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Summary

Turing patterns (TPs) underlie many fundamental de-
velopmental processes, but they operate over narrow
parameter ranges, raising the conundrum of how evo-
lution can ever discover them. Here we explore TP
design space to address this question and to distill de-
sign rules. We exhaustively analyze 2- and 3-node bio-
logical candidate Turing systems, amounting to 7,625
networks and more than 3 × 1011 analysed scenar-
ios. We find that network structure alone neither im-
plies nor guarantees emergent TPs. A large fraction
(>61%) of network design space can produce TPs,
but these are sensitive to even subtle changes in pa-
rameters, network structure and regulatory mecha-
nisms. This implies that TP networks are more com-
mon than previously thought, and evolution might
regularly encounter prototypic solutions. We deduce
compositional rules for TP systems that are almost
necessary and sufficient (96% of TP networks contain
them, and 92% of networks implementing them pro-
duce TPs). This comprehensive network atlas provides
the blueprints for identifying natural TPs, and for en-
gineering synthetic systems.

Introduction

Pattern formation is an essential aspect of develop-
ment in biology and we have a wealth of examples
how complex, structured, multi-cellular organisms de-
velop from single fertilized cells. Many organisms de-
velop complex spatial features with exquisite precision
and robustness, and this has been the subject of exten-
sive molecular and theoretical study (Green & Sharpe,
2015; Maini, Woolley, Baker, Gaffney, & Lee, 2012).
Various mechanisms have been proposed to ex-

plain developmental patterning processes, ranging
from maternally inherited cues (Wolpert, 1969), to
mechanical forces (Howard, Grill, & Bois, 2011)

and chemical reaction-diffusion networks or Turing
patterns (TPs) (Gierer & Meinhardt, 1972; Turing,
1952). The latter were first proposed by Alan Turing
in 1952 (Turing, 1952), and were later independently
described by Gierer and Meinhardt (Gierer & Mein-
hardt, 1972). TPs are particularly intriguing because
they are capable of generating entirely self-organized,
complex, repetitive patterns of gene expression (Fig-
ure 1A, B).

TPs generally alter local concentrations of biochem-
ical components, resulting in self-organized spatial
patterns such as spots, stripes and labyrinths (Kondo
& Miura, 2010). These patterns have unique and use-
ful biological properties: perturbing them results in
recovery and re-organization of the patterns ("heal-
ing"), as an intrinsic property of the dynamical bio-
chemical interactions. This also implies that if there is
variability in size across individuals, the TPs will au-
tomatically re-scale themselves, simply adding or sub-
tracting pattern segments in response to different field
sizes. This is a valuable property to support changes in
size, both within existing populations and over evolu-
tionary time. In addition, TP networks are extremely
parsimonious, often employing just two or three bio-
chemical species. This implies that they might be an
economical solution for evolution to employ, wherever
repetitive self-organizing patterns are needed.

Given these advantages, it is perhaps not surprising
that TPs are regarded as the driving morphogenetic
patterning mechanisms in many biological systems.
These include bone and tooth formation, hair folli-
cle distribution and the patterns on the skins of an-
imals, such as fish and zebras (Raspopovic, Marcon,
Russo, & Sharpe, 2014; Sick, Reinker, Timmer, &
Schlake, 2006; Jung et al., 1998; Nakamasu, Taka-
hashi, Kanbe, & Kondo, 2009; Economou et al., 2012).
However, despite several experimentally verified ex-
amples (Raspopovic et al., 2014; Sick et al., 2006),
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the underlying complexity in biological systems has of-
ten prevented identification of the precise molecular
mechanisms governing the potentially large number
of TPs in nature. A second key problem is that there is
a paradox between the apparent widespread distribu-
tion of natural TPs and the observation— frommathe-
matical analyses (Gaffney, Yi, & Lee, 2016; Iron, Wei,
& Winter, 2004; Palmer, 2004; Meinhardt & Gierer,
2000; Gierer & Meinhardt, 1972) — that kinetic pa-
rameters need to be finely tuned for TPs to arise. This
raises the questions of how evolution could ever dis-
cover such tiny islands in parameter space and, even
if it could, how would the resulting developmental
mechanisms still occur robustly under noisy real con-
ditions.
One approach to resolve these apparent contradic-

tions is to explore TP systems mathematically. While a
rich mathematical literature on Turing patterns exists,
the vast majority of studies analyze single, idealized
networks with fixed parameters (Gaffney et al., 2016;
Iron et al., 2004; Liu, Shi, Wang, & Feng, 2013). Al-
though these studies have significantly increased our
understanding of patterning mechanisms, they do not
provide general guidelines for either the identifica-
tion of naturally evolved Turing networks in biolog-
ical systems, or for synthetic engineering of TP net-
works (Scholes & Isalan, 2017; Borek, Hasty, & Tsim-
ring, 2016; Carvalho et al., 2014; Duran-Nebreda &
Solé, 2016; Boehm, Grant, & Haseloff, 2018; Cachat
et al., 2016; Diambra, Senthivel, Menendez, & Isalan,
2015; Cachat et al., 2016). A recent approach which
has proved very successful in increasing our under-
standing of biological design principles is the "net-
work atlas" approach (Babtie, Kirk, & Stumpf, 2014;
Ma, Trusina, El-Samad, Lim, & Tang, 2009). In this
approach, biological networks that execute a partic-
ular function are modeled exhaustively: for exam-
ple, all 2 and 3-node inducible genetic networks that
achieve adaptation behaviour were modeled by Ma et
al. (Ma et al., 2009). Similarly, all 3-node networks
that form a central stripe pattern in a developmental
morphogen signaling gradient were modeled by the
group of Sharpe (Cotterell & Sharpe, 2010; Schaerli
et al., 2014). Such approaches allow one to compare
network and parameter design space (Barnes, Silk,
Sheng, Stumpf, & Stumpf, 2011) with the resulting
phenotypic map, resulting in an atlas or guidebook for
the design principles behind that function. A guide-
book of potential mechanisms and design rules for dis-
covering TP networks would help towards solving the
problem of characterizing molecular players in natu-
ral TP systems. Furthermore, a comprehensive Atlas
of Turing network space might shed new light on the
problem of how evolution could ever discover and sta-
bilize systems which only ever function in tiny islands
of parameter space.
In terms of progress towards creating a TP network

atlas, two recent studies have begun to analyze larger
sets of TP network topologies and parameters and

have made important progress in our global under-
standing of Turing systems (Zheng, Shao, & Ouyang,
2016; Marcon, Diego, Sharpe, & Müller, 2016). Mar-
con et al., 2016 find only a small number of networks
being stable, and only a tiny fraction exhibiting Turing
patterns. However, they study only linear reaction sys-
tems with all steady states located at zero. While this
may be mathematically convenient, it is known to sys-
tematically bias stability analysis and to misrepresent
the stability properties of realistic systems (frequently
>90% misclassification, Kirk, Rolando, Maclean, and
Stumpf, 2015a; Maclean, Kirk, and Stumpf, 2015).
Furthermore, the simplified modelling framework al-
lowed "negative concentrations". It is therefore un-
clear to what extent these results apply to real bio-
logical systems with positive concentrations and non-
linear regulatory functions. In a further study, Zheng
et al. did analyze all 2- and 3-node networks for a
more realistic model with positive concentrations and
non-linear regulatory functions (Zheng et al., 2016),
considering activating competitive and inhibiting non-
competitive interactions as regulatory mechanisms.
These authors find many more Turing networks than
Marcon et al., showing the importance of analyzing
biologically realistic models. However, in our current
work we find that Zheng et al. still identified only a
fraction of the existing Turing networks. This is pre-
sumably due to their relatively sparse sampling of po-
tential scenarios.
In this work, we therefore carry out an exhaus-

