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Summary

· Leaf dark respiration (Rdark) is an important yet poorly quantified component of the global carbon-cycle.  Given this, we analysed a new global database of Rdark and associated leaf traits.
· Data for 899 species were compiled from 100 sites (arctic-to-tropics).  Several woody and non-woody plant functional types (PFTs) were represented.  Mixed-effects models were used to disentangle sources of variation in Rdark.
· Area-based Rdark at the prevailing average-daily growth temperature (T) of each site increased only two-fold from the arctic-to-tropics, despite a 20°C increase in growing T (8 to 28oC).  By contrast, Rdark at a standard T (25oC; Rdark25) was three-fold higher in the arctic than tropics, and two-fold higher at arid than mesic sites.  Species and PFTs at cold sites exhibited higher Rdark25 at a given photosynthetic capacity (Vcmax25) or leaf nitrogen concentration ([N]) than species at warmer sites.  Rdark25 values at any given Vcmax25 or [N] were higher in herbs than in woody plants. 
· The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth System Models (ESMs).


Keywords: Acclimation, aridity, climate models, leaf nitrogen, plant functional types, photosynthesis, respiration, temperature

Introduction

A challenge for the development of terrestrial biosphere models (TBMs) and associated land surface components of Earth System Models (ESMs) is improving representation of carbon exchange between terrestrial plants and the atmosphere, and incorporating biological variation arising from diversity in plant functional types (PFTs) and climate (Sitch et al., 2008; Booth et al., 2012; Prentice & Cowling, 2013; Fisher et al., 2014).  Accounting for patterns in leaf respiratory CO2 release in darkness (Rdark) in TBMs and ESMs is crucial (King et al., 2006; Huntingford et al., 2013; Wythers et al., 2013), since plant respiration – roughly half of which comes from leaves (Atkin et al., 2007) - releases approximately 60 Pg C yr-1 (Prentice et al., 2001; Canadell et al., 2007; IPCC, 2013).  Fractional changes in leaf Rdark as a consequence of climate change can, therefore, have large impacts on simulated net C-exchange and C-storage for individual ecosystems (Piao et al., 2010) and, by influencing the CO2 concentration of the atmosphere, potentially feedback so as to alter the extent of future global warming (Cox et al., 2000; Huntingford et al., 2013).  There is growing acceptance, however, that leaf Rdark is not adequately represented in TBMs and ESMs (Huntingford et al., 2013; Smith & Dukes, 2013), resulting in substantial uncertainty in future climate predictions (Leuzinger & Thomas, 2011); consequently, there is a need to improve representation of leaf Rdark in predictions of future vegetation-climate interactions for a range of possible fossil fuel burning scenarios (Atkin et al., 2014).  Achieving this requires: (1) an analysis of variation in leaf Rdark along global climate gradients and among taxa within ecosystems; and, (2) establishing whether relationships between leaf Rdark and associated leaf traits vary predictably among environments and plant functional types (PFTs) (Wright et al., 2004; Reich et al., 2006; Wright et al., 2006; Atkin et al., 2008).  PFTs enable a balance to be struck between the computational requirements of TBMs to minimize the number of plant groups and availability of sufficient data to fully characterise functional types, versus the reality that plant species differ widely in trait values.  Most TBMs contain at least five PFTs, with species being organized on the basis of canopy characteristics such as leaf size and life span, physiology, leaf mass-to-area ratio, canopy height and phenology (Fisher et al., 2014).  Although classifications that are directly trait-based are emerging (Kattge et al., 2011), PFT classifications are still widely used in TBMs and land surface components of ESMs.  As such, discerning the role of PFTs in modulating relationships between leaf Rdark and associated leaf traits will provide critical insights.  
Although our understanding of global variation in leaf Rdark remains inadequate, it is known that in natural ecosystems rates vary markedly within and among species, and among PFTs.  Surveys of leaf Rdark at a common temperature (T) of 25oC (Rdark25) allow standardized comparisons of respiratory capacity (and associated investment in mitochondrial protein) to be made among contrasting sites and species.  In a survey of 20 sites around the world, Wright et al. (2006) reported a 16-fold variation in mass-based leaf Rdark25.  Importantly, much of the variation in rates of Rdark25 is present within sites among co-occurring species and PFTs, reflecting strong genetic (as opposed to environmental) control of respiratory flux, as demonstrated by inter-specific comparisons in controlled-environments (Reich et al., 1998c; Loveys et al., 2003; Xiang et al., 2013) and field conditions (Bolstad et al., 2003; Tjoelker et al., 2005; Turnbull et al., 2005; Slot et al., 2013). Differences in demand for respiratory products (e.g. ATP, reducing equivalents and/or carbon skeletons) from metabolic processes (such as photosynthesis (A), phloem loading, N-assimilation and protein turnover) underpin genotype variations in leaf Rdark (Lambers, 1985; Bouma et al., 1994; Bouma et al., 1995; Noguchi & Yoshida, 2008).  Consequently, inter-specific variations in leaf Rdark often scale with photosynthesis (Gifford, 2003; Wright et al., 2004; Campbell et al., 2007), and leaf nitrogen ([N]) (Ryan, 1995; Reich et al., 1998b).  Importantly, Rdark[N] relationships differ among PFTs, with Rdark at a given [N] being higher in forbs than in woody angiosperms and gymnosperms (Reich et al., 2008).
Any analysis of global patterns of leaf Rdark must consider the impacts of the environment on respiratory metabolism; here, the impact of T on Rdark is of particular interest.  Leaf Rdark is sensitive to short-term (scale of minutes) changes in T (Wager, 1941; Atkin & Tjoelker, 2003; Kruse et al., 2011), with the sensitivity declining as leaf T increases (Tjoelker et al., 2001).  With sustained changes in the prevailing ambient growth T, leaf Rdark often acclimates to the new conditions (Tjoelker et al., 2009; Ow et al., 2010; Dillaway & Kruger, 2011; Slot et al., 2014a), resulting in higher rates of Rdark25 in cold-acclimated plants (Larigauderie & Körner, 1995; Atkin & Tjoelker, 2003).  Such acclimation can occur as quickly as within one to a few days (Atkin et al., 2000) and can result in leaf Rdark measured at the prevailing ambient T (Rdarkamb) being nearly identical (i.e. near-homeostatic) in thermally contrasting environments (Zaragoza-Castells et al., 2008).  Another factor that can influence leaf Rdark is drought, with rates declining following the onset of drought (Flexas et al., 2005; Ayub et al., 2011; Crous et al., 2011).  However, the response to drought can vary, with other studies reporting no change (Gimeno et al., 2010) or an increase in Rdark25 with increasing drought (Bartoli et al., 2005; Slot et al., 2008; Metcalfe et al., 2010).  Thus, while exposure to hot growth conditions is invariably associated with a decline in Rdark25, there is as yet no clear consensus on how differences in water availability across sites impact on Rdark25. 
As noted above, an overview of global variations in Rdark is needed to provide benchmarking data to constrain and test alternative representations of autotrophic respiratory CO2 release in TBMs and the land surface components of ESMs. The data reported by Wright et al. (2006) represent the largest compilation to date, having compared mass-based rates of leaf Rdark in 208 woody and 60 herb/grass species from 20 contrasting sites, mostly in temperate regions.  However, no data were available for plants growing in upland tropical or arctic ecosystems.  Nevertheless, several interesting phenomena were identified, including that rates of Rdark25 (and Rdark25[N] relationships) were similar at sites that differ in growth T; a similar result was reported in an earlier analysis by Reich et al. (1998b). This observation contrasts with earlier studies that reported higher Rdark at a standard measurement T in plants growing at colder sites (Stocker, 1935; Wager, 1941; Semikhatova et al., 2007), consistent with thermal acclimation responses of respiratory metabolism (Atkin & Tjoelker, 2003).   A new global database not only requires rates of Rdark25 and Rdarkamb, but also values of other leaf traits currently used in TBMs to predict respiration.  
While there is no single approach to estimating leaf Rdark in TBMs – Schwalm et al. (2010) reported 15 unique approaches from 21 TBMs – it is common for Rdark to be related to gross primary productivity (GPP), either directly as a fraction of GPP, or indirectly as a fraction of maximum carboxylation capacity, with GPP estimated from enzyme kinetic or stomatal conductance models.  Other models estimate leaf Rdark from other traits, including [N] [e.g. Biome-BGC; Thornton et al. (2002)] and/or vegetation carbon [Lund-Postdam-Jena model (LPJ); Sitch et al. (2003)].  In the UK Hadley Centre model JULES [Joint UK Land Environment Simulator (Clark et al., 2011)], Rdark25 is assumed to be proportional to photosynthetic carboxylation capacity at 25oC (Vcmax25), with Vcmax25 predicted from PFT-dependent values of leaf [N] according to a single Vcmax25[N] relationship (Schulze et al., 1994; Cox et al., 1998); JULES also provides the opportunity to link terrestrial carbon cycling to climate prediction.  However, as with other models linking Rdark25 to GPP, JULES does not account for climate or PFT-dependent variations in Rdark25Vcmax25 [N] relationships.  A new global database will enable assessment of Rdark25Vcmax25[N] (and phosphorous concentrations [P]) relationships, both among PFTs and along climate gradients.
Here, using published and unpublished data (Supporting Information, Tables S1 and S2), we report on a newly compiled global leaf Rdark and associated traits (GlobResp) database.  The GlobResp database increases biogeographical and phylogenetic coverage compared to earlier data sets, and contains information on leaf Rdark and associated leaf traits for 899 species from 100 sites.  We used the GlobResp database to address the following questions.  First, do rates of Rdark at prevailing ambient T (Rdarkamb) and at a standardized reference T of 25oC (Rdark25) vary with climate across sites in relation to T (i.e. thermal environment) and aridity.  Second, are the observed patterns consistent with hypotheses concerning thermal acclimation and adaptation (i.e. evolutionary response resulting from genetic changes in populations and taxa) of Rdark.  And third, does scaling between leaf Rdark and associated leaf traits vary among environments and PFTs?  Finally, a key aim of our study was to predict global variability in Rdark25 from a group of independent input variables, using data on corresponding leaf traits, climate or a combination of traits and climate; here our aim was to provide equations that would facilitate improved representation of leaf Rdark in TBMs and associated land surface components of ESMs.  

Materials and Methods

Compilation of a global database
To create a global leaf respiration and associated leaf traits (GlobResp) database, we combined data from recent field campaigns (Supporting Information, Table S1) with previously published data (Table S2). Data were obtained from recent publications (Atkin et al., 2013; Slot et al., 2013; Slot et al., 2014b; Weerasinghe et al., 2014) and the TRY trait database (Kattge et al., 2011) that included published studies (Mooney et al., 1983; Oberbauer & Strain, 1985; Oberbauer & Strain, 1986; Chazdon & Kaufmann, 1993; Kamaluddin & Grace, 1993; Kloeppel et al., 1993; García-Núñez et al., 1995; Kloeppel & Abrams, 1995; Zotz & Winter, 1996; Grueters, 1998; Miyazawa et al., 1998; Reich et al., 1998b; Bolstad et al., 1999; Craine et al., 1999; Mitchell et al., 1999; Niinemets, 1999; Wright et al., 2001; Meir et al., 2002; Wright & Westoby, 2002; Veneklaas & Poot, 2003; Wright et al., 2004; Tjoelker et al., 2005; Machado & Reich, 2006; Poorter & Bongers, 2006; Wright et al., 2006; Meir et al., 2007; Swaine, 2007; Sendall & Reich, 2013). The combined database contains data from 100 thermally contrasting sites (899 species representing 136 families, and c. 1200 species-site combinations) from biomes ranging from 69oN to 43oS and from sea-level to 3450 m asl (Fig. 1a; Tables 1, 2).    
A wide range of terrestrial biomes is represented in the new combined GlobResp database (Table 1) along with most of the plant functional types (PFTs) categorised in JULES - a land surface component of an Earth System Model (ESM) frameworks (Clark et al., 2011); and in LPJ - representing a model with a greater diversity of PFTs from the wider TBM community (Sitch et al., 2003)] (Table 2).  Users who would like to use GlobResp (to be available via the TRY trait database) will also be provided with species classified according to other PFT schemes [including the Sheffield DGVM (Woodward et al., 1998)].  Several PFTs, however, remain poorly represented in GlobResp: plants that use the C4 photosynthetic pathway, boreal deciduous needle-leaved trees (BorDcNl) and tropical herbs/grasses (TrpH – which in the database includes a mixture of species that use either C3 or C4 pathways of photosynthesis).  Lianas are not yet included in PFT classifications of global TBMs, and are also absent from GlobResp , although some data are now emerging for a limited number of sites (Slot et al., 2013). The GlobResp database was limited to field-collected data from sites where climate data could be attributed.  We excluded data from controlled-environment experiments (e.g. growth cabinets and glasshouses), as well as experiments where atmospheric CO2, temperature, irradiance, nutrient supply and/or water supply were manipulated.  For each site, long-term climate data were obtained from the WorldClim climate database for years 1960–1990, at a resolution of 30 arc seconds, or 1 km at the equator (Hijmans et al., 2005).  Aridity indices [AI, ratio of mean annual precipitation (MAP) to potential evapo-transpiration (PET), and hence a lower value of AI indicates more arid conditions] at each site were estimated according to Zomer et al. (2008) using the CGIAR-CSI Global-PET database (http://www.cgiar-csi.org).  
Mean temperature of the warmest quarter (i.e. warmest three-month period per year; TWQ) and measuring month (MMT - mean temperature of the month when respiration data were recorded) were used to characterise the growth T at each site. Records of the actual measuring month, required to estimate MMT, were only available for half the sites. Consequently, we used TWQ as a measure of the growth T, as most temperate and arctic sites were sampled in summer which corresponded with the warmest quarter.  For tropical sites we also used TWQ, although seasonal T variation is comparatively low in tropical regions (Archibold, 1995).
Data were collected using similar protocols described herein (Supporting Information Methods S1) and in published works (Table S2).  Outer canopy leaves were sampled early-mid morning, kept in moist, dark conditions, with Rdark measured using infra-red gas analysers following a period of dark-adjustment – typically 30-45 mins (Azcón-Bieto et al., 1983; Atkin et al., 1998).  Only data from mature, fully expanded leaves were included; as such, Rdark did not reflect the metabolic demands of biosynthesis associated with localized cell division/expansions processes.  Rather, the measured rates of Rdark likely reflected demands for respiratory products associated with cellular maintenance, and potentially phloem loading (Amthor, 2000).  We note that the daytime measured rates of Rdark may have differed from equivalent fluxes at night (when compared at an equivalent T), reflecting the potential for diel differences in substrate availability and the extent of sucrose loading. 
The GlobResp database contains Rdark expressed per unit leaf dry mass and per unit leaf area.  Where available, the database includes values of light-saturated photosynthesis (Asat) and associated values of internal CO2 concentration (Ci) and stomatal conductance (gs), leaf mass per area (Ma), leaf nitrogen concentration ([N]) and leaf phosphorus concentration ([P]).  

Temperature normalisation of respiration rates 
Leaf measurement temperatures (T) ranged from 6 to 40oC among sites, with most measured between 16 and 33°C (T1 in Eqn 1). To enable comparisons of leaf Rdark, we calculated area- and mass-based rates both for a common temperature (25°C) and at the growth T at each site (TWQ and MMT) – see Methods S2 in Supporting Information for further details.  To estimate rates of Rdark (R2) at a given T (T2), we calculated rates of Rdark at 25oC (Rdark25), TWQ (RdarkTWQ) and MMT (RdarkMMT) using a temperature-dependent Q10 (Tjoelker et al., 2001) based on a known rate (R1) at experimental T (T1) using the equation:

		Eqn 1
Calculations of Rdark at the abover temperatures yielded similar rates, irrespective of whether a T-dependent Q10 or fixed Q10 was used (Supporting Information, Fig. S1). 

Calculation of photosynthetic capacity
Given our objective to assess relationships between Rdark and the carboxylation capacity of Rubisco (Vcmax), we calculated the Vcmax for C3 species (i.e. excluding C4 species) for all observations where Asat and Ci values were available (Farquhar et al., 1980; Niinemets, 1999; von Caemmerer, 2000); this included all of the previously unpublished data (Table S1) and much of the previously published data (Table S2).  Vcmax values were calculated according to:

			Eqn 2

where * is the CO2-compensation point in the absence of non-photorespiratory mitochondrial CO2 release (36.9 µbar at 25oC), O is the partial pressure of oxygen, Ci is the inter-cellular CO2 partial pressure, Rlight is the rate of non-photorespiratory mitochondrial CO2 release (here assumed to be equal to Rdark), and Kc and Ko are the Michaelis-Menten constants (Km) of Rubisco for CO2 and O2, respectively (von Caemmerer et al., 1994).  While the assumption that Rlight = Rdark is unlikely to be correct in many situations (Hurry et al., 2005; Tcherkez et al., 2012), estimates of Vcmax are largely insensitive to this assumption.  We assumed Kc and Ko at 25oC to be 404 bar and 248 mbar, respectively (Evans et al., 1994; von Caemmerer et al., 1994) and that Kc and Ko at the measurement T could be calculated assuming activation energies (Ea) of Kc and Ko of 59.4 and 36 kJ mol-1, respectively (Farquhar et al., 1980).  Next, we standardised Vcmax to 25oC (Vcmax25) assuming Ea = 64.8 kJ mol-1 (Badger & Collatz, 1977) according to: 

					Eqn 3

where T is the leaf temperature at which Asat was measured/reported (and thus Vcmax initially estimated), and r is the gas constant (8.314 J K−1 mol−1).  Estimates were made for C3 species only, since representation of C4 plants in our database was minimal (Table 2).  
For data from unpublished field campaigns (Table S1), leaf area and mass values were determined as outlined in Supporting Information (Methods S1); for sites where leaf [N] and [P] were both reported, analyses were made using Kjeldahl acid digests (Allen, 1974).  For sites where only [N] was measured, leaf samples were analyzed by mass spectrometry for total N concentration (Loveys et al., 2003); see Table S1 for further details.  Details of the N and P analysis procedures used for previously published data can be found in the citations listed in Table S2.  Collectively, the GlobResp database contains c. 1050 species:site mean values of mass- ([N]m) and area-based leaf nitrogen concentrations ([N]a), and c. 735 species:site mean values of [P]m and [P]a.  

