence5,6. uORFs
can inhibit translation through multiple mechanisms. For some
genes, uORFs may be translated into a small peptide which can
directly inhibit translation by interacting with and stalling the
elongating ribosome at or near the uORF stop codon, creating a
‘roadblock’ for other scanning ribosomes7,8. It is also possible for
this small peptide to have a distinct biological function9; however,
in general uORFs do not show strong evidence for conservation
of their amino acid sequence2,10. For other genes, translation
from a uAUG appears to be sufficient to inhibit translation of the
downstream protein, with the small uORF peptide only produced
as a by-product.

Mechanisms of leaky scanning (whereby a scanning ribosome
may bypass an uAUG), re-initiation (where the small ribosomal
subunit remains bound to the mRNA and translation is re-
initiated at the canonical AUG), and the existence of internal
ribosome entry sites (from which the ribosome can start scanning
part-way along the RNA), can all act to attenuate inhibition by
uORFs, adding to the complexity of translational regulation10–12.
Termination at a uORF stop codon can also trigger the nonsense-
mediated decay pathway, further magnifying the inhibitory effects
of uORFs11,13. To date, studies of translational regulation by
individual uORFs have mainly been restricted to model
organisms.

Recently, large scale studies have assessed the global transla-
tional repression ability of uORFs: in vertebrates, uORF-
containing transcripts are globally less efficiently translated than
mRNAs lacking uORFs, with this effect mediated by features of
both sequence and structure2. Similarly, polysome profiling of
300,000 synthetic 5’UTRs identified uORFs and uAUGs as
strongly repressive of translation, with the strength of repression
dependent on the surrounding Kozak consensus sequence14.

Although 5’UTRs are typically not assessed for variation in
either clinical or research settings, having been excluded from
most exome capture target regions, there are several documented
examples of variants that create or disrupt a uORF playing a role
in human disease1,15–21. These studies have focused on single
gene disorders or candidate gene lists, often when no causal
variant was identified in the coding sequence. No study to date
has characterised the baseline population incidence of these
variants.

Here we describe a systematic genome-wide study of variants
that create and disrupt human uORFs, and characterise the
contribution of this class of variation to human genetic disease.
We use the allele frequency spectrum of variants in 15,708 whole-
genome sequenced individuals from the Genome Aggregation
Database (gnomAD)22 to explore selection against variants that
either create uAUGs or remove the stop codon of existing uORFs.
Finally, we demonstrate that these variants make an under-
recognised contribution to genetic disease.

Results
uAUG-creating variants are under strong negative selection. To
estimate the deleteriousness of variants that create a novel AUG
start codon upstream of the canonical coding sequence (CDS),
we assessed the frequency spectrum of uAUG-creating variants
observed in gnomAD (Fig. 1a). We identified all possible single
nucleotide variants (SNVs) in the UTRs of 18,593 canonical
gene transcripts (see Methods) that would create a new uAUG,
yielding 562,196 possible SNVs, an average of 30.2 per gene
(Fig. 1b). Of these, 15,239 (2.7%) were observed at least once
in whole genome sequence data from 15,708 individuals in
gnomAD (Supplementary Fig. 1a), upstream of 7697 distinct
genes.

We compared the mutability adjusted proportion of singletons
(MAPS) score, a measure of the strength of selection acting
against a variant class23, for 14,897 observed high-quality
autosomal uAUG-creating SNVs to other classes of coding and
non-coding SNVs (see methods). As negative selection acts to
prevent deleterious variants from increasing in frequency,
damaging classes of variants have skewed frequency spectra,
with a higher proportion appearing as singletons (i.e., observed
only once in the gnomAD data set),23 reflected in a higher MAPS
score. Whilst all observed UTR SNVs have an overall MAPS score
almost identical to synonymous variants, uAUG-creating SNVs
have a significantly higher MAPS score (permuted P < 1 × 10−4;
Fig. 1c), indicating a considerable selective pressure acting to
remove these from the population.

We next evaluated subsets of uAUG-creating variants pre-
dicted to have distinct functional consequences. In addition to
creating distinct uORFs, uAUGs may result in overlapping ORFs
(oORFs) where the absence of an in-frame stop codon within the
UTR results in an ORF that reads into the coding sequence, either
in-frame (elongating the CDS), or out-of-frame (Fig. 1a). uAUG-
creating variants that form oORFs have a significantly higher
MAPS score than uORF-creating variants (permuted P < 1 ×
10−4), and equivalent to missense variants in coding regions
(Fig. 1c; Supplementary Fig. 1a).