tive analysis and comparison of different, biologi-
cally relevant regulatory functions, as well as compre-
hensive sensitivity/robustness analyses of Turing net-
works with respect to parameter variations. While the
analysis of a given system w.r.t. its Turing generating
capability is conceptually straightforward, it comes
with various numerical difficulties and pitfalls, making
an efficient and robust automated analysis non-trivial.
For this study we developed code that allows us to

perform efficient and robust TP analysis. The code is
user-friendly and allows the automated analysis of net-
works of arbitrary size and types of regulatory func-
tions. We utilised this code together with significant
computational resources to perform an extensive anal-
ysis of 7, 625 different networks with up to three re-
acting species, testing them for their ability to form
TPs for different parameters and regulation types on
a much larger scale than has previously been done (we
analyzed approximately 3× 1011 different scenarios -
amounting to 8 CPU years computing time). As sum-
marized in Figure 1D, these are analyzed in terms of
(1) the network topology; (2) the regulatory function;
(3) the kinetic parameters; (4) the diffusion constants
of the different species. We consider both competitive
and non-competitive regulatory mechanisms (Figure
1E) and study their quantitative and qualitative dif-
ferences.
In this way, we systematically explore what propor-

tion of network topologies are capable of generating
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Mammalian systems as an example for competitively regulated systems

In eukaryotic systems intercellular communication is highly developed and thus cell-to-cell signaling
molecules exist in abundance. External signals are typically conveyed to the cell by signaling
pathways downstream of membrane-bound receptors. Binding to such receptors by activating or
inhibiting species is often of a competitive nature. Moreover, truncated versions of activating
species frequently form inhibiting counterparts. We therefore explore mammalian systems as a
scenario in which competitive interactions are dominating. We have identified the most robust
competitive Turing networks (Figure XX).

We further explored the generated network atlas in the light of an existing network that was
proposed for engineering purposes: a system using HGF (hepatocyte growth factor) and NK4
(a truncated version of HGF) as activator and inhibitor, respectively [?]. They both mediate a
response via the c-Met receptor signaling pathway that activates or represses a human derived-
MMP-1 promoter construct. In a previous study, this system was analyzed as a classical 2-node
system and the authors suggested that a single promoter construct driving the expression of both
activating and inhibiting species could suffice to create Turing Patterns [?]. This system would,
however, require differential diffusion (10 fold) and a co-operativity factor of >= 2 for feasible
Turing pattern generation. In reality, the network can be seen as a 3-node network in which c-Met
composes the central node and mediates the signals between both HGF and NK4 (see Fig 7 C).
With this model, the network equals the core topology #28 with nodes B and C diffusing. Indeed,
this topology is amongst the top 10 % of the most robust topologies according to our results. Even
so, the classical requirements found for the 2-node system persist HGF and NK4 are more likely to
diffuse at quite similar rates, making this network only implementable if HGF could be modified
to diffuse much more slowly. To decrease the necessity of differential diffusion, and maintain the
original single promoter design, the network atlas reveals that including a positive feedback loop
on top of the receptor would suffice to make equal diffusivity accessible for given network (# 63
BC). This, however, though improving robustness with respect to extracellular parameters does
not improve intracellular robustness significantly and thus in total, robustness is only marginally
improved (1.3 fold). To significantly improve the design (4.6 fold), an additional direct interaction
between HGF and NK4 would have to be engineered (NK4 activating HGF). Overall, this shows
how the network atlas can help decipher engineering options.
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Figure 1: Reaction networks and Turing instabilities. (A) A network graph of the Gierer-Meinhardt model (Gierer
& Meinhardt, 1972) as an example for a 2-node Turing network (top), with the corresponding ordinary differen-
tial equations below (bottom). Blue and red arrows indicate activating and inhibiting regulations, respectively.
Species A activates both itself and species B, while species B inhibits species A. (B) The top left panel represents
the diffusion profiles for species A (blue, slow activator) and the bottom panel for species B (red, fast inhibitor).
Over time, small deviations in a noisy, non-homogeneous initial condition (Panel 2) can get amplified by the in-
terplay of reactions and diffusion (Panel 3). For the given system this can lead to the formation of stable patterns
(Panel 4). (C) An exemplary dispersion relation (real part of the largest eigenvalue of the linearized system as a
function of wavenumber q) of the system shown in (A). The wavenumber qmax for which the dispersion relation
is maximal becomes amplified the strongest. This leads to the formation of a pattern with wavelength 2π/qmax

as shown in the inset. (D) In this article we analyze four hierarchical factors determining a network’s pattern
forming properties: the topology — the species and types of interactions between them; the regulatory function
— the functional form of the interactions; kinetic parameters — parameters in the regulatory functions; and
the diffusion constants of the different species. (E) Visualization of the two regulatory mechanisms analyzed
in this study on a transcriptional level. A species regulated by two other components is represented as a node
with two incoming edges (middle panel). We model such multiple regualatory inputs either as competitive or
non-competitive: non-competitive regulation describes the case where transcription factors (TF) bind to inde-
pendent TF sites and thus regulate the recruitment of RNA polymerase (RNAP) and transcription independently
(left panel). In the competitive case, in contrast, TFs directly compete for the binding site.

TPs. Moreover, we rank these networks with respect
to their robustness to variations in network topology,
kinetic parameters and diffusion rates, allowing us to
determine which kinds of networks are most robust.
We thus identify a set of irreducible or minimal net-

works from which all Turing networks can systemat-
ically be constructed. This in turn allows us to distill
and test compositional rules for predicting whether a
given network will support TPs.
With these results in hand we can identify the net-

works that are most suitable for downstream syn-
thetic engineering under different physiological con-
ditions. There is growing interest in synthetic biol-
ogy to engineer patterning systems from first princi-
ples (Basu, Gerchman, Collins, Arnold, &Weiss, 2005;
Schaerli et al., 2014; Borek et al., 2016; Carvalho et
al., 2014; Duran-Nebreda & Solé, 2016; Boehm et al.,
2018; Cachat et al., 2016). Artificial TPs are expected
to have eventual applications in nanotechnology, tis-

sue engineering and regenerative medicine (Scholes &
Isalan, 2017; Tan, Chen, Peng, Zhang, & Gao, 2018).
Despite much effort in this area, engineered TPs re-
main elusive. Our comprehensive Turing network at-
las contains the "blueprints" required for identifying
natural TPs, and guiding the engineering of synthetic
systems.

Results

Developing a tractable model to search for TPs

We generate a network atlas in order to explore the
design space of TP formation. Our goal is to study the
dynamical behavior of spatially-distributed molecule
concentrations, and their capability to form stable spa-
tial patterns, across the complete range of 2- and 3-
node network topologies. Furthermore, we consider
different regulatory functions (competitive and non-
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competitive Hill functions), over as wide a range of
parameters as possible (e.g. diffusion, activation, and
repression, etc.) and necessary; we thus forgo mathe-
matical convenience and tackle biologically more real-
istic models using state-of-the-art computationally in-
tensive, but robust methods.
A network’s capability to form patterns is deter-

mined by four factors (Figure 1D). First, the network
topology needs to be defined. Next, the functional
form of the interactions fi need to be specified. Sub-
sequently, the kinetic parameters need to be specified.
Finally, we have to include diffusion.
To define network structure (Figure 2) we only con-

sider connected networks that cannot be split into
non-interacting sub-networks. We further exclude
networks with nodes that have no incoming or out-
going edges as these are not involved in feedback pro-
cesses. The influence of such nodes on the rest of the
network would thus not have any impact on spatial
patterning. Finally, we reduce the number of networks
using symmetry arguments (Ma et al., 2009; Babtie et
al., 2014), where simply relabeling nodes maps one
onto the other.
This network pruning results in 21 and 1934