Data analysis
Prior to analyses, GlobResp data were filtered for statistical outliers. Outlying values were identified as those falling beyond a central tendency band of twice the interquartile range.  Three filters were applied in sequence to each PFT class separately (using LPJ groupings to enable separation of evergreen and deciduous life histories, and because there were broadly similar numbers of observations within each LPJ PFT category compared to that of JULES, where the majority of observations were within the broadleaved tree (BlT) category).  Three filters were applied in the sequence: (1) mass-based respiration at 25oC (Rdark,m25); (2) area-based respiration at 25oC (Rdark,a25); and, (3) Ci (impacting on the calculation of Vcmax).  Whenever an outlier was identified, the entire observational row was removed from the GlobResp database.  Application of the above filters resulted in removal of c. 3% of the rows from the initial database.  Where leaf traits followed an approximate log-normal distribution, such values were log10-transformed before screening for outliers and subsequent analysis.  Analyses were then conducted using: (1) trait averages for unique site:species combinations; and, where noted, (2), individual rows of data.
Bivariate regression was used to explore relationships between area- and mass-based Rdark and latitude, TWQ (mean temperature of the warmest quarter, calculated using all data), MMT (mean T of the month when Rdark was recorded) and/or AI (ratio of MAP to PET).  In addition, backwards-stepwise regression was used to select the best fitting equation from a starting set of input leaf traits, climate or the combination of traits plus climate variables; parameters were chosen that exhibited variance inflation factors (VIF) less than 2.0 (i.e. minimal co-linearity); F-to-remove criterion was used to identify best-fit parameters.  Multiple regression analyses were then conducted to estimate predictive equations for the chosen variables.  The PRESS statistic (predicted residual error sum of squares) was used to provide a measure of how well each regression model predicted observed Rdark values.  Relative contributions of leaf trait and climate variables to each regression were gauged from their standardised partial regression coefficients.  
Standardised major axis (SMA) analysis was used to determine the best-fit lines (α = 0.05) for the key relationships involving Rdark25 both on an area- and mass-basis (Falster et al., 2006; Warton et al., 2006; Warton et al., 2012)  We tested for differences among PFT classes (JULES) and site-based temperature bands (5oC TWQ); to facilitate visual comparison of PFTs, we chose to use the four PFTs within the JULES framework, rather than the larger number of PFTs contained in the LPJ model. Using the JULES PFTs also provided an opportunity to assess how changes in growth temperature impacted on bivariate relationships within a PFT [broad leaved trees (BlT)] for which there was a large number of observations and widespread distribution.  We used a mixed-effects linear model to account for variability in Rdark25 on both area- and mass-bases.  Given the hierarchical nature of the database, the linear mixed-effects model combined fixed and random components (Zuur et al., 2009).  The available fixed effect variables included: PFT, leaf traits (Rdark25, Vcmax25, leaf mass per unit area (Ma), [N], [P]) and climate variables (TWQ and AI).  Models were run using PFT classifications from JULES and LPJ.  
All continuous explanatory leaf variables were centred on their mean values prior to inclusion. Co-linearity among leaf variables was tested using VIFs. Model specification and validation was based on the protocols outlined in Zuur et al. (2009) and fitted using the nlme package (R package ver. 3.1–105, R Foundation for Statistical Computing, Vienna, Austria, R Development Core Team 2011).  Due to the global nature of the database, species, family and site identifiers were treated as random rather than fixed effects, placing our focus on the variation contained within these terms, rather than mean values for each phylogeny/site level.  Model comparisons and the significance of fixed-effects terms were assessed using Akaike’s information criterion (AIC).
Stepwise and associated multiple linear regressions were conducted using Sigmaplot Statistics v12 (Systat Software Inc., San Jose, CA, USA).  All other statistical analyses and modelling were conducted using the open-sourced statistical environment ‘R’ (R Development Core Team, 2011).  

Results

Comparison of traits among plant functional types
Across the GlobResp database, leaf mass per unit projected leaf area (Ma) varied 40-fold (from 19 to 780 g m-2), [N]a varied 70-fold (from 0.13 to 9.13 g m-2) and [P]a varied 125-fold, from 10 to 1260 mg m-2.  In four out of the five JULES PFTs (i.e. needle-leaved trees, broad-leaved trees, shrubs and C3-herbs/grasses), ranges of each of Ma, [N]a and [P]a values were relatively similar (Figs 2 and S2).  C4 plants were poorly represented (Table 2), and were generally omitted from subsequent analyses.  On average, shrubs and needle-leaved trees exhibited greater leaf mass per unit area (Ma) values than their broad-leaved tree and C3 herb/grass counterparts.  By contrast, [N]a values were relatively similar among the four PFTs (excluding C4 plants) (Figs 2 and S2).  While [P]a values were similar among broad-leaved trees, C3 herbs/grasses and shrubs, levels were higher in needle-leaved trees.  
	Area- and mass-based Vcmax25 varied markedly within the four PFTs; needle-leaved trees exhibited a narrower range of Vcmax25 values compared with the others (Fig. 3a,c).  Overall, the average values of Vcmax25 were relatively similar among the four PFTs.  By contrast, average rates of Rdark25 differed relatively more among PFTs, being highest in C3 herbs/grasses, both on an area and mass basis (Fig. 3b,d).

Relationships between leaf traits and climate 
To test whether Rdark25 was related to growth temperature or water availability, we plotted Rdark25 against absolute latitude, TWQ and AI (Figs 4a-c and 4g-i). Against latitude (considering northern and southern hemispheres separately), area-based Rdark25 (Rdark,a25) exhibited a significant, positive relationship (Table 3), being three-fold faster in arctic than at the equator (Fig. 4a), suggesting, as expected, that factors other than latitude per se play the key roles in determining variations in Rdark,m25.  A similar pattern in the northern (but not southern) hemisphere was observed for mass-based Rdark25 (Fig. 4g; Table 3).  Against TWQ, variations in Rdark,a25 and Rdark,m25 followed trends consistent with the latitudinal patterns, with rates being fastest at the coldest sites (Figs 4b,h).  Negative relationships were found between both area- and mass-based Rdark25 and AI (Figs 4c,i; Table 3) – recalling that AI is lowest at the driest sites - with Rdark,a25AI markedly steeper when data from the wet cool temperate rainforest site in New Zealand were excluded (Supporting Information, Fig. S2).  Collectively, these results suggest that rates of leaf Rdark at 25oC are lowest at warm/moist sites near the equator, and fastest at cold/drier sites at high latitudes.
	We now consider global patterns of leaf Rdark at the long-term average ambient growth T at each site (Rdarkamb), with Rdarkamb estimated using calculations of Rdark at TWQ (RdarkTWQ) (Figs 4d-f, j-l).  In the northern hemisphere, both area- and mass-based RdarkTWQ decreased with increasing latitude (Figs 4d,j; Table 3).  A similar pattern was observed in the southern hemisphere for mass-based but not area-based RdarkTWQ (Fig. 4d).  Both Rdark,aTWQ and Rdark,mTWQ increased with increasing TWQ (Fig. 4e,k; Table 3), indicating that rates of Rdarkamb are likely faster at the warmest sites.  Similarly, the negative RdarkTWQAI association was significant (both on an area and mass-basis; Fig. 4f,l; Table 3).  However, exclusion of mass-based data from the unusually wet site in New Zealand resulted in there being no significant Rdark,mTWQAI association (Fig. S3).  Collectively, Rdarkamb (both on an area and mass-basis) was faster at the hottest sites in the tropics and mid-latitude regions.  These patterns were consistent whether TWQ or MMT were used as estimates of site-specific ambient growth T (Fig. S4).  
	A focus of our study was determining the best function to predict area- and mass-based Rdark25 around the globe from a group of independent input variables.  Regression analysis (Table 4) shows that, based solely on leaf traits (i.e. ignoring climate), 17% and 31% of the variance in Rdark,a25 and Rdark,m25, respectively, was accounted for using regression equations that included leaf [N] and area:mass metrics (i.e. Ma or SLA).  Adding leaf [P] did little to improve the proportion of variance in Rdark25 accounted for by regression; however, [P] replaced [N] in the resultant selected equations (Table 4).  By contrast, addition of Vcmax25 to the available range of leaf traits improved the r2 of the resultant regressions (i.e. accounting for 22% and 41% of the variance in Rdark,a25 and Rdark,m25, respectively; Table 4).  Climate parameters alone (TWQ, PWQ and/or AI) accounted for only 9-17% of variance in Rdark.  However, combining climate with leaf traits accounted for 35% and 50% of the variance in Rdark,a25 and Rdark,m25, respectively (Table 4), with Ma, TWQ, Vcmax25, rainfall/aridity and leaf [P] contributing to variance in Rdark, largely in that order.  Replacing [P] with [N] had little effect on the r2 of the resultant linear regressions.  Thus, analysis using multiple linear regression strongly suggests that variations in leaf Rdark are tied to related variations in leaf structure, chemistry, and photosynthetic capacity, the thermal environment in the period during which Rdark measurements were made, and the average water availability. 

Relationships among plant functional types 
For the Rdark,a25Vcmax,a25 association, tests for common slopes revealed no significant differences among the four JULES PFTs, nor did the elevations of those common slopes differ, except for C3 herbs/grasses, which exhibited faster rates of Rdark,a25 at a given Vcmax,a25 compared with the other PFTs (Fig. 5a).  Among TWQ classes, there were also no significant differences in slopes, but the elevation (i.e. y-axis intercept) of the relationships differed systematically when considering all PFTs collectively (Fig. 5b), and broad-leaved trees alone (Fig. 5c).  With respect to the effect of TWQ on Rdark,a25Vcmax,a25 relationships, the elevation was similar for the three highest TWQ classes (15-20, 20-25 and >25oC), whereas Rdark,a25 at any given Vcmax,a25 was significantly faster at the two lowest TWQ classes (Fig. 5b; Table S3).  A similar pattern emerged when assessing a single widely-distributed PFT (broad-leaved trees; Fig. 5c).  Thus, in addition to area-based rates of Rdark25 at any given photosynthetic capacity being fastest in C3 herbs, Rdark,a25 was also faster in plants growing in cold environments. 
Analysed on a mass-basis, tests for common slopes among Rdark,m25Vcmax,m25 relationships revealed significant differences among PFTs and TWQ classes.  Among PFTs, the slope of the Rdark,m25Vcmax,m25 relationship was greatest in C3 herbs/grasses and smallest in needle-leaved trees (Fig. 5d; Table S3); thus, variation in mass-based photosynthetic capacity was matched by greater variation in leaf Rdark,m25 in herbs/grasses than in needled-leaved trees.  Although the effect of TWQ on Rdark,m25Vcmax,m25 was not as consistent as for area-based relationships, in general the pattern was for Rdark,m25 at any given Vcmax,m25 to be fastest in plants growing in the coldest habitats, particularly when considering species that exhibit rapid metabolic rates (Fig. 5e,f).  
Figure 6 shows PFT- and TWQ-dependent variation in Rdark25[N].  Assessed on a leaf-area basis, tests for common slopes revealed no significant differences among PFTs (Fig. 6a) or TWQ classes (Fig. 6b). The elevation of the relationships differed such that at any given leaf [N]a, rates of Rdark,a25 were ranked in order of C3 herbs/grasses > shrubs > broad-leaved trees = needle-leaved trees (Table S3).  Considering all PFTs collectively, rates of Rdark,a25 at any given [N]a were fastest in the coldest-grown plants, with the overall pattern being one of decreasing Rdark,a25 with increasing TWQ (Fig. 6b).  Within broadleaved trees, slopes of Rdark,a25[N]a relationships differed significantly, being greater at sites with TWQ values of 15-20oC compared with the two remaining warmer TWQ categories (Table S3).  Hence, for broadleaved tree species with high [N]a, Rdark,a25 was faster in cold habitats than in their warmer counterparts, at least when considering TWQ classes >15oC.  Analysing Rdark25[N] on a mass-basis revealed significant slope differences among PFTs (Fig. 6d) and TWQ classes (Fig. 6e,f).  For the latter, the overall pattern was one of increasing Rdark,m25[N]m slope in plants growing at the colder sites.

Mixed effects model analyses
Fitting linear mixed-effects models confirmed that the assigned JULES PFTs accounted (in conjunction with assigned random effects) for much of the variation in area-based Rdark25 present in the GlobResp database.  For example, a ‘null’ model where fixed effects were limited to four PFT classes (with species, families and sites treated as random effects) explained 48% of variation in the Rdark,a25 response (i.e. r2 = 0.48; Table 5a); for an equivalent model that did not include any random effects, inclusion of the four PFT classes alone as fixed terms explained 27% of the variation in Rdark,a25.  Inclusion of additional fixed terms resulted in an increase in the explanatory power of the ‘best’ predictive model, such that 70% of variation in Rdark,a25 was accounted for via inclusion of [N]a, [P]a, Vcmax,a25 and TWQ (Fig. 7a, Fig. S3-S5). The variance components of the preferred model, as defined by the random term (Table 5), indicated that while species and family (Fig. S6) only accounted for c. 8% of the unexplained variance (i.e. the response variance not accounted for by the fixed terms), c. 23% was related to site differences (Fig. S7; Table 5a).  Importantly, the linear mixed-effects model confirmed that Rdark,a25 decreased with increasing growth T (TWQ; Table 5).  Using mass-based variables, the assigned PFTs again accounted for much of the variation in Rdark,m25 in the GlobResp database (Table 5), with the ‘null’ model  explaining 54% of variation in Rdark,m25.  Inclusion of additional leaf-trait (but not climate) fixed terms resulted in 78% of variation in Rdark,m25 being accounted for (Fig. 7b).  For both the area- and mass-based mixed-effect models, the ‘best’ predictive model (as assessed by AIC criterion; Table S4) yielded predictive PFT-specific equations (Table 6). Supporting Information provides comparison of models using alternative PFT classifications (JULES & LPJ; Table S5); these analyses revealed that replacing JULES PFTs with those of LPJ did not improve the power of the predictive models, as shown by the lower AIC values for a model that used JULES-PFTs compared to one using LPJ-PFTs (Table S5). 

Discussion

Recognising that leaf respiration is not adequately represented in Terrestrial Biome Models and the land surface component of Earth System Models (Leuzinger & Thomas, 2011; Huntingford et al., 2013) – reflecting the previous lack of data to constrain estimates of leaf Rdark - and that improving predictions of future vegetation-climate scenarios requires global variation in leaf Rdark to be more thoroughly characterised (Atkin et al., 2014), we compiled and analysed a new, large global database of leaf Rdark, climate conditions and associated traits. Our findings revealed systematic variation in leaf Rdark in contrasting environments, particularly regarding to site-to-site differences in growth temperature and, to a lesser extent, aridity.  Importantly, analysis of the GlobResp database has yielded a range of equations (suitable for TBMs and land surface components of ESMs) to predict variations in Rdark using information on associated traits (particularly photosynthetic capacity, as well as leaf structure and chemistry) and growth temperature at each site.

Global patterns in leaf respiration: role of environmental gradients
Our results suggest, irrespective of whether rates are expressed on an area or mass basis, that the global pattern is one of increasing rates of leaf Rdark with site growth T (Figs. 4 and S4) when moving from the cold, dry arctic tundra to the warm, moist tropics.  Importantly, however, such increases in leaf Rdark are far less than expected given the large range of growth temperatures across sites.  One would expect the variation in TWQ across our sites (c. 20oC) to be associated with a c. four-fold increase in RdarkTWQ (assuming that Rdark roughly doubles for every instantaneous 10oC rise in T) rather than the observed c. two-fold increases (Fig. 4).  Underpinning this constrained variation in RdarkTWQ are markedly faster area- and mass-based rates of leaf Rdark at 25oC (Rdark25) at the coldest sites, and slower Rdark25 at warmer sites near the equator (Figs 4 and S4).  
Earlier studies of temperature responses were contradictory: some report faster area- and/or mass-based rates of Rdark25 at cold sites (Stocker, 1935; Wager, 1941; Semikhatova et al., 1992; Semikhatova et al., 2007), whilst others have found similar mass-based rates of Rdark25 and Rdark,m25[N]m relationships in (woody) plants growing in cold and warm habitats (Reich et al., 1998b; Wright et al., 2006). Our new global database, which includes data from Reich et al. (1998b) and Wright et al. (2006), contains numerous, previously unpublished data for tropical forest and arctic tundra sites (Tables 1 and S1), greatly expanding the thermal range and species coverage.  Whilst one might argue that the faster area- and mass-based Rdark25 in cold habitats (Figs 4 and S4) is a result of the inclusion of tundra herbs/grasses in the GlobResp database, growth T (i.e. TWQ) remained important when analysing Rdark25Vcmax25 and Rdark25[N] relationships within a single, globally-distributed PFT (broadleaved trees; Figs 5c and 6c).  Moreover, the significant negative Rdark,a25TWQ and Rdark,m25TWQ relationships (Fig. 4) were maintained when data were restricted to broadleaved trees (data not shown), albeit with a diminished slope for Rdark,m25TWQ relationships.  So, when analysed at the global level, our key finding is that rates of Rdark25 do differ between cold and warm sites.
Faster Rdark25 in plants growing in cold habitats compared to those in warm habitats could reflect phenotypic (acclimation) or genotypic differences across gradients in growth T.  The ability of leaf Rdark to acclimate to sustained changes in growth T appears widespread among different PFTs (Atkin & Tjoelker, 2003; Campbell et al., 2007), although there is some evidence that broad-leaved trees may have a greater capacity to acclimate than their conifer counterparts (Tjoelker et al., 1999).  Acclimation to low growth T is linked to reversible adjustments in respiratory metabolism (Atkin & Tjoelker, 2003). Rapid leaf Rdark are inherent in a number of species characteristic of cold habitats (Larigauderie & Körner, 1995; Xiang et al., 2013).  Similarly, there is evidence that within species, genotypes from cold habitats can exhibit inherently faster leaf Rdark than genotypes from warmer habitats (Mooney, 1963; Oleksyn et al., 1998).  However, the pattern (both among and within species) is far from consistent (Chapin & Oechel, 1983; Atkin & Day, 1990; Collier, 1996).  
	Another site factor that might influence Rdark25 is site water availability or aridity (Figs 4 and S3; Tables 4 and 5).  In our study, faster leaf Rdark25 occurred at the driest sites; similar findings were reported by Wright et al. (2006). Although literature reviews suggest drought-mediated increases in leaf Rdark are rare (Flexas et al., 2005; Atkin & Macherel, 2009), there are reports showing that drought can indeed increase leaf Rdark (Slot et al., 2008; Metcalfe et al., 2010) and taxa present at drier sites may also exhibit drought adaptations.  However, given our reliance on calculated values of aridity that may not reflect water availability/loss at field-relevant scales, we suggest that further work is needed to confirm the extent to which Rdark25 varies in response to aridity gradients. 