We also investigated the context of uAUG-creating variants
and find that uAUGs created within 50 bp of the CDS have higher
MAPS than those created further away (permuted P= 0.0042),
although this may be driven by the higher propensity of these
variants to form oORFs. We did not observe a significantly
greater MAPS score for uAUG-creating variants arising on a
background of a strong Kozak consensus, though we observe a
trend in this direction (Fig. 1c).

Given that uAUGs are expected to dramatically decrease
downstream protein levels, we hypothesised that uAUG-creating
variants would behave similarly to pLoF variants and thus be more
deleterious when arising upstream of genes intolerant to LoF
variation. Indeed, we show a significantly higher MAPS score for
uAUG-creating SNVs upstream of genes which are most intolerant
to pLoF variants (top sextile of LOEUF score22; 3193 genes) when
compared to those that are most tolerant (bottom sextile; permuted
P < 1 × 10−4; Fig. 1c). To ensure that the observed increase in
MAPS score upstream of pLoF intolerant genes is not purely
because the UTRs of these genes are more highly conserved, we
compared the conservation of potential uAUG sites with the
remainder of the 5’UTR, across all sextiles of LOEUF score. Overall,
a significantly higher proportion of possible uAUG-creating bases
have phyloP scores >2 (10.3%), when compared to all other UTR
bases (8.6%; Fisher’s P < 1 × 10−100), with the size of this effect
increasing as the corresponding genes become more intolerant to
pLoF variants (Supplementary Fig. 2).

Next, we calculated MAPS for uAUG-creating variants arising
upstream of 1,659 genes known to cause developmental disorders
(DD; confirmed or probable genes from the Developmental
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Disease Gene to Phenotype (DDG2P) database). While uAUG-
creating variants upstream of all DD genes do not show a signal
of selection above all observed uAUG-creating variants, the
MAPS score is significantly inflated when limiting to 279 DD
genes with a known dominant LoF mechanism (permuted P=
0.0012; Fig. 1c).

Variants that disrupt uORF stop codons are selected against.
As uAUG-creating variants that form oORFs have a significantly
higher MAPS score than those with an in-frame UTR stop codon,
we hypothesised that variants that disrupt the stop site of existing
uORFs should also be under selection (Fig. 2a). These stop-
removing variants could either be SNVs that change the
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Fig. 1 uAUG-creating variants have strong signals of negative selection, suggesting they are deleterious. a Schematic of uAUG-creating variants, their
possible effects and how the strength of the surrounding Kozak consensus is determined. b The number of possible uAUG-creating SNVs in each of 18,593
genes, truncated at 200 (159 genes have >200). In total we identified 562,196 possible uAUG-creating SNVs, an average of 30.2 per gene (dotted line),
with 883 genes having none. c–f MAPS scores (a measure of negative selection) for different variant sets. The number of observed variants for each set is
shown in brackets. MAPS for classes of protein-coding SNVs are shown as dotted lines for comparison (synonymous–grey, missense–orange, and
predicted loss-of-function (pLoF)–red point and red dotted line). Errors bars were calculated using bootstrapping (see methods). c While overall UTR
variants display a selection signature similar to synonymous variants, uAUG-creating variants have significantly higher MAPS (indicative of being more
deleterious; permuted P < 1 × 10−4). Variants are further subdivided into those upstream of, or within genes tolerant (green dot) and intolerant (blue dot)
to LoF22, with uAUG-creating variants upstream of LoF intolerant genes showing significantly stronger signals of selection than those upstream of LoF
tolerant genes (permuted P= 1 × 10−4). pLoF variants are likewise stratified for comparison. d uAUG-creating variants that create an oORF or elongate the
CDS show a significantly higher signal of selection than uORF-creating variants (P < 1 × 10−4; oORF created:out-of-frame oORF and CDS elongated
combined). e The deleteriousness of uAUG-creating variants depends on the context into which they are created, with stronger selection against uAUG-
creation close to the CDS, and with a stronger Kozak consensus sequence. f uAUG-creating variants are under strong negative selection upstream of genes
manually curated as haploinsufficient26 and developmental disorder genes reported to act via a dominant LoF mechanism. Abbreviations: CDS coding
sequence, uAUG upstream AUG, uORF upstream open reading frame, oORF overlapping open reading frame, MAPS mutability adjusted proportion of
singletons, pLoF predicted loss-of-function, DDG2P Developmental Disease Gene to Phenotype
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termination codon to one that codes for an amino acid, or fra-
meshifting indels within the uORF sequence that cause the uORF
to read through the normal stop codon. If there is no other in-
frame stop codon before the CDS will result in an oORF.