networks with two and three nodes, respectively.
For 3-node systems, we further distinguish which
species/nodes diffuse. For a system with two diffus-
ing entities (3N2D networks) this results in 5670 net-
works (see SI document 6 for a complete list of net-
work graphs), where A and B denote diffusing nodes
and C is assumed to be stationary, and in 1934 net-
works where all three nodes can diffuse.
Having defined the network topologies, we next

specify the regulatory mechanisms (Figure 2B). In
this work, we use Hill-type functions for the reg-
ulation as these have been found to fit well with
experimental measurements of gene regulatory net-
works (Estrada, Wong, DePace, & Gunawardena,
2016; Becskei, Séraphin, & Serrano, 2001; Rosenfeld,
Elowitz, & Alon, 2002; Burrill & Silver, 2010; Gardner,
Cantor, & Collins, 2000; Ferrell & Machleder, 1998;
Ferrell, Tsai, & Yang, 2011; Klumpp, Zhang, & Hwa,
2009). We consider fully non-competitive and fully
competitive regulation (c.f. Figure 1E, Figure 2B and
STAR methods for equations); the former corresponds
to the situation where transcription factors indepen-
dently regulate the corresponding target gene (Figure
1E, left panel); for the latter case transcription factors
compete for shared or overlapping binding sites (Fig-
ure 1E, right panel). We also include basal production
and a linear degradation term for each species (see
STAR Methods).
Regarding the choice of parameter values, the

degradation rates and the Hill coefficients were varied
over a range of 0.01−1 and 2−4, respectively. All other
intracellular parameters were varied over the range
0.1 − 100. Because the resulting number of param-
eter combinations for a fully-connected 3-node net-
work (3P networks, where P = 18 is the number of

parameters) exceeded feasible running times, 3-node
systemswere further restricted by setting V = 100 and
b = 0.1. These values were chosen because they lead
to the largest robustness of 2-node networks w.r.t. the
other parameters. Finally, the diffusion rates (i.e. the
extracellular parameters) were set to 1 for node A and
varied between 10−3 and 103 for node B and C. The in-
tracellular parameters were varied over three values,
while the diffusion constants were varied over seven
values. Therefore, we are able to determine with a
high degree of certainty whether a system can exhibit
the hallmarks of a TP mechanism: (i) stability of the
non-spatial dynamics; with (ii) simultaneous instabil-
ity of the corresponding spatial dynamics (see STAR
Methods).
To determine property (i), we need to find stable

states of the non-spatial model of a given system. We
do so by numerically solving the corresponding or-
dinary differential equations on a grid of initial con-
ditions (see STAR methods for details). We subse-
quently verify, by means of linear stability analysis, if
the found steady state is indeed stable.
Next, to determine if criterion (ii) is satisfied, we

need to assess whether the stable steady state of the
non-spatial model becomes unstable if we consider a
spatial model with diffusion. To this end, the homo-
geneous steady state is perturbed by a harmonic wave
of a certain wavevector q. The stability can then be
determined by the dispersion relation: the behaviour
of the real part of the largest eigenvalue of the sys-
tem’s Jacobian as a function of q (see Figure 2C and
STAR methods for details). If the dispersion relation
becomes positive for some finite wavevector q, the sys-
tem becomes unstable. If it assumes a positive maxi-
mum for a finite qmax, the system typically gives rise
to a pattern of wavelength 2π/qmax, and we speak of
a “Turing I” instability.
We note that due to the rotational symmetry of spa-

tially homogeneous systems, the dispersion relations
of systems of arbitrary dimension are equivalent to the
one-dimensional case, which means the systems pos-
sess the same stability behaviour. It is hence sufficient
to study one-dimensional dispersion relations.

Turing topologies are common but sensitive to
regulatory mechanisms

Analyzing all 2-node topologies (21 networks) and 3-
node topologies with two diffusors (5670 networks)
we find that more than 61% can exhibit Turing I In-
stabilities and thus we expect them to be capable of
generating TPs (Figure 3A). This large number of po-
tential Turing networks is many fold higher than the
number of networks identified in the literature to date
(≈ 700 topologies) (Zheng et al., 2016; Marcon et al.,
2016).
We observe that subtle features beyond network

structure influence a network’s pattern generating ca-
pability. The first difference appears in the choice of
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Figure 2: Definition and analysis of networks
(A) Definition of network structure. Left: 2- and 3-node networks containing all possible edges. The latter can be specified
as either 0’s (no regulation), 1’s (activation) and -1’s (inhibition). From the set of all possible networks, we identify groups of
networks that are equivalent to each other (redundant) and remove all but one network per group. Furthermore, we exclude
networks containing any unconnected node(s). The resulting networks can be represented as a network graphs or by their
adjacency matrices. The network shown here corresponds to network #8 (see Figure 3A).
(B) Generation of ODEs equations. Each edge in a network corresponds to a Hill term in the ODE equations. The way these
terms get combined depends on the regulatory mechanism. In the equations, V denotes the maximum level of expression
and b the basal production rate. n is the Hill coefficient, indicating the "steepness" of the regulation. We include a linear
degradation term with degradation constant µ for each species.
(C) Workflow for estimating steady states and identifying Turing instabilities. Left panel: for each parameter, a range (see
table) is specified and a logarithmic grid generated with three values per parameter. The range of the parameters represents
closely the biophysical properties of proteins and samples four orders of magnitude for each of the sampled parameter dimen-
sions. For 3-node systems the parameters V and b were fixed to 100 and 0.1, respectively. These parameters were chosen as
they maximized the likelihood of finding a TP solution for all studied 2-node systems. Even then, for fully connected 3-node
networks, the remaining parameter combinations amount to 531441. Middle panel: for each parameter set, the correspond-
ing ODEs are solved numerically until time t = 1000 for several different initial conditions. We use k-means clustering on the
endpoints of the trajectories to find the steady states of the system. Right panel: the final step of the algorithm calculates the
eigenvalues of the Jacobian for each steady state. For the Jacobian evaluated at zero diffusion, the real parts of all eigenvalues
are required to be smaller than zero, corresponding to a stable steady state. Subsequently, diffusion is taken into account. A
Turing instability exists if the real part of the largest eigenvalues becomes positive for some finite wavenumber q. Depending
on the behavior of the eigenvalue as a function of the wavenumber q, we classify the instability into two types. In this article
we only consider Type I instabilities as only these generate patterns with finite wavelengths.

regulatory mechanism. We find that there are fewer
competitive Turing topologies overall among the 2-
node networks (Figure 3A). Five networks are de-
tected for non-competitive mechanisms, of which only
three are found for competitive interactions (Figure
3B). However, we find that the rarer competitive inter-
actions are more robust to parameter variations than
non-competitive interactions, which results in more
TP solutions within a given topology. Network#8 con-
stitutes the classical Turing network, which was ana-
lyzed by Alan Turing in 1952 (Turing, 1952). The
other 2-node networks have also been reported else-
where (Zheng et al., 2016; Marcon et al., 2016).

For 3-node systems we similarly find Turing topolo-
gies that are shared by both regulatory mechanisms
(2356 networks, Figure. 3A). While a large fraction of
topologies exhibit a Turing I instability, this is again
mainly for non-competitive interactions. This is in
sharp contrast to the existing literature which mainly
highlights the network topology as the deciding factor
for TP capability (Diego, Marcon, Müller, & Sharpe,
2017). By contrast, our more detailed analysis shows
that network structure alone does not suffice: choice
of regulatory function and parameters also critically
determine a network’s Turing capability.

So far, we have considered systems with either com-
petitive or non-competitive interactions. However,
real biological systems may employ combinations of
the two regulation types. While it would be instruc-
tive to study all possible combinations, this increases
the number of networks by two orders of magnitude
and we leave this analysis for future work.

