Supplementary Information

Figure S1 – ¹H-NMR spectrum for compound **1** in DMSO-d⁶.

Figure S2 – 13 C-NMR spectrum for compound **1** in DMSO-d⁶.

Figure S3 - ¹H-¹H Selective ROESY (2.67 ppm, NH₃ signal) for compound **1** in DMSO-d⁶.

Figure S4 – Time-dependent ¹H-NMR spectroscopy for compound **1** in 1 M TRIS – 100 mM KCl (pH 7.2, prepared in D_2O/H_2O (1:9)) / DMSO (1:1).

Figure S5 – Time-dependent Diffusion Ordered Spectroscopy (DOSY) for compound **1** in D_2O/H_2O (1:9) after 0 Min (signal at -9.00 m²s⁻¹ was assigned to free DMSO added for solubility purposes).

Figure S6 – Time-dependent Diffusion Ordered Spectroscopy (DOSY) for compound **1** in D_2O/H_2O (1:9) after 24 h (signal at -9.00 m²s⁻¹ was assigned to free DMSO added for solubility purposes).

Figure S7 – Time-dependent Diffusion Ordered Spectroscopy (DOSY) for compound **1** in D_2O/H_2O (1:9) after 48 h (signal at -9.00 m²s⁻¹ was assigned to free DMSO added for solubility purposes).

Figure S8 – ESI(+) mass spectrum for compound **1**.

Figure S11 – Time-dependent ¹H-NMR spectroscopy for compound **2** in 1 M TRIS – 100 mM KCl (pH 7.2, prepared in D_2O/H_2O (1:9)).

Figure S12 – Time-dependent Diffusion Ordered Spectroscopy (DOSY) after 0 Min for compound **2** in 1 M TRIS – 100 mM KCl (pH 7.2, prepared in D_2O/H_2O (1:9)).

Figure S13 – Time-dependent Diffusion Ordered Spectroscopy (DOSY) after 24 h for compound **2** in 1 M TRIS – 100 mM KCl (pH 7.2, prepared in D_2O/H_2O (1:9)).

Figure S14 – ¹H-¹H Selective ROESY (1.36 ppm, CH₃ signal) after 0 Min for compound **2** in 1 M TRIS – 100 mM KCl (pH 7.2, prepared in D_2O/H_2O (1:9)).

Figure S15 – ¹H-¹H Selective ROESY (3.56 ppm, NH₂ signal) after 0 Min for compound **2** in 1 M TRIS – 100 mM KCl (pH 7.2, prepared in D_2O/H_2O (1:9)).

Figure S16 – ¹H-¹H Selective ROESY (1.36 ppm, CH₃ signal) after 24 h for compound **2** in 1 M TRIS – 100 mM KCl (pH 7.2, prepared in D_2O/H_2O (1:9)).

Figure S17 – ¹H-¹H Selective ROESY (2.50 ppm, free NH₂Me) after 24 h for compound **2** in 1 M TRIS – 100 mM KCl (pH 7.2, prepared in D_2O/H_2O (1:9)).

Figure S18 – ESI(+) mass spectrum for compound 2.

Figure S19 – FID results for titration of 0.25 μ M *HTelo (K)* and 0.50 μ M TO with increasing amounts of complex **1** (0 – 2.5 μ M): emission spectra (left) and %TO displacement (right). Titration was performed in 10 mM Licac + 100 mM KCl buffer (pH 7.2) at rt.

Figure S20 – FID results for titration of 0.25 μ M *HTelo (Na)* and 0.50 μ M TO with increasing amounts of complex **1** (0 – 2.5 μ M): emission spectra (left) and %TO displacement (right). Titration was performed in 10 mM Licac + 100 mM KCl buffer (pH 7.2) at rt.

Figure S21 – FID results for titration of 0.25 μ M *c-myc* and 0.50 μ M TO with increasing amounts of complex **1** (0 – 2.5 μ M): emission spectra (left) and %TO displacement (right). Titration was performed in 10 mM Licac + 100 mM KCl buffer (pH 7.2) at rt.

Figure S22 – FID results for titration of 0.25 μ M *c-kit2* and 0.50 μ M TO with increasing amounts of complex **1** (0 – 2.5 μ M): emission spectra (left) and %TO displacement (right). Titration was performed in 10 mM Licac + 100 mM KCl buffer (pH 7.2) at rt.

