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Abstract

A novel methodology for determining Stress Intensity Factor (SIF) sensitivities for plate bending problems

using the Dual Boundary Element Method (DBEM) is presented. The direct derivatives of the DBEM integral

equations for plate bending have been derived for the first time and are used as part of a DBEM-based Implicit

Differentiation Method (IDM or DBEM-IDM) for calculating the sensitivities of SIFs to changes in different

geometric parameters such as crack length and crack rotation angle. The SIFs and their sensitivities are

calculated using the J-integral and the derivative of the J-integral respectively. A numerical example featuring

a thick plate subjected to membrane, bending, and pressure loads is presented. In the first half of the numerical

example, the SIF sensitivities from the IDM are compared with those obtained from the more common, but

relatively crude, Finite Difference Method (FDM or DBEM-FDM). Results show that the IDM is a significantly

more efficient and robust alternative to the FDM. The accuracy of the FDM showed significant dependence on

the step size used, necessitating a time-consuming optimization procedure to determine the optimal step size.

Once this optimal step size was found, both methods provided very similar results. As part of the second half

of the numerical example, a demonstration of one possible application of the SIF sensitivities from the IDM

is presented. This involved carrying out reliability analyses using the First-Order Reliability Method (FORM)

with a large number of design variables.

Keywords: Dual Boundary Element Method (DBEM); Implicit Differentiation Method (IDM); Finite

Difference Method (FDM); Stress Intensity Factor (SIF); Plate Bending

1. Introduction

It is well established that knowledge of the Stress Intensity Factor (SIF) is necessary for the evaluation of

the residual strength of flawed components. Over the past fifty years many methods of calculating SIFs have

been developed and recorded in the Compendium of Stress Intensity Factors [1]. These SIF solutions include

simple numerical methods such as the Green’s function [2], Compounding [3], and also more advanced methods

such as the Weight Function [4].

As well as the SIFs themselves, their sensitivities with respect to changes in different structural design vari-

ables are also particuarly important, as they enable engineers to understand how to mitigate crack growth and
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make their designs safer. Since the value of many design variables is often uncertain, the adequate performance

of a structure is not guaranteed, therefore a probability that the structure fails to perform adequately needs

to be defined, this probability is termed the probability of failure. The sensitivity of SIFs is often required to

predict the probability of failure for failure modes related to crack growth. These sensitivities can be used with

reliability methods such the First-Order Reliability Method (FORM) [5] to evaluate the probability of failure.

The Dual Boundary Element Method (DBEM) is used in this work with the J-integral to evaluate SIF

sensitivities with respect to changes in geometric design variables. The DBEM has proven itself to be an

efficient alternative to the Finite Element Method (FEM) for applications related to fracture mechanics. In

contrast to the FEM, the DBEM only requires the outer boundaries of a structure to be discretised, enabling it to

provide a continuous modelling of the interior of the structure, providing high-resolution internal displacements

and stresses. Since the J-integral involves the evaluation of displacement and stresses at internal points in the

structure, the combined use of the DBEM and the J-integral can provide very accurate estimates for SIFs.

Detailed discussions related to other advantages and potential applications of the DBEM can be found in [6].

The DBEM for plate problems involving combined bending and tension was first developed by Dirgantara

and Aliabadi [7]. In this approach, Reissner plate theory is used to model plate bending and shear, while 2D

plane stress theory is used to model the behaviour of the plate membrane. Reissner theory is used instead of

Kirchoff theory since it is able to obtain crack tip stress fields that show better agreement to those provided by

3D elasticity [8]. The approach outlined in [7] has since been adapted to a wide range of problems, the most

relevant of which include: the analysis of cracks in structures undergoing large deflection [9], dynamic fracture

mechanics [10], fatigue crack growth in assembled plate structures [11], and the analysis of bond-line cracks in

laminated plates [12]. Among the different Boundary Element methods used to solve problems involving fracture

mechanics with Reissner plates, the DBEM is the most commonly used. However, one other method used in the

past involves the use of the Numerical Green’s Function (NGF) technique [13]. Building on this previous work

concerning the DBEM, the approach outlined in [7] is adapted in this current work for the calculation of the

sensitivities of SIFs to changes in various geometric parameters in plate bending problems involving combined

bending and tension. Potential applications include reliability analysis and shape optimisation.

One recent variation of the BEM is the isogeometric BEM [14, 15, 16]. The isogeometric BEM involves the

use of Non-Uniform Rational B-Splines (NURBS) to represent the boundaries of the structure. Since NURBS

are also commonly used in Computer Aided Design (CAD), data can be transferred between isogeometric BEM

and CAD tools relatively easily [16]. Some relevant past examples of its use include applications to fracture

mechanics, [14, 15] and shape optimisation [16].

Methods used in the past for the calculation of SIF sensitivities have involved the use of the Finite Element

Method (FEM) [17, 18], the Fractal Finite Element Method (FFEM) [19], the Scaled Boundary Finite Element

Method (SBFEM) [20, 21], the eXtended Finite Element Method (XFEM) [22], Galerkin Meshless Methods

[23, 24] , and the Dual Boundary Element Method (DBEM) [25]. SIF sensitivities are usually taken with respect

to geometric design variables such as crack length or crack rotation angle. One notable example of previous work

concerning SIF sensitivity calculation is Huang and Aliabadi [25] where a DBEM-based Implicit Differentiation

Method (IDM), which makes use of the derivatives of the two-dimensional DBEM integral equations, was used

to evaluate SIF sensitivities in two-dimensional structures. Results were validated against the FDM with the

DBEM and the FEM. Previous work concerning the calculation of SIF sensitivities has exclusively focused

on two-dimensional structures. However, aircraft structures such as wing panels and fuselage panels are often
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subjected to bending loads and pressure loads. It is therefore more appropriate to model them as thick plates

or shells. This is the approach taken in this work.

Two methods are investigated in this work for the calculation of SIF sensitivities using the DBEM - the

Finite Difference Method (FDM) and an Implicit Differentiation Method (IDM). The FDM is a relatively crude

method involving the use of finite differences to calculate derivatives. The accuracy of the sensitivities from the

FDM can be very dependent on the step size used - if the step size is too small or too large then rounding errors

or truncation errors, respectively, become significant. An IDM, on the other hand, involves the derivation of the

exact derivatives of the DBEM integral equations with respect to some geometric variable. Since an IDM does

not require the use of a step size, it is significantly more robust than the FDM, and can provide sensitivities

that are much more accurate and reliable. Past examples of the use of BEM-based IDMs includes [25, 26, 27].

One notable example is Sfantos and Aliabadi [26] where a BEM-based IDM was employed for evaluating design

sensitivities for contact problems. The results from the IDM were validated against an analytical solution and

against a BEM-based FDM. It showed close agreement with both methods. In this current work, the use of the

FDM or the IDM with the DBEM is hereafter referred to as DBEM-based FDM (DBEM-FDM) or DBEM-based

IDM (DBEM-IDM) respectively.

The main objective of this work was to create a DBEM-based IDM that acts as a much more efficient and

robust alternative to the relatively crude DBEM-based FDM when evaluating SIF sensitivities with respect

to geometric design variables for plate bending problems. Previous work on this topic has exclusively focused

on two-dimensional structures. To achieve this objective, a DBEM-based IDM for plate bending has been

developed for the first time. This DBEM-IDM makes use of the derivatives of the DBEM integral equations

and the J-integral formulations for plate bending. These derivatives have also been derived for the first time

and are presented here. To validate the proposed DBEM-IDM, SIF sensitivities are compared with those from

a DBEM-based FDM. To demonstrate one possible application of the DBEM-IDM, it is used in the reliability

analysis of a thick plate subjected to membrane, bending, and pressure loads with the FORM.

2. Methodology

In this work, Latin letter indexes (e.g. i, j, k) can take values from 1 to 3, while Greek letter indexes (e.g.

α, β, ρ, γ) can takes values of either 1 or 2.

2.1. DBEM for Plate Bending Problems

From [7], the discretised DBEM integral equations for plate bending are:

1

2
wj(x

+) +
1

2
wj(x

−) +

Ne∑
ne=1

M∑
γ=1

P b,neγ
ij wneγ

j =

Ne∑
ne=1

M∑
γ=1

Qb,neγ
ij pneγ

j + q3

Ne∑
ne=1

Ob,ne

i (1)

where:

P b,neγ
ij = −

∫ +1

−1

T bij(x
+, x(η))Nneγ(η)Jne(η)dη (2)

Qb,neγ
ij =

∫ +1

−1

U bij(x
+, x(η))Nneγ(η)Jne(η)dη (3)

Ob,ne

i =

∫ +1

−1

Bbi (x
+, x(η))Jne(η)dη (4)

and:

Bbi (x
+, x(η)) = V bi,α(x+, x)nα(x)− ν

(1− ν)λ2
U biα(x+, x)nα(x(η)) (5)

3



for the displacement integral equation, and:
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where:

Kb,neγ
iβk = =

∫ +1

−1
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Lb,neγ
iβk = −

∫ +1

−1
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iβk(x−, x(η))Nneγ(η)Jne(η)dη (8)

O∗,ne
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−1
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B∗iβ(x−, x(η)) = Q∗iβ(x−, x(η))− ν

(1− ν)λ2
Db
iβρ(x

−, x(η))nρ(x(η)) (10)

for the traction integral equation.