Relationships linking respiration to other leaf traits
Including Vcmax25 as an explanatory variable markedly improved predictions of Rdark25, both on an area and mass basis.  Vcmax25 also accounted for a greater proportion of variation in Rdark25 than did leaf [N] or [P], highlighting the strong functional interdependency between photosynthetic capacity and Rdark25.  Past studies have reported that variation in Rdark is tightly coupled to variation in photosynthesis (Reich et al., 1998b; Loveys et al., 2003; Whitehead et al., 2004), underpinned by chloroplast-mitochondrion interdependence in the light and dark (Krömer, 1995; Noguchi & Yoshida, 2008), and energy costs associated with phloem loading (Bouma et al., 1995).  Thus, the simplifying assumption by JULES and other modelling frameworks (Schwalm et al., 2010; Smith & Dukes, 2013) that Rdark,a25 is proportional to Vcmax,a25 (Cox et al., 1998) is robustly supported by our global analysis.  However, even though there was no significant Rdark,a25Vcmax,a25 relationship for C3 herbs/grasses in Figure 5a, overall this PFT exhibited faster rates of Rdark,a25 at a given Vcmax,a25 compared to other PFTs (Fig. 5a), with average Rdark,a25:Vcmax,a25 ratios being 0.078 for C3 herbs, 0.045 for shrubs, 0.033 for broad-leaved trees and 0.038 for needle-leaved trees.  Moreover, area or mass-based Rdark25 at any given Vcmax25 differed among thermally contrasting sites, being faster at colder sites (Figs 5b,e; Table S3). Given these issues, it is crucial that in TBMs and ESMs that link Rdark,a25 to Vcmax,a25, account is taken of PFTs and the impact of site growth T on the balance between repiratory and photosynthetic metabolism. 
Our documentation of new predictive Rdark,a25[N]a relationships, to account for variation among PFTs and site growth T (Fig. 6), provides an opportunity to improve the next generation of ESMs.  We found that leaf Rdark25 at any given leaf [N] was faster in C3 forbs/grasses than in their shrub and tree counterparts (both on an area and mass basis), supporting the findings of Reich et al. (2008).  In C3 herbs/grasses, faster rates of Rdark25 at any given leaf [N] likely reflect greater relative allocation of leaf N to metabolic processes than to structural or defensive roles (Evans, 1989; Takashima et al., 2004; Harrison et al., 2009), combined with high demands for respiratory products. In addition to PFT-dependent changes in Rdark25[N] relationships, we also found that rates of leaf Rdark25 at any given leaf [N] were faster in plants growing at colder sites.  This finding held when all PFTs were considered together, and also within the single, widespread PFT of broadleaved trees.  Faster leaf Rdark25 at a given [N] therefore appears to be a general trait associated with leaf development in cold habitats (Atkin et al., 2008).

Variability in leaf respiration rates within individual ecosystems
A key feature of scatterplots such as in Fig. 4 (which presents species means at each site) was the substantial variation in species-mean values of Rdark at any given latitude, or TWQ, or indeed, within any given site (frequently 5-10 fold).  This is in line with the diversity often reported in other leaf functional traits (chemical, structural and metabolic) within natural ecosystems (Wright et al., 2004; Fyllas et al., 2009; Asner et al., 2014).  Furthermore, the range of variation in species-mean values of Rdark was far larger than the two-fold shift in mean Rdark observed along major geographic gradients.  Our understanding of which of these factors account for the wide range of respiratory rates exhibited by co-existing species is still rather poor (Atkin et al., 2014).  At an ecological level, the wide range in Rdark may reflect differences among co-existing species [e.g. position along the ‘leaf economic spectrum’ (Wright et al., 2004); position within the conceptual ‘competitive-stress tolerator-ruderal (CSR)’ space (Grime, 1977)].

Formulating equations that predict global variability in leaf respiration
One of our objectives was to develop equations that accurately predict mean rates of leaf Rdark25 observed across the globe.  Our final, parsimonious mixed-effects models accounted for 70% of the variation in area-based Rdark25 (Fig. 7a) and 78% of the variation in mass-based Rdark25 (Fig. 7b).  Such models provide equations that enable Rdark25 to be predicted using inputs from fixed terms such as PFT, growth T and leaf physiology/chemistry.  Here, we discuss the fixed effects of the area- and mass-based models. 
For the area-based model, PFT category was the most important explanatory factor [e.g. in a model with no random effects, the JULES PFT classification alone accounted for 27% of the variability in Rdark,a25], followed by Vcmax,a25, [P]a, TWQ and [N]a (Table 5a).  Moreover, a comparative model that included random components, and where fixed effects were limited to the PFT classes, was still able to explain 43% of the variation in Rdark,a25, suggesting that while these PFTs represent a simplification of floristic complexity, they nevertheless help account for much of the global variation in area-based Rdark25.  
Interestingly, introducing information on phenological habit (i.e. evergreen vs deciduous) and biome by replacing the JULES PFTs with those of LPJ  did not improve the quality of the predictive model (Table S5).  This may appear counterintuitive, but could have arisen because the additional information contained in the LPJ-PFT classifications was already captured in the ‘best’ predictive model’s explanatory variables (i.e. Ma, [N]a, [P]a, and TWQ) shown in Table 5.  
The final ‘best’ predictive model retained Vcmax,a25, providing further support for a coupling of photosynthetic and respiratory metabolism (Krömer, 1995; Hoefnagel et al., 1998; Noguchi & Yoshida, 2008).  In terms of leaf chemistry, inclusion of [N]a reflects the coupling of respiratory and N metabolism (Tcherkez et al., 2005), and energy demands associated with protein turnover (Penning de Vries, 1975; Bouma et al., 1994; Zagdanska, 1995).  Moreover, as [N]a is important to Vcmax,a25, inclusion of Vcmax,a25 in the model may to some extent obscure the role of [N]a per se. The significant interaction of PFT and [N]a demonstrates (Table 5) that variation in leaf [N]a has greater proportional effects on Rdark,a25 in some PFTs (e.g. C3 herbs/grasses) than in others (e.g. broad-leaved trees), for the reasons outlined above.  Retention of [P]a in the preferred model suggests that latitudinal variation in foliar [P] (Fig. S2) plays an important role in facilitating faster rates of leaf Rdark,a25 at the cold high-latitude sites (Figs 4, S4) whilst limiting rates at P-deficient sites in some regions of the tropics (Townsend et al., 2007; Asner et al., 2014). These findings are likely to have particular relevance for predictions of Rdark,a25 in TBMs that include dynamic representation of N and P cycling (Thornton et al., 2007; Zaehle et al., 2014).
	While PFT category remained an explanatory factor in the final model for mass-based Rdark25 (Table 5), Vcmax,m25 emerged as the single most important factor accounting for variability in Rdark,m25.  Importantly, all climate variables were excluded from the model, including site growth T (TWQ).  Does this mean that variation in Rdark,m25 is unrelated to site growth T, as previously suggested (Wright et al., 2006)?  Not necessarily; variation in Rdark25 on both area and mass bases was tightly linked to variation in site growth T (TWQ, Fig. 5).  The absence of TWQ in the mass-based mixed model likely arose from the influence of site growth T on leaf [N]m, leaf [P]m and Ma; all three traits vary in response to differences in site growth T (Reich & Oleksyn, 2004; Wright et al., 2004; Poorter et al., 2009).  
In the preferred models for area- and mass-based Rdark25, little of the response variance not accounted for by the fixed terms was related to phylogeny, as represented by ‘family’ (Fig. S8); by contrast, a substantial component (23-73%) of the response variance not accounted for by the fixed terms was related to differences among sites (Fig. S9).  This suggests that other ‘site’ factors (including environmental and methodological differences) may have played an important role in determining variation in Rdark,a25. Soil characteristics may be important, including availability of nutrients such as calcium, potassium and magnesium (Broadley et al., 2004). In addition, rates of Rdark25 are sensitive to prevailing ambient T and soil water content in the days preceding measurement (Gorsuch et al., 2010; Searle et al., 2011).  Given this, one would not expect long-term climate averages to fully capture the actual environment experienced by plants.

Looking forward: improving representation of leaf respiration in Earth System Models
The most direct way of improving representation of leaf respiration in TBMs and the land surface components of ESMs is to formulate equations that describe patterns in Rdark25 using leaf trait and climate parameters already incorporated into those models.  Our study provides PFT-, leaf-trait- and climate-based equations, depending on which leaf traits are used in a particular model framework to predict variation in Rdark25 (e.g. area or mass-based [N], or photosynthetic capacity, Tables 5, S4 and S5).  Application of such equations would enable prediction of Rdark25 for biogeographical regions for which the PFT composition is known.  The GlobResp database will also assist in the development of land surface models that use a trait-continuum approach, where bivariate trait associations and trade-offs are included directly in the models, rather than strictly PFT-categorical approach.  For an overview of the issues relevant to incorporation of trait–climate relationships in TBMs, readers are directed to recent discussion papers (Scheiter et al., 2013; Verheijen et al., 2013; Higgins et al., 2014). 
	Other challenges to incorporating leaf respiration in ESMs include: (i) establishing models of diel variations in leaf Rdark – here, understanding the extent to which our daytime measurements of Rdark differ from fluxes measured at night will be of interest; (ii) accounting for the appropriate level of thermal acclimation of leaf Rdark25 to dynamic changes in prevailing growth T and soil moisture at all geographical positions; and, (iii) identifying the extent to which light inhibition of leaf respiration (Kok, 1948; Brooks & Farquhar, 1985; Hurry et al., 2005) varies among PFTs and biomes, over the range of leaf Ts experienced by leaves during the day.  Although much progress has been made (King et al., 2006; Atkin et al., 2008; Smith & Dukes, 2013; Wythers et al., 2013), accounting for temperature acclimation and light inhibition of leaf R in TBMs and associated land surface components of ESMs remains a considerable challenge (Atkin et al., 2014).  The equations we provide here that predict current biogeographical variations in leaf Rdark at a standard T (typically 25oC) are driven by some unquantified combination of acclimation responses and genotypic (adaptive) differences.  Further work is needed, however, to establish criteria that will enable environment and genotypic variations in light inhibition of leaf respiration to be predicted; here, recent studies linking light inhibition to photorespiratory metabolism (Griffin & Turnbull, 2013; Ayub et al., 2014) may provide directions for future research.  Achieving these goals will be assisted by compilation of data not only from the sites shown in Figure 1, but also from geographic regions currently poorly represented; additional data from Africa, Asia and Europe are needed to enable global historical biogeographic/phylogenetic effects on leaf Rdark to be tested.  In the long term, a wider goal is development of a mechanistic model that accounts for genotypic-developmental-environmentally-mediated variations in leaf Rdark.  
Currently, many TBM and ESMs predict photosynthetic capacity (Vcmax25) and Rdark25 based on assumed [N] values for each PFT.  In using this approach, differences among plants within a PFT (e.g. genotypic differences and/or plasticity responses to the growth environment) are unspecified. Our mixed-effects models suggest that PFTs capture a substantial amount of species variation across diverse sites and their use is reasonable as a first approximation for the purposes of modelling. In the application of PFT-based modelling, the growth T-dependent (TWQ) variations in Rdark25 within widely distributed PFTs (e.g. broadleaved trees) provide a means to predict T-adjustments in Rdark at the global scale.  For example, predicted Rdark25 declines 18% from 1.0 to 0.82 mol m-2 s-1 when site temperature (TWQ) increases from 20 to 25oC (Table 6). Assuming a static PFT (e.g. no species turnover or differential acclimation/adaptation), these new equations (Table 6, and associated ESM equations in Table S4) provide a first-order approximation of the acclimation response of Rdark25 of a given PFT to a cooler past world, or warmer future world.  They also demonstrate that predictions based on PFT, leaf traits and TWQ provide a powerful improvement in the representation of leaf respiration in ESMs that seek to describe the role of terrestrial ecosystems in an evolving global climate and carbon cycle.
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Table 1.  Sample sites and climate conditions at which leaf dark respiration (Rdark) was measured.  

	Country/Region
	Biomes
	Altitude 
(m asl)
	MAT (oC)
	TWQ (oC)
	MAP (mm)
	PWQ (mm)
	AI
	No. species
	PFTs present
(JULES)

	USA-AK
	Tu
	720
	-11.3
	8.2
	225
	113
	0.61
	37
	BlT, C3H, S

	Russia-Siberia
	BF
	217
	-10.8
	15.4
	254
	122
	0.46
	3
	BlT, NlT

	USA-CO
	Tu
	3,360
	-2.6
	7.5
	811
	203
	1.20
	10
	BlT, C3H, NlT, S

	USA-MN
	BF, TeDF, TeG
	365
	4.4
	18.4
	735
	303
	0.87
	53
	BlT, C3H, C4H, NlT, S

	USA-IA
	TeDF
	385
	7.1
	20.2
	865
	315
	0.83
	11
	BlT, NlT

	USA-WI
	TeDF, TeG
	293
	7.7
	20.6
	880
	315
	0.93
	15
	BlT, C3H, NlT

	USA-MI
	TeDF
	200
	8.6
	19.9
	944
	268
	0.98
	1
	NlT

	Germany
	TeDF
	60
	9.1
	17.2
	704
	190
	0.92
	9
	BlT, NlT

	USA-NY
	TeDF
	225
	9.4
	20.8
	1,173
	308
	1.20
	3
	BlT

	USA-PA
	TeDF
	355
	9.5
	19.9
	915
	262
	0.91
	3
	BlT

	Spain
	TeW
	1,017
	10.7
	19.2
	487
	99
	0.48
	1
	BlT

	Australia-TAS
	TeRF
	144
	11.0
	14.7
	1,325
	211
	1.58
	14
	BlT, S

	Chile
	TeRF
	434
	11.1
	15.4
	1,467
	103
	1.40
	18
	BlT, NlT

	USA-TN
	TeDF
	775
	11.2
	20.1
	1,554
	389
	1.34
	13
	BlT, C3H, NlT, S

	New Zealand
	TeRF
	202
	11.3
	15.9
	4,014
	1,011
	4.50
	16
	BlT, NlT, S

	USA-NC
	TeDF
	850
	11.4
	20.0
	1,852
	444
	1.52
	15
	BlT, NlT

	USA-NM
	Sa
	1,620
	12.5
	22.2
	275
	127
	0.19
	9
	BlT, NlT, S

	Australia-ACT
	TeW
	572
	13.0
	20.7
	722
	271
	0.58
	6
	BlT, NlT, S

	Japan
	TeDF
	20
	14.9
	23.7
	1,619
	433
	1.92
	4
	BlT

	Sth Africa
	TeW
	600
	16.6
	21.0
	754
	67
	0.57
	5
	BlT, S

	Peru-Andes
	TrRF_up
	2,380
	16.7
	17.7
	1,297
	373
	0.79
	82
	BlT, C3H

	Australia-SA
	TeW
	35
	17.3
	23.6
	255
	52
	0.17
	10
	BlT, C3H, S

	Australia-NSW
	TeW
	140
	17.3
	23.2
	820
	215
	0.29
	70
	BlT, C3H, C4H, NlT, S

	USA-SC
	TeDF
	3
	17.7
	25.8
	1,339
	469
	1.02
	10
	BlT, C3H, NlT, S

	Australia-WA
	TeW
	204
	18.7
	24.5
	463
	47
	0.32
	55
	BlT, C3H, S

	Australia-FNQ
	TrRF_lw
	513
	22.4
	25.1
	1,990
	934
	1.35
	45
	BlT, S

	Cameroon
	TrRF_lw
	550
	24.0
	24.8
	1,729
	417
	1.13
	6
	BlT, C3H

	Venezuela
	TrRF_lw
	492
	24.4
	24.7
	3,092
	693
	1.61
	10
	BlT, S

	Bolivia
	TrRF_lw
	400
	25.3
	27.0
	1,020
	436
	0.57
	50
	BlT

	Suriname
	TrRF_lw
	215
	25.4
	26.3
	2,224
	165
	1.37
	25
	BlT, C3H, C4H, S

	Peru-Amazon
	TrRF_lw
	164
	25.4
	26.2
	2,567
	828
	1.50
	214
	BlT, S

	Bangladesh
	TrRF_lw
	21
	25.5
	28.5
	1,970
	736
	1.34
	1
	BlT

	Costa Rica
	TrRF_lw
	135
	25.7
	26.7
	4,141
	747
	2.64
	2
	BlT, S

	French Guiana
	TrRF_lw
	21
	25.8
	26.2
	2,824
	222
	1.88
	70
	BlT

	Malaysia-Borneo
	TrRF_lw
	20
	26.7
	27.1
	2,471
	501
	1.64
	29
	BlT, S

	Brazil-Amazon
	TrRF_lw
	115
	27.0
	27.6
	2,232
	401
	1.39
	9
	BlT

	Panama
	TrRF_lw
	98
	27.0
	27.7
	1,822
	300
	1.19
	18
	BlT

	Niger
	Sa
	280
	28.2
	31.4
	618
	55
	0.30
	3
	BlT, S


Sites shown in order from increasing mean annual temperature (MAT).  Where multiple sites were found within a region, values represent the mean values of all sites, weighted for the number of species at each site (see Tables S1 and S2 in Supporting Information for further details).  Data on climate are from the WorldClim  data base (Hijmans et al., 2005).  Number of species measured at each site are shown, as are the number of observational rows of data contained in the GlobResp database.  For the latter, an observational row represents individual measurements for all unpublished data (See Table S1 in Supporting Information), while for published data (SI Table S2) observational rows in many cases represent mean values of species:site combinations.  JULES (Clark et al., 2011) plant functional types (PFTs) at each site shown, according to: BlT, broad-leaved tree; C3H, C3 metabolism herb/grass; C4H, C4 metabolism herb/grass; NlT, needle-leaved tree; S, shrub. Biome classes: BF, boreal forests; TeDF, temperate deciduous forest; TeG, temperate grassland; TeRF, temperate rainforest; TeW, temperate woodland; TrRF_lw, lowland tropical rainforest (<1500 asl); TrRF_up, upland tropical rainforest (>1500 asl); Tu, tundra.  Abbreviations: mean temperature of the warmest quarter (i.e. warmest 3-month period per year; TWQ), mean annual precipitation (MAP), mean precipitation of the warmest quarter (PWQ), aridity index (AI) calculated as the ratio of MAP to mean annual potential evapotranspiration (UNEP, 1997; Zomer et al., 2008). Australia-ACT, Australian Capital Territory; Australia-FNQ, Far North Queensland; Australia-NSW, New South Wales; Australia-TAS, Tasmania; Australia-WA, Western Australia; USA-AK, Alaska; USA-CO, Colorado; USA-MN, Minnesota; USA-IA, Iowa; USA-WI, Wisconsin; USA-MI, Michigan; USA-PA, Pennsylvania; USA-NY, New York; USA-NC, North Carolina; USA-TN, Tennessee; USA-NM, New Mexico; USA-SC, South Carolina.
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Table 2.  Details of plant functional types (PFTs) contained in GlobResp database.  