Minimal topologies define key properties such as
pattern phasing

We next set out to determine key features/topologies
required to generate TPs. A similar analysis, for ex-
ample, revealed that the key motifs to achieve sin-
gle stripe patterns mediated by external cues (French
Flag patterns) are incoherent feed-forward loops (In-
golia & Murray, 2004; Schaerli et al., 2014; Cotterell
& Sharpe, 2010).
To identify minimal TP motifs, we create a net-

work atlas in which all networks that differ by a sin-
gle edge are connected (see atlas for 2-node systems
in Figure 3C). Each connection between a network
represents the addition/deletion of a single edge, or
a change of sign of a single edge. Networks are subse-
quently sorted hierarchically according to their com-
plexity (here defined as network size). From all net-
works that can generate TPs, we identify two min-
imal or "core topologies" for 2-node networks: #8
for the competitive case and #8 and #9 for the non-
competitive case. All other Turing networks can be
constructed from these by the addition of one or more
edges.
In Turing patterns the concentration maxima of the

different molecular species are either in phase or out
of phase. "In phase" refers to systems in which the
maximal concentrations of all species coincide (Figure
1B). By simulating the spatial behaviour (see STAR
Methods: PDE simulations), we find that all 2-node
Turing networks with competitive regulations give rise
to in-phase patterns. In the competitive case, it ap-
pears that the networks#15 and#20 inherit the pat-
terning phase from the core network#8 to which they
can be reduced.
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Figure 3: Results for 2-node networks. (A) Visualization of the sampled network topology space and fractions
of Turing pattern generators (Turing topologies) for 2- and 3-node networks with 2 diffusing molecules. (B)
Considered 2-node networks selected according to criteria described in Figure 2A. Blue and red edges indicate
activation and inhibition, respectively. The networks are arranged according to their complexity (that is, the
number of edges) with increasing complexity towards the bottom. Each network is given an ID number (1-21).
Lilac boxes indicate the networks identified as Turing pattern generators. Dark lilac indicates non-competitive
regulatory mechanisms, whereas the lighter shade indicates competitive ones. (C) Hierarchical graph of 2-node
networks. Each node represents a network of a given ID number. Networks are connected by an edge whenever
they can be transformed into each other by addition, deletion or modification (change of sign) of a single edge.
For example network #1 can be transformed into network #4 by addition of a negative self-interaction on node
A, and network #1 into network #2 by changing the sign of one edge from inhibition to activation (see networks
in (B)). The nodes are colored according to the legend shown in (A), with different shades of lilac indicating
for which regulatory mechanism the networks exhibit Turing I instabilities. (D) Representative 2-dimensional
patterns for the identified 2-node Turing generating networks. Note that for visualisation purposes the figure
shows the patterns generated by species A and B next to each other for each system. The parameters for which
the patterns were generated are given in SI document 2.
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For non-competitive regulation network #8 again
exhibits only in-phase patterning, whereas the second
core topology, network #9, shows out-of-phase pat-
terning. One might thus expect network #20 (which
can be reduced to either network #8 or network #9
by removal of one edge) to give rise to both in and
out-of-phase patterns. Our analysis shows that this is
indeed the case and phase can be controlled by the
diffusion constants: when A diffuses faster than B,
in-phase patterning is observed, whereas if B diffuses
faster than A, patterning is out of phase. Key quali-
tative properties of TPs such as phasing appear to be
mediated — but are not determined — by the under-
lying core topologies; which node corresponds to the
"fast" or "slow" species also profoundly affects the TP.

Core topologies also specify phase properties for
3-node networks

In order to identify core topologies, we next apply the
complexity reduction procedure to the 5670 different
3-node networks with two diffusing nodes. In the fol-
lowing, these networks will be referred to as 3N2D
(numbers refer to amount of either the nodes = N,
or the diffusing molecules = D). The resulting hier-
archical graph can no longer be depicted due to its
large size (> 2400 nodes and > 104 dependencies).
But within this atlas, we find 12 and 20 core topolo-
gies for competitive and non-competitive regulation,
respectively, all of which have four edges (Figure 4A).
As in the 2-node case, the competitive core topologies
constitute a subset of the non-competitive systems.

To test the pattern’s phasing, we perform PDE sim-
ulations for all systems. In-phase mechanisms (Figure
4A bottom) are observed less commonly than out-of-
phase mechanisms (Figure 4A top). One might expect
that in-phase mechanisms are rarer with three nodes,
sincemore species now have to be in phase. In contrast
to the 2-node case, however, some competitive sys-
tems now also form out-of-phase patterns. Across the
core topologies, we only observe either out-of-phase or
in-phase patterns, which suggests that these minimal
topologies exhibit unique behaviors.

Analyzing 3-node networks with three diffusing
nodes, we find that all such 3N3D Turing networks are
also a 3N2D Turing network. We further find the same
core topologies for two and three diffusing molecules.
This suggests that networks in which three molecules
diffuse are mere expansions of the Turing parameter
set, but that the instability driving component already
exists in the two-diffuser systems. In order to under-
stand the core TP mechanisms for 3-node systems,
we can therefore focus on those with two diffusing
species.

Two core motifs account for more than 92% of
Turing topology space

Analyzing all 3-node core TP topologies, we identify
two common core motifs: a positive feedback on at
least one of the diffusing nodes, consisting of one or
two edges (Figure 4B); and a diffusion-mediated neg-
ative feedback loop on both diffusing nodes (Figure
4C).
For the first core motif three possible configurations

exist: a direct positive feedback (e.g. network#45) or
an indirect positive feedback consisting of either two
positive or two negative edges to another node. The
interaction can either be mediated via the other dif-
fusing node (e.g. network #60) or the non-diffusing
node (e.g. network#123). The second coremotif con-
sists of a negative feedback loop on one of the diffus-
ing nodes that is mediated through the other diffusing
node. This motif can be realized in different ways and
some examples are shown in Figure 4C.
Having identified these two core motifs, we re-

analyze all 2-node networks with respect to these mo-
tifs. We find that all 2-node Turing networks do in-
deed possess both core motifs, and all networks con-
taining both motifs exhibit Type I instabilities in the
non-competitive case (Figure 3B). For the 3-node net-
works, we find that 96% of all networks containing
both core motifs do exhibit Turing I instabilities. Since
we can only sample a finite number of parameters,
we cannot categorically rule out that the missing 4%
might also exhibit a Turing I instability for certain pa-
rameters (and for each case we analyzed another 105
randomly sampled parameter sets per network, which
again failed to result in TPs). Analyzing all networks
exhibiting Turing I instabilities, we observe that 92%
possess both core motifs. We confirm by simulation
that the remaining 8% topologies do indeed give rise
to TPs despite the absence of the core motifs. There-
fore, the two identified core motifs together constitute
an almost necessary and almost sufficient criterion for
Turing I instabilities for 2-node and 3-node systems.
To assess if the core motifs are also meaningful for

larger networks we analysed randomly generated 4-
node networks with respect to their TP capability. For
25 networks possessing both core motifs, we find that
84% indeed exhibit TPs. In contrast, for 25 networks
not possessing both core motifs, only 24% give rise
to Turing patterns. This suggests that our composi-
tional rules are still meaningful for larger networks,
even though they appear to be less restrictive than for
2- and 3-node networks.