The DBEM integral equations for two-dimensional plane stress (membrane) are:

1
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Uαβ(x+, x(η))Nneγ(η)Jne(η)dη (13)

for the displacement integral equation, and:
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Kneγ
ραβu

neγ
ρ = nβ(x−)
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γ=1
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ραβt

neγ
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where:

Kneγ
ραβ = =

∫ +1

−1

Sραβ(x−, x(η))Nneγ(η)Jne(η)dη (15)

Lneγ
ραβ = −

∫ +1

−1

Dραβ(x−, x(η))Nneγ(η)Jne(η)dη (16)

for the traction integral equation.

In the above equations, T bij , U
b
ij , V

b
i,α, Sbiβk, Db

iβk, and Q∗iβ are the fundamental solutions for plate bending,

while Tαβ , Uαβ , Sαβρ, and Dαβρ are the fundamental solutions for the membrane. Expressions for these

fundamental solutions can be found in [6]. The integral symbols −
∫

and =
∫

represent Cauchy principal value

integrals and Hadamard principal value integrals respectively. w1 and w2 denote rotations in the directions x1

and x2 respectively, and w3 denotes displacement in the direction x3. u1 and u2 are the displacements in the

directions x1 and x2 respectively. pk are the bending and shear tractions with pα = Mαβnβ and p3 = Qαnα.

t1 and t2 are membrane tractions in the directions x1 and x2 respectively where tα = Nαβnβ . The integrations

are carried out over the boundary S of the structure’s domain. nβ denotes the components of the unit outward

normal vector at the boundary. x+ and x− denote the upper and lower surfaces of the crack respectively.

Descriptions of any remaining terms can be found in the Appendix. In the DBEM, the upper and lower surfaces
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of a crack are modelled as co-planar. The displacement integral equations (equations 1 and 11) are applied to

the upper surface while the traction integral equations (equations 6 and 14) are applied to the lower surface.

The displacement equations are also applied to outer boundary as well. An example of this can be seen in

Figure 1.

Since the fundamental solutions shown in the integral equations (2)-(4), (7)-(9), (12)-(13), (15)-(16) are of

the order of ln(1/r), 1/r, or 1/r2, (where r is the distance between the collocation node and the field point)

mathematical singularities can occur when the collocation node lies within the same element as the field point.

When dealing with weakly singular integrals with singularities of the order ln(1/r) or 1/r such as those seen

in equations (2)-(4), (8), (9), (12)-(13), (16), the transformation of variable technique proposed by Telles [28]

is used. For equations (2) and (12), rigid body motion is also applied. The strongly singular integrals with

singularities of the order of 1/r2 seen in equations (7) and (15) only become singular when both the collocation

node and the field point are on a crack surface. In many practical problems, cracks are usually modelled as

piecewise flat (each individual crack element is flat), and this is the case in this work. By modelling cracks as

piecewise flat, the integrals in equations (7) and (15) can be carried out analytically. For each of the integral

equations seen above, when the collocation node is near to the field point, but is not in the same element as the

field point, the integral shows near-singular behaviour. In this case, the element subdivision technique is used.

Details on these methods can be found in [6].

Figure 1: (Left) An example of mesh design for a square plate with a straight centre crack. Quadratic elements are used. The
upper and lower surfaces of the crack are assumed to be coplanar. (Right) A zoomed-in view of the straight centre crack. The

coordinates of the crack nodes can be expressed in terms of crack half-length a and crack rotation angle θ. Element end points are
marked as ticks, elements nodes are marked as circles, ’D’ denotes the displacement equations, and ’T’ denotes the traction

equations.

The system of equations used in the DBEM is of the form Hu = Gt. Where H and G are matrices of

coefficients, and u and t contain boundary displacements and tractions respectively (both known and unknown).

The final system of equations can be written as:

AX = F (17)

where A is a matrix of coefficients, X is a vector of unknown boundary displacements and tractions, and F is

a vector containing coefficients multiplied by known boundary conditions.
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Cracks are discretised using discontinuous quadratic elements; continuous quadratic elements are used on

the outer boundary except at the corners - where due to the non-uniqueness of the normals, semi-discontinuous

quadratic elements are used. This can be seen in Figure 1.

2.2. DBEM-based IDM for Plate Bending Problems

The derivatives of the discretised DBEM integral equations for plate bending (equations 1 and 6) with

respect to some geometric parameter Zm (e.g. plate length, plate width, crack length etc.) are:

1
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for the traction integral equation.
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The derivatives of the DBEM integral equations for two-dimensional plane stress (membrane) are:
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for the displacement integral equation, and:
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neγ
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M∑
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Lneγ
ραβt

neγ
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where:

Kneγ
ραβ,m = =

∫ +1

−1

Sραβ,m(x′, x(η))Nneγ(η)Jne(η)dη + =
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−1

Sραβ(x′, x(η))Nneγ(η)Jne
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for the traction integral equation.

In the above equations, T bij,m, U bij,m, V bi,αm, Sbiβk,m, Db
iβk,m, and Q∗iβ,m are the derivatives of the fundamental

solutions for plate bending, while Tαβ,m, Uαβ,m, Sαβρ,m, and Dαβρ,m are the derivatives of the fundamental

solutions for the membrane. The expressions for these fundamental solutions have been derived for the first

time in this work and can be found in the Appendix.

While the fundamental solutions for the membrane and plate bending seen in section 2.1 are functions of

the distance r between the collocation node and the field point, the derivatives of these fundamental solutions

as seen in equations (18-33) are functions not only of r but also its derivative r,m. Therefore, equations (18-33)

are functions of the derivatives of the nodal coordinates. As shown in Figure 1, the coordinates of the crack

nodes can be expressed in terms of the crack half-length a and crack rotation angle θ. Therefore, the derivatives

of these nodal coordinates with respect to a and θ can be evaluated analytically. This is the approach taken to

obtain r,m with the IDM.

In DBEM-based IDM the system of equations is H,mu + Hu,m = G,mt + Gt,m, where H, G, u, and t are

the same as defined in section 2.1, and H,m, G,m, u,m, and t,m are their derivatives. This system of equations

can be rewritten as:

AX,m =
[
F,m −A,mX

]
(34)

where A and X can be obtained from equation (17). Since the right-hand side of equation (34) is known, LU

decomposition can be used to obtain the unknown derivatives of boundary displacements and tractions X,m.

The entries of the matrix A,m which correspond to the case where both the collocation node and the field

point lie on fixed boundaries are zero. This occurs if a change in the geometric variable Zm produces no change
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in the coordinates of the nodes on this boundary. For example, consider a plate with a centre crack. If Zm is the

crack half-length a, then changing Zm will not produce any change in the coordinates of the nodes on the outer

boundary of the plate. Therefore, if both the collocation node and the field point lie on the outer boundary,

then the corresponding entries in A,m will be zero. Because of this, the entries of A,m that correspond to

collocation node - field node pairs that lie on fixed boundaries do not need to be calculated. This has the effect

of significantly reducing the computational cost associated with evaluating A,m.

2.3. Stress Intensity Factor Evaluation

One of the most popular path-independent integrals for evaluating stress intensity factors is the J-integral.