We identified all possible SNVs that would remove the stop
codon of a predicted uORF (n= 169,206; see methods), and
calculated the MAPS score for 2,406 such variants observed in
gnomAD. Stop-removing SNVs have a nominally higher MAPS
score than all UTR SNVs (permuted P= 0.030). This difference is
greater when specifically considering stop-removing SNVs which
are upstream of LoF intolerant genes (permuted P= 0.0012),

result in an oORF (permuted P= 2 × 10−4), or where the uORF
has either prior evidence of translation (documented in sorfs.
org24; permuted P= 0.0049), or a strong/moderate Kozak
consensus (permuted P= 7 × 10−4; Fig. 2b).

As the power of MAPS is limited by the small number of stop-
removing variants in each category observed in gnomAD, we
performed a complementary analysis investigating base level
conservation at all uORF stop sites using PhyloP25. A significantly
greater proportion of uORF stop site bases have PhyloP scores >2
(12.2%) compared to UTR bases matched by gene and distance
from the CDS (10.8%; Fisher’s P= 1.8 × 10−17; Fig. 2c). This
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Fig. 2 uORF stop codons are highly conserved and stop-removing variants show strong signals of negative selection. a Schematic of uORF stop-removing
variants, their possible effects, and how the strength of the surrounding Kozak consensus is determined. b–e MAPS scores (a measure of negative
selection) for different variant sets. The number of observed variants for each set is shown in brackets. MAPS for classes of protein-coding SNVs are
shown as dotted lines for comparison (synonymous–black, missense–orange and predicted loss-of-function (pLoF)–red point and red dotted line).
Confidence intervals were calculated using bootstrapping (see methods). b Stop-removing SNVs have a nominally higher MAPS score than all UTR SNVs
(permuted P= 0.030). Variants are further subdivided into those upstream of, or within genes tolerant (green dot) and intolerant (blue dot) to LoF22, with
pLoF variants likewise stratified for comparison. Stop-removing SNVs (c) with evidence of translation (in sorfs.org) and (d) that create an oORF have
signals of selection equivalent to missense variants. e A significantly higher MAPS is calculated for stop-removing variants where the uORF start site has a
strong/moderate Kozak consensus, compared to those with a weak Kozak (permuted P= 7 × 10−4). f–j Since MAPS is only calculated on observed
variants, we also looked at the conservation of all possible uORF stop site bases, reporting the proportion of bases with phyloP scores >2. All coding bases
are shown as a purple dotted line for comparison. f The stop sites of predicted uORFs are significantly more conserved than all UTR bases matched on gene
and distance from the CDS (Fisher’s P= 1.8 × 10−17). uORF stop bases are most highly conserved when (g) the uORF has evidence of translation, (h) the
variant results in an oORF, (i) the uORF start site has a strong/moderate Kozak consensus, and (j) upstream of curated haploinsufficient genes and
developmental genes with a known dominant LoF disease mechanism. Error bars represent 95% binomial confidence intervals. CDS coding sequence,
uORF upstream open reading frame, oORF overlapping open reading frame, MAPS mutability adjusted proportion of singletons, DDG2P Developmental
Disease Gene to Phenotype
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proportion is significantly higher where there is evidence
supporting translation of the uORF (18.9%; Fisher’s P= 3.6 ×
10−83) or when removing the stop would result in an oORF (either
in-frame or out-of-frame; 17.2% and 17.4%, respectively; Fisher’s
P= 3.0 × 10−25 and 2.6 × 10−47, respectively). Furthermore, a
greater proportion of stop site bases have PhyloP scores >2 when
the uORF start codon has a strong or moderate Kozak when
compared to a weak Kozak consensus (12.7% vs 10.9%; Fisher’s
P= 5.5 × 10−10; matched UTR bases Fisher’s P= 0.88; Fig. 2c).

The increased power of this analysis enables us to convincingly
demonstrate that uORF stop sites upstream of (1) LoF intolerant
genes, (2) genes manually curated as haploinsufficient26, and (3)
developmental disorder genes with a dominant LoF mechanism, are
all highly conserved. Stop sites upstream of genes in these groups
have 21.9%, 29.6% and 31.6% of bases with PhyloP >2, respectively
(Fisher’s P= 8.2 × 10−250, 4.7 × 10−43 and 1.4 × 10−52 compared to
all stop site bases, respectively; Fig. 2c), suggesting that removing
these stop sites is likely to be deleterious.