	ESM framework 
	Plant functional types (PFTs)
	No. sites
	Min. latitude
	Max. latitude
	No. species

	JULES
	BlT
	94
	-43.42
	68.63
	642

	
	C3H
	14
	-34.04
	68.63
	75

	
	C4H
	3
	-33.84
	45.41
	8

	
	NlT
	20
	-43.31
	62.25
	24

	
	S
	32
	-43.42
	68.63
	124

	LPJ
	BorDcBl
	10
	40.05
	68.63
	18

	
	BorDcNl
	3
	33.33
	62.25
	2

	
	BorEvNl
	6
	40.05
	62.25
	10

	
	TmpDcBl
	25
	-43.41
	50.60
	46

	
	TmpEvBl
	33
	-43.42
	68.63
	193

	
	TmpEvNl
	13
	-43.31
	50.60
	18

	
	TmpH
	12
	-34.04
	68.63
	79

	
	TrpDcBl
	20
	-15.78
	13.20
	50

	
	TrpEvBl
	39
	-17.68
	24.20
	468

	
	TrpH
	3
	-13.11
	3.38
	4


PFTs for two Earth System Model frameworks are shown: JULES (Clark et al., 2011) and LPJ (Sitch et al., 2003).  For each PFT, the number of field sites and species are shown, as is the maximum absolute latitude and longitude of the PFT distribution.  For JULES, the following PFTs are shown: BlT, broad-leaved tree; C3H, C3 metabolism herb/grass; C4H, C4 metabolism herb/grass; NlT, needle-leaved tree; S, shrub.  For LPJ, the following PFTs are shown: BorDcBl, boreal deciduous broad-leaved tree/shrub; BorDcNl, boreal deciduous needle-leaved tree/shrub; BorEvNl, boreal evergreen needle-leaved tree/shrub; TmpDcBl, temperate deciduous broad-leaved tree/shrub; TmpEvBl, temperate evergreen broad-leaved tree/shrub; TmpEvNl, temperate evergreen needle-leaved tree/shrub; TmpH, temperate herb/grass; TrpDcBl, tropical deciduous broad-leaved tree/shrub; TrpEvBl, tropical evergreen broad-leaved tree/shrub; TrpH, tropical herb/grass.  Note: in some cases, individual species occurred at multiple sites in multiple biomes.  Finally, an overwhelming majority of the shrubs (S) were evergreen (123 species:site combinations) compared to deciduous shrubs (11 species:site combinations)

Table 3.  Correlations between log10 transformed leaf respiration (Rdark) and location/climate (see Figure 4).  

	Response variable
	Latitude
	
	TWQ, both hemispheres
	
	Aridity index, both hemispheres

	
	Hemisphere
	df
	p value
	r2
	Intercept
	Slope
	CI slope, lower
	CI slope, higher
	
	df
	p value
	r2
	Intercept
	Slope
	CI slope, lower
	CI slope, higher
	
	df
	p value
	r2
	Intercept
	Slope
	CI slope, lower
	CI slope, higher

	logRdark,a25
	Nth
	404
	< 0.0001
	0.189
	-0.130
	0.005
	0.004
	0.006
	
	1,104
	< 0.0001
	0.139
	0.467
	-0.019
	-0.022
	-0.016
	
	1,069
	<0.0001
	0.038
	0.119
	-0.069
	-0.090
	-0.048

	
	Sth
	698
	< 0.0001
	0.071
	-0.063
	0.005
	0.004
	0.007
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	logRdark,aTWQ
	Nth
	404
	< 0.0001
	0.039
	-0.028
	-0.002
	-0.003
	-0.001
	
	1,104
	< 0.0001
	0.066
	-0.329
	0.013
	0.010
	0.015
	
	1,069
	<0.0001
	0.016
	0.011
	-0.043
	-0.063
	-0.023

	
	Sth
	698
	0.740
	0.000
	N/A
	N/A
	N/A
	N/A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	logRdark,m25
	Nth
	421
	< 0.0001
	0.148
	0.908
	0.006
	0.004
	0.007
	
	1,111
	< 0.0001
	0.074
	1.342
	-0.015
	-0.019
	-0.012
	
	1,076
	<0.0001
	0.019
	1.065
	-0.054
	-0.077
	-0.031

	
	Sth
	688
	0.824
	0.000
	N/A
	N/A
	N/A
	N/A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LogRdark,mTWQ
	Nth
	421
	0.006
	0.018
	1.008
	-0.002
	-0.003
	-0.001
	
	1,111
	< 0.0001
	0.083
	0.546
	0.016
	0.013
	0.019
	
	1,076
	0.031
	0.004
	0.950
	-0.026
	-0.049
	-0.002

	
	Sth
	688
	< 0.0001
	0.061
	0.991
	-0.005
	-0.007
	-0.004
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



For each correlation between the y-axis leaf trait and x-axis location/climate parameter, the number of degrees of freedom (df), probability value (p-value) and coefficient of determination (r2) and 95% confidence intervals (CI) are shown.  Traits shown are: Rdark,a25 and Rdark,aTWQ, predicted area-based leaf Rdark rates (mol CO2 m-2 s-1) at 25oC and TWQ (mean daily temperature of the warmest quarter), respectively; leaf Rdark,m25 and Rdark,mTWQ, predicted mass-based Rdark rates (nmol CO2 g-1 s-1) at 25oC and TWQ, respectively.  TWQ at each site were obtained using site information and the WorldClim data base (Hijmans et al., 2005).  Aridity index calculated as the ratio of mean annual precipitation (MAP) to mean annual potential evapotranspiration (PET) (UNEP, 1997; Zomer et al., 2008).  Abbreviations: N/A, not applicable.



Table 4.  Regression equations expressing area- and mass-based leaf dark respiration at 25oC (Rdark25) as function of other leaf traits and site climate.  
	Dependent variable
	Input: independent variables 
(Backwards-Stepwise Regression)
	Output: selected equations
(Multiple Linear Regression)
	Multiple linear regression parameters
	

	
	
	
	n
	r2
	PRESS statistic
	Standardized partial regression coefficients
	

	
	
	
	
	
	
	1
	2
	3
	4
	5

	Area-based 
log10 Rdark,a25
	Leaf traits (all log10): [N]a, Ma 
	log10Rdark,a25 = -0.469 + (0.329*log10Na) + (0.204*log10Ma)
	1038
	0.168
	57.71
	0.270
(log10Na)
	0.186
(log10Ma)
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	Leaf traits (all log10): [N]a, [P]a, Ma
	log10Rdark,a25 = 0.076 + (0.304*log10Pa) + (0.140*log10 Ma)
	730
	0.156
	40.95
	0.338
(log10Pa)
	0.112
(log10Ma)
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	Leaf traits (all log10): [N]a, [P]a, Ma, Vcmax,a25 
	log10Rdark,a25 = -0.241 + (0.235*log10Pa) + (0.050*log10 Ma) (0.290*log10Vcmax,a25)
	703
	0.221
	34.79
	0.269
(log10Pa)
	0.041
(log10Ma)
	0.285
(log10Vcmax)
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	Climate parameters: TWQ, PWQ, AI
	log10Rdark,a25 = 0.451 - (0.0153*TWQ) - (0.00016*PWQ)
	1114
	0.171
	61.86
	-0.297
(TWQ)
	-0.196
(PWQ)
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	Leaf traits (all log10) and climate parameters:
[N]a, [P]a, Ma, Vcmax,a25, TWQ, PWQ
	log10Rdark,a25 = -0.563 + (0.292*log10 Ma) + (0.119*log10Pa) + (0.221*Vcmax,a25)  - (0.0147*TWQ) - (0.00012*PWQ) 
	703
	0.353
	29.06
	0.238
(log10Ma)
	0.136 (log10Pa)
	0.243
(log10Vcmax)
	-0.304
(TWQ)
	-0.165 (PWQ)

	
	
	
	
	
	
	
	
	
	
	

	Mass-based log10 Rdark,m25
	Leaf traits (all log10): [N]m, SLA
	log10Rdark,m25 = 0.0932 +  (0.475*log10SLA) + (0.364*log10Nm) 
	1037
	0.314
	57.78
	0.392
(log10SLA)
	0.244
(log10Nm)
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	Leaf traits (all log10): [N]m, [P]m, SLA
	log10Rdark,m25 = 0.495 + (0.556*log10SLA) + (0.333*log10Pm) 
	730
	0.336
	40.68
	0.396
(log10SLA)
	0.315
(log10Pm)
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	Leaf traits (all log10): [N]m, [P]m, SLA, Vcmax,m25
	log10Rdark,m25 = -0.061 + (0.432*log10SLA) + (0.264*log10Pm) + (0.274*log10Vcmax,m25)
	703
	0.407
	34.80
	0.307
(log10SLA)
	0.252
(log10Pm)
	0.263
(log10 Vcmax)
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	Climate parameters: TWQ, PWQ, AI
	log1 0Rdark,m25 = 1.353 - (0.0157*TWQ) - (0.000018*AI)
	1121
	0.087
	83.22
	-0.276
(TWQ)
	0.112
(AI)
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	Leaf traits (all log10) and climate parameters:
[N]m, [P]m, SLA, Vcmax,m25, TWQ, AI
	log10Rdark,m25 = 0.249 + (0.526 *log10SLA) + (0.0705*log10Pm) + (0.281*log10Vcmax,m25) - (0.0184*TWQ) - (0.000015*AI)
	703
	0.497
	29.72
	0.374
(log10SLA)
	0.067
(log10Pm)
	0.270
(log10Vcmax)
	-0.333
(TWQ)
	0.111
(AI)

	
	
	
	
	
	
	
	
	
	
	


All leaf trait data were log10 transformed.  To select the best fitting equation from a group of input independent variables (e.g. leaf trait, climate or the combination of trait plus climate), data were explored using Backwards-Stepwise Regression – this revealed that chosen parameters exhibited variance inflation factors (VIF) less than 2.0 (i.e. minimal multi-collinearity); it also identified best-fit parameters (using F-to-remove criterion).  Thereafter, multiple regression analyses were conducted to estimate predictive equations for the chosen variables.  All selected variables were significant (P<0.001).  The PRESS statistic (predicted residual error sum of squares) provides a measure of how well each regression model predicts the observations, with smaller PRESS indicating better predictive capability. Relative contributions of leaf trait and climate variables to each regression can be gauged from their standardized partial regression coefficients (β1-β5, depending on model equation).  Abbreviations: Ma, leaf mass per unit leaf area (g m-2); SLA, leaf area per unit leaf mass (m2 kg-1); [N]a and [N]m, area- (g m-2) and mass-based (mg g-1) leaf nitrogen concentration, respectively; [P]a and [P]m, area- (g m-2) and mass-based (mg g-1) leaf phosphorus concentration, respectively; Vcmax,a25 (mol CO2 m-2 s-1) and Vcmax,m25 (nmol CO2 g-1 s-1), predicted area- and mass-based capacity for CO2 fixation by Rubisco at 25oC, respectively; Rdark,a25 (mol CO2 m-2 s-1) and Rdark,m25 (nmol CO2 g-1 s-1), predicted area- and mass-based leaf Rdark rates at 25oC, respectively; mean temperature of the warmest quarter (i.e. warmest 3-month period per year; TWQ, °C), mean annual precipitation (MAP, mm yr-1), mean precipitation of the warmest quarter (PWQ), aridity index (AI) calculated as the ratio of MAP to mean annual potential evapotranspiration (UNEP, 1997; Zomer et al., 2008).  TWQ at each site were obtained using site information and the WorldClim data base (Hijmans et al., 2005).

Table 5.  Two linear mixed-effects models (‘best’ predictive model and a ‘null’, PFT only model), with (a) area-based (mol CO2 m-2 s-1) and (b) mass-based (nmol CO2 g-1 s-1) leaf respiration at 25oC (Rdark,a25 and Rdark,m25, respectively) as the response variables, each showing fixed and random effects. See Table 6 for PFT-specific equations are shown that can be used to predict variability in Rdark,a25 and Rdark,m25 based on ‘best’ models.  
	(a) Area-based model
	
	(b) Mass-based model

	Fixed effects
	
	
	
	Fixed effects
	
	

	‘Best’ predictive model (PFTs, leaf traits and climate)
	
	‘Null’ model (PFT only)
	
	‘Best’ predictive model (PFTs, leaf traits and climate)
	
	‘Null’ model (PFT only)

	Source
	Value
	s.e.
	t-value
	
	Value
	s.e.
	t-value
	
	Source
	Value
	s.e.
	t-value
	
	Value
	s.e.
	t-value

	PFT-BlT 
	1.2636
	0.033
	38.551
	
	1.3805
	0.046
	29.750
	
	PFT-BlT
	8.5341
	2.091
	4.081
	
	10.8938
	1.243
	8.764

	PFT-C3H
	0.4708
	0.141
	3.348
	
	0.5099
	0.160
	3.185
	
	PFT-C3H
	-5.6273
	6.832
	-0.824
	
	10.0926
	3.569
	2.828

	PFT-NlT
	-0.3595
	0.150
	-2.392
	
	-0.0558
	0.179
	-0.311
	
	PFT-NlT
	6.8086
	16.683
	0.408
	
	-2.2741
	3.553
	-0.640

	PFT-S
	0.3290
	0.064
	5.163
	
	0.3460
	0.071
	4.867
	
	PFT-S
	-2.9249
	2.564
	-1.141
	
	1.8429
	1.492
	1.235

	[N]a
	0.0728
	0.018
	4.124
	
	
	
	
	
	[N]m
	-0.1306
	0.085
	-1.531
	
	
	
	

	[P]a
	0.0015
	0.000
	7.389
	
	
	
	
	
	[P]m
	-0.5670
	1.491
	-0.380
	
	
	
	

	Vcmax,a25
	0.0095
	0.001
	15.241
	
	
	
	
	
	Ma
	-0.0137
	0.004
	-3.040
	
	
	
	

	TWQ
	-0.0358
	0.006
	-5.658
	
	
	
	
	
	Vcmax,m25
	0.0111
	0.002
	6.459
	
	
	
	

	Interaction: C3H x [N]a
	0.3394
	0.069
	4.892
	
	
	
	
	
	Interaction: C3H x [N]m
	0.7252
	0.295
	2.459
	
	
	
	

	Interaction: NlT x [N]a
	0.0762
	0.146
	0.523
	
	
	
	
	
	Interaction: NlT x [N]m
	-0.7283
	1.796
	-0.405
	
	
	
	

	Interaction: S x [N]a
	0.0687
	0.053
	1.295
	
	
	
	
	
	Interaction: S x [N]m
	0.1605
	0.146
	1.102
	
	
	
	

	
	
	
	
	
	
	
	
	
	Interaction: C3H x [P]m
	-4.2308
	2.659
	-1.591
	
	
	
	

	
	
	
	
	
	
	
	
	
	Interaction: NlT x [P]m
	0.4131
	1.694
	0.244
	
	
	
	

	
	
	
	
	
	
	
	
	
	Interaction: S x [P]m
	2.3333
	1.790
	1.303
	
	
	
	

	
	
	
	
	
	
	
	
	
	Interaction: [N]m x [P]m
	0.1876
	0.062
	3.026
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Random effects
	
	
	Random effects
	

	‘Best’ predictive model (PFTs, leaf traits and climate)
	
	‘Null’ model 
	
	
	‘Best’ predictive model (PFTs, leaf traits and climate)
	
	‘Null’ model 
	

	Source
	# levels group-1
	Residual variance
	% of total
	
	Residual variance
	% of total
	
	
	Source
	# levels group-1
	Residual variance
	% of total
	
	Residual variance
	% of total
	

	Intercept variance: species
	531
	0.009
	7.1%
	
	0.023
	11.5%
	
	
	
	
	
	
	
	
	
	

	Intercept variance: families
	100
	0.002
	1.4%
	
	0.004
	2.1%
	
	
	Intercept variance: families
	100
	0.373
	0.7%
	
	7.950
	9.2%
	

	Intercept variance: sites
	49
	0.031
	23.4%
	
	0.073
	36.2%
	
	
	Intercept variance: sites
	49
	37.745
	73.2%
	
	55.290
	64.2%
	

	Residual error
	
	0.091
	68.2%
	
	0.102
	50.2%
	
	
	Residual error
	
	13.476
	26.1%
	
	22.850
	26.5%
	

	Total 
	
	0.133
	100.0%
	
	0.202
	100.0%
	
	
	Total
	
	51.594
	100.0%
	
	86.090
	100.0%
	


	
For the ‘best’ models, parameter values, s.e. and t-values given for the continuous explanatory variables; explanatory variables (all un-transformed and centred on their means) are: (1) plant functional types (PFT), according to JULES (Clark et al., 2011): BlT (broad-leaved tree), C3H (C3 metabolism herbs/grasses), NlT (needle-leaved trees), and S (shrubs); (2) leaf nitrogen ([N]) and phosphorus ([P]) concentrations (g m-2 for area-based values and mg g-1 for mass based values), Ma (g m-2) and Rubisco CO2 fixation capacity at 25oC (Vcmax25; mol CO2 m-2 s-1 and nmol CO2 g-1 s-1 for area and mass-based values, respectively); and mean temperature of the warmest quarter (TWQ, °C) (Hijmans et al., 2005).  Figure S5 (Supp. Info.) assess heterogeneity and normality assumptions of the ‘best’ models, while Figure S6 shows model validation graphs for the area-based model fixed component explanatory variables; similarly, Fig. S7 shows details for variables omitted from the fixed components in the area-based model (Ma, AI and PWQ).  The PFT-BlT values (first row) are based on the assumption that other variables were at their global mean values.  The random effects tables, the intercept was allowed to vary among species, families and sites; residual errors shown are within species, families and sites.  See Figure 7 for scatter plots of modelled vs actual values of the ‘best’ models, both with and without inclusion of random effects.  See also Table S4 (Supporting Information) for area-based model outputs for scenarios where different combinations of fixed effect parameters were included. 