For plate bending, the rate of energy released per unit crack extension in the xρ direction is:

Jbρ =

∫
Γ

[(
W b − q3w3

)
nnρ − pkwk,ρ

]
dΓ (35)

For two-dimensional plane stress (membrane) it is:

Jmρ =

∫
Γ

[
Wmnρ − tβuβ,ρ

]
dΓ (36)

where Γ is an arbitrary contour surrounding the crack tip, and W is strain energy density (strain energy per

unit area). The strain energy density for plate bending is:

W b =
1

2

(
Mαβχαβ +Qαψα

)
(37)

where χαβ are the flexural strains:

χαβ =
1

2

(
wα,β + wβ,α

)
(38)

and ψα are the transverse shear strains:

ψα = wα + w3,α (39)

The strain energy density for two-dimensional plane stress (membrane) is:

Wm =
1

2
Nαβεαβ (40)

where εαβ are the in-plane strains:

εαβ =
1

2

(
uα,β + uβ,α

)
(41)

The derivatives of the rotations and displacements with respect to direction ρ in equations (35) and (36)

(wk,ρ and uβ,ρ) can be calculated at some internal point x′ that makes up the J-integral contour via the following

discretised integral equations:

uα,ρ(x
′) +

Ne∑
ne=1

M∑
γ=1

Pneγ
αβ,ρu

neγ
β =

Ne∑
ne=1

M∑
γ=1

Qneγ
αβ,ρt

neγ
β (42)

where:

Qneγ
αβ,ρ =

∫ +1

−1

Uαβ,ρ(x
′, x(η))Nneγ(η)Jne(η)dη (43)

Pneγ
αβ,ρ = −

∫ +1

−1

Tαβ,ρ(x
′, x(η))Nneγ(η)Jne(η)dη (44)

for the membrane, and:

wi,ρ(x
′) +

Ne∑
ne=1

M∑
γ=1

P b,neγ
ij,ρ wneγ

j =

Ne∑
ne=1

M∑
γ=1

Qb,neγ
ij,ρ pneγ

j + q3

Ne∑
ne=1

Ob,ne

i,ρ (45)
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where:

Qb,neγ
ij,ρ =

∫ +1

−1

U bij,ρ(x
′, x(η))Nneγ(η)Jne(η)dη (46)

P b,neγ
ij,ρ = −

∫ +1

−1

T bij,ρ(x
′, x(η))Nneγ(η)Jne(η)dη (47)

Ob,ne

i,ρ =

∫ +1

−1

Bbi,ρ(x
′, x(η))Jne(η)dη (48)

and:

Bbi,ρ(x
′, x) = V bi,αρ(x

′, x)nα(x)− ν

(1− ν)λ2
U biα,ρ(x

′, x)nα(x) (49)

for plate bending. Expressions for the fundamental solutions Uαβ,ρ, Tαβ,ρ, U
b
ij,ρ, T

b
ij,ρ, and V bi,αρ can be found

in [6].

The fundamental solutions Uαβ,ρ, Tαβ,ρ, U
b
ij,ρ, T

b
ij,ρ, and V bi,αρ are the derivatives with respect to direction

ρ of the fundamental solutions introduced in section 2.1.

The component of the plate-bending J-integral in the x1 direction is related to the bending stress intensity

factors for fracture modes I, II, and III in the following manner:

Jb1 =
12

Eh3

[
(Kb

I )
2 + (Kb

II)
2 +

h2(1 + ν)

10
(Kb

III)
2

]
(50)

Likewise, the component of the membrane J-integral in the x1 direction is related to the membrane stress

intensity factors for modes I and II in the following manner:

Jm1 =
(Km

I )2 + (Km
II)

2

E′h
(51)

where E′ is Young’s modulus, it is equal to E in the case of plane stress, or E/(1 − ν2) in the case of plane

strain. In order to obtain the individual stress intensity factors, the J-integral needs to be decoupled. A method

of achieving this for the membrane was presented in [12], a similar procedure for plate bending was presented

by Dirgantara and Aliabadi [7]. The membrane and plate-bending J-integrals can be decoupled into symmetric

JS and anti-symmetric JAS components:

Jm1 = Jm1
S + Jm1

AS Jb1 = Jb1S + Jb1AS (52)

where:

Jm1
S = Jm1

I =
(Km

I )2

E′h
Jm1
AS = Jm1

II =
(Km

II)
2

E′h
(53)

and:

Jb1S = Jb1I =
12

Eh3
(Kb

I )
2 Jb1AS = Jb1II + Jb1III =

12

Eh3

[
(Kb

II)
2 +

h2(1 + ν)

10
(Kb

III)
2

]
(54)

Therefore, the individual stress intensity factors for the membrane can be written as:

Km
I =

√
J1m
I E′h

(1− ν2)
(55)

Km
II =

√
J1m
II E

′h

(1− ν2)
(56)

To split the mode II and mode III components of Jb1AS , a displacement ratio as proposed by Rigby and Aliabadi

[29] is used:

∆w1 = w1(+180◦) − w1(−180◦) =
48

Eh3

√
2rKb

II (57)
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∆w3 = w3(+180◦) − w3(−180◦) =
24(1 + ν)

5Eh

√
2rKb

III (58)

∆w1

∆w3
=

10

(1 + ν)h2

Kb
II

Kb
III

(59)

where the subscripts (−180◦) and (+180◦) denote that the values were calculated on the lower and upper

surfaces of the crack respectively.

By substituting equation (59) into equation (54) the plate bending stress intensity factors for modes II and

III can be obtained:

Kb
I =

√
Eh3

12
J1b
I (60)

Kb
II =

√√√√√ J1b
II

12
Eh3

[
1 + 10

(1+ν)h2

(
∆w3

∆w1

)2
] (61)

Kb
III =

√√√√√ J1b
II

12(1+ν)
10Eh

[
1 + (1+ν)h2

10

(
∆w1

∆w3

)2
] (62)

The maximum values of the stress intensity factors through the thickness of the plate are:

Kmax
I =

Km
I

h
+

6

h2
Kb
I (63)

Kmax
II =

Km
II

h
+

6

h2
Kb
II (64)

Kmax
III =

3

2h
Kb
III (65)

Regarding the implementation of the J-integral using the DBEM - the J-integral path can be chosen as a

circular path centred around the crack tip. A series of equidistant internal points make up the circular path.

The integrations seen in equations (35) and (36) are carried out over this path using the simple Trapezoidal

rule. The cracks in this work are assumed to be traction-free, therefore the contribution of the integration

over the crack surfaces included in the contour is equal to zero. Therefore, the circular path is the only

component of the contour. Various integration paths starting from different crack nodes can be seen in Figure

2. The different integration paths were found to provide similar results, although it was found that the results

gradually converged as the starting node moved further from the crack tip. The results typically converged

after the 5th node, with the results from S5 and S7 showing very little difference.

S1

S3

S5

S7

x1

x2

Crack tip

Element end
points

Crack
nodes

Internal
points

Figure 2: The integration paths around a crack tip used to evaluate the J-integral. 32 internal points symmetric about the crack
axis are present along each integration path. The paths are named according to the crack node each path starts from.
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2.4. Stress Intensity Factor Sensitivity Evaluation

The derivative of the J-integral for plate bending with respect to some geometric variable Zm can be obtained

from equation (35):

Jbρ,m =

∫
Γ

[(
W b
,m− q3w3,m

)
nnρ +

(
W b− q3w3

)
nnρ,m−pkwk,ρm

]
dΓ +

∫
Γ

[(
W b− q3w3

)
nnρ −pkwk,ρ

]
(dΓ),m (66)

Likewise for two-dimensional plane stress (membrane):

Jmρ,m =

∫
Γ

[(
Wm
,mnρ +Wmnρ,m

)
−
(
tβ,muβ,ρ + tβuβ,ρm

)]
dΓ +

∫
Γ

[
Wmnρ − tβuβ,ρ

]
(dΓ),m (67)

where the strain energy density derivatives for plate bending and membrane are:

W b
,m =

1

2

(
Mαβ,mχαβ +Mαβχαβ,m +Qα,mψα +Qαψα,m

)
(68)

and:

Wm
,m =

1

2

(
Nαβ,mεαβ +Nαβεαβ,m

)
(69)

respectively.