Specific genes are sensitive to uAUG-perturbing variants. We
searched the Human Gene Mutation Database (HGMD)27 and

ClinVar28 for uORF-creating or uORF-disrupting variants,
identifying 39 uAUG-creating and four stop-removing (likely)
pathogenic/disease mutations in 37 different genes. All four stop-
removing variants disrupt uORFs with uAUGs in a strong or
moderate Kozak consensus and result in an oORF overlapping
the CDS (Supplementary Table 2). Compared to all possible
uAUG-creating variants in these 37 genes, the 39 reported
disease-causing uAUG-creating variants (Supplementary Table 1)
are significantly more likely to be created into a moderate or
strong Kozak consensus (binomial P= 3.5 × 10−4), create an out-
of-frame oORF (binomial P= 1.1 × 10−5), and be within 50 bp of
the CDS (binomial P= 3.9 × 10−7; Fig. 3a). These results support
the assertion that the variant classes identified by MAPS as under
strongest negative selection are most likely to be disease causing.

This analysis highlights disease genes where aberrant transla-
tional regulation through uORFs is an important disease
mechanism. Previous analysis of the NF1 gene in 361 patients
with neurofibromatosis type 1 identified four 5’UTR variants as
putatively disease-causing29. These variants were found in six
unrelated probands, all of whom were negative for coding
variants in both NF1 and SPRED1. Three of the four variants
either occurred de novo or were shown to segregate with disease
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Fig. 3 The role of uAUG-creating and uORF stop-removing variants in disease. a The proportion of 39 uAUG variants observed in HGMD and ClinVar (red
bars) that fit into different sub-categories compared to all possible uAUG-creating SNVs (grey bars) in the same genes (n= 1022). Compared to all
possible uAUG-creating variants, uAUG-creating variants observed in HGMD/ClinVar were significantly more likely to be created into a moderate or
strong Kozak consensus (binomial P= 3.5 × 10−4), create an out-of-frame oORF (binomial P= 1.1 × 10−5), and be within 50 bp of the CDS (binomial P=
3.9 × 10−7). b Schematic of the NF1 5’UTR (light grey) showing the location of an existing uORF (orange) and the location of variants previously identified in
patients with neurofibromatosis29 in dark red (uAUG-creating) and black (stop-removing). uAUG-creating variants are annotated with the strength of the
surrounding Kozak consensus in brackets (“s” for strong and “m” for moderate). All four published variants result in formation of an oORF out-of-frame
with the CDS. Also annotated are the positions of all other possible uAUG-creating variants (light red; strong and moderate Kozak only), and stop-
removing variants (grey) that would also create an out-of-frame oORF. c Schematic of the NF2 5’UTR (grey) showing the effects of the −65-66insT variant.
The reference 5′UTR contains a uORF with a strong Kozak start site. Although the single-base insertion creates a novel uAUG which could be a new uORF
start site, it also changes the frame of the existing uORF, so that it overlaps the CDS out-of-frame (forms an oORF). We predict this is the most likely
mechanism of pathogenicity. CDS coding sequence, uORF upstream open reading frame, oORF overlapping open reading frame, HGMD the human gene
mutation database
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in the family (Supplementary Fig. 3a). While uAUG creation was
proposed as the mechanism behind two of these variants, we now
show that the other two variants both disrupt the stop codon of
an existing uORF, resulting in an oORF which is out-of-frame
with the CDS. This existing uORF has two start sites, both with
strong Kozak consensus, and has prior evidence of active
translation24. In Fig. 3b, we show these four variants along with
an additional six stop-removing and ten uAUG-creating variants
that would be predicted to also cause neurofibromatosis type 1
through the same mechanism if observed. In addition to these
sixteen SNVs, indels that create high-impact uAUGs (oORF
creating with strong/moderate Kozak consensus) or that cause a
frameshift within the sequence of the existing uORF, resulting in
an oORF, would also be predicted to cause disease.

A second example is IRF6, where three uAUG-creating variants
have been identified in seven patients with Van de Woude
syndrome30,31. These variants all arise in the context of a strong
or moderate Kozak consensus and result in an out-of-frame
oORF. There are nine additional possible uAUG-creating variants
that would be predicted to yield the same effect in IRF6
(Supplementary Fig. 4), suggesting it would be prudent to screen
Van de Woude patients across all twelve sites.