Table 6.  PFT-specific equations (formulated from the ‘best’ mixed-effects models shown in Table 5) that can be used to predict variability in (a) area-based (mol CO2 m-2 s-1) and (b) mass-based (nmol CO2 g-1 s-1) leaf respiration at 25oC (Rdark,a25 and Rdark,m25, respectively).  


_______________________________________________________________________________________________________________________________________________________________________
(a) PFT-specific equations to predict variability in Rdark,a25 (‘best’ model)		(b)	PFT-specific equations to predict variability in Rdark,m25 (‘best’ model)
_______________________________________________________________________________________________________________________________________________________________________

BlT: Rdark,a25 = 1.2636 + (0.0728*[N]a) + (0.015*[P]a) + (0.0095*Vcmax,a25) – (0.0358*TWQ)		BlT: Rdark,m25 = 8.5341-(0.1306*[N]m)-(0.5670*[P]m)-(0.0137*Ma) + (0.0111*Vcmax,m25) + (0.1876*([N]mx[P]m)
C3H: Rdark,a25 = 1.7344+ (0.4122*[N]a) + (0.015*[P]a) + (0.0095*Vcmax,a25) – (0.0358*TWQ)		C3H: Rdark,m25 = 2.9068+(0.5946*[N]m)-(4.7978*[P]m)-(0.0137*Ma)+(0.0111*Vcmax,m25)+(0.1876*([N]mx[P]m)
NlT: Rdark,a25 = 0.9041+ (0.1489*[N]a) + (0.015*[P]a) + (0.0095*Vcmax,a25) – (0.0358*TWQ)		NlT: Rdark,m25 = 15.3427-(0.8589*[N]m)-(0.1539*[P]m)-(0.0137*Ma)+(0.0111*Vcmax,m25)+(0.1876*([N]mx[P]m)
S: Rdark,a25 = 1.5926+ (0.1415*[N]a) + (0.015*[P]a) + (0.0095*Vcmax,a25) – (0.0358*TWQ)		S: Rdark,m25 = 5.6092+(0.0299*[N]m)+(1.7663*[P]m)-(0.0137*Ma)+(0.0111*Vcmax,m25)+(0.1876*([N]mx[P]m)
_______________________________________________________________________________________________________________________________________________________________________
Explanatory variables are: (1) plant functional types (PFT), according to JULES (Clark et al., 2011): BlT (broad-leaved tree), C3H (C3 metabolism herbs/grasses), NlT (needle-leaved trees), and S (shrubs); (2) leaf nitrogen ([N]) and phosphorus ([P]) concentrations  (g m-2 for area-based values and mg g-1 for mass based values), and Rubisco CO2 fixation capacity at 25oC (Vcmax25; mol CO2 m-2 s-1 and nmol CO2 g-1 s-1 for area and mass-based values, respectively); and mean temperature of the warmest quarter (TWQ, °C) (Hijmans et al., 2005).  Note – equations refer to un-transformed values of each response and explanatory variable.  See also Table S4 (Supporting Information) for area-based model equations for scenarios where different combinations of fixed effect parameters were included.

Figure legends

Figure 1.  Location (a) and climate envelope (b) of the sites at which leaf dark respiration (Rdark) and associated traits were measured.  (a) shows silite locations on a global map showing spatial variability in mean annual temperatures (MAT);  (b) shows plot of mean annual precipitation (MAP) vs MAT for each site (shown in biome classes).  See Table 1 for summary of site information, and Table S1 and S2 (Supporting Information) for details on the latitude, longitude, altitude (height above sea level), MAT, mean temperature of the warmest quarter (i.e. warmest 3-month period per year; TWQ), MAP, mean precipitation of the warmest quarter (PWQ) and aridity index (AI, ratio of MAP to mean annual potential evapotranspiration).  In (b), biomes categorization of each site is shown.  Biome abbreviations: Tu, tundra; BF, boreal forest; TeDF, temperate deciduous forest; TeRF, temperate rainforest; TeW, temperate woodland; Sa, savana; TrRF_up, upland tropical rainforest (>1500 m asl); TrRF_low, lowland tropical rainforest (<1500 m asl).  In (b), note the unusually high MAP at the Frans Josef TeRF site on the Sth Island of New Zealand.

Figure 2.  Box plots showing modulation of leaf structural and chemical traits by JULES (Clark et al., 2011) plant functional type (PFT) classifications.  Traits shown are: (a) Ma, leaf mass per unit leaf area; (b) [N]a, area-based leaf nitrogen concentration; and (c) [P]a, area-based leaf phosphorous concentration.  Data shown are for individual row observations contained in the GlobResp database (to give an indication of underlying data distribution).  The central box in each box plot shows the interquartile range; the median is shown as the bold line within each box; whiskers extend 1.5 times the interquartile range or to the most extreme value, whichever is the smaller; any points outside these values are shown as individual points. Data for the following JULES (Clark et al., 2011) plant functional type (PFT) classifications: BlT, broad-leaved tree; C3H, C3 metabolism herb/grass; C4H, C4 metabolism herb/grass; NlT, needle-leaved tree; S, shrub

Figure 3.  Box plots showing modulation of carboxylation capacity of Rubisco (Vcmax) and leaf respiration (Rdark) in darkness by JULES (Clark et al., 2011) plant functional type (PFT) classifications.  Data shown are for individual row observations contained in the GlobResp database (to give an indication of underlying data distribution).  Rates at 25oC are shown.  Traits shown are: (a) Vcmax,a25 and (c) Vcmax,m25: area- and mass-based carboxylation rates, respectively; (b) Rdark,a25 and (d) Rdark,m25:  area- and mass-based respiration rates, respectively.  Values of Vcmax at 25oC were calculated according to Farquhar et al. (1980) assuming an activation energy (Ea) of 64.8 kJ mol-1. Values of Rdark at 25oC were calculated assuming a T-dependent Q10 (Tjoelker et al., 2001) and equation 7 described in Atkin et al. (2005). The central box in each box plot shows the interquartile range; the median is shown as the bold line within each box; whiskers extend 1.5 times the interquartile range or to the most extreme value, whichever is the smaller; any points outside these values are shown as individual points. Data for the following JULES (Clark et al., 2011) plant functional type (PFT) classifications: BlT, broad-leaved tree; C3H, C3 metabolism herb/grass; NlT, needle-leaved tree; S, shrub.  Data not shown for C4 metabolism herbs/grasses, due to limited data availalbility.


Figure 4. Relationships between leaf Rdark (log10 scale) and location (absolute latitude) or climate [mean daily temperature of the warmest quarter (TWQ) & aridity index (AI)].  Traits shown are: Rdark,a25, (a, b and c) and Rdark,aTWQ (d, e and f), predicted area-based Rdark rates at 25oC and TWQ, respectively; Rdark,m25 (g, h and i) and Rdark,mTWQ (j, k and l), predicted mass-based Rdark rates at 25oC and TWQ, respectively.  Values shown are averages for unique site:species combinations for rates at 25oC and TWQ, calculated assuming a temperature-dependent Q10 (Tjoelker et al., 2001) and equation 7 described in Atkin et al. (2005).  Values at the TWQ of each replicate were calculated using climate/location data from the WorldClim  data base (Hijmans et al., 2005).  Aridity index calculated as the ratio of mean annual precipitation (MAP) to mean annual potential evapotranspiration (PET) (UNEP, 1997).  In plots against latitude, northern and southern latitudes shown as blue and red symbols, respectively.  Solid lines in each plot show regression lines where the relationships were significant; dashed lines show the prediction intervals (two-times the standard deviation) around the predicted relationship.  See Table 3 for correlations between log10 transformed Rdark and location/climate.  Note: see Figure S3 (Supporting Information) for relationships beween Rdark and AI, excluding data from the exceptionally high rainfall sites at Frans Josef on the Sth Island of New Zealand.

Figure 5. Patterning of area- and mass-based Rdark25 – Vcmax25 relationships by JULES PFTs (a and d); TWQ categories (5oC intervals) – all data (b and e); and TWQ categories (5oC intervals) – broad-leaved trees only (c and f).  All values shown on a log10 scale.  Values shown are averages for unique site:species combinations.  Upper panels (a, b and c) show area-based values, while lower panels (d, e and f) show mass-based values.  JULES PFTs: BlT, broad-leaved tree; C3H, C3 metabolism herb/grass; NlT, needle-leaved tree; S, shrub.  TWQ classes: 1st <10oC; 2nd 10-15oC; 3rd 15-20oC; 4th 20-25oC; 5th >25oC.  Values of Rdark at 25oC were calculated assuming a T-dependent Q10 (Tjoelker et al., 2001) and equation 7 described in Atkin et al. (2005).  Values Vcmax at 25oC were calculated according to Farquhar et al. (1980) assuming an activation energy (Ea) of 64.8 kJ mol-1.  See Table S3 for SMA regression outputs. 

Figure 6. Patterning of area- and mass-based Rdark25 – N relationships by JULES PFTs (a and d); TWQ categories (5oC intervals) – all data (b and e); and TWQ categories (5oC intervals) – broad-leaved trees only (c and f).  Values shown are averages for unique site:species combinations. All values shown on a log10 scale. JULES PFTs: BlT, broad-leaved tree; C3H, C3 metabolism herb/grass; NlT, needle-leaved tree; S, shrub.  TWQ classes: 1st <10oC; 2nd 10-15oC; 3rd 15-20oC; 4th 20-25oC; 5th >25oC.  Values of Rdark at 25oC were calculated assuming a T-dependent Q10 (Tjoelker et al., 2001) and equation 7 described in Atkin et al. (2005).  See Table S3 for SMA regression outputs.  

Figure 7.  Scatterplots for (a) area-based, and (b) mass-based linear mixed-effects model’s goodness of fits, including fixed and random terms.  Observed values of leaf respiration at 25oC (Rdark25) are plotted against model predictions (using the ‘best’ predictive models detailed in Table 5).  For the area-based model (a), the fixed component explanatory variables were: (1) plant functional types (PFT), according to JULES (Clark et al., 2011); (2) area-based leaf nitrogen ([N]a) and phosphorus ([P]a) concentrations, and Rubisco CO2 fixation capacity at 25oC (Vcmax,a25); and mean temperature of the warmest quarter (TWQ) (Hijmans et al., 2005).  For the mass-based model (b), the fixed component explanatory variables were: (1) plant functional types (PFT); (2) mass-based leaf nitrogen ([N]m) and phosphorus ([P]m) concentrations, Rubisco CO2 fixation capacity at 25oC (Vcmax,m25), and leaf mass per unit leaf area (Ma). 

Figure 1.  Location (a) and climate envelope (b) of the sites at which leaf dark respiration (Rdark) and associated traits were measured.  (a) shows site locations on a global map showing spatial variability in mean annual temperatures (MAT);  (b) shows plot of mean annual precipitation (MAP) vs MAT for each site (shown in biome classes).  See Table 1 for summary of site information, and Table S1 and S2 (Supporting Information) for details on the latitude, longitude, altitude (height above sea level), MAT, mean temperature of the warmest quarter (i.e. warmest 3-month period per year; TWQ), MAP, mean precipitation of the warmest quarter (PWQ) and aridity index (AI, ratio of MAP to mean annual potential evapotranspiration).  In (b), biomes categorization of each site is shown.  Biome abbreviations: Tu, tundra; BF, boreal forest; TeDF, temperate deciduous forest; TeRF, temperate rainforest; TeW, temperate woodland; Sa, savana; TrRF_up, upland tropical rainforest (>1500 m asl); TrRF_low, lowland tropical rainforest (<1500 m asl).  In (b), note the unusually high MAP at the Frans Josef TeRF site on the Sth Island of New Zealand.
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[image: ]Figure 2.  Box plots showing modulation of leaf structural and chemical traits by JULES (Clark et al., 2011) plant functional type (PFT) classifications.  Traits shown are: (a) Ma, leaf mass per unit leaf area; (b) [N]a, area-based leaf nitrogen concentration; and (c) [P]a, area-based leaf phosphorous concentration.  Data shown are for individual observations.  The central box in each box plot shows the interquartile range; the median is shown as the bold line within each box; whiskers extend 1.5 times the interquartile range or to the most extreme value, whichever is the smaller; any points outside these values are shown as individual points. Data for the following JULES (Clark et al., 2011) plant functional type (PFT) classifications: BlT, broad-leaved tree; C3H, C3 metabolism herb/grass; C4H, C4 metabolism herb/grass; NlT, needle-leaved tree; S, shrub.  



Figure 3.  Box plots showing modulation of carboxylation capacity of Rubisco (Vcmax) and leaf respiration (Rdark) in darkness by JULES (Clark et al., 2011) plant functional type (PFT) classifications.  Data shown are for individual row observations contained in the GlobResp database (to give an indication of underlying data distribution).  Rates at 25oC are shown.  Traits shown are: (a) Vcmax,a25 and (c) Vcmax,m25: area- and mass-based carboxylation rates, respectively; (b) Rdark,a25 and (d) Rdark,m25:  area- and mass-based respiration rates, respectively.  Values of Vcmax at 25oC were calculated according to Farquhar et al. (1980) assuming an activation energy (Ea) of 64.8 kJ mol-1. Values of Rdark at 25oC were calculated assuming a T-dependent Q10 (Tjoelker et al., 2001) and equation 7 described in Atkin et al. (2005). The central box in each box plot shows the interquartile range; the median is shown as the bold line within each box; whiskers extend 1.5 times the interquartile range or to the most extreme value, whichever is the smaller; any points outside these values are shown as individual points. Data for the following JULES (Clark et al., 2011) plant functional type (PFT) classifications: BlT, broad-leaved tree; C3H, C3 metabolism herb/grass; NlT, needle-leaved tree; S, shrub.  Data not shown for C4 metabolism herbs/grasses, due to limited data availalbility.
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Figure 4. Relationships between leaf Rdark (log10 scale) and location (absolute latitude) or climate [mean daily temperature of the warmest quarter (TWQ) & aridity index (AI)].  Traits shown are: Rdark,a25, (a, b and c) and Rdark,aTWQ (d, e and f), predicted area-based Rdark rates at 25oC and TWQ, respectively; Rdark,m25 (g, h and i) and Rdark,mTWQ (j, k and l), predicted mass-based Rdark rates at 25oC and TWQ, respectively.  Values shown are averages for unique site:species combinations for rates at 25oC and TWQ, calculated assuming a temperature-dependent Q10 (Tjoelker et al., 2001) and equation 7 described in Atkin et al. (2005).  Values at the TWQ of each replicate were calculated using climate/location data from the WorldClim  data base (Hijmans et al., 2005).  Aridity index calculated as the ratio of mean annual precipitation (MAP) to mean annual potential evapotranspiration (PET) (UNEP, 1997).  In plots against latitude, northern and southern latitudes shown as blue and red symbols, respectively.  Solid lines in each plot show regression lines where the relationships were significant; dashed lines show the prediction intervals (two-times the standard deviation) around the predicted relationship.  See Table 3 for correlations between log10 transformed Rdark and location/climate.  Note: see Figure S3 (Supporting Information) for relationships beween Rdark and AI, excluding data from the exceptionally high rainfall sites at Frans Josef on the Sth Island of New Zealand.
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Figure 5. Patterning of area- and mass-based Rdark25 – Vcmax25 relationships by JULES PFTs (a and d); TWQ categories (5oC intervals) – all data (b and e); and TWQ categories (5oC intervals) – broad-leaved trees only (c and f).  All values shown on a log10 scale.  Values shown are averages for unique site:species combinations.  Upper panels (a, b and c) show area-based values, while lower panels (d, e and f) show mass-based values.  JULES PFTs: BlT, broad-leaved tree; C3H, C3 metabolism herb/grass; NlT, needle-leaved tree; S, shrub.  TWQ classes: 1st <10oC; 2nd 10-15oC; 3rd 15-20oC; 4th 20-25oC; 5th >25oC.  Values of Rdark at 25oC were calculated assuming a T-dependent Q10 (Tjoelker et al., 2001) and equation 7 described in Atkin et al. (2005).  Values Vcmax at 25oC were calculated according to Farquhar et al. (1980) assuming an activation energy (Ea) of 64.8 kJ mol-1.  See Table S3 for SMA regression outputs. 
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Figure 6. Patterning of area- and mass-based Rdark25 – N relationships by JULES PFTs (a and d); TWQ categories (5oC intervals) – all data (b and e); and TWQ categories (5oC intervals) – broad-leaved trees only (c and f).  Values shown are averages for unique site:species combinations. All values shown on a log10 scale. JULES PFTs: BlT, broad-leaved tree; C3H, C3 metabolism herb/grass; NlT, needle-leaved tree; S, shrub.  TWQ classes: 1st <10oC; 2nd 10-15oC; 3rd 15-20oC; 4th 20-25oC; 5th >25oC.  Values of Rdark at 25oC were calculated assuming a T-dependent Q10 (Tjoelker et al., 2001) and equation 7 described in Atkin et al. (2005).  See Table S3 for SMA regression outputs.  
[image: ]



Figure 7.  Scatterplots for (a) area-based, and (b) mass-based linear mixed-effects model’s goodness of fits, including fixed and random terms.  Observed values of leaf respiration at 25oC (Rdark25) are plotted against model predictions (using the ‘best’ predictive models detailed in Table 5).  For the area-based model (a), the fixed component explanatory variables were: (1) plant functional types (PFT), according to JULES (Clark et al., 2011); (2) area-based leaf nitrogen ([N]a) and phosphorus ([P]a) concentrations, and Rubisco CO2 fixation capacity at 25oC (Vcmax,a25); and mean temperature of the warmest quarter (TWQ) (Hijmans et al., 2005).  For the mass-based model (b), the fixed component explanatory variables were: (1) plant functional types (PFT); (2) mass-based leaf nitrogen ([N]m) and phosphorus ([P]m) concentrations, Rubisco CO2 fixation capacity at 25oC (Vcmax,m25), and leaf mass per unit leaf area (Ma). 
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Methods S1: Sampling methods and measurements protocols - unpublished data collected at sites detailed in Table S1.  