Similar to the method shown in section 2.3, the derivatives of the rotation sensitivities and displacement

sensitivities with respect to direction ρ in equations (66) and (67) (wk,ρm and uβ,ρm) can be calculated at some

internal point x′ that makes up the J-integral contour via the following integral equations:

uα,ρm(x′) +

Ne∑
ne=1

M∑
γ=1

Pneγ
αβ,ρmu

neγ
β +

Ne∑
ne=1

M∑
γ=1

Pneγ
αβ,ρu

neγ
β,m =

Ne∑
ne=1

M∑
γ=1

Qneγ
αβ,ρmt

neγ
β +

Ne∑
ne=1

M∑
γ=1

Qneγ
αβ,ρt

neγ
β,m (70)

where:

Pneγ
αβ,ρm = −

∫ +1

−1

Tαβ,ρm(x′, x(η))Nneγ(η)Jne(η)dη +−
∫ +1

−1

Tαβ,ρ(x
′, x(η))Nneγ(η)Jne

,m(η)dη (71)

Qneγ
αβ,ρm =

∫ +1

−1

Uαβ,ρm(x′, x(η))Nneγ(η)Jne(η)dη +

∫ +1

−1

Uαβ,ρ(x
′, x(η))Nneγ(η)Jne

,m(η)dη (72)

for the membrane, and:

wj,ρm(x′) +

Ne∑
ne=1

M∑
γ=1

P b,neγ
ij,ρmw

neγ
j +

Ne∑
ne=1

M∑
γ=1

P b,neγ
ij,ρ wneγ

j,m (73)

=

Ne∑
ne=1

M∑
γ=1

Qb,neγ
ij,ρmp

neγ
j +

Ne∑
ne=1

M∑
γ=1

Qb,neγ
ij,ρ pneγ

j,m + q3

Ne∑
ne=1

On,ne

i,ρm

where:

P b,neγ
ij,ρm = −

∫ +1

−1

T bij,ρm(x′, x(η))Nneγ(η)Jne(η)dη +−
∫ +1

−1

T bij,ρ(x
′, x(η))Nneγ(η)Jne

,m(η)dη (74)

Qb,neγ
ij,ρm =

∫ +1

−1

U bij,ρm(x′, x(η))Nneγ(η)Jne(η)dη +

∫ +1

−1

U bij,ρ(x
′, x(η))Nneγ(η)Jne

,m(η)dη (75)

Ob,neγ
i,ρm =

∫ +1

−1

Bbi,ρm(x′, x(η))Jne(η)dη +

∫ +1

−1

Bbi,ρ(x
′, x(η))Jne

,m(η)dη (76)

where:

Bbi,ρm(x′, x) =
(
V bi,αρm(x′, x)nα(x) + V bi,αρ(x

′, x)nα,m(x)
)

(77)

− ν

(1− ν)λ2

(
U biα,ρm(x′, x)nα(x) + U biα,ρ(x

′, x)nα,m(x)
)
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for plate bending. Expressions for the fundamental solutions Tαβ,ρm, Uαβ,ρm, T bij,ρm, U bij,ρm, and V bi,αρm can be

found in the Appendix.

The fundamental solutions Uαβ,ρm, Tαβ,ρm, U bij,ρm, T bij,ρm, and V bi,αρm are the derivatives with respect to

direction ρ of the fundamental solutions introduced in section 2.2.

The individual mode components of Jm1
,m and Jb1,m can be decoupled by using a similar procedure to that

shown in section 2.3. Therefore, the sensitivities of the individual stress intensity factors for the membrane can

be written as:

Km
I,m =

J1m
I,m

2Km
I

E

(1− ν2)
(78)

Km
II,m =

J1m
II,m

2Km
II

E

(1− ν2)
(79)

The sensitivities of the plate bending stress intensity factors for modes I, II, and III are:

Kb
I,m =

Eh3JbI,m
24Kb

I

(80)

Kb
II,m =

Eh3

24Kb
II

(
1 + 10

(1+ν)h2

(
∆w3

∆w1

)2
)2

{
JbII,m

(
1 +

10

(1 + ν)h2

(
∆w3

∆w1

)2
)

(81)

− 20

(1 + ν)h2
JbII

(
∆w3

∆w1

)(
∆w3

∆w1

)
,m

}

Kb
III,m =

5Eh

12(1 + ν)Kb
III

(
1 + (1+ν)h2

10

(
∆w3

∆w1

)−2
)2

{
JbII,m

(
1 +

(1 + ν)h2

10

(
∆w3

∆w1

)−2
)

(82)

+ 2JbII
(1 + ν)h2

10

(
∆w3

∆w1

)−3(
∆w3

∆w1

)
,m

}

The sensitivities of the maximum values of the stress intensity factors through the thickness of the plate are:

Kmax
I,m =

Km
I,m

h
+

6

h2
Kb
I,m (83)

Kmax
II,m =

Km
II,m

h
+

6

h2
Kb
II,m (84)

Kmax
III,m =

3

2h
Kb
III,m (85)

2.5. DBEM-based FDM for Plate Bending Problems

For the DBEM-based FDM, the first-order central finite difference scheme is used to obtain the sensitivities

of a stress intensity factor K with respect to a change in some geometric variable Zm:

∂K(Zm)

∂Zm
= K,m =

K(Zm + ∆Zm)−K(Zm −∆Zm)

2∆Zm
(86)

where ∆Zm is the step size. The choice of ∆Zm has significant influence on the accuracy of the derivative

K,m, if ∆Zm is too small then there will be significant rounding error, and if ∆Zm is too large then there will

be significant truncation error [30]. Since the optimal step size will change depending on the value of Zm, a

normalised step size ∆Z ′m is used such that ∆Zm = Zm∆Z ′m. In this work, an optimisation procedure is carried

out to determine the optimal normalised step size ∆Z ′m.
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2.6. First-Order Reliability Method (FORM)

In the field of structural reliability analysis, the boundary between the structure failing and not-failing is

defined as a ‘limit state’. This can be represented mathematically as a limit state function (LSF) or performance

function g(Z) [5]:

g(Z) = R− S(X) (87)

where R is the resistance of the structure to some load effect S, Z is a size q vector containing all of the design

variables that influence g, and X (X ⊆ Z) is a size n (n = q− 1) vector of the design variables that influence S.

The reliability, PR, of a structure can be determined by evaluating the following integral:

PR = 1− PF = P{g(Z) > 0} =

∫
g(Z)>0

fZ(Z)dZ (88)

where fZ(Z) is the joint PDF of Z. PF and PR involve integrating fZ(Z) over the regions defined by g(Z) < 0

(the failure region) and g(Z) > 0 (the safe region) respectively. All of the design variables are assumed to

be mutually independent. The direct evaluation of the above integral is usually very difficult since it can

be multidimensional if many design variables are involved. The integration boundary g(Z) = 0 can also be

multidimensional and is usually a non-linear function.

The First-Order Reliability Method (FORM) is a method that can be used to evaluate this integral and

is used in this work for this purpose. The version of FORM used in this work is the Advanced First-Order

Second-Moment (AFOSM) method for non-linear limit sate functions. More details on this method, and on

structural reliability analysis in general, can be found in [31].

3. Numerical Example

A numerical example involving a thick plate with an inclined centre crack subjected to membrane, bending,

and pressure loads is investigated. The plate used in this example can be seen in Figure 3. The plate is

made from steel, and is modelled using 32 quadratic elements on the outer boundary (8 for each edge), and 48

quadratic elements on the crack (24 for each crack face).

Clamped (uα = 0, wi = 0)
x2

x1

x3

2L

b2

2W

b1

h

p2

t2

q3 θ2a

Figure 3: Thick plate with an inclined through-thickness crack. The plate is subjected to the combined loading of a membrane
traction, a bending moment, and a uniform load. The geometric variables b1 and b2 denote the offset of the centre of the crack in

the x1 and x2 directions respectively from the low-left corner of the plate.

This example is split into two parts. In the first part, the SIF sensitivities of the critical crack tip are

calculated using the DBEM-based IDM (DBEM-IDM) and the DBEM-based FDM (DBEM-FDM). The purpose
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of this first part is to demonstrate the superior robustness and efficiency of the DBEM-IDM when compared

to the DBEM-FDM. In the second part, reliability analyses are carried out with the FORM using the SIF

sensitivities from the DBEM-IDM. The purpose of this second part is to demonstrate one possible application

of the SIF sensitivities calculated from the DBEM-IDM.

3.1. Stress Intensity Factor Sensitivities

The values of the geometric and loading design variables used in this first part of the example can be seen

in Table 1.

Table 1: The design variables used in the first part of the numerical example.

Parameter Description Value
θ Crack rotation angle 30◦ (0.524 rad)
a Crack half-length Variable (from 0.1-0.8 m)
b1 x1 position of the crack 1 m
b2 x2 position of the crack 1 m
L Plate half-length 1 m
W Plate half-width 1 m
h Plate thickness 0.15 m
t2 Membrane traction 4 MNm−1

p2 Bending moment 5 MN
q3 Uniform load 2 MNm−2

E Young’s modulus 206.8 GNm−2

ν Poisson’s ratio 0.29

The sensitivities of the maximum SIFs through the thickness of the plate (equations 83-85) with respect

to crack half-length a were calculated using both the DBEM-FDM and the DBEM-IDM with the J-integral.

The J-integral path used was the 5th path (S5 in Figure 2), and 32 internal points were used on this path. It

was found from a convergence study that increasing the path number or the number of internal points above

these values did not produce much change in the SIF sensitivities. The optimal normalised step size for the

DBEM-FDM was found to vary depending on the value of a/L. The procedure to find the optimal normalised

step size for a particular value of a/L involved calculating these sensitivities for a wide range of values of ∆Z ′m

from 1 × 10−5 to 9 × 10−1. There will be a range of values of ∆Z ′m for which the sensitivities are stable, and

the optimal value of ∆Z ′m is chosen from this range. It was found that a value of ∆Z ′m = 8 × 10−2 provided

sufficiently stable sensitivities at all of the values of a/L investigated. As mentioned in section 2.1, the DBEM-

IDM involves evaluating the nodal coordinate derivatives analytically. It therefore avoids the time-consuming

optimisation procedure required for the DBEM-FDM.