Differentiating Turing instabilities

The dispersion relation of a system is typically related
to the resulting pattern: the wavenumber qmax for
which the dispersion relation assumes a global maxi-
mum (see STAR Methods) experiences the largest am-
plification. We thus expect to see a pattern with wave-
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Figure 4: Core networks and core motifs for 3-node networks. (A) Top: 3-node core topologies that generate
out-of-phase patterns (one species’ maximum concentration is shifted by half a period with respect to the other
two). Bottom: 3-node core networks exhibiting in-phase patterns (all concentration maxima aligned). Colored
frames indicate the regulatory mechanism (competitiveness) for which the networks exhibit Turing I instabilities.
(B) Realisations of first core motif: positive feedback loop of length one or two on one of the diffusing nodes.
The figure shows the different possibilities to achieve this. If the path length is two it can be mediated by
either the other diffusing or the stationary node. (C) Examples for the second identified core motif: diffusion-
mediated negative feedback on a diffusing node. One diffusing node has to have a negative feedback loop whose
path includes the other diffusing node. This interaction can consist of two, three or four edges and the figure
shows one example each. The core motifs in (B) and (C) are almost sufficient and almost necessary for TPs.
(D) Examples of different Turing instabilities and resulting patterns. Note that for Turing IIa and Turing IIb
instabilities no patterns are formed. Note also that in the multistable case 1, no pattern is generated despite
the existence of a Turing I instability. Instead, starting from a perturbation around the stable steady state with
Turing I instability (indicated as dashed lines) this moves to a second homogeneous steady state. This behavior
is observed for 4% (non-competitive) and 14 % (competitive) of multistable network-parameter combinations
exhibiting a Turing I instability. The parameters for which the dispersion relations and patterns were generated
are given in SI document 3.
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Figure 5: Quantifying a network’s Turing capability:
defining four measures of robustness. (A) Left: defi-
nition of intracellular (or extracellular) robustness as
the fraction of sampled kinetic (or diffusion) parame-
ter sets leading to Turing I instabilities. Right: defini-
tion of topological robustness as the fraction of neigh-
boring networks (that is, networks into which a given
network can be transformed by addition, deletion or
modification of a single edge) that exhibit Turing I
instabilities. The example shows that two out of six
neighbors of network #8 are Turing networks, lead-
ing to a robustness of 2/6. The total robustness is de-
fined as the product of intracellular, extracellular and
topological robustness. (B) Mean values for the dif-
ferent robustness measures for non-competitive (dark
lilac) and competitive systems (light lilac). 2N (2Nr)
denotes 2-node systems for which V and b are varied
(restricted to 100 and 0.1, respectively). 3N2D rep-
resents the 3-node systems with two diffusing nodes.
(C-F) Histogram plots of the four robustness measures
comparing both regulatory mechanisms for 3N2D net-
works. We find that competitive systems are on aver-
age more robust for intracellular processes, whereas
non-competitive systems are topologically more ro-
bust. In terms of total robustness, a subset of 3N2D
competitive networks constitute the best performing
networks.

length 2π/qmax (see Figure 1C).
Because of the unprecedentedly large number of

networks considered here, we also find dispersion re-
lations that have not previously been discussed. We
can distinguish four different groups of dispersion re-
lations. First, the "classical" Turing I instability fulfills
three criteria: for q = 0, the system should be stable
(i.e. (λ) < 0); for a finite q we have (λ) > 0; and
(λ) < 0 for q →∞. This type of instability is the most
commonly discussed mechanism underlying TPs.
For a Turing II instability the steady state is stable

for q = 0, and the dispersion relation becomes posi-
tive for some q but becomes maximal for q →∞. Con-
sequently, short wavelengths get amplified the most,
which does not lead to a stable pattern with a well-
defined wavelength.
The previous cases are referred to as Type Ia and IIa

instabilities. However, other types of dispersion rela-
tions exist for diffusion driven instabilities. Figure 4D
shows examples for all four categories that we find.
Type Ib is similar to Type Ia and is capable of pro-
ducing stable patterns. But the dispersion relation of
Type Ib does not fulfill the third criterion, (λ) < 0 for
q →∞, and remains positive instead.
Analogously Type IIb is similar to Type IIa and does

not produce patterns, but in contrast to the original
Type IIa case, the dispersion relation becomes nega-
tive again for some intermediate q, see Figure 4D.
We note that in the analyses described in the previ-

ous sections we have distinguished systems according
to their patterning capability and referred to Ia and
Ib jointly as "Type I", and IIa and IIb jointly as "Type
II". Both types of instabilities are important when con-
sidering TP systems. Ib could be mistaken for a non-
patterning system as it does not fulfill a classical crite-
rion for a Turing I instability, whichmay lead to under-
estimating the robustness of a system. Similarly, IIb
can be mistaken for a Type I instability (if q is sam-
pled over an insufficient scale) consequently leading
to an overestimation of Turing robustness.

Turing I instabilities are not a sufficient criteria
for patterning

In development, cell-fate decisions are often governed
by systems in which multiple stable steady states ex-
ist (Harrington, Azogui, Yahalom-Ronen, Plotnikov, &
Stumpf, 2014; Harrington et al., 2013; Moris, Pina,
& Martinez Arias, 2016). We therefore explore how
multi-stability affects TP formation. Systems with
multiple stable steady states can exhibit Type I in-
stabilities (Ia or Ib), either for a single or for sev-
eral steady states. The former has also been reported
in a recent preprint (Smith & Dalchau, 2018). We
investigate the PDEs for all multistable systems for
which either one or multiple Turing I instabilities are
present. Even though most systems indeed show the
expected pattern formation (86% and 96 %, for com-
petitive and non-competitive systems, respectively),
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some do not (14% for competitive and 4% for non-
competitive). Rather than observing patterning, we
find that these systems transition from a perturbation
around the steady state with a Turing I instability to
one of the other stable steady states, see Figure 4D
Panel 5. We thus conclude that a Type I Turing insta-
bility is not a sufficient criterion for pattern formation
in multi-stable systems.

Defining quantifiable measures of robustness

It is crucial not only to identify networks that exhibit
Turing instabilities, but also to assess their sensitivity
with respect to the uncertainties that pervade systems
biology modelling (Kirk, Babtie, & Stumpf, 2015b).
To this end, we define four measures of robustness:
robustness to intracellular processes, robustness to ex-
tracellular processes, topological robustness and total
robustness (Figure 5A). As intracellular parameters,
we define all kinetic parameters of the ODE equations
(see Figure 2B) that describe the chemical interactions
between species within cells, and we define "intracel-
lular robustness" as the fraction of the analyzed pa-
rameter combinations that is capable of Turing pattern
formation.
In addition to intracellular processes, the speed of

extracellular diffusion of molecules determines if a
network possesses a Turing instability. We accord-
ingly define the "extracellular robustness" as the ro-
bustness of a Turing network to changes in the diffu-
sion constants, given that the intracellular parameters
are fixed to values that can give rise to a Turing insta-
bility.
Moreover we are typically not even certain about

the network topology of biological systems (Babtie et
al., 2014). Accordingly we define "topological robust-
ness" as follows: for a given network, consider all net-
works that can be generated by adding, removing or
changing one edge (see Figure 5A). Then the topolog-
ical robustness is defined as the fraction of generated
networks that are capable of exhibiting Turing I insta-
bilities.
Finally, the "total robustness" is defined as the prod-

uct of the intracellular, extracellular and topological
robustness (Figure 5).

Competitive 3-node systems are the most robust
Turing networks

Turing networks with competitive interactions are on
average more robust than non-competitive ones, in
particular with respect to intracellular parameters.
This is consistent for 2-node systems (∼ 1.7-fold), and
3-node systemswith two diffusing species (∼ 1.8-fold)
(Figure 5B). As the intracellular robustness varies over
about two orders of magnitude more than the ex-
tracellular and topological robustness (Figure 5 B-
D), competitive systems are also in total more robust
(∼ 1.5 − 1.9-fold). Choice of regulatory interactions

can have significant influence on a network’s Turing
capability: non-competitive topologies are more likely
to be able to generate TPs whereas competitive sys-
tems that do generate TPs are on average more robust.
We note that this is only the case on average; there ex-
ist some individual topologies that are more robust for
non-competitive regulations.
Due to computational cost, the parameters V and

b were restricted for the analysis of 3-node systems
(see STAR Methods). Consequently, to compare like-
for-like, we calculated the robustness for 2-node sys-
tems under the condition that V and b were fixed to
the same values (denoted 2Nr in Figure 5B). With this
restriction on parameter space, 2-node systems are on
average more robust to intracellular variations than 3-
node systems ∼ 3-fold for competitive and ∼ 2.7-fold
for non-competitive regulations). On the other hand,
3-node systems are on average more robust to extra-
cellular (∼ 1.5 (competitive) and ∼ 1.4-fold (non-
competitive)) and topological (∼ 1.5-fold (competi-
tive) and ∼ 2-fold (non-competitive)) variations than
2-node systems. Even though in total the average ro-
bustness of 2 compared to 3-nodes does not differ ap-
preciably, among the top (most robust) networks, 3-
node systems are more than 4-fold more robust in to-
tal than the top 2-node systems (data not shown). It
is thus likely that TP networks in nature will be com-
posed of at least three interacting species.