Species identification 
For work undertaken at the RAINFOR plots in Sth America (http://www.rainfor.org/en/project/field-campaigns), voucher specimens were collected and identified according to Lopez-Gonzalez et al. (2011).  For Sth American plots associated with the Carnegie Institution Spectranomics project (http://spectranomics.ciw.edu), botanical vouchers were identified as detailed in Asner et al. (2014).  Species identification at the TERN Supersites (http://www.tern.org.au/Australian-SuperSite-Network-pg17873.html) in Australia were indentified by CSIRO, university and/or forest service botanical staff at each site.  

Sampling method (1): Ex situ measurements made using cut branches
Branches being sampled in the morning from the sun-facing upper canopy of individual plants; leaves had experienced at least two hours direct sunlight before branches were sampled.  Branches were re-cut under water immediately after detachment. Thereafter, branches were transported to a nearby laboratory located for ex situ measurements of net CO2 exchange.  

Sampling method (2) In situ measurements using attached branches
Leaf gas exchange measured using attached, sun-facing upper canopy leaves of individual plants, typically between 9 am and 1 pm for most sites, with the exception of measurements in Sth America, Siberia and Spain, where measurements were made upto 4 pm. 

Measurement methods – leaf gas exchange 
(1) Measurements of respiration (Rdark) and light-saturated photosynthesis under ambient [CO2] (Asat) and elevated [CO2] (Amax):  Most recent, fully expanded leaves were selected for measurement of net CO2 exchange rates, using Licor 6400 Portable Photosynthesis Systems (Li-6400, LiCor, Lincoln, NE) using a 6 cm2 leaf chamber with red-blue light source (6400-18 RGB Light Source, Licor, Lincoln, NE).  Measurements were made at a relative humidity of 60-70%, and at the prevailing ambient day-time T of each site (6-41oC, depending on site location).  Leaves were first exposed to saturating irradiance (1000 - 2000 µmol photons m-2 s-1, depending on speices and site) and an reference line atmospheric [CO2] of 400 ppm for 10 minutes, after which rates of light-saturated net photosynthesis (Asat) was measured following equilibrium.  Thereafter, atmospheric [CO2] was increased to 1500-2000 ppm (depending on site location), with CO2-saturated, light-saturated rates of net photosynthesis (Amax) then being measured.  Finally, which leaves were placed in darkness for 30-45 mins [to avoid post-illumination transients; (Azcón-Bieto & Osmond, 1983; Atkin et al., 1998)] and rates of leaf respiration in darkness (Rdark) measured.  Flow rates through the leaf chamber were set to 500 and 300 µmol s-1 for measurements under light-saturation and darkness, respectively.  
(2) Measurements of Rdark and Asat: As for (1), but without measurements made at saturating atmospheric [CO2] (i.e. no estimate of Amax).
(3) Measurements of Rdark and Asat (from A-I curves):  As for (1), but with measurements of Asat being limited to measurements made at an atmospheric [CO2] of 400 ppm (i.e. no estimate of Amax) as part of studies of the Kok-effect (Kok, 1948) using light-response curves of net CO2 exchange (Atkin et al., 2013; Heskel et al., 2014).  Measurements commenced at 1800 µmol photons m-2 s-1 and decreased to 1500, 100 and then at 5 µmol photons m-2 s-1 intervals to darkness, where Rdark was measured.  Measurements took place at the prevailing day-time air T at each site (RH 60-70%).  An equilibrium period of two minutes was allowed at each irradiance level before net CO2 exchange was measured.  During measurements, CO2 flow rates in the leaf cuvette were set to 500 µmol s-1 for the measurements made at 1800 µmol photons m-2 s-1 and 300 µmol s-1 for those in darkness.  

Leaf area, mass and nutrient concentration measurements
At most sites, leaf area was typically determined on a 600 dots/inch flatbed top-illumination optical scanner, with area being quantified subsequently using Image J software (http://imagej.nih.gov/ij/).  The scanned leaves were then dried at 70°C for a minimum of 72 h before dry mass (DM) was measured. Leaf mass per area was then calculated as grams DM m2.  For sites where both leaf N and P values were reported, concentratons of the two elements were determined with a LaChat QuikChem 8500 Series 2 Flow Injection Analysis System (Lachat Instruments, Milwaukee, WI, USA) using Kjeldahl acid digests (Allen, 1974).  For sites where only leaf N was reported, samples were ground using a hammer mill (31–700 Hammer Mill; Glen Creston, Stanmore, UK), weighed into tin cups and combusted using a Carlo-Erba elemental analyser NA1500 (Thermo Fisher Scientific, Milan, Italy).

  



Methods S2: Temperature normalization of respiration rates 

To enable comparisons of leaf Rdark, we calculated rates both for a common temperature (i.e. 25°C) and the estimated growth T at each site (TWQ and MMT). To estimate rates of Rdark (R2) at at given T (T2), we calculated rates Rdark at 25oC (Rdark25), TWQ (RdarkTWQ) and MMT (RdarkMMT) assuming a fixed Q10 of 2.23 (Atkin et al., 2005) using the equation:

					Eqn 1

where R1 represents the rate of Rdark at the measurement T (T1).  This approach assumes that the Q10 remains constant across a range of leaf T - global surveys of the T-dependence of Rdark have shown, however, that the Q10 declines with increasing leaf T (Tjoelker et al., 2001; Atkin & Tjoelker, 2003).  Given this, we also calculated Rdark25, RdarkTWQ and RdarkMMT using a T-dependent Q10 (herein called ‘var Q10’)according to: 

			Eqn 2

Comparison of area-based rates of Rdark25 calculated using Eqns 1 and 2 revealed little overall difference in predicted rates at 25oC (r2 = 0.995, Fig. S1).  Estimates of RdarkTWQ were likewise similar, irrespecitive of the equation used (r2 = 0.991, Fig. S1).  For subsequent analyses, we used Eqn 2 (i.e. var Q10) when estimating rates of Rdark25, RdarkTWQ and RdarkMMT. 


Table S1.  Details on unpublished databases used in GlobResp database of leaf respiration (Rdark).  Shown are individual sample sites, climate and measurement conditions of the sites at which Rdark was measured.  Sites shown in order from decreasing latitude from north to south.  Data on climate are from the WorldClim  data base (Hijmans et al., 2005). Number of species, plants measured and JULES plant functional types (PFTs) at each site shown, according to: BlT, broad-leaved tree; C3H, C3 metabolism herb/grass; C4H, C4 metabolism herb/grass; NlT, needle-leaved tree; S, shrub. Biome classes: BF, boreal forests; TeDF, temperate deciduous forest; TeG, temperate grassland; TeRF, temperate rainforest; TeW, temperate woodland; TrRF_lw, lowland tropical rainforest (<1500 asl); TrRF_up, upland tropical rainforest (>1500 asl); Tu, tundra.  Abbreviations: mean temperature of the warmest quarter (i.e. warmest 3-month period per year; TWQ), mean annual precipitation (MAP), mean precipitation of the warmest quarter (PWQ), aridity index (AI) calculated as the ratio of MAP to mean annual potential evapotranspiration (UNEP, 1997; Zomer et al., 2008).  Australia-ACT, Australian Capital Territory; Australia-FNQ, Far North Queensland; Australia-TAS, Tasmania; Australia-WA, Western Australia; USA-AK, Alaska; USA-MN, Minnesota; USA-NY, New York; See Methods S1 text in Supporting Information for details on sampling methods and measurement protocols. 


	Country/Region
	Biome
	Latitude
	Longitude
	Altitude
(m asl)
	MAT
(oC)
	TWQ (oC)
	MAP (mm)
	PWQ (mm)
	AI
	No. 
species
	No. measurements
	PFTs present
	Sampling method (Methods S1)
	Measurement method 
(Methods S2)
	Primary person responsible for collection of unpublished data
(& senior associate)

	USA-AK
	Tu
	68.630
	-149.600
	720
	-11.3
	8.2
	225
	113
	0.608
	37
	204
	BlT, C3H, S
	(1)
	(3)
	N. Mirotchnick (K. Griffin)

	Russia-Siberia
	BF
	62.252
	129.621
	218
	-10.8
	15.4
	254
	122
	0.458
	3
	40
	BlT, NlT
	(2)
	(2)
	J. Zaragoza-Castells (O. Atkin)

	Russia-Siberia
	BF
	62.250
	129.621
	216
	-10.8
	15.4
	254
	122
	0.458
	2
	30
	BlT, NlT
	(2)
	(2)
	J. Zaragoza-Castells (O. Atkin)

	USA-MN
	BF
	47.944
	-91.755
	426
	3.7
	17.3
	763
	308
	0.976
	11
	182
	BlT, NlT
	(1)
	(2)
	P. Reich

	USA-MN
	BF
	46.704
	-92.525
	385
	3.2
	17.7
	702
	288
	0.832
	7
	199
	BlT
	(1)
	(2)
	P. Reich

	USA-MN
	TeDF
	45.169
	-92.762
	210
	7.0
	21.1
	769
	315
	0.832
	1
	18
	BlT
	(1)
	(2)
	K. Sendall (P. Reich)

	USA-NY
	TeDF
	41.420
	-74.010
	225
	9.4
	20.8
	1,173
	308
	1.204
	3
	21
	BlT
	(1)
	(3)
	K. Griffin

	USA-NY
	TeDF
	41.420
	-74.010
	225
	9.4
	20.8
	1,173
	308
	1.204
	3
	18
	BlT
	(1)
	(3)
	K. Griffin

	Spain
	TeW
	40.809
	-2.237
	980
	10.4
	18.9
	501
	102
	0.496
	1
	28
	BlT
	(2)
	(2)
	J. Zaragoza-Castells (O. Atkin)

	Spain
	TeW
	40.805
	-2.227
	1,060
	11.1
	19.6
	471
	95
	0.464
	1
	24
	BlT
	(2)
	(2)
	J. Zaragoza-Castells (O. Atkin)

	French Guiana
	TrRF_lw
	5.270
	-52.920
	21
	25.8
	26.2
	2,824
	222
	1.881
	43
	65
	BlT
	(1)
	(1)
	J. Zaragoza-Castells (P. Meir)

	French Guiana
	TrRF_lw
	5.270
	-52.920
	21
	25.8
	26.2
	2,824
	222
	1.881
	43
	78
	BlT
	(1)
	(1)
	J. Zaragoza-Castells (P. Meir)

	Peru-Amazon
	TrRF_lw
	-3.252
	-72.908
	111
	20.6
	21.4
	2,371
	676
	1.401
	20
	20
	BlT
	(1)
	(1)
	Y. Ishida (J. Lloyd/O. Atkin)

	Peru-Amazon
	TrRF_lw
	-3.256
	-72.894
	111
	26.2
	26.7
	2,821
	681
	1.667
	18
	18
	BlT
	(1)
	(1)
	Y. Ishida (J. Lloyd/O.Atkin)

	Peru-Amazon
	TrRF_lw
	-3.941
	-73.440
	120
	26.3
	26.8
	2,769
	711
	1.637
	14
	14
	BlT, S
	(1)
	(1)
	Y. Ishida (J. Lloyd/O.Atkin)

	Peru-Amazon
	TrRF_lw
	-3.949
	-73.435
	120
	26.3
	26.8
	2,769
	711
	1.638
	17
	18
	BlT
	(1)
	(1)
	Y. Ishida (J. Lloyd/O.Atkin)

	Peru-Amazon
	TrRF_lw
	-3.954
	-73.427
	120
	26.3
	26.8
	2,762
	708
	1.633
	22
	22
	BlT
	(1)
	(1)
	Y. Ishida (J. Lloyd/O.Atkin)

	Peru-Amazon
	TrRF_lw
	-4.878
	-73.630
	124
	26.7
	27.0
	2,634
	618
	1.506
	14
	15
	BlT
	(1)
	(1)
	Y. Ishida (J. Lloyd/O.Atkin)

	Peru-Amazon
	TrRF_lw
	-4.899
	-73.628
	124
	26.7
	27.0
	2,639
	620
	1.506
	18
	18
	BlT
	(1)
	(1)
	Y. Ishida (J. Lloyd/O.Atkin)

	Peru-Amazon
	TrRF_lw
	-12.534
	-69.054
	200
	25.5
	26.4
	2,131
	686
	1.215
	5
	5
	BlT
	(1)
	(1)
	R. Guerrieri (P. Meir/O.Atkin)

	Peru-Amazon
	TrRF_lw
	-12.830
	-69.271
	220
	25.3
	26.3
	2,477
	957
	1.436
	64
	65
	BlT
	(1)
	(1)
	J. Zaragoza-Castells & R. Guerrieri

	Peru-Amazon
	TrRF_lw
	-12.831
	-69.284
	220
	25.4
	26.3
	2,491
	961
	1.445
	8
	8
	BlT
	(1)
	(1)
	R. Guerrieri (P. Meir/O.Atkin)

	Peru-Amazon
	TrRF_lw
	-12.839
	-69.296
	200
	25.4
	26.3
	2,501
	964
	1.452
	71
	75
	BlT
	(1)
	(1)
	J. Zaragoza-Castells & R. Guerrieri (P. Meir/O.Atkin)

	Peru-Andes
	TrRF_up
	-13.047
	-71.542
	1,750
	19.5
	20.3
	2,005
	574
	1.196
	17
	20
	BlT
	(1)
	(1)
	R. Guerrieri (P. Meir/O.Atkin)

	Peru-Andes
	TrRF_up
	-13.049
	-71.537
	1,500
	20.6
	21.4
	2,371
	676
	1.402
	14
	16
	BlT
	(1)
	(1)
	R. Guerrieri (P. Meir/O.Atkin)

	Peru-Andes
	TrRF_up
	-13.070
	-71.556
	1,800
	19.8
	20.6
	2,104
	602
	1.249
	20
	20
	BlT
	(1)
	(1)
	R. Guerrieri (P. Meir/O.Atkin)

	Peru-Andes
	TrRF_up
	-13.106
	-71.589
	2,750
	15.8
	16.8
	652
	188
	0.423
	10
	11
	BlT
	(1)
	(1)
	R. Guerrieri (P. Meir/O.Atkin)

	Peru-Andes
	TrRF_up
	-13.109
	-71.600
	3,000
	14.2
	15.3
	359
	103
	0.244
	8
	8
	BlT
	(1)
	(1)
	R. Guerrieri (P. Meir/O.Atkin)

	Peru-Andes
	TrRF_up
	-13.114
	-71.607
	3,450
	11.6
	12.8
	515
	160
	0.367
	13
	14
	BlT, C3H
	(1)
	(1)
	R. Guerrieri (P. Meir/O.Atkin)

	Peru-Andes
	TrRF_up
	-13.176
	-71.595
	3,000
	13.2
	14.3
	349
	101
	0.24
	14
	16
	BlT
	(1)
	(1)
	R. Guerrieri (P. Meir/O.Atkin)

	Peru-Andes
	TrRF_up
	-13.191
	-71.588
	3,000
	13.4
	14.5
	335
	97
	0.23
	7
	7
	BlT
	(1)
	(1)
	R. Guerrieri (P. Meir/O.Atkin)

	Australia-FNQ
	TrRF_lw
	-17.109
	145.603
	818
	20.5
	23.3
	1,958
	886
	1.35
	6
	15
	BlT
	(1)
	(3)
	J. Zaragoza-Castells (O. Atkin/P.Meir)

	Australia-FNQ
	TrRF_lw
	-17.120
	145.632
	728
	21.0
	23.8
	2,140
	954
	1.471
	16
	56
	BlT
	(1)
	(1)
	L. Weerasinghe (O.Atkin)

	Australia-FNQ
	TrRF_lw
	-17.682
	145.534
	1,040
	19.0
	22.2
	1,382
	641
	0.943
	10
	24
	BlT, S
	(1)
	(3)
	J. Zaragoza-Castells(O. Atkin/P.Meir)

	Australia-WA
	TeW
	-30.180
	115.000
	90
	19.0
	23.9
	558
	33
	0.386
	8
	31
	BlT, C3H, S
	(2)
	(1)
	L. Weerasinghe (O. Atkin)

	Australia-WA
	TeW
	-30.240
	115.070
	23
	18.8
	23.8
	558
	35
	0.389
	10
	39
	BlT, S
	(2)
	(1)
	L. Weerasinghe (O. Atkin)

	Australia-WA
	TeW
	-30.240
	115.060
	5
	18.8
	23.8
	558
	35
	0.389
	9
	34
	BlT, C3H, S
	(2)
	(1)
	L. Weerasinghe (O. Atkin)

	Australia-WA
	TeW
	-30.264
	120.692
	459
	18.5
	25.6
	273
	64
	0.177
	9
	87
	BlT, S
	(1), (2)
	(1)
	K. Bloomfield (O. Atkin)

	Australia-SA
	TeW
	-34.037
	140.674
	35
	17.3
	23.6
	255
	52
	0.172
	10
	78
	BlT, C3H, S
	(1), (2)
	(1)
	K. Bloomfield (O. Atkin)

	Australia-ACT
	TeW
	-35.276
	149.109
	601
	13.1
	19.8
	637
	162
	0.509
	5
	18
	BlT, S
	(1), (2)
	(3)
	K. Crous (O. Atkin)

	Australia-TAS
	TeRF
	-43.089
	146.651
	217
	10.1
	13.8
	1,474
	237
	1.813
	3
	13
	BlT
	(1)
	(1)
	L. Weerasinghe (O. Atkin)

	Australia-TAS
	TeRF
	-43.092
	146.684
	257
	11.2
	14.8
	1,338
	212
	1.648
	2
	6
	BlT, S
	(1)
	(1)
	L. Weerasinghe (O. Atkin)

	Australia-TAS
	TeRF
	-43.095
	146.724
	88
	11.4
	15.1
	1,255
	199
	1.463
	9
	29
	BlT, S
	(1)
	(1)
	L. Weerasinghe (O. Atkin)



Table S2.  Details on published databases used in GlobResp database of leaf respiration (Rdark).  Shown are climate and measurement conditions of the sites at which Rdark was measured.  Sites shown in order from decreasing latitude from north to south.  Data on climate are from the WorldClim  data base (Hijmans et al., 2005). Number of species and JULES plant functional types (PFTs) at each site shown, according to: BlT, broad-leaved tree; C3H, C3 metabolism herb/grass; C4H, C4 metabolism herb/grass; NlT, needle-leaved tree; S, shrub. Biome classes: BF, boreal forests; TeDF, temperate deciduous forest; TeG, temperate grassland; TeRF, temperate rainforest; TeW, temperate woodland; TrRF_lw, lowland tropical rainforest (<1500 asl); Tu, tundra.  Abbreviations: mean temperature of the warmest quarter (i.e. warmest 3-month period per year; TWQ), mean annual precipitation (MAP), mean precipitation of the warmest quarter (PWQ), aridity index (AI) calculated as the ratio of MAP to mean annual potential evapotranspiration (UNEP, 1997; Zomer et al., 2008).  Australia-ACT, Australian Capital Territory; Australia-FNQ, Far North Queensland; Australia-NSW, New South Wales; Australia-WA, Western Australia; USA-AK, Alaska; USA-CO, Colorado; USA-MN, Minnesota; USA-IW, Iowa; USA-WI, Wisconsin; USA-MI, Michigan; USA-PN, Pennsylvania; USA-NC, North Carolina; USA-KT, Kentucky; USA-TN, Tennessee; USA-NM, New Mexico; USA-SC, South Carolina.