The normalised maximum stress intensity factors and their sensitivities can be seen in Figures 4 and 5

respectively. It can be seen that the sensitivities from the DBEM-FDM and the DBEM-IDM compared well for

all three maximum SIFs. Based on the data in the three sub-Figures of Figure 5, the mean absolute percentage

difference between the DBEM-FDM and the DBEM-IDM was 2.28%, 3.22%, and 2.37% for the sensitivities of

Kmax
I , Kmax

II , and Kmax
III respectively. These represent very small differences. In Figure 5c it can be seen that

there is a large difference of about 11.62% between the DBEM-FDM and the DBEM-IDM at a/L = 0.15. This

can be explained by the observation that at relatively small crack sizes (a/L ≤ 0.2) there is only a small range

of values of ∆Z ′m for which the SIF sensitivities are stable. This complicates the procedure of determining the

optimal value of ∆Z ′m.
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Figure 4: Normalised maximum stress intensity factors obtained from the DBEM from the J-integral using path S5 (see Figure 2).
These stress intensity factors were evaluated at θ = 30◦ (0.52 rads). (a) Kmax

I , (b) Kmax
II , (c) Kmax

III .
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Figure 5: Normalised maximum stress intensity factor sensitivities obtained from the DBEM-FDM and the DBEM-IDM from the
J-integral using path S5 (see Figure 2) with respect to crack half-length a vs. a/L. These sensitivities were evaluated at θ = 30◦

(0.52 rads). The normalised stepsize used for the DBEM-FDM is 5 × 10−2. (a) Kmax
I , (b) Kmax

II , (c) Kmax
III .

A convergence study of the SIF sensitivities from the DBEM-IDM was performed with respect to the J-

integral path used and the number of internal points making up the J-integral path. The results of this study

can be seen in Figure 6. It can be seen that the SIF sensitivities for paths S4-S6 are very similar. The SIF

sensitivities from S4 showed a maximum percentage difference with respect to those from S6 of only 2.17%.

This small difference indicates the SIF sensitivities are largely insensitive to the J-integral path used. It can also

be seen that the SIF sensitivities for each path converge as the number of internal points is increased. Based

16



on these results, the J-integral path and the number of internal points on this path were chosen as S5 and 32

respectively.
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Figure 6: Normalised maximum stress intensity factor sensitivities obtained from the DBEM-IDM from the J-integral using paths
S4-S6 (see Figure 2) with respect to crack half-length a vs. the number of internal points used on each path. These sensitivities

were evaluated at a/L = 0.45 and θ = 30◦ (0.52 rads). (a) Kmax
I , (b) Kmax

II , (c) Kmax
III .

A convergence study of the SIF sensitivities from the DBEM-IDM was also performed with respect to the

number of elements on each of the two crack faces. The results are presented in Figure 7. It can be seen

that the SIF sensitivities tend to converge as the number of elements on each crack face is increased. The

SIF sensitivities calculated with 24 or 28 elements show absolute percentage differences with those calculated
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with 32 elements of, at most, only 3.45% and 1.18% respectively. Because of these small differences, and also to

reduce computation time, 24 elements were used on each crack face in this work. The SIFs and their sensitivities

proved to be very insensitive to the number of elements on the outer boundary. It was decided to use 8 elements

per edge on the outer boundary to reduce computation time.
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Figure 7: Normalised maximum stress intensity factor sensitivities obtained from the DBEM-IDM from the J-integral using path
S5 (see Figure 2) with respect to crack half-length a vs. the number elements used on each crack surface. These sensitivities were

evaluated at a/L = 0.45 and θ = 30◦ (0.52 rads). (a) Kmax
I , (b) Kmax

II , (c) Kmax
III .
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3.2. Reliability Analysis

In this second part of the numerical example, reliability analyses are carried out on the plate seen in Figure

3. The failure condition of this plate is with regards to the onset of crack growth. The limit state function g in

this case is:

g(Z) = Go −Geff (X) (89)

where Go is the strain energy release rate required for the onset of crack growth, and Geff is the effective

strain energy release rate at the critical crack tip. The vector Z is composed of design variables that influence

g: Z = (θ, a, b1, b2, L,W, h, t2, p2, q3, E, ν,Go), while the vector X is composed of design variables that influence

Geff : X = (θ, a, b1, b2, L,W, h, t2, p2, q3, E, ν). The distributions of these variables can be seen in Table 2.

The distribution assigned to Go should ideally be found experimentally for the particular combination of loads

presented in this example. For demonstration purposes, Go is given an arbitrary distribution.

Table 2: The design variables used in the reliability analyses conducted in the second half of the numerical example.

Zi Xi Parameter Description Distribution Mean µ COV
Z1 X1 θ Crack rotation angle Normal 30◦ (0.524 rad) 0.05
Z2 X2 a Crack half-length Lognormal 0.1 m 0.05
Z3 X3 b1 x1 position of the crack Lognormal 1 m 0.05
Z4 X4 b2 x2 position of the crack Normal 1 m 0.05
Z5 X5 L Plate half-length Lognormal 1 m 0.05
Z6 X6 W Plate half-width Normal 1 m 0.05
Z7 X7 h Plate thickness Lognormal 0.15 m 0.05
Z8 X8 t2 Membrane traction Normal 4 MN/m 0.1
Z9 X9 p2 Bending moment Lognormal 5 MN 0.1
Z10 X10 q3 Uniform load Normal 2 MN/m2 0.1
Z11 X11 E Young’s modulus Lognormal 206.8 GPa 0.2
Z12 X12 ν Poisson’s ratio Lognormal 0.29 0.2

Z13 - Go
Strain energy release rate re-
quired for crack growth onset

Normal 100 J/m2 0.2

The sensitivities of g(Z) with respect to the variables in Z are required by the FORM to evaluate the

probability of failure PF . The sensitivities with respect to variables Z1 to Z6 can be evaluated using the DBEM-

IDM since they are geometric variables. While the sensitivities with respect to the non-geometric variables Z7

to Z12 can be evaluated using the DBEM-FDM. The sensitivity of g(Z) with respect to Go can be evaluated

analytically. In this work it was found that a normalised step size of ∆Z ′m = 5×10−2 provided stable sensitivities

from the DBEM-FDM for variables Z7 to Z12. The nodal coordinate derivatives with respect to variables Z1 to

Z6 required by the DBEM-IDM can be evaluated analytically.

The effective strain energy release rate Geff takes into account the combined effects of membrane and

bending loads. An equation for Geff was proposed by Dirgantara and Aliabadi [32]. A slightly modified version

of this equation, such that mode-II and mode-III components are separated from mode-I components, is used

in this work:

Geff (X) = GmI (X) + TIG
b
I(X) + TII

(
GmII(X) +GbII(X) +GbIII(X)

)
, 0 ≤ TI ≤ 1, 0 ≤ TII ≤ 1 (90)

where:

GmI (X) =
(Km

I (X))2

E
(91)

GmII(X) =
(Km

II(X))2

E
(92)
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GbI(X) =
π

3

(Kb
I (X))2

E
(93)

GbII(X) =
π

3

(Kb
II(X))2

E
(94)

GbIII(X) =
π(1 + ν)

5

(Kb
III(X))2

E
(95)

where TI and TII are empirically-found coefficients for a particular combination of loads.

The sensitivity of Geff with respect to some geometric variable Zm is:

Geff,m(X) = GmI,m(X)+TIG
b
I,m(X)+TII

(
GmII,m(X)+GbII,m(X)+GbIII,m(X)

)
, 0 ≤ TI ≤ 1, 0 ≤ TII ≤ 1 (96)

where:

GmI,m(X) =
2Km

I (X)Km
I,m(X)

E
(97)

GmII,m(X) =
2Km

II(X)Km
II,m(X)

E
(98)

GbI,m(X) =
π

3

2Kb
I (X)Kb

I,m(X)

E
(99)

GbII,m(X) =
π

3

2Kb
II(X)Kb

II,m(X)

E
(100)

GbIII,m(X) =
π(1 + ν)

5

2Kb
III(X)Kb

III,m(X)

E
(101)

Since TI and TII are unknown, reliability analyses were conducted over a range of combinations of these two

coefficients. The results of these analyses can be seen in Figures 8 and 9 which show 3D and 2D representations

of the same data respectively. As expected, it can be seen that increasing TI or TII increases the probability

of failure. TI was shown to have the most influence on the probability of failure, suggesting that mode-I

components have more influence than mode-II or mode-III in this example. This is due to the presence of the

membrane traction t2, and the fact that the crack rotation angle is quite low at 30◦.
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Figure 8: Probabilities of failure PF evaluated over a range of values for TI and TII (eqs. 90 and 96). This Figure presents the
data as a 3D surface plot.
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Figure 9: Probabilities of failure PF evaluated over a range of values for TI and TII (eqs. 90 and 96). This Figure presents the
data as a 2D contour plot.