Genes where perturbing uORFs is likely important in disease.
To guide the research and clinical identification of uAUG-
creating and stop-removing variants (referred to collectively as
uORF-perturbing variants), we set about identifying genes where
these variants are likely to be of high importance. Investigating
17,715 genes with annotated 5’UTRs and at least one possible
uORF-perturbing variant, we first identified 4,986 genes where
uORF-perturbing variants are unlikely to be deleterious: genes
with existing oORFs (strong/moderate Kozak or evidence of
translation), with predicted high-impact uORF-perturbing SNVs
of appreciable frequency in gnomAD (>0.1%), with no possible
high-impact uORF-perturbing SNVs, or that are tolerant to LoF
(see methods; Supplementary Fig. 5a). Interestingly, these genes
include 453 LoF intolerant (14.2% of most constrained LOEUF
sextile) and 163 curated haploinsufficient or LoF disease genes
(14.6%). Of the remaining 12,729 genes considered, 3191 (25.1%)
are LoF-intolerant, known haploinsufficient or LoF disease genes
and hence are genes where uORF-perturbing variants have a high
likelihood of being deleterious (Fig. 4a). Despite only 18.0% of all
classified genes falling into this high likelihood category (19.0% of
all UTR bases when accounting for UTR length), 79% of uORF-
perturbing variants in HGMD and ClinVar are found upstream
of these genes (Fisher’s P= 1.6 × 10−9; Fig. 4b).

There are 296 genes that have at least 10 possible high-impact
uORF-perturbing SNVs, and for which LoF and/or haploinsuffi-
ciency is a known mechanism of human disease (either curated as
haploinsufficient, curated as acting via a LoF mechanism in
DDG2P or with ≥ 10 high-confidence pathogenic LoF variants
documented in ClinVar), including both IRF6 and NF1. We
predict these to be a fruitful set to search for additional disease-
causing uORF-perturbing variants (Supplementary Data 1; Sup-
plementary Fig. 5b). To aid in the identification of uORF-
perturbing variants we have created plugin for the Ensembl
Variant Effect Predictor (VEP)32 which annotates variants for
predicted effects on translational regulation (available at https://
github.com/ImperialCardioGenetics/uORFs).

A novel uORF frameshift causes neurofibromatosisN type 2.
We analysed targeted sequencing data from a cohort of 1134
unrelated individuals diagnosed with neurofibromatosis type 2,
which is caused by LoF variants in one of these prioritised genes,
NF2. We identified a single 5’UTR variant in two unrelated

probands in this cohort (ENST00000338641:−66-65insT; GRCh37:
chr22:29999922A >AT) that segregates with disease in three
additional affected relatives across the two families (Supplemen-
tary Fig. 3b; Supplementary Table 3). This variant could act
through two distinct uORF-disrupting mechanisms. While the
insertion does create a new uAUG (in the context of a moderate
Kozak consensus) an in-frame stop codon after only three codons
would suggest only a weak effect on CDS translation. However,
the NF2 UTR contains an existing uORF with prior evidence of
translation24 and a strong Kozak consensus. The observed
insertion changes the frame of this existing uORF, causing it to
bypass the downstream stop codon and create an out-of-frame
oORF (Fig. 3c). This oORF is predicted to lower translation of
NF2, consistent with the known LoF disease mechanism, how-
ever, functional follow-up is required to confirm this hypothesis.

Discussion
We used data from 15,708 whole human genomes to explore the
global impact of variants that create or perturb uORFs in 5’UTRs,
which can lead to altered translation of the downstream protein.
We show that creating a new uORF and hence initiating trans-
lation from an uAUG is an important regulatory mechanism.
Our data suggest that the major underlying mechanism of
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Fig. 4 Identifying genes where uORF creating or disrupting variants are
likely to have a role in disease. Genes were split into three distinct
categories representing a ‘low’, ‘moderate’ and ‘high’ likelihood that uORF-
perturbing variants are important. Low likelihood genes include those with
existing oORFs, common (>0.1%) oORF creating variants in gnomAD or
that are tolerant to LoF. Those in the high likelihood category are remaining
genes that are LoF-intolerant or where haploinsufficient or LoF is a known
disease mechanism (see methods). a The number of genes in each of the
three categories. b The number of uAUG-creating and uORF stop-removing
variants in HGMD upstream of genes in each category. Although only
19.2% of all classified genes fall into the high likelihood category (21.4% of
all UTR bases when adjusting for UTR length), 83.7% of uORF-perturbing
variants identified in HGMD and ClinVar are found upstream of these genes
(Fisher’s P= 1.4 × 10−19)
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translational repression by uORFs is likely to be through com-
petitive translation, since it is unlikely that novel peptides pro-
duced by uAUG-creating variants will be functional, and the most
deleterious types of uAUG-creating and stop-removing variants
are those that form oORFs.