Robustness maps of 3N2D topology space to re-
veal the most robust networks and their neigh-
borhoods

Due to the large number of 3-node Turing topologies
we visualize their total robustness in a "robustness
map" shown in Figure 6A,E. We group networks ac-
cording to their complexity, and depict the most ro-
bust network for each class (right panel). Overall,
networks with complexity of 5-6 (competitive) and
6-7 (non-competitive) are the most robust topology
groups. However, we find no clear relationship be-
tween robustness and topology complexity. This fur-
ther suggests that increasing complexity does not gen-
erally lead to a larger robustness. All robustness mea-
sures (intracellular, extracellular, topological and total
robustness) are provided in SI document 7; network
identifiers correspond to those in the network graphs
provided in SI document 6.
Due to the large number of topologies, we are not

able to illustrate the full network atlas to show how
these networks are related. Instead, we provide a local
neighborhood atlas for the single most robust network
(Figure 6C,G) and a corresponding two-dimensional
PDE solution (Figure 6D,H). The local neighborhood
atlas contains all the networks that can be generated
from the central network by adding, deleting or mod-
ifying one edge. Most edge changes lead to a pro-
nounced drop in Turing robustness, although it is still
possible for evolution to "walk" from one topology to
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another while still maintaining a TP.

Identifying and engineering Turing systems in bi-
ological systems

Identifying Turing networks in real systems is a chal-
lenging task since it is typically difficult to identify
all interactions in a given system, exclude influences
of unobserved species, and/or to accurately estimate
the system parameters. Consequently, only few Tur-
ing systems have been identified in natural systems to
date and we believe that the results presented here
will support future findings. Given partial knowledge
of a hypothetical Turing system, the network atlas pre-
sented her may help to dismiss the hypothesis, or indi-
cate what additional interactions are needed, thereby
guiding further experiments. The identified core mo-
tifs should be particularly valuable in this respect as
they provide general guidelines for the composition of
potential TP networks.
Similarly, we believe that our results will prove to

be useful for the challenging task of synthetically en-
gineering TP networks. Given a synthetic system with
certain components considered as suitable to produce
TPs, our network atlas allows to identify missing inter-
actions and necessary parameter values, allowing to
tune the system torwards TP behaviour, or vice versa,
allow to dismiss a the potential model all together.
Crucially, we do not only provide a comprehensive at-
las of networks capable of producing TPs, but a com-
plete list of robustness values w.r.t. different measures,
further supporting the identification of potential sys-
tems.
One important result of this study are the significant

differences between competitive and non-competitive
interactions w.r.t. TP generation. When searching for
TPs in biological systems, it is hence not sufficient to
merely identify the topology in terms of species and
activating and inhibiting interactions, but the specific
types of regulatory mechanisms need to be consid-
ered. While these are known for some biological net-
works, they are often difficult to identify. Our results
may help to refine further experiments or dismiss po-
tential models.
We found that fewer competitive TP systems exist

than non-competitive ones, while the former are on
average more robust than their non-competitive coun-
terparts. This raises an interesting question from an
evolutionary perspective: is it more likely for nature to
find systems by varying the whole topology or by vary-
ing exploring parameter values for given topologies?
More experiments on natural TP systems are needed
to answer this question.
Interestingly, w.r.t. robustness in diffusion parame-

ters the opposite is true: non-competitive systems are
more robust than their competitive counterparts. In
particular in the context of engineering of TPs where
differential diffusion is often difficult to achieve, this

may have implications on the choice of potential build-
ing blocks.
The most suitable networks for engineering pur-

poses are those that are the most robust, both to in-
tracellular parameters, as well as supporting a wide
range of extracellular differential diffusion combina-
tions. In this regard, the top networks in Figure 6
are the most interesting for synthetic biology engi-
neering projects. The most robust network is #1275
(Figure 6F). However, this requires competitive inter-
actions, which may be challenging from a synthetic
biology perspective. For example, activators and in-
hibitor connections inside cells (e.g. transcription fac-
tors) would need to interact with the same operator
site to enable competition. Although this is not impos-
sible, the non-competitive network#3954 (Figure 6B)
might therefore be easier to engineer. Notably, #3954
supports out-of-phase expression of nodes A and B,
which thus would give better resolved colour reporter
outputs (e.g. GFP and RFP).

Discussion

Turing’s pattern generating mechanism, later inde-
pendently rediscovered by Gierer andMeinhardt, is an
elegant way in which purely biochemical mechanisms
can give rise to reproducible and self-organizing spa-
tial patterns. Despite initial unease (and sometimes
outright hostility) over them being relevant and ro-
bust mechanisms of patterning, TPs are now widely
accepted and have become an important cornerstone
of modern developmental biology.
Given their provenance, it is perhaps not surprising

that TPs have also received close attention by mathe-
matical modelers interested in biological pattern for-
mation. But these have typically focused on single
models, exploring them in great detail. The large-
scale in silico surveying of potential TP models is a
much more recent phenomenon. There are two po-
tential pitfalls in such analyses: (i) computational cost
may require simplified models or prohibit exhaustive
analysis; (ii) automating any mathematical analysis,
but in particular something as subtle as pattern for-
mation is non-trivial unless we have very precise crite-
ria by which stability, robustness and patterns can be
scored. Our approach addressed these issues explic-
itly and from the outset, and the algorithm employed
here is capable of analyzing a wide range of different
network structures and is independent of functional
choices for regulatory mechanisms and rate functions.
The code is freely available and allows the automated
analysis of arbitrary networks in a user-friendly man-
ner.
In combination with extensive computational re-

sources, we conducted a thorough and comprehensive
analysis of 2-node and 3-node candidate Turing net-
work models (amounting to 8 CPU years computing
time). Our results demonstrate that the structure of
the network alone cannot determine whether a TP ex-
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Figure 6: Most robust 3-node Turing networks with non-competitive (A-D) and competitive (E-H) regulation
and two diffusing nodes. (A,E) Robustness map: The figure indicates the total robustness of all analyzed 3-node
networks arranged according to complexity. For each complexity class we show themost robust network, together
with its ID number. (B,F) Ten most robust networks with numbers indicating the corresponding network ID. Total
robustness decreases towards the right and bottom, i.e. for competitive regulation (F) network#1275 is the most
robust network. The robustness values are given in SI document 7. (C,G) Local neighborhood atlas for the most
robust competitive Turing network #1275 (center). Colored nodes indicate the total robustness value according
to the colorscale shown in (A). (D,H) 2-dimensional pattern for the the most robust non-competitive ((D)#3954)
and competitive Turing topology ((H)#1275). Yellow and blue indicate high and low species concentrations,
respectively, for nodes A, B and C. The parameters for which the pattern was generated are given in SI document
4.
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ists; this is in line with a large body of work on net-
work dynamics (Ingram, Stumpf, & Stark, 2006), but
seems to directly contradict results from other stud-
ies on TP mechanisms (Zheng et al., 2016; Marcon et
al., 2016). These, however, (i) fail to fully assess the
dependence of TP on regulatory mechanisms and re-
action rate parameters (largely because a mathemati-
cally more convenient model structure was imposed);
and (ii) their models are special cases of the more gen-
eral and more comprehensive treatment here.
Perhaps the most surprising result of this analysis is