To compare the levels of influence that the different design variables have on the reliability of the structure,

the sensitivities of g with respect to the variables in Z were calculated and they can be seen in Table 3. It can

be seen that among the geometric variables Z1 to Z6, that θ and a have the most influence on the reliability of

the structure, while variables b1, b2, L, and W have much less influence. This is intuitive since θ and a have a

much more direct influence on Geff . Negative sensitivities imply that increasing the value of the variable leads

reduced reliability. This can be seen with a, t2, and p2.

Table 3: Sensitivities of g with respect to the various design variables investigated in this example. The sensitivities are evaluated
at the means of each variable. Values of TI = 0.5 and TII = 0.5 were used.

Zi Xi Parameter
Normalised sensitivity

1
µGo

∂g
∂Xi

(×10−2)
Units

Z1 X1 θ 0.912 rad−1

Z2 X2 a -1.11 m−1

Z3 X3 b1 0.0381 m−1

Z4 X4 b2 0.287 m−1

Z5 X5 L 0.159 m−1

Z6 X6 W 0.0186 m−1

Z7 X7 h -0.0614 m−1

Z8 X8 t2 -3.42 mN−1

Z9 X9 p2 -1.49 N−1

Z10 X10 q3 0.339 m2N−1

Z11 X11 E 4.54 m2N−1

Z12 X12 ν -0.281 m2J−1

Z13 - Go 20.0 -

4. Conclusions

In conclusion, a new methodology for determining stress intensity factor (SIF) sensitivities for plate bending

problems using the Dual Boundary Element Method (DBEM) has been proposed. A DBEM-based Implicit

Differentiation Method (IDM), making use of the direct derivatives of the DBEM integral equations and J-
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integral formulations for plate bending - which have been derived for the first time, is used to evaluate SIF

sensitivities with respect to geometric parameters such as crack half-length a and crack rotation angle θ. A

numerical example featuring a thick plate subjected to membrane, bending, and pressure loads is presented, and

the results from the IDM are compared to the relatively crude Finite Difference Method (FDM). It was shown

that the IDM and the FDM compared quite well once the optimal step size for the FDM was determined. The

SIF sensitivities with respect to crack half-length a showed an average absolute percentage difference between

the IDM and the FDM of, at most, 3.07%. The necessary use of a time-consuming optimization procedure to

determine the optimal step size for the FDM suggests that the IDM is a significantly more efficient and robust

alternative to the FDM for SIF sensitivity evaluation for plate bending problems. In the second half of the

numerical example, a demonstration of one possible application of the DBEM-based IDM was presented. This

involved carrying out reliability analyses with the plate using the First-Order Reliability Method (FORM) with

a large number of design variables.

Appendix A Formulations for DBEM-based IDM

The fundamental solutions for the membrane and for plate bending can be found in [6]. The derivatives of

these fundamental solutions with respect to some geometric parameter Zm have been derived for the first time

in this work and are presented in this Appendix.

A.1 Useful Definitions

The following relationships are used in the fundamental solutions derived in this work.

rα = xα − x′α (102)

r =
√
r2
α =

√
r2
1 + r2

2 (103)

r,α =
rα
r

(104)

∂r

∂n
= r,n = nαr,α = n1r,1 + n2r,2 (105)

Derivatives with respect to direction xα:

∂f(r)

∂xα
=
∂f(r)

∂r

∂r

∂xα
=
∂f(r)

∂r
r,α (106)

r,αβ =
1

r

(
δαβ − r,αr,β

)
(107)

(r,n),α =
1

r

(
nα − r,αr,n

)
(108)

Derivatives with respect to some geometric variable Zm:

∂f(r)

∂Zm
=
∂f(r)

∂r

∂r

∂Zm
=
∂f(r)

∂r
r,m (109)

rα,m = xα,m − x′α,m (110)

r,m =
1

2

(
2r1r1,m + 2r2r2,m

)
r−1 = rαrα,mr

−1 = r,αrα,m (111)

r,αm =
rα,m
r
− rα
r2
r,m =

rα,m
r
− r,α

r
r,m =

1

r

(
rα,m − r,αr,m

)
(112)
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(
∂r

∂n

)
,m

= r,nm = (nγr,γ),m =

(
1

r
(nγrγ)

)
,m

=
1

r

(
(nγrγ),m − r,nr,m

)
(113)

(r,αr,β),m =
1

r

(
r,αrβ,m + r,βrα,m − 2r,αr,βr,m

)
(114)

(nγrγ),m = n1,mr1 + n2,mr2 + n1r1,m + n2r2,m (115)

Useful definitions for plate bending:

λ =
√

10/h (116)

z = λr (117)

B =
Eh

1− ν2
(118)

D =
Eh3

12(1− ν2)
(119)

C =
D(1− ν)λ2

2
(120)

where λ is the shear factor, h is plate thickness, and B, D, and C represent the tension stiffness, bending

stiffness, and shear stiffness of the plate respectively.

We also have:

A(z) = K0(z) +
2

z

[
K1(z)− 1

z

]
(121)

B(z) = K0(z) +
1

z

[
K1(z)− 1

z

]
(122)

where K0(z) and K1(z) are modified Bessel functions of the second kind.

A,m(z) = K0,m(z)− 2λr,m
z2

K1(z) +
2

z
K1,m(z) +

4λr,m
z3

(123)

B,m(z) = K0,m(z)− λr,m
z2

K1(z) +
1

z
K1,m(z) +

2λr,m
z3

(124)

where K0,m(z) and K1,m(z) are:

K0,m(z) = −λr,mK1(z) (125)

K1,m(z) = −λr,m
(
K0(z) +

1

z
K1(z)

)
(126)

A,ρ(z) = K0,ρ(z)−
2λr,ρ
z2

K1(z) +
2

z
K1,ρ(z) +

4λr,ρ
z3

(127)

B,ρ(z) = K0,ρ(z)−
λr,ρ
z2

K1(z) +
1

z
K1,ρ(z) +

2λr,ρ
z3

(128)

where K0,ρ(z) and K1,ρ(z) are:

K0,ρ(z) = −λr,ρK1(z) (129)

K1,ρ(z) = −λr,ρ
(
K0(z) +

1

z
K1(z)

)
(130)
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A,ρm(z) =
1

r2

(
2r,ρr,m − rρ,m

)(
2A(z) + zK1(z)

)
− r,ρ

r

(
2A,m(z) + λr,mK1(z) + zK1,m(z)

)
(131)

B,ρm(z) =
1

r2

(
2r,ρr,m − rρ,m

)(
A(z) + zK1(z)

)
− r,ρ

r

(
A,m(z) + λr,mK1(z) + zK1,m(z)

)
(132)

where K0,ρm(z) and K1,ρm(z) are:

K0,ρm(z) = −λ
(
r,ρmK1(z) + r,ρK1,m(z)

)
(133)

K1,ρm(z) = −λ

[
r,ρmK0(z) + r,ρK0,m(z)− λr,ρr,m

z2
K1(z) +

1

z

(
r,ρmK1(z) + r,ρK1,m(z)

)]
(134)

A.2 Membrane

The derivatives of the membrane fundamental solutions are:

Uαβ,m =
1 + ν

4πEh(1− ν)r

[
rα,mr,β + r,αrβ,m − ((3− 4ν)δαβ + 2r,αr,β)r,m

]
(135)

Uαβ,ρm = −r,m
r
Uαβ,ρ +

1 + ν

4πEh(1− ν)r

[
(3− 4ν)δαβr,ρm − δβρr,αm − δαρr,βm (136)

+ 2r,ρ(r,αmr,β + r,αr,βm) + 2r,αr,βr,ρm

]

Tαβ,m = − 1

4π(1− ν)r2

[
2r,n(rα,mr,β + r,αrβ,m − ((1− 2ν)δαβ + 4r,αr,β)r,m) (137)

+ (nγrγ),m((1− 2ν)δαβ + 2r,αr,β) + (1− 2ν)(nα,mrβ − nβ,mrα

+ nαrβ,m − nβrα,m)− 2(1− 2ν)(nαr,β − nβr,α)r,m

]