	Country/Region
	Biome
	Latitude
	Longitude
	Altitude (m asl)
	MAT (oC)
	TWQ (oC)
	MAP (mm)
	PWQ (mm)
	AI
	No. species
	PFTs present
	Traits available in GlobResp database 
	References/Source

	Germany
	TeDF
	50.600
	8.700
	60
	9.1
	17.2
	704
	190
	0.917
	9
	BlT, NlT
	Rdark, [N], Ma
	Grueters (1998); Kattge et al. (2011)

	USA-MN
	BF
	47.803
	-95.007
	400
	3.3
	18.3
	599
	278
	0.749
	1
	NlT
	Rdark, [N]
	Tjoelker et al. (2008)

	USA-MN
	BF
	46.721
	-92.457
	380
	3.8
	17.4
	757
	304
	0.906
	7
	BlT
	Rdark, [N]
	Machado & Reich (2006)

	USA-MN
	BF
	46.705
	-92.525
	380
	3.7
	17.4
	764
	308
	0.905
	7
	BlT, NlT
	Rdark, [N]
	Tjoelker et al. (2008); Reich et al. (2008)

	USA-MN
	TeG
	45.410
	-93.210
	300
	6.3
	20.4
	749
	314
	0.835
	35
	BlT, C3H, C4H, S
	Asat, Ci, Rdark, [N], Ma
	Craine et al. (1999); Tjoelker et al. (2005)

	USA-MN
	TeDF
	45.410
	-93.210
	300
	6.3
	20.4
	749
	314
	0.835
	3
	BlT
	Asat, Ci, Rdark, Ma
	Tjoelker et al. (2005); Sendall & Reich (2013)

	USA-MN
	TeDF
	44.996
	-93.189
	281
	7.0
	21.0
	755
	314
	0.835
	3
	BlT
	Rdark, [N], Ma
	Lee et al. (2005); Kattge et al. (2011)

	USA-WI
	TeDF
	42.980
	-90.120
	360
	7.1
	20.2
	865
	315
	0.932
	1
	BlT
	Asat, Rdark, [N], Ma
	Reich et al. (1998b)

	USA-MI
	TeDF
	42.530
	-85.855
	200
	8.6
	19.9
	944
	268
	0.98
	1
	NlT
	Rdark, [N]
	Tjoelker et al. (2008); Reich et al. (2008)

	USA-WI
	TeG
	42.500
	-90.000
	275
	7.8
	20.7
	884
	315
	0.925
	15
	BlT, C3H, NlT
	Asat, Ci, Rdark, [N], Ma
	Reich et al. (1998a); Reich et al. (1998b)

	USA-IA
	TeDF
	41.170
	-92.870
	385
	7.1
	20.2
	865
	315
	0.834
	11
	BlT, NlT
	Rdark, [N], Ma
	Lusk & Reich (2000)

	USA-PA
	TeDF
	40.82
	-77.93
	400
	9.1
	17.2
	704
	190
	0.71
	1
	BlT
	Asat, Rdark, Ma
	Kloeppel et al. (1993; 1994)

	USA-PA
	TeDF
	40.8
	-77.83
	335
	9.6
	20.8
	984
	286
	0.972
	2
	BlT
	Asat, Ci, Rdark, [N], Ma
	Kloeppel & Abrams (1995)

	USA-PA
	TeDF
	40.78
	-77.88
	348
	9.5
	20.6
	986
	285
	0.986
	1
	BlT
	Asat, Ci, Rdark, [N], Ma
	Kloeppel & Abrams (1995)

	USA-CO
	Tu
	40.050
	-105.600
	3,360
	-2.6
	7.5
	811
	203
	1.198
	10
	BlT, C3H, NlT, S
	Asat, Ci, Rdark, [N], Ma
	Reich et al. (1998b)

	Japan
	TeDF
	35.720
	140.800
	20
	14.9
	23.7
	1,619
	433
	1.921
	4
	BlT
	Asat, Rdark, [N], Ma
	Miyazawa et al. (1998)

	USA-TN
	TeDF
	35.500
	-83.500
	775
	11.2
	20.1
	1,554
	389
	1.335
	13
	BlT, C3H, NlT, S
	Asat, Rdark, [N], Ma
	Bolstad et al. (1999)

	USA-NC
	TeDF
	35.050
	-83.420
	850
	11.4
	20.0
	1,852
	444
	1.521
	15
	BlT, NlT
	Rdark, [N], Ma
	Mitchell et al. (1999); Reich et al. (1998b) 

	USA-NM
	Sa
	34.000
	-107.000
	1,620
	12.5
	22.2
	275
	127
	0.189
	9
	BlT, NlT, S
	Asat, Ci, Rdark, [N], Ma
	Reich et al. (1998b)

	USA-SC
	TeDF
	33.330
	-79.220
	3
	17.7
	25.8
	1,339
	469
	1.02
	10
	BlT, C3H, NlT, S
	Rdark, [N], Ma
	Reich et al. (1998a; 1999)

	Bangladesh
	TrRF_lw
	24.200
	90.150
	21
	25.5
	28.5
	1,970
	736
	1.344
	1
	BlT
	Asat, Rdark, Ma
	Kamaluddin & Grace (1993)

	Niger
	Sa
	13.200
	-2.230
	280
	28.2
	31.4
	618
	55
	0.304
	3
	BlT, S
	Asat, Rdark
	Meir et al. (2007)

	Costa Rica
	TrRF_lw
	10.470
	-84.030
	140
	25.6
	26.6
	4,168
	750
	2.658
	1
	BlT
	Asat, Ci, Rdark, Ma
	Oberbauer & Strain (1985); (1986)

	Costa Rica
	TrRF_lw
	10.430
	-83.980
	105
	26.1
	27.2
	3,981
	731
	2.515
	1
	S
	Asat, Rdark, [N], Ma
	Chazdon & Kaufmann (1993)

	Panama
	TrRF_lw
	9.170
	-79.850
	90
	26.6
	27.5
	2,624
	410
	1.877
	1
	BlT
	Asat, Ci, Rdark, [N], Ma
	Zotz & Winter (1996)

	Panama
	TrRF_lw
	8.983
	-79.550
	100
	27.0
	27.7
	1,820
	300
	1.186
	13
	BlT
	Asat, Ci, Rdark, [N], [P], Ma
	Slot et al. (2014b)

	Panama
	TrRF_lw
	8.970
	-79.530
	30
	27.1
	27.7
	1,762
	290
	1.143
	6
	BlT
	Asat, Ci, Rdark, [N], Ma
	Kitajima et al. (1997)

	Venezuela
	TrRF_lw
	8.650
	-71.400
	2,350
	14.7
	15.1
	1,400
	458
	1.053
	1
	BlT
	Asat, Ci, Rdark, [N], Ma
	García-Núñez et al.(1995)

	Malaysia
	TrRF_lw
	5.160
	117.900
	20
	26.7
	27.1
	2,471
	501
	1.638
	29
	Malaysia-Borneo
	Asat, Ci, Rdark, [N], [P], Ma
	Swaine (2007)

	Cameroon
	TrRF_lw
	3.380
	11.500
	550
	24.0
	24.8
	1,729
	417
	1.126
	6
	Cameroon
	Asat, Rdark, [N], Ma
	Meir et al. (2007)

	Suriname
	TrRF_lw
	2.854
	-54.958
	215
	25.4
	26.3
	2,224
	165
	1.365
	25
	Suriname
	Asat, Rdark, [N],  Ma
	Kattge et al. (2011)

	Venezuela
	TrRF_lw
	1.930
	-67.050
	120
	26.3
	26.6
	3,430
	740
	1.725
	9
	Venezuela
	Asat, Ci, Rdark, [N], Ma
	Reich et al. (1998b)

	Brazil-Amazon
	TrRF_lw
	-2.580
	-60.100
	115
	27.0
	27.6
	2,232
	401
	1.385
	9
	BlT
	Rdark, [N], Ma
	Meir et al. (2002)

	Bolivia
	TrRF_lw
	-15.783
	-62.917
	400
	25.3
	27.0
	1,020
	436
	0.57
	50
	BlT
	Asat, Rdark, [N], Ma
	Poorter & Bongers (2006)

	Australia-FNQ
	TrRF_lw
	-16.100
	145.450
	90
	25.2
	27.5
	2,087
	1,031
	1.393
	18
	BlT
	Asat, Ci, Rdark, [N], [P], Ma
	Weerasinghe et al. (2014)

	Australia-WA
	TeW
	-31.500
	115.690
	15
	18.4
	23.6
	728
	39
	0.541
	25
	BlT, C3H, S
	Asat, Ci, Rdark, [N], Ma
	Wright et al. (2004)

	Sth Africa
	TeW
	-33.830
	18.830
	600
	16.6
	21.0
	754
	67
	0.572
	5
	BlT, S
	Asat, Rdark, [N], Ma
	Mooney et al. (1983)

	Australia-NSW
	TeW
	-33.840
	145.880
	223
	17.0
	24.2
	422
	98
	0.294
	19
	BlT, C3H, NlT, S
	Asat, Ci, Rdark, [N], [P], Ma
	Wright et al. (2001)

	Australia-NSW
	TeW
	-33.840
	145.880
	223
	17.0
	24.2
	422
	98
	0.294
	21
	BlT, C4H, S
	Asat, Ci, Rdark, [N], [P], Ma
	Wright et al. (2001)

	Australia-NSW
	TeW
	-33.860
	151.210
	39
	17.6
	21.9
	1,309
	358
	NA
	18
	BlT, S
	Asat, Ci, Rdark, [N], [P], Ma
	Wright et al. (2001)

	Australia-NSW
	TeW
	-33.860
	151.210
	39
	17.6
	21.9
	1,309
	358
	NA
	17
	BlT, S
	Asat, Ci, Rdark, [N], [P], Ma
	Wright et al. (2001)

	Australia-ACT
	TeW
	-35.312
	149.058
	560
	13.0
	21.0
	755
	314
	0.601
	1
	NlT
	Asat, Ci, Rdark, [N], Ma
	Reich et al. (1999))

	Chile
	TeRF
	-36.840
	-73.030
	30
	12.2
	16.1
	1,272
	74
	1.208
	6
	BlT
	Asat, Ci, Rdark, [N], Ma
	Wright et al. (2006)

	Chile
	TeRF
	-37.000
	-71.470
	1,000
	6.2
	11.5
	1,189
	74
	1.119
	5
	BlT, NlT
	Asat, Ci, Rdark, [N], Ma
	Wright et al. (2006)

	Chile
	TeRF
	-39.800
	-73.000
	400
	12.5
	16.7
	1,680
	129
	1.622
	12
	BlT
	Asat, Ci, Rdark, [N], Ma
	Wright et al. (2006)

	New Zealand
	TeRF
	-43.250
	170.180
	68
	11.9
	16.3
	4,331
	1,103
	4.866
	3
	BlT, NlT
	Asat, Ci, Rdark, [N], [P], Ma
	Atkin et al. (2013)

	New Zealand
	TeRF
	-43.310
	170.170
	143
	11.2
	15.8
	4,277
	1,076
	4.816
	3
	BlT, NlT
	Asat, Ci, Rdark, [N], [P], Ma
	Atkin et al. (2013)

	New Zealand
	TeRF
	-43.380
	170.180
	134
	11.6
	16.2
	4,017
	1,017
	4.468
	3
	BlT
	Asat, Ci, Rdark, [N], [P], Ma
	Atkin et al. (2013)

	New Zealand
	TeRF
	-43.400
	170.170
	234
	11.4
	16.0
	3,980
	1,004
	4.477
	7
	BlT
	Asat, Ci, Rdark, [N], [P], Ma
	Atkin et al. (2013)

	New Zealand
	TeRF
	-43.410
	170.170
	271
	10.9
	15.6
	3,920
	980
	4.409
	6
	BlT, S
	Asat, Ci, Rdark, [N], [P], Ma
	Atkin et al. (2013)

	New Zealand
	TeRF
	-43.420
	170.170
	215
	11.2
	15.8
	3,883
	976
	4.343
	5
	BlT, S
	Asat, Ci, Rdark, [N], [P], Ma
	Atkin et al. (2013)


 
Table S3.  Standardized Major Axis regression slopes and their confidence intervals for log-log transformed relationships shown in Figures 5 and 6 in the main text. Coefficients of determination (r2) and significance values (p) of each bivariate relationship are shown.  95% confidence intervals (CI) of SMA slopes and y-axis intercepts are shown in parentheses.  In cases where SMA tests for common slopes revealed no significant differences between the upper canopy and lower canopy groups (i.e. P > 0.05), when plotting bivariate relationships, common slopes were used (with CI of the common slopes provided).  Where there was a significant difference in elevation of the common-slope SMA regressions, values for the y-axis intercept (elevation) are provided.  Where appropriate, significant shifts along a common slopes are indicated.  JULES PFTs: BlT, broad-leaved tree; C3H, C3 metabolism herb/grass; C4H, C4 metabolism herb/grass; NlT, needle-leaved tree; S, shrub. TWQ classes: <10oC; 10-15oC; 15-20oC; 20-25oC; >25oC.  Abbreviations: Rdark,a25, predicted area-based Rdark at 25oC; Rdark,m25, mass-based Rdark at 25oC; Vcmax,a25, predicted area-based Vcmax at 25oC; Vcmax,m25, predicted mass-based Vcmax at 25oC

	Figure
	Response
	Bivariate
	JULES PFTs
	H0 #1: No difference in slope
(p-value)
	PFT or TWQ-class (oC)
	n
	r2
	p
	Slope
	Pairwise comparison
	Slope
CI_low
	Slope
CI_high
	Intercept
	H0 #2: No difference in elevation (p-value)
	Intercepts for a common slope
	Pairwise comparison (where relationship significant)
	H0 #3: No difference in 'shift'.p-value

	5(a)
	Rdark,a25
	Vcmax,a25
	All bar C4H
	0.7017
	BlT
	691
	0.12
	< 0.0001
	0.976
	
	0.910
	1.046
	-1.445
	< 0.0001
	-1.470
	a
	< 0.0001

	
	
	
	
	
	C3H
	45
	0.00
	0.8940
	1.073
	
	0.793
	1.453
	-1.414
	
	-1.279
	
	

	
	
	
	
	
	NlT
	23
	0.16
	0.0578
	0.949
	
	0.633
	1.422
	-1.445
	
	-1.510
	
	

	
	
	
	
	
	S
	115
	0.16
	< 0.0001
	1.076
	
	0.908
	1.276
	-1.647
	
	-1.501
	a
	

	5 (d)
	Rdark,m25
	Vcmax,m25
	All bar C4H
	< 0.0001
	BlT
	682
	0.27
	< 0.0001
	0.946
	b
	0.887
	1.009
	-1.351
	
	
	
	

	
	
	
	
	
	C3H
	44
	0.37
	< 0.0001
	1.247
	a
	0.977
	1.592
	-1.962
	
	
	
	

	
	
	
	
	
	NlT
	23
	0.62
	< 0.0001
	0.494
	c
	0.375
	0.651
	-0.366
	
	
	
	

	
	
	
	
	
	S
	115
	0.31
	< 0.0001
	1.057
	a, b
	0.906
	1.234
	-1.671
	
	
	
	

	5 (b)
	Rdark,a25
	Vcmax,a25
	All bar C4H
	0.0857
	< 10
	47
	0.19
	0.0023
	1.273
	
	0.974
	1.662
	-1.592
	< 0.0001
	-1.134
	d
	< 0.0001

	
	
	
	
	
	10 to 15
	43
	0.18
	0.0042
	1.103
	
	0.832
	1.461
	-1.484
	
	-1.287
	c
	

	
	
	
	
	
	15 to 20
	121
	0.33
	< 0.0001
	0.849
	
	0.732
	0.985
	-1.270
	
	-1.476
	a, b
	

	
	
	
	
	
	20 to 25
	263
	0.30
	< 0.0001
	0.966
	
	0.872
	1.069
	-1.487
	
	-1.507
	a
	

	
	
	
	
	
	> 25
	400
	0.03
	0.0004
	0.999
	
	0.907
	1.101
	-1.475
	
	-1.445
	b
	

	5 (e)
	Rdark,m25
	Vcmax,m25
	All bar C4H
	< 0.0001
	< 10
	47
	0.62
	< 0.0001
	1.093
	a
	0.909
	1.314
	-1.412
	
	
	
	

	
	
	
	
	
	10 to 15
	42
	0.38
	< 0.0001
	1.165
	a
	0.908
	1.496
	-1.720
	
	
	
	

	
	
	
	
	
	15 to 20
	121
	0.68
	< 0.0001
	0.752
	b
	0.679
	0.832
	-0.875
	
	
	
	

	
	
	
	
	
	20 to 25
	258
	0.31
	< 0.0001
	0.920
	a
	0.831
	1.019
	-1.356
	
	
	
	

	
	
	
	
	
	> 25
	396
	0.15
	< 0.0001
	1.002
	a
	0.914
	1.098
	-1.482
	
	
	