how common networks capable of producing TPs are.
Due to the high sensitivity of TP networks to changing
parameters, it may seem unlikely that these can ever
exist in nature. How they are stabilised in real systems
remains an important open question in the field. How-
ever, the large number of TP networks identified here
(more than 61% of networks considered here can pro-
duce TPs) may go some way towards explaining how
natural systems evolved to produce them, since it gave
evolution many opportunities to ‘stumble’ across a po-
tential Turing network.
Being common but not very robust to parametric

and structural changes could suggest that many dif-
ferent architectures are used in nature to generate TPs
(as was already hinted at in some of Meinhardt’s work
(Meinhardt, 2013)). Once a structure is in place with
suitable regulatory interactions and reaction rate pa-
rameters, and the resulting TP confers an evolution-
ary advantage, natural selection is likely to maintain
this mechanism. However, it remains an open ques-
tion how systems in nature would be able to fine-tune
kinetic parameters to form stable TP networks.
While network structure by itself neither guaran-

tees nor implies the existence of a TP, the overwhelm-
ing majority of TP generating mechanisms embed the
hallmarks encapsulated by two core motifs: a positive
feedback on at least one of the diffusing nodes and
a diffusion-mediated negative feedback loop on both
diffusing nodes. It is tempting to speculate that larger
systems will also reflect these compositional rules and
have these core motifs embedded; a basic TP gener-
ating motif could thus, for example, be regulated in a
more nuanced manner.
Finally, our exhaustive analysis reveals a spectrum

of Turing-like instabilities, and subtle dependencies
between these and the eventual pattern formation.
These are naturally easily missed when analyzing in-
dividual Turing systems, or applying simplifying mea-
sures in large-scale surveys.
The analysis presented here provides us with a set

of blueprints for TP generating mechanisms that can
guide the search for naturally evolved Turing systems,
as well as the de novo engineering of biosynthetic sys-
tems. For the latter, in particular, competitive net-
works should be a safer bet, due to their increased
(intracellular) parametric robustness. This tension be-
tween commonality and robustness is perhaps one of
the most fascinating (or vexing) features of Turing

mechanisms.
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STAR Methods

Contact for reagent and resource
sharing
Further information and requests for resources should be di-
rected to and will be fulfilled by the Lead Contact, Michael
P.H. Stumpf (m.stumpf@imperial.ac.uk).

Method details
A semi-formal summary of our TP search

To identify potential Turing instabilities, we first consider
the stability of the non-spatial system. Suppose we have
a system of N interacting molecular species with time-
dependent concentrations xi(t), i = 1, . . . , N . We model
the dynamical behavior of such concentrations in terms of a
system of ordinary differential equations (ODEs),

d

dt
xi(t) = fi(x(t)), i = 1, . . . , N, (1)

where x(t) = (x1(t), . . . , xN (t)), and xi(t) ∈ R is the con-
centration of the ith species at time t. Equations of the form
in (1) cannot typically be solved exactly for nonlinear func-
tions fi. However, efficient numerical algorithms exist to
solve such equations approximately, leading to time trajec-
tories of the system, that is, to solutions xi(t) (see Figure
2C for examples). f(x(t)) = (f1(x(t)), . . . , fN (x(t))) in
equation (1) encodes the interactions between the differ-
ent species. If the xi denote protein concentrations, for ex-
ample, f(x(t)) may encode the regulatory mechanisms be-
tween the proteins.

Figure 1A shows a network representation of the Gierer-
Meinhardt model, and its governing ODEs (Gierer & Mein-
hardt, 1972). The nodes indicate the interacting species and
arrows the direction of interaction. We distinguish between
two possible types of interactions: activating (blue arrows)
and inhibiting (red arrows), which we encode in the corre-
sponding components of f(x(t)), whose functional form is
not specified by the graph (we employ Hill functions in the
reaction equations, see section System of ODEs below for
details).

We next include the spatial diffusion of molecules and
extend the model in Equation (1) to a spatial setting.
In this case the molecule concentrations xi(t) become
space-dependent concentration fields xi(r, t), where r =
(r1, . . . , rd) and ri denotes the spatial location in the ith
spatial direction and d is the spatial dimension of the sys-
tem. These fields satisfy the set of coupled partial differen-
tial equations (PDEs)

∂

∂t
xi(r, t) = Di∇2xi(r, t) + fi(x(r, t)), i = 1, . . . , n,

(2)

which is obtained from Equation (1) by adding the diffusion
termDi∇2xi(r, t), whereDi is the diffusion constant of the
ith species and ∇2 = ∂2/∂r21 + . . . + ∂2/∂r2d the Laplace
operator with respect to position r, and concentrations are
now functions of space and time, xi(r, t).

The next step is to screen for the formation of patterns
through diffusion-driven instabilities (Maini et al., 2012).

In this case, for any small spatial fluctuations one may ex-
pect the concentrations xi(r, t) to become spatially constant
again for large times. For many systems, this is indeed the
case, but for some systems the interplay of diffusion and re-
actions can lead to the molecules’ concentrations forming
spatial patterns with certain wavelengths that are stable and
reproducible in time.

In the Turing pattern framework we start with x∗, which
is the stable steady state concentration of the non-spatial sys-
tem in (1), i.e. fi(x∗) = 0, i = 1, . . . , n: if the system is in
state x∗, it remains there for all times, and if the system is
close to x∗ it will converge towards x∗. If spatial diffusion of
molecules is included into the model, as described in Equa-
tion (2), it is possible that deviations from the steady state
of certain length scales do not decay towards the homoge-
neous steady state, but are instead amplified. This is then
the diffusion-driven or Turing instability. If a finite wave
length exists that experiences the strongest amplification,
we speak of a Turing I instability. In this case, a system
typically forms a pattern of the wavelength for which the
amplification is maximal (see Figure 1C).

Mathematically, the stability is determined by the depen-
dence of the real part of the largest eigenvalue of the Jaco-
bian matrix of the system on the wavenumber q (see below
for more details). We also call this dependence the “disper-
sion relation” (see Figure 1C, 2C and 4D for examples). For
q = 0 (corresponding to a spatially homogeneous pertur-
bation) the real part of the largest eigenvalue is negative,
if evaluated at a stable steady state. If, however, the dis-
persion relation becomes positive for some wavenumber q,
these wavenumbers become amplified and the steady state
becomes unstable. For cases where the dispersion relation
has a maximum for a finite value of q, a Turing I instabil-
ity is present and the pattern is formed for this maximum
wavenumber qmax. If the dispersion relation remains posi-
tive and becomes maximal for large wavenumbers, we speak
of a Turing II instability (see bottom right panel in Figure
2C and Figure 4C Type IIa and IIb). In this case deviations
on arbitrarily small length scales become amplified, and no
stable pattern is formed. We thus only search for Turing I
instabilities in the following.

To find Turing instabilities and determine the instability
type, we first need to identify the stable steady states of a
given system, and subsequently study their dispersion rela-
tion. Figure 2C summarizes the computational procedure.