Tαβ,ρm = −2r,m
r

Tαβ,ρ +
1

4π(1− ν)r2

[
2r,nm

(
δαρr,β + δβρr,α − r,ρ

(
(1− 2ν)δαβ + 4r,αr,β

))
(138)

+ 2r,n

(
δαρr,βm + δβρr,αm − r,ρm

(
(1− 2ν)δαβ + 4r,αr,β

)
− 4r,ρ

(
r,αmr,β + r,αr,βm

))
+ nρ,m

(
(1− 2ν)δαβ + 2r,αr,β

)
+ 2nρ

(
r,αmr,β + r,αr,βm

)
− nβ,m(1− 2ν)

(
δαρ − 2r,αr,ρ

)
+ 2nβ(1− 2ν)

(
r,αmr,ρ + r,αr,ρm

)
+ nα,m(1− 2ν)

(
δβρ − 2r,βr,ρ

)
− 2nα(1− 2ν)

(
r,βmr,ρ + r,βr,ρm

)]

Dραβ,m = −r,m
r
Dραβ +

1

4π(1− ν)r

[
2r,ρ(r,αmr,β + r,αr,βm) + 2r,αr,βr,ρm (139)

+ (1− 2ν)(−δαβr,ρm + δραr,βm + δβρr,αm)
]
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Sραβ,m = −2r,m
r

Sραβ +
Eh

4π(1− ν2)r2

[
2r,nm

(
(1− 2ν)δαβr,ρ + ν(δαρr,β + δβρr,α)− 4r,αr,βr,ρ

)
(140)

+ 2r,n

(
(1− 2ν)δαβr,ρm + ν(δαρr,βm + δβρr,αm)− 4r,ρ(r,αmr,β + r,αr,βm)− 4r,αr,βr,ρm

)
+ 2ν(nα,mr,βr,ρ + nα(r,βmr,ρ + r,βr,ρm) + nβ,mr,αr,ρ + nβ(r,αmr,ρ + r,αr,ρm))

+ (1− 2ν)(2nρ,mr,αr,β + 2nρ(r,αmr,β + r,αr,βm) + δαρnβ,m + δβρnα,m)− (1− 4ν)δαβnρ,m

]

A.3 Plate Bending

The derivatives of the plate bending fundamental solutions are:

For U bij,m:

U bαβ,m =
1

8πD(1− ν)r

{[
8rB,m(z) + 2(ν − 1)r,m

]
δαβ − 8rA,m(z)r,αr,β (141)

−
[
8A(z) + 2(1− ν)

](
r,αrβ,m + r,βrα,m − 2r,αr,βr,m

)}

U bα3,m =
1

8πD

[
2r,mr,α + (2lnz − 1)rα,m

]
(142)

U b3α,m = U bα3,m (143)

U b33,m =
1

8πD(1− ν)λ2r

[
(1− ν)(2lnz − 1)z2 − 8

]
r,m (144)

For U bij,ρm:

U bαβ,ρm = −r,m
r
U bαβ,ρ −

1

8πD(1− ν)r

[(
8B,ρm(z)r + 8B,ρ(z)r,m − 2(1− ν)r,ρm

)
δαβ (145)

− 8A,ρmrr,αr,β − 8A,ρ(z)
(
r,αrβ,m + rα,mr,β − 2r,αr,βr,m

)
− 8A,m(z)

(
δαρr,β + δβρr,α − 2r,αr,βr,ρ

)
−
(

8A(z) + 2(1− ν)
)(
δαρr,βm + δβρr,αm − 2r,αr,βr,ρm − 2r,ρ(r,αmr,β + r,αr,βm)

)]

U bα3,ρm = − 1

4πDr

[
rα,mr,ρ + rρ,mr,α − 2r,αr,ρr,m + r,mδαρ

]
(146)

U b3α,ρm = −U bα3,ρm (147)
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U b33,ρm = − 1

8πD(1− ν)λ2r2

[
(rρ,m − 2r,ρr,m)

(
(1− ν)z2(2lnz − 1)− 8

)
+ 4(1− ν)r,ρr,mz

2lnz

]
(148)

For T bij,m:

T bαβ,m = −r,m
r
T bαβ −

1

4πr

[(
4A,m(z) + 2λr,mK1(z) + 2zK1,m(z)

)(
δαβr,n + r,βnα

)
(149)

+
(

4A(z) + 2zK1(z) + 1− ν
)(
δαβr,nm + r,βmnα + r,βnα,m

)
+ 4A,m(z)r,αnβ +

(
4A(z) + 1 + ν

)(
r,αmnβ + r,αnβ,m

)
− 2
(

8A,m(z) + 2λr,mK1(z) + 2zK1,m(z)
)
r,αr,βr,n

− 2
(

8A(z) + 2zK1(z) + 1− ν
)(
r,αr,βr,nm +

(
r,αmr,β + r,αr,βm

)
r,n

)]

T bα3,m =
λ2

2π

[
B,m(z)nα +B(z)nα,m −A,m(z)r,αr,n −A(z)

(
r,αmr,n + r,αr,nm

)]
(150)

T b3α,m = − (1− ν)

8π

[
2

(1 + ν)

(1− ν)

(
r,m
r
nα + nα,mlnz

)
− nα,m + 2

(
r,αmr,n + r,αr,nm

)]
(151)

T b33,m = − 1

2πr2

[
(nγrγ),m − 2r,nr,m

]
(152)

For T bij,ρm:

T bαβ,ρm =
rρ,m
r2

T bαβ +
r,ρ
r
T bαβ,m −

2r,m
r

T bαβ,ρ (153)

+
1

4πr2

[
2
(

2A,ρm(z) + λr,ρmK1(z) + λr,ρK1,m(z) + λr,mK1,ρ(z) + zK1,ρm(z)
)(
δαβ(nγrγ) + rβnα

)
+ 2
(

2A,ρ(z) + λr,ρK1(z) + zK1,ρ(z)
)(
δαβ(nγrγ),m + rβnα,m + rβ,mnα

)
+ 2
(

2A,m(z) + λr,mK1(z) + zK1,m(z)
)(
δαβ(nρ − r,ρr,n) + nα(δβρ − r,βr,ρ)

)
+
(

4A(z) + 2zK1(z) + 1− ν
)

×
(
δαβ(nρ,m − r,ρmr,n − r,ρr,nm) + nα,m(δβρ − r,βr,ρ)− nα(r,βmr,ρ + r,βr,ρm)

)
+ 4A,ρm(z)rαnβ + 4A,ρ(z)(rα,mnβ + rαnβ,m)

+ 4A,m(z)
(
δαρ − r,αr,ρ

)
nβ +

(
4A(z) + 1 + ν

)(
δαρnβ,m − r,αr,ρnβ,m − nβ(r,αmr,ρ + r,αr,ρm)

)
− 4
(

4A,ρm(z) + λr,ρmK1(z) + λr,ρK1,m(z) + λr,mK1,ρ(z) + zK1,ρm(z)
)
r,αr,β(nγrγ)

− 4
(

4A,ρ(z) + λr,ρK1(z) + zK1,ρ(z)
)(
r,αr,β(nγrγ),m + (nγrγ)(r,αmr,β + r,αr,βm)

)
− 4
(

4A,m(z) + λr,mK1(z) + zK1,m(z)
)(
r,αr,βnρ + r,n(δαρr,β + δβρr,α − 3r,αr,βr,ρ)

)
− 2
(

8A(z) + 2zK1(z) + 1− ν
)

×
(
r,αr,βnρ,m + nρ(r,αmr,β + r,αr,βm) + r,nm(δαρr,β + δβρr,α − 3r,αr,βr,ρ)

+ r,n
(
δαρr,βm + δβρr,αm − 3r,αr,βr,ρm − 3r,ρ(r,αmr,β + r,αr,βm)

))]
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T bα3,ρm = −r,m
r
T bα3,ρ −

λ2

2πr

[
B,ρm(z)rnα +B,ρ(z)

(
r,mnα + rnα,m

)
(154)

−A,ρm(z)rαr,n −A,ρ(z)
(
rα,mr,n + rαr,nm

)
−A,m(z)

(
δαρr,n + r,αnρ − 2r,αr,ρr,n

)
−A(z)

(
δαρr,nm + r,αmnρ + r,αnρ,m − 2r,αr,ρr,nm − 2r,n(r,αmr,ρ + r,αr,ρm)

)]

T b3α,ρm = −r,m
r
T b3α,ρ +

(1− ν)

8πr

[
2

(1 + ν)

(1− ν)

(
r,ρmnα + r,ρnα,m

)
(155)

+ 2
(
r,αmnρ + r,αnρ,m + r,nm(δαρ − 2r,αr,ρ)− 2r,n(r,αmr,ρ + r,αr,ρm)