	

	5 (c)
	Rdark,a25
	Vcmax,a25
	BlT only
	0.0480
	< 10
	4
	0.63
	0.2070
	-2.446
	
	-9.686
	-0.618
	4.306
	< 0.0001
	-1.061
	
	< 0.0001

	
	
	
	
	
	10 to 15
	39
	0.21
	0.0036
	1.033
	
	0.771
	1.384
	-1.352
	
	-1.204
	c
	

	
	
	
	
	
	15 to 20
	101
	0.35
	< 0.0001
	0.805
	
	0.685
	0.945
	-1.183
	
	-1.401
	b
	

	
	
	
	
	
	20 to 25
	152
	0.17
	< 0.0001
	0.865
	
	0.747
	1.001
	-1.325
	
	-1.440
	a
	

	
	
	
	
	
	> 25
	395
	0.03
	0.0006
	1.011
	
	0.917
	1.115
	-1.494
	
	-1.391
	b
	

	5(f)
	Rdark,m25
	Vcmax,a25
	BlT only
	< 0.0001
	< 10
	4
	0.41
	0.3627
	8.035
	
	1.642
	39.317
	-20.639
	
	
	
	

	
	
	
	
	
	10 to 15
	39
	0.40
	< 0.0001
	1.103
	a
	0.855
	1.423
	-1.549
	
	
	
	

	
	
	
	
	
	15 to 20
	101
	0.72
	< 0.0001
	0.753
	b
	0.678
	0.836
	-0.862
	
	
	
	

	
	
	
	
	
	20 to 25
	147
	0.15
	< 0.0001
	0.821
	b
	0.706
	0.955
	-1.109
	
	
	
	

	
	
	
	
	
	> 25
	391
	0.13
	< 0.0001
	1.022
	a
	0.932
	1.121
	-1.533
	
	
	
	

	6(a)
	Rdark,a25
	Leaf [N]a
	All bar C4H
	0.5081
	BlT
	794
	0.10
	< 0.0001
	1.134
	
	1.061
	1.211
	-0.296
	< 0.0001
	-0.300
	a
	< 0.0001

	
	
	
	
	
	C3H
	74
	0.30
	< 0.0001
	1.169
	
	0.961
	1.421
	-0.071
	
	-0.065
	c
	

	
	
	
	
	
	NlT
	30
	0.32
	0.0010
	1.005
	
	0.735
	1.375
	-0.287
	
	-0.346
	a
	

	
	
	
	
	
	S
	132
	0.26
	< 0.0001
	1.257
	
	1.084
	1.458
	-0.215
	
	-0.180
	b
	

	6 (d)
	Rdark,m25
	Leaf [N]m
	All bar C4H
	0.0093
	BlT
	805
	0.11
	< 0.0001
	1.423
	a
	1.333
	1.519
	-0.781
	
	
	
	

	
	
	
	
	
	C3H
	74
	0.60
	< 0.0001
	1.598
	a
	1.379
	1.852
	-0.818
	
	
	
	

	
	
	
	
	
	NlT
	39
	0.09
	0.0576
	2.354
	
	1.723
	3.217
	-1.763
	
	
	
	

	
	
	
	
	
	S
	132
	0.43
	< 0.0001
	1.383
	a
	1.213
	1.576
	-0.579
	
	
	
	

	6 (b)
	Rdark,a25
	Leaf [N]a
	All bar C4H
	0.0512
	< 10
	47
	0.14
	0.0109
	1.224
	a, b
	0.929
	1.613
	-0.008
	< 0.0001
	0.025
	a
	< 0.0001

	
	
	
	
	
	10 to 15
	37
	0.15
	0.0170
	1.700
	a
	1.245
	2.320
	-0.399
	
	-0.187
	b,c
	

	
	
	
	
	
	15 to 20
	92
	0.25
	< 0.0001
	1.170
	b
	0.976
	1.401
	-0.198
	
	-0.185
	b
	

	
	
	
	
	
	20 to 25
	345
	0.29
	< 0.0001
	1.141
	b
	1.043
	1.248
	-0.256
	
	-0.251
	c
	

	
	
	
	
	
	> 25
	509
	0.04
	< 0.0001
	1.056
	b
	0.969
	1.150
	-0.301
	
	-0.316
	d
	

	6 (e)
	Rdark,m25
	Leaf [N]m
	All bar C4H
	0.0005
	< 10
	47
	0.60
	< 0.0001
	1.821
	a
	1.508
	2.198
	-1.056
	
	
	
	

	
	
	
	
	
	10 to 15
	37
	0.44
	< 0.0001
	2.040
	a
	1.583
	2.629
	-1.415
	
	
	
	

	
	
	
	
	
	15 to 20
	108
	0.44
	< 0.0001
	1.695
	a, b
	1.468
	1.956
	-0.941
	
	
	
	

	
	
	
	
	
	20 to 25
	350
	0.36
	< 0.0001
	1.451
	b, c
	1.334
	1.579
	-0.772
	
	
	
	

	
	
	
	
	
	> 25
	508
	0.06
	< 0.0001
	1.333
	c
	1.225
	1.451
	-0.695
	
	
	
	

	6 (c)
	Rdark,a25
	Leaf [N]a
	BlT only
	0.0004
	< 10
	4
	0.90
	0.0537
	10.773
	
	4.514
	25.707
	-3.357
	
	
	
	

	
	
	
	
	
	10 to 15
	34
	0.10
	0.0714
	1.680
	
	1.201
	2.350
	-0.389
	
	
	
	

	
	
	
	
	
	15 to 20
	76
	0.20
	< 0.0001
	1.320
	a
	1.075
	1.621
	-0.214
	
	
	
	

	
	
	
	
	
	20 to 25
	186
	0.28
	< 0.0001
	1.002
	b
	0.886
	1.133
	-0.278
	
	
	
	

	
	
	
	
	
	> 25
	494
	0.03
	< 0.0001
	1.050
	b
	0.963
	1.146
	-0.301
	
	
	
	

	6 (f)
	Rdark,m25
	Leaf [N]m
	BlT only
	0.0041
	< 10
	4
	0.97
	0.0161
	2.677
	a
	1.591
	4.503
	-2.491
	
	
	
	

	
	
	
	
	
	10 to 15
	34
	0.38
	0.0001
	2.140
	a
	1.616
	2.833
	-1.547
	
	
	
	

	
	
	
	
	
	15 to 20
	85
	0.44
	< 0.0001
	1.586
	a, b
	1.347
	1.868
	-0.799
	
	
	
	

	
	
	
	
	
	20 to 25
	189
	0.26
	< 0.0001
	1.479
	b
	1.307
	1.674
	-0.881
	
	
	
	

	
	
	
	
	
	> 25
	493
	0.05
	< 0.0001
	1.346
	b
	1.235
	1.467
	-0.713
	
	
	
	



Table S4.  Comparison of linear mixed-effects models with area-based leaf respiration at 25oC (Rdark,a25; mol CO2 m-2 s-1) as the response variable (each showing fixed and random effects), with input data restricted to site:species means for which all potential fixed effect parameters were available.  Several model frameworks are outlined (a ‘best predictor model, followed by a null model using PFTs only as fixed factors, then models relevant to different model frameworks, here called ‘ESM’ frameworks), each containing different combinations of fixed effect parameter values (ESM#1-4; for details of each framework, see below).  For the fixed effects sub-table, parameter values, s.e. and t-values given for the continuous explanatory variables; explanatory variables (all centred on their means) are: (1) plant functional types (PFT), according to JULES (Clark et al., 2011): BlT (broad-leaved tree), C3H (C3 metabolism herbs/grasses), NlT (needle-leaved trees), and S (shrubs); (2) area-based or mass-based leaf nitrogen [Na (g m-2) or Nm (mg g-1), respectively] area-based phosphorus (Pa; g m-2) concentrations, area-based Rubisco CO2 fixation capacity at 25oC (Vcmax,a25; mol CO2 m-2 s-1), and mean temperature of the warmest quarter (TWQ; °C) (Hijmans et al., 2005).  The PFT-BlT values (first row) are based on the assumption that other variables were at their global mean values.  In the ‘best’ model (i.e. same as that shown in Table 5 and Figure 9 in the main text), all available and relevant parameters were included in model selection (PFTs, Vcmax,a25, Na, Pa, TWQ, precipitation of the warmest quarter (PWQ) and aridity index (AI).  The null model provides a model where fixed effect factor is limited to PFTs.  For ESM#1, the model was limited to the following source fixed effect parameters: PFT, Nm and Vcmax,a25 and TWQ.  Here, our decision to include mass-based N was based on the fact that mass-based N is a predictive trait used in JULES, according to Schulze et al. (1994).  For ESM#2, source fixed effect parameters were the same as for ESM#1, but without Vcmax,a25.   For ESM#3, input fixed effect parameters were: PFT, Na and TWQ, while for ESM#4, they were PFT, Vcmax,a25 and TWQ.  In the random effect sub-table, the intercept was allowed to vary among species, families and sites; residual errors shown are within species, families, sites and investigators.  Finally, predictive equations are shown that enable Rdark,a25 to be predicted based on inputs according to the six models (see next page).  
[image: ] 
Table S4.  Continued 


Best predictor model (from Table 6 in the main text)
Broad-leaved trees: Rdark,a25 = 1.236 + (0.0728*[N]a) + (0.015*[P]a) + (0.0095*Vcmax,a25) – (0.0358*TWQ)
C3 herbs/grasses: Rdark,a25 = 1.7344 + (0.4122*[N]a) + (0.015*[P]a) + (0.0095*Vcmax,a25) – (0.0358*TWQ)
Needle-leaved trees: Rdark,a25 = 0.9041 + (0.1489*[N]a) + (0.015*[P]a) + (0.0095*Vcmax,a25) – (0.0358*TWQ)
Shrubs: Rdark,a25 = 1.5926 + (0.1415*[N]a) + (0.015*[P]a) + (0.0095*Vcmax,a25) – (0.0358*TWQ)

Null model (PFT only) (from Table 6 in the main text)
Broad-leaved trees: Rdark,a25 = 1.3805 
C3 herbs/grasses: Rdark,a25 = 1.8904 
Needle-leaved trees: Rdark,a25 = 1.3247
Shrubs: Rdark,a25 = 1.7265

ESM#1
Broad-leaved trees: Rdark,a25 = 1.2704 + (0.0075*[N]m) + (0.0114*Vcmax,a25) – (0.0338*TWQ)
C3 herbs/grasses: Rdark,a25 = 1.6295 + (0.0075*[N]m) + (0.0114*Vcmax,a25) – (0.0338*TWQ)
Needle-leaved trees: Rdark,a25 = 1.3361 + (0.0075*[N]m) + (0.0114*Vcmax,a25) – (0.0338*TWQ)
Shrubs: Rdark,a25 = 1.5732 + (0.0075*[N]m) + (0.0114*Vcmax,a25) – (0.0338*TWQ)

ESM#2
Broad-leaved trees: Rdark,a25 = 1.300 + (0.0104*[N]m) – (0.0389*TWQ)
C3 herbs/grasses: Rdark,a25 = 1.66642 + (0.0104*[N]m) – (0.0389*TWQ)
Needle-leaved trees: Rdark,a25 = 1.2728 + (0.0104*[N]m) – (0.0389*TWQ)
Shrubs: Rdark,a25 = 1.5875 + (0.0104*[N]m) – (0.0389*TWQ)TWQ)

ESM#3
Broad-leaved trees: Rdark a25 = 1.2855 + (0.2061*[N]a) – (0.0402*TWQ)
C3 herbs/grasses: Rdark,a25 = 1.7250 + (0.2061*[N]a) – (0.0402*TWQ)
Needle-leaved trees: Rdark,a25 = 1.0290 + (0.2061*[N]a) – (0.0402*TWQ)
Shrubs: Rdark,a25 = 1.6043 + (0.2061*[N]a) – (0.0402*TWQ)

ESM#4
Broad-leaved trees: Rdark a25 = 1.2818 + (0.0116 * Vcmax,a25) – (0.0334*TWQ)
C3 herbs/grasses: Rdark,a25 = 1.6737 + (0.0116 * Vcmax,a25) – (0.0334*TWQ)
Needle-leaved trees: Rdark,a25 = 1.2877 + (0.0116 * Vcmax,a25) – (0.0334*TWQ)
Shrubs: Rdark,a25 = 1.5758 + (0.0116 * Vcmax,a25) – (0.0334*TWQ)



Table S5.  Comparison of linear mixed-effects models using different plant functional types (PFT) classifications, with leaf respiration at 25oC (Rdark25) as the response variable.  Two models are shown: (A) using area-based leaf respiration at 25oC (Rdark,a25; mol CO2 m-2 s-1); and, (B) mass-based leaf respiration at 25oC (Rdark,m25; nmol CO2 g-1 s-1).  For (A) and (B), two model frameworks are outlined (variants of ESM#3 model shown in Table S4, but with a larger number of observations reflecting the abundance of [N]a (g m-2) and [N]m (mg g-1) data), differing in the plant functional types (PFT) used: JULES(Clark et al., 2011): BlT (broad-leaved tree), C3H (C3 metabolism herbs/grasses), NlT (needle-leaved trees), and S (shrubs); and, LPJ (Sitch et al., 2003): BorDcBl, boreal deciduous broad-leaved tree/shrub; BorDcNl, boreal deciduous needle-leaved tree/shrub; BorEvNl, boreal evergreen needle-leaved tree/shrub; TmpDcBl, temperate deciduous broad-leaved tree/shrub; TmpEvBl, temperate evergreen broad-leaved tree/shrub; TmpEvNl, temperate evergreen needle-leaved tree/shrub; TmpH, temperate herb/grass; TrpDcBl, tropical deciduous broad-leaved tree/shrub; TrpEvBl, tropical evergreen broad-leaved tree/shrub; TrpH, tropical herb/grass.  For the fixed effects sub-tables, parameter values, s.e. and t-values given for the continuous explanatory variables; explanatory variables (all centred on their means) are: PFTs; area or mass-based leaf nitrogen (Na and Nm, respectively) and mean temperature of the warmest quarter (TWQ) (Hijmans et al., 2005).  For JULES, the PFT-BlT values (first row) are based on the assumption that other variables were at their global mean values.  Similarly, for LPJ, the PFT-BorDcBl (first row) are based on the assumption that other variables were at their global mean values.  In the random effect sub-table, the intercept was allowed to vary among species, families and sites; residual errors shown are within species, families, sites and investigators.

(A)  area-based										(B) mass-based 
[image: ][image: ]
 Figure S1.  Comparison of area-based rates of leaf respiration in darkness (Rdark) at a common leaf temperature of 25oC, calculated assuming either a fixed Q10 of 2.23 (Atkin et al., 2005) (using Eqn 1 in the main text) or assuming a T-dependent Q10 (Tjoelker et al., 2001) (using Eqn 2 in the main text).  Rdark,a25 and Rdark,aTWQ, predicted area-based Rdark rates (mol CO2 m-2 s-1) at 25oC, and TWQ (mean T of the warmest quarter), respectively.  Values at the TWQ of each replicate were calculated using climate data from the WorldClim  data base (Hijmans et al., 2005).  Data shown are for individual observational rows in the global respiration database.


[image: ]



[image: ]Figure S2.  Relationships between leaf structural and chemical composition traits, and mean daily temperature of the warmest quarter (TWQ).  Values shown are averages for unique site:species combinations in the global GlobResp database.  Traits shown are: (a) Ma, leaf mass per unit leaf area; (b) [N]a, area-based leaf nitrogen concentration; and (c) [P]a, area-based leaf phosphorous concentration.  TWQ at each site were obtained using site information and the WorldClim data base (Hijmans et al., 2005).  Solid grey line in each plot shows regression lines where the relationships were significant (with 95% confidence intervals shown as dashed line around the predicted relationship; the dotted lines show the prediction intervals (two-times the standard deviation) around the predicted relationship.  

While the negative MaTWQ (Fig. S2a) and [N]aTWQ (Fig. 4b) relationships were both significant (Ma: p<0.05, n=1092; [N]a: p<0.0001, n=1029), in neither case were the associations strong (Ma: Pearsons correlation (r) = -0.067, r2 = 0.004; [N]a: r = -0.134, r2 = 0.018).  By contrast, the negative [P]aTWQ relationship (Fig. 4C) was more marked (p<0.0001, n=728, r = -0.418, r2 = 0.174), with [P]a being highest at the coldest sites.  


[image: ]Figure S3. Site-species mean values leaf Rdark (log10 scale) relationships with aridity index (AI), excluding data from the exceptionally high-rainfall, Frans Josef Glacier (FJG) site in NZ.  Traits shown are: Rdark,a25, (a) and Rdark,aTWQ (b), predicted area-based Rdark rates at 25oC and TWQ, respectively; Rdark,m25 (c) and Rdark,mTWQ (d), predicted mass-based Rdark rates at 25oC and TWQ, respectively.  Values at 25oC and TWQ were calculated assuming a temperature-dependent Q10 (Tjoelker et al., 2001) and equation 7 described in Atkin et al. (2005).  Values at the TWQ of each replicate were calculated using climate/location data from the WorldClim data base (Hijmans et al., 2005).  Aridity index calculated as the ratio of mean annual precipitation (MAP) to mean annual potential evapotranspiration (PET) (UNEP, 1997).  Solid lines in each plot show regression lines where the relationships were significant; dashed lines show the prediction intervals (two-times the standard deviation) around the predicted relationship.  See Figure 4 for the same figure where data from FJG were included. 


Figure S4. Relationships between leaf Rdark (log10 scale) and measuring month mean daily temperature (MMT) for those sites where the month of measurement was known.  Values shown are averages for unique site:species combinations, using previously unpublished data (Supporting Information Table S1).  Traits shown are: (a) Rdark,a25, predicted area-based Rdark at 25oC; (b) Rdark,aMMT, predicted area-based Rdark at MMT; (c) Rdark,m25, mass-based Rdark at 25oC; (d) Rdark,mMMT, mass-based Rdark at MMT.  Values at 25oC and MMT were calculated assuming a T-dependent Q10 (Tjoelker et al., 2001) and equation 7 described in Atkin et al. (2005).  Values at the MMT of each replicate were calculated using climate/location data from the WorldClim  data base (Hijmans et al., 2005).  Solid lines in each plot show regression lines where the relationships were significant; dashed lines