Selective pressure on strongly translated uORFs has maintained
features that promote re-initiation and prevent constitutive
translational repression. Specifically, existing uORFs are selected
to be short, further from the CDS, and to lack strong Kozak
sequences2. This is in agreement with our results, which show a
strongly skewed frequency spectrum for observed variants pre-
dicted to strongly inhibit translation, and an over-representation
of these deleterious variants in disease cases.

We have defined a new category of variants, high-impact
uORF-perturbing variants, a subset of which are likely to act as
LoF by severely impacting translation. This class contains 145,398
possible SNVs (110,357 uAUG-creating and 35,041 stop-remov-
ing) across the genome, which are predicted to form oORFs from
an uAUG with a strong or moderate Kozak consensus, or with
prior evidence of translation. Of these, 3213 (2.2%) are observed
in the whole genome sequence data from gnomAD. In addition,
uAUG-creating insertions and deletions or frameshifts that
transform existing uORFs into oORFs would also be predicted to
have a high impact.

Whilst uORF-perturbing variants resulting in constitutive
translational repression are likely to have LoF effects, the complex
mechanisms of translational regulation including leaky scanning,
re-initiation and the existence of internal ribosome entry sites
makes it difficult to confidently predict the functional con-
sequences of individual variants. Even variants predicted to be of
high-impact may only result in partial LoF, reducing power to
identify significant signals of selection. Confident interpretation
of variants for a role in disease will require functional studies to
assess the downstream impact of these variants on protein levels
and/or additional genetic evidence, such as de novo occurrence or
segregation with disease. It will also be interesting to study the
impact of uORF-perturbing variants causing partial LoF on
coding variant penetrance and their role in common disease
phenotypes.

Even at a sample size of 15,708 individuals, we had limited
power to observe uORF-perturbing variants, given their very
small genomic footprint. Despite this, we identified specific genes
such as NF1, NF2 and IRF6, where uORF perturbation appears to
be an important disease mechanism. In anticipation of future
studies with much larger cohorts of WGS cases, we have identi-
fied a set of genes where there is a high likelihood that this
mechanism will contribute to disease. This will also be useful for
rare disease diagnosis, where even if WGS is undertaken this class
of pathogenic variation is likely not evaluated and under-
diagnosed.

In this work, we used variant frequencies in a large population
dataset to study the global impact of a specific class of non-coding
variants with a predicted functional effect. Previous studies using
non-coding constraint have focused on entire regulatory
regions33 or concentrated exclusively on splicing34,35. These and
other studies36 have concluded that signals of constraint and
selection are likely confined to individual bases33 and diluted out
when studying larger regions. Our results support this assertion;
as the signal of negative selection associated with all UTR variants
is not discernible from synonymous variants. We show the power
of grouping individual non-coding bases by functional effect to
identify subsets of variants with strong signals of selection.

Methods
Ethics statement. We have complied with all relevant ethical regulations. This
study was overseen by the Broad Institute’s Office of Research Subject Protection

and the Partners Human Research Committee, and was given a determination of
Not Human Subjects Research. Informed consent was obtained from all
participants.

Study dataset. We used the 15,708 whole genome sequenced individuals
from version 2.1.1 of the Genome Aggregation Database (gnomAD), which is
fully described in our companion paper22. These data were downloaded from
https://gnomad.broadinstitute.org/downloads and queried using Hail version 0.2
(https://hail.is).

Definition of 5’UTRs. The start and end positions and sequence of the 5’UTRs of
all protein-coding genes were downloaded from Ensembl biomart (Human genes
GRCh37.p13) and filtered to only include canonical transcripts. Genes with no
annotated 5’UTR on the canonical transcript were removed.

Identification and classification of uAUG-creating variants. Reading through
each UTR from start to end (5’ to 3’), we identified all instances where a SNV
would create an ATG. We recorded the positions of all possible stop codons (TAA,
TGA and TAG) and annotated each uAUG-creating variant with whether or not
there was an in-frame stop codon within the UTR. To annotate the strength of the
Kozak consensus into which the uAUG was formed we assessed the positions at −3
and +3 relative to the A of the AUG, known to be the most important bases for
dictating strength of translation. If both the −3 base was either A or G and the +3
was G, Kozak was annotated as ‘Strong’, if either of these conditions was true,
Kozak was deemed to be ‘Moderate’ and if neither was the case ‘Weak’. uAUG-
creating variants were also annotated with the distance to, and the frame relative to
the coding sequence (CDS).