)]

T b33,ρm = −2r,m
r

T b33,ρ +
1

2πr2

[
nρ,m − 2

(
r,ρmr,n + r,ρr,nm

)]
(156)

For V bi,βm:

V bα,βm =
2

r
r,mV

b
α,β +

r

128πD

[
4r,m

(
δαβ + 2r,αr,β

)
+ 2
(
4lnz − 3

)(
r,αrβ,m + r,βrα,m − 2r,αr,βr,m

)]
(157)

V b3,βm = − 1

128πD(1− ν)λ2

{
rβ,m

[
32
(
2lnz − 1

)
− z2(1− ν)(4lnz − 5)

]
(158)

+ 2r,βr,m

[
32− z2(1− ν)(4lnz − 3)

]}

For V bi,βρm:

V bα,βρm =
r,m
r
V bα,βρ −

r

64πD

[
4
r,m
r

(
δαβr,ρ + δαρr,β + δβρr,α

)
(159)

+
(

4lnz − 3
)(
δαβr,ρm + δαρr,βm + δβρr,αm

)
+ 4r,αr,βr,ρm + 4r,ρ

(
r,αr,βm + r,βr,αm

)]

V b3,βρm =
1

64πD(1− ν)λ2r

[(
δβρr,m + r,βrρ,m + r,ρrβ,m

)(
32− (1− ν)z2(4lnz − 3)

)
(160)

− 4r,βr,ρr,m

(
16 + (1− ν)z2

)]
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For Db
iβk,m:

Db
αβρ,m = −r,m

r
Db
αβρ +

1

4πr

[(
4A,m(z) + 2λr,mK1(z) + 2zK1,m

)(
δβρr,α + δαρr,β

)
(161)

+
(

4A(z) + 2zK1(z) + 1− ν
)(
δβρr,αm + δαρr,βm

)
− 2
(

8A,m(z) + 2λr,mK1(z) + 2zK1,m

)
r,αr,βr,ρ

− 2
(

8A(z) + 2zK1(z) + 1− ν
)(
r,ρ
(
r,αmr,β + r,αr,βm

)
+ r,ρmr,αr,β

)
+ 4A,m(z)δαβr,ρ +

(
4A(z) + 1 + ν

)
δαβr,ρm

]

Db
αβ3,m = − (1− ν)

8πr

[
2
(
r,αrβ,m + r,βrα,m

)
− r,m

(
4r,αr,β − 2

(1 + ν)

(1− ν)
δαβ

)]
(162)

Db
3βρ,m =

λ2

2π

[
B,m(z)δρβ −A,m(z)r,ρr,β −A(z)

(
r,ρmr,β + r,ρr,βm

)]
(163)

Db
3β3,m =

1

2πr2

(
rβ,m − 2r,βr,m

)
(164)

For Sbiβk,m:

Sbαβρ,m = −2r,m
r

Sbαβρ +
D(1− ν)

4πr2

[(
4A,m(z) + 2λr,mK1(z) + 2zK1,m(z)

)(
δραnβ + δρβnα

)
(165)

+
(

4A(z) + 2zK1(z) + 1− ν
)(
δραnβ,m + δρβnα,m

)
+ 4A,m(z)δαβnρ +

(
4A(z) + 1 + 3ν

)
δαβnρ,m

−
(

16A,m(z) + 6λr,mK1(z) + 6zK1,m(z) + 2zλr,mK0(z) + z2K0,m(z)
)

×
(

(nαr,β + nβr,α)r,ρ + (δραr,β + δρβr,α)r,n

)
−
(

16A(z) + 6zK1(z) + z2K0(z) + 2− 2ν
)(

(nα,mr,β + nαr,βm + nβ,mr,α + nβr,αm)r,ρ

+ (nαr,β + nβr,α)r,ρm + (δραr,βm + δρβr,αm)r,n + (δραr,β + δρβr,α)r,nm

)
− 2
(

8A,m(z) + 2λr,mK1(z) + 2zK1,m(z)
)(
δαβr,ρr,n + nρr,αr,β

)
− 2
(

8A(z) + 2zK1(z) + 1 + ν
)(
δαβ(r,ρmr,n + r,ρr,nm) + nρ(r,αmr,β + r,αr,βm) + nρ,mr,αr,β

)
+ 4r,αr,βr,ρr,n

(
24A,m(z) + 8λr,mK1(z) + 8zK1,m(z) + 2zλr,mK0(z) + z2K0,m(z)

)
+ 4
(

24A(z) + 8zK1(z) + z2K0(z) + 2− 2ν
)

×
(
r,ρr,n(r,αmr,β + r,αr,βm) + r,αr,β(r,ρmr,n + r,ρr,nm)

)]

Sbαβ3,m = −r,m
r
Sbαβ3 +

D(1− ν)λ2

4πr

[(
2A,m(z) + λr,mK1(z) + zK1,m(z)

)(
r,βnα + r,αnβ

)
(166)

+
(

2A(z) + zK1(z)
)(
r,βmnα + r,βnα,m + r,αmnβ + r,αnβ,m

)
− 2
(

4A,m(z) + λr,mK1(z) + zK1,m

)
r,αr,βr,n

− 2
(

4A(z) + zK1(z)
)(
r,n(r,αmr,β + r,αr,βm) + r,αr,βr,nm

)
+ 2A,m(z)δαβr,n + 2A(z)δαβr,nm

]
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Sb3βρ,m = −r,m
r
Sb3βρ −

D(1− ν)λ2

4πr

[(
2A,m(z) + λr,mK1(z) + zK1,m(z)

)(
δρβr,n + r,ρnβ

)
(167)

+
(

2A(z) + zK1(z)
)(
δρβr,nm + r,ρmnβ + r,ρnβ,m

)
− 2
(

4A,m(z) + λr,mK1(z) + zK1,m(z)
)
r,ρr,βr,n

− 2
(

4A(z) + zK1(z)
)(
r,n(r,ρmr,β + r,ρr,βm) + r,ρr,βr,nm

)
+ 2A,m(z)nρr,β + 2A(z)

(
nρ,mr,β + nρr,βm

)]

Sb3β3,m = −2r,m
r

Sb3β3 +
D(1− ν)λ2

4πr2

[
nβ

(
2zλr,mB(z) + z2B,m(z)

)
+ nβ,m

(
z2B(z) + 1

)
(168)

− r,βr,n
(

2zλr,mA(z) + z2A,m(z)
)
−
(
z2A(z) + 2

)(
r,βmr,n + r,βr,nm

)]

For Q∗iβ,m:

Q∗αβ,m =
r,m
r
Q∗αβ −

r

64π

[
4
r,m
r

(
(1− ν)(r,βnα + r,αnβ) + (1 + 3ν)δαβr,n

)
(169)

+
(

4lnz − 3
)(

(1− ν)(r,βmnα + r,βnα,m + r,αmnβ + r,αnβ,m) + (1 + 3ν)δαβr,nm

)
+ 4r,nm

(
(1− ν)r,αr,β + νδαβ

)
+ 4(1− ν)r,n(r,αmr,β + r,αr,βm)

]

Q∗3β,m =
1

8π

[
2
r,m
r
nβ +

(
2lnz − 1

)
nβ,m + 2

(
r,βmr,n + r,βr,nm

)]
(170)

A.4 Discretisation

When discretising the integral equations seen in sections 2.1-2.4, a transformation has to be made from

global coordinates (xi) to the local coordinates (η) of the elements that make up this discretisation. This

transformation is accomplished by calculating the Jacobian of each element ne and is described in detail in [6].

The derivatives of the Jacobian of some element ne with respect to some geometric variable Zm is:

Jne
,m(η) =

1

Jne(η)

[
dxne

1 (η)

dη

dxne
1,m(η)

dη
+
dxne

2 (η)

dη

dxne
2,m(η)

dη

]
(171)

where:

xne
α,m(η) =

M∑
k=1

Nnek(η)xnek
α,m (172)

(
dxne
α (η)

dη

)
,m

=
dxne
α,m(η)

dη
=

M∑
k=1

dNnek(η)

dη
xnek
α,m (173)
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k denotes the local node number, and M is the total number of nodes present in each element (for quadratic

elements M = 3). Quadratic elements are used in this work. Therefore k can equal 1, 2, or 3.

The derivatives of the outward unit normals of some element ne can also be calculated:

nne
1,m(η) =

1

Jne(η)

[
dxne

2,m(η)

dη
− nne

1 (η)Jne
,m(η)

]
(174)

nne
2,m(η) = − 1

Jne(η)

[
dxne

1,m(η)

dη
+ nne

2 (η)Jne
,m(η)

]
(175)
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