Figure S23 – FID results for titration of 0.25 μ M *bcl2* and 0.50 μ M TO with increasing amounts of complex **1** (0 – 2.5 μ M): emission spectra (left) and %TO displacement (right). Titration was performed in 10 mM Licac + 100 mM KCl buffer (pH 7.2) at rt.

Figure S24 – FID results for titration of 0.25 μ M *ds26* and 0.75 μ M TO with increasing amounts of complex **1** (0 – 2.5 μ M): emission spectra (left) and %TO displacement (right). Titration was performed in 10 mM Licac + 100 mM KCl buffer (pH 7.2) at rt.

Figure S25 – FID results for titration of 0.25 μ M *c-myc* and 0.50 μ M TO with increasing amounts of complex **2** (0 – 2.5 μ M): emission spectra (left) and %TO displacement (right). Titration was performed in 10 mM Licac + 100 mM KCl buffer (pH 7.2) at rt.

Figure S26 – FID results for titration of 0.25 μ M *ds26* and 0.75 μ M TO with increasing amounts of complex **2** (0 – 2.5 μ M): emission spectra (left) and %TO displacement (right). Titration was performed in 10 mM Licac + 100 mM KCl buffer (pH 7.2) at rt.

Figure S27 – DC₅₀ values for FID assays of complex $\bf{1}$ and $\bf{2}$ with different DNA sequences.

Figure S28 – FRET melting curves of different labelled DNA sequences in presence of complex **1**. Melting experiments were performed in triplicate. The mean is plotted above.

Figure S29 – ΔT_m (°C) values for different DNA sequences are plotted in presence of increasing amounts of complex **1**. Results were obtained by averaging three independent experiments.

Table S1 – ΔT_m (°C) values at a concentration of 1 μ M of complex **1** are listed for different DNA sequences. Triplicate experiments were used to calculate the standard deviation.

DNA sequence	ΔT _m (°C), 1 μΜ
HTelo (K)	16.8 ± 0.1
HTelo (Na)	4.5 ± 0.3
с-тус	20.0 ± 0.2
c-kit2	14.0 ± 0.2
bcl-2	8.7 ± 0.3
ds26	0.0 ± 0.1

Figure S30 – FRET melting curves obtained for the competition assay are plotted above for a number of different DNA sequences in presence of complex **1**. Up to 600 μ M CT-DNA were added as competitor DNA. Details to conditions used for the experiments see Experimental Details. The mean is plotted for triplicate experiments.

Figure S31 – Molecular docking results for compound **1** with HTelo hybrid type (PDB: 2mb3, **A**) and HTelo basket type (PDB: 2mcc, **B**). The results were obtained using Autodock 4.2 and visualised with Chimera.

		B S				やいろう		
Struct.	1	2	3	4	5	6	Average	_
5W77 (A)	1.658	1.805	2.130	2.514	2.790	-	2.18	_
2MCC (B)	1.832	1.893	1.905	1.920	2.029	2.260	1.97	_
2MB3 (C)	1.717	2.028	2.038	2.292	2.614	2.788	2.25	_

Figure S32 – Results from molecular docking studies showing the closest interactions between NH_3 on compound **1** and guanine oxygens. Distances were measured in Chimera and $NH\cdotsO$ distances above 3 Å were excluded. The PDB files listed are c-myc (5w77), HTelo basket type (2mcc) and HTelo hybrid type (2mb3).

	ΔT _m (°C)					
DNA sequence	0 µM	0.6 µM	6.0 µM	60 µM	120 µM	
•	CT-DNA	CT-DNA	CT-DNA	CT-DNA	CT-DNA	
HTelo (K)	17.4 ± 0.5	17.3 ± 0.7	17.0 ± 0.4	16.7 ± 0.5	17.0 ± 0.2	
HTelo (Na)	4.2 ± 0.5	3.5 ± 0.4	2.5 ± 0.7	2.6 ± 0.7	1.8 ± 0.6	
с-тус	23.5 ± 0.1	23.6 ± 0.3	23.3 ± 0.4	23.1 ± 0.1	23.0 ± 0.3	
c-kit2	13.4 ± 0.9	13.8 ± 1.0	13.5 ± 0.5	12.4 ± 0.7	11.8 ± 1.0	
bcl-2	7.4 ± 0.2	7.2 ± 0.8	6.6 ± 0.6	6.1 ± 0.7	5.9 ± 0.3	

Table S2 – Overview of ΔT_m (°C) values obtained for the FRET competition assay in presence of complex **1** and increasing amounts of CT DNA added to the sample. Three independent experiments were performed and results averaged to determine the standard deviation.