Identification and classification of stop-removing variants. Existing uORFs
were defined as the combination of an ATG and in-frame stop codon (TAA, TGA
or TAG) within a UTR. Each predicted uORF was annotated with the positions of
all alternative downstream in-frame stop codons within the UTR and with the
frame relative to the coding sequence. The Kozak strength of each uORF was
defined as outlined above for uAUG-creating variants. Where multiple uAUGs
converge on the same stop codon, the uORF is annotated with the strongest Kozak
consensus. To identify uORFs with prior evidence of translation we downloaded all
human small open reading frames (sORFs) from sorfs.org, a public repository of
sORFs identified in humans, mice and fruit flies using ribosome profiling24. Pre-
dicted uORFs were marked as having prior evidence if the annotated stop codon
matched an entry from sorfs.org.

Stop-removing variants were identified as SNVs that would change the base of a
stop codon to any sequence that would not retain the stop (i.e., did not create
another of TAA, TGA or TAG).

Calculating MAPS. For each set of variants we computed the mutability adjusted
proportion of singletons, or MAPS. The basis of this approach has previously been
described23. Briefly, for each substitution, accounting for 1 base of surrounding
context (e.g., ACG ->ATG), we calculated the proportion of all possible variants
(−3.9885 < GERP < 2.6607, 15 × < gnomAD coverage < 60 × ) that are observed in
intergenic/intronic autosomal regions in a downsampled set of 1000 gnomAD
whole-genomes. For C > T changes at CpG sites, variant proportions are calculated
separately for three distinct bins of methylation. These proportions are then scaled
so that the weighted genome-wide average is the human per-base, per-generation
mutation rate (1.2e−8). The creation of these context-dependent mutation rates is
described in more detail in our companion paper22.

To determine the transformation between these mutation rates and the
expected proportion of singletons, for each substitution and context (and
methylation bin for CpGs), we regress the mutation rates against the observed
proportion of singletons for synonymous variants. We use synonymous as a
relatively neutral class of variants which should not be subject to any biases being
investigating in UTRs, but that are distinct from bases used to define the model.

For a given list of possible variants, annotated with gnomAD allele counts using
Hail (https://hail.is), we take only those that are observed in gnomAD and annotate
each with the transformed mutation rate given the variant context (which now
corresponds to the expected chance this site will be a singleton), and sum these
values across the entire variant list to give an expected number of singletons.
Variants are excluded if they are outliers on coverage in gnomAD (15× <coverage
<60×), were found on the X or Y chromosome, or were filtered out of the gnomAD
whole genomes.

Finally, this expected number of singletons is compared to the number of sites
that are observed as singletons in gnomAD, to estimate MAPS.

MAPS ¼ ðobserved singletons� expected singletonsÞ=total observed variants
ð1Þ

Confidence intervals were calculated using bootstrapping. For a list of n
observed variants, n variant sites are sampled at random with replacement and
used to calculate MAPS. This is repeated over 10,000 permutations before the 5th
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and 95th percentiles of the resulting MAPS distribution are taken as confidence
intervals.

P-values we calculated using the same bootstrapping approach but for each
permutation MAPS was calculated for each of the two variant sets of interest, A
and B. The P-value was defined as the proportion of permutations where MAPS of
B was less than MAPS of A.

P ¼ Σ½ðMAPSðBÞ �MAPSðAÞÞ<0�=permutations ð2Þ

For coding variants, MAPS was calculated using the predicted impact on the
canonical transcript.

Using PhyloP to assess base-level conservation. Per-base vertebrate PhyloP
scores were extracted from the Combined Annotation Dependent Depletion
(CADD) version v1.4 GRCh37 release files and used to annotate lists of all possible
coding, UTR and uORF stop bases. To remove biases due to gene context and
distance from the coding sequence, we created a set of matched UTR bases which
comprised the 3 bases immediately upstream and downstream of the stop. Con-
served bases were defined as those with PhyloP >= 2. We also checked for a sig-
nificant difference between the entire distribution of scores using a Wilcoxon rank
sum test for all stop-removing compared to matched UTR bases (P= 8.1 × 10−9).

Identifying disease gene lists. Developmental disease genes were downloaded
from The Developmental Disorders Genotype-Phenotype Database (DDG2P) on
the 6th October 2018. We included only genes categorised as ‘confirmed’ or
‘probable’. Genes with a known dominant LoF mechanism were identified using
the ‘allelic requirement’ and ‘mutation consequence’ annotations.

Genes intolerant and tolerant to LoF variants were identified using data from
Karczewski et al. 201922. Genes were ordered by their loss-of-function observed/
expected upper bound fraction (LOEUF) scores and the top and bottom sextiles
were categorised as tolerant and intolerant, respectively.

We downloaded data from The Clinical Genome Resource (ClinGen) Dosage
Sensitivity Map on 21st January 2019 (https://www.ncbi.nlm.nih.gov/projects/
dbvar/clingen/). Genes manually curated as haploinsufficient were defined as those
with a score of 3 (sufficient evidence). In addition, we added genes curated as
severe or moderately haploinsufficient by the MacArthur lab (https://github.com/
macarthur-lab/gene_lists/tree/master/lists).

Searching for uORF-perturbing variants in HGMD and ClinVar. Lists of all
possible uAUG-creating and stop-removing SNVs were intersected with all DM
variants from HGMD pro release 2018.1 and all ClinVar Pathogenic or Likely
Pathogenic variants from the August 2018 release (clinvar_20180805.vcf). In
addition, we created a list of all possible 1–5 bp deletions that would create an
uAUG, annotated as described for SNVs above, and also searched for these var-
iants. We did not investigate small insertions or deletion >5 bps due to the inhi-
bitory number of possible variants.

Sub-classifying genes. uAUG-creating variants were classified as ‘high-impact’ if
they are formed into a high or moderate Kozak consensus and if they either form
an oORF or result in transcript elongation. Stop removing variants were similarly
classified as ‘high-impact’ if the original uORF start site has a strong or moderate
Kozak and/or the uORF is documented in sorfs.org and the variants results in a
oORF or a transcript elongation.

Genes were divided into nine categories according to the following logic.
Class 0–genes with no annotated 5’UTR on the canonical transcript.
Class 1–genes with no possible uAUG-creating or stop-removing SNVs

identified.
Class 2–remaining genes with no possible SNVs of predicted high-impact.
Class 3–remaining genes where the UTR has a high-confidence oORF (strong/

moderate Kozak or documented in sorfs.orf) indicating creating a second would be
of low-impact.

Class 4–remaining genes where one or more identified high-impact SNVs have
AF > 0.1% in gnomAD (genomes AC >15).

Class 5–remaining genes that are tolerant to LoF variants.
Class 8–remaining genes curated as haploinsufficient by ClinGen or the

MacArthur lab, curated as acting via a loss-of-function mechanism in DDG2P or
with >= 10 high-confidence Pathogenic LoF variants in ClinVar (known LoF
disease genes).

Class 7–remaining genes intolerant to LoF variants or with >= 2 high-
confidence Pathogenic LoF variants in ClinVar.

Class 6–all genes not classified into any other class.
The nine gene classes were grouped into three categories corresponding to low

(classes 2, 3, 4 and 5), moderate (class 6) and high (classes 7 and 8) likelihood that
high-impact uORF-perturbing variants would have a deleterious effect.

Sequencing of individuals with neurofibromatosis type 2. A cohort of 1134
unrelated individuals with neurofibromatosis type 2 were recruited to the Centre
for Genomic Medicine at St Mary’s Hospital, Manchester. All individuals fulfilled
both Manchester and NIH criteria for diagnosis. Ethical approval for use of these

samples and anonymised associated clinical data was obtained from the North
West Greater Manchester Central Research Ethics Committee (reference 10/
H1008/74). Informed consent was obtained from all participants. All patients were
sequenced across the NF2 gene. Two individuals were identified to carry a single
5’UTR variant (ENST00000338641:-66-65insT; GRCh37:chr22:29999922A >AT).
Both carriers were confirmed to have no variants in SMARCB1 or LZTRA1 and no
coding variants in NF2. The -66-65insT variant segregated with disease in 3
affected siblings in one family and in affected parent and child in another (Sup-
plementary Fig. 3b). Phenotypic data for all family members can be found in
Supplementary Table 3.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All possible uAUG-creating and stop-removing SNVs for canonical Gencode transcripts
along with likelihood classifications for all genes are available for download at https://
github.com/ImperialCardioGenetics/uORFs.

Code availability
To aid in the identification of uORF-perturbing variants we have created a VEP plugin
which annotates variants for predicted effects on translational regulation. This script,
along with those used to analyse the data and create figures for the manuscript, is freely
available at https://github.com/ImperialCardioGenetics/uORFs.
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