For each candidate network we perform this procedure
for a wide range of kinetic and diffusion parameters. We
therefore have to specify the intracellular parameters de-
termining the regulatory functions fi, as well as the dif-
fusion constants. The former consist of the parameters k
(dissociation rates), V (scaling factors), b (basal production
rates) and the degradation rate µ (see Equations in Fig-
ure 2B), which we vary across biologically relevant values
between 0.1 and 100 (0.01-1 for µ). We vary them on a
regular grid in logarithmic scale with 3 values per parame-
ter amounting to 3P intracellular parameter combinations
per network, where P is the number of parameters. The
extracellular/diffusion parameters are varied over a range
between 10−3 and 103. Due to computational cost, we
vary the parameters V and b only for the 2-node networks,
but fix them to 100 and 0.1, respectively, for 3-node net-
works. In total, we screened more than 3 × 1011 network-
parameter combinations for TP formation, which we believe
is the largest study of its kind to date.
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Definition of networks and ODEs

Networks
To generate all possible N -node networks we first compute
all possible (N × N)−matrices with elements 0, 1 and −1,
where a 0 (1/− 1) represents the absence (presence) of an
activating or inhibiting interaction/edge. The number of
matrices is reduced by considering only connected networks
and accounting for symmetries. We also remove matrices
that correspond to networks including nodes without any
incoming or outgoing edges. Each remaining matrix M
serves as an adjacency matrix for a network, where the
element Mij being 1 (−1) represents a positive (negative)
edge from node i to node j.

System of ODEs
For each adjacencymatrix we then construct the correspond-
ing set of ODEs. Each non-zero entry in the adjacency ma-
trix corresponds to a Hill-type term which are combined in
either a non-competitive or competitive case. If S+

i (S−i ) de-
notes the set of positive (negative) edges ending in node i,
then in the non-competitive case, the different regulators act
(and saturate) independently of each other, and we have,

fi(x1, ..., xN ) =Vi ·
∏

j∈S+
i

 1

1 +
(

kij

xj

)nij

 (3)

×
∏

j∈S−
i

 1

1 +
(

xj

kij

)nij

+ bi − µixi.

Here, Vi is the maximal induced production rate, bi the basal
production rate, µi the degradation rate, kij the concentra-
tion value at which the regulation of the ith species by the
jth species is half its maximal value, and nij is the corre-
sponding Hill coefficient determining the steepness of the
response.

In the competitive case the different regulators compete
for the binding site which leads to an additive combination
of terms:

fi(x1,..., xN ) = bi − µixi (4)

+ Vi ·

∑
j ∈ S+

(
xj
kij

)nj

1 +
∑

j ∈ S+

(
xj
kij

)nj

+
∑

j ∈ S−

(
xj
kij

)nj
.

Numerical analysis

Steady state estimation
We generated a customized Matlab (R2016a) script to find
steady states numerically. For a given system the parameters
are chosen from a logarithmic grid and for each set of pa-
rameters the system of ODEs is solved numerically until time
t = 1000 using the Matlab ODE solver ode15s. Whenever
the algorithm encounters numerical problems, the (slower
but more robust) algorithm ode23s is invoked. Using such
a trajectory of the system, we define the system’s dynam-
ical behaviour. We excluded oscillations/limit cycles from
the subsequent analysis as these can not give rise to Turing
patterns in our definition. In contrast, damped oscillations

can do so. We found that in this case the ODE simulations
can result in small but significant errors that are propagated
through the subsequent analysis leading to inaccurate re-
sults. To avoid this we use the Matlab function fsolve fol-
lowing the ODE simulations to obtain a more accurate esti-
mate of the steady state for such cases.

To account for the possibility of multiple stable steady
states, we solved the set of ODEs on a grid of initial
conditions of three values per species. The endpoints
of the resulting trajectories are clustered using k-means
clustering. Using the cluster centroids as final initial
condition, the system of ODEs is solved again to verify that
the system has converged sufficiently. For steady states that
are approached via damped oscillations, we again do not
solve the ODEs numerically but instead search for a fixed
point of the ODEs directly using the Matlab function fsolve.

Stability Analysis
The stability of a steady state x∗ of Equation (1) is assessed
by a linear stability analysis. We add a small perturbation
around x∗

x(t) = x∗ + δx̃(t), (5)

with a small constant δ ∈ R, and then linearise Equation
(1), to obtain

∂

∂t
x̃(t) = J x̃(t) +O(δ). (6)

The Jacobian, J , is defined as

Ji,j =
∂fi(x1, . . . , xN )

∂xj
, i, j = 1, . . . , N. (7)

Equation (6) constitutes a linear dynamical system with
steady state x̃ = 0. This steady state is asymptotically stable
if and only if the real parts of all eigenvalues of the matrix J
are negative. This in turn means that x∗ is a locally asymp-
totically stable steady state, in the sense that there exists a
neighborhood around x∗ such that any solution of the ODEs
starting from this neighborhood asymptotically converges to
x∗. Accordingly, it is sufficient to compute the eigenvalues
of the Jacobian defined in Equation (7) to assess the local
stability of a steady state of Equation (1).

To assess if such a stable steady state can exhibit a
diffusion-driven instability, we need to analyze Equation
(2). Similarly to the case without diffusion, we perturb the
system around x∗ to perform a linear stability analysis of
this steady state, but this time with a harmonic wave with
wavenumber q:

x(r, t) = x∗ + δx̃(t)eiqr, (8)

where δ ∈ R is a small constant, q = (q1, . . . qd), and qr de-
notes the scalar product of the vectors q and r. We further
define q = |q|. Inserting this into Equation (2) and expand-
ing to first order in δ, one obtains a linear dynamical system
similar to the one in (6), but with a modified Jacobian J̃
given by:

J̃ = J − q2D, (9)
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where D = diag(D1, . . . , Dn) is a diagonal matrix with the
diffusion constants Di on the diagonal. For differential dif-
fusion of the molecular species, the Jacobian in Equation
(9) can have eigenvalues with a positive real part for finite
wavemumber q; when this occurs the stable steady state of
the system in Equation (1) becomes unstable with diffusion,
and we speak of an diffusion-driven Turing instability. De-
pending on the behavior of the largest eigenvalue of J̃ for
large q we distinguish different types of Turing instabilities,
see Figure 4D.

Note that since we consider spatially homogeneous
systems with rotational symmetry, the modified Jacobian in
(9) does only depend on the norm q = |q| of the wavevector
q. This implies that higher spatial dimensions with more
components of the wavevector q do not add any degrees of
freedom in terms of the eigenvalues of the Jacobian (they
do in terms of resulting pattern variety though of course).
The dispersion relations in different spatial dimensions are
hence equivalent. Consequently, if a Turing instability of a
certain type exists in some dimension, it also exists in other
spatial dimensions.

PDE simulation
Wherever necessary we simulate the spatial behaviour of
the system both in one and two dimensions by numerically
solving the corresponding PDEs. We used the Mathematica
funcion NDSolve for this task. The resulting patterns are for
example used to analyze the patterns’ phasing by analyzing
the position of the maxima and minima of each species with
respect to each other.

Workflow
We implement the estimation of stable steady states of the
non-spatial system and identification of Turing instabilities
into an automated workflow. Overall, the computational
analysis consists of the steps:

i) Define a network and its governing ODE equations.
ii) Define a grid that covers the full parameter space of

interest.
iii) For each set of parameters:

a) Perform numerical simulation of ODE system for
different initial conditions∗

b) Cluster endpoints using k-means clustering to
find set of steady states.

c) Confirm steady state guesses by repeated simula-
tion from each cluster center or by using fsolve
for damped oscillations.

iv) Perform stability analysis for all steady states and pa-
rameter combinations:

a) Calculate Jacobian matrix (without diffusion)
and test if all real parts of the eigenvalues are
negative to verify stability.

b) Expand Jacobian matrix by diffusion term and
calculate eigenvalues for a set of diffusion values
and wavenumbers q.

c) Classify possible Turing instabilities as Type Ia,
Ib, or IIa or IIb (see Figure 2C).

∗ The initial simulation is used to determine if oscillations
are present (these are excluded) or if damped oscillations
are found (requires additional step of fsolve rather than
numerical simulation).

Data and software availability
We provide code for an automated steady state estimation
an stability analysis together with documentation in SI doc-
ument 8. The code can analyze systems with arbitrary regu-
latory functions and node numbers. Average running times
for all systems are shown in SI document 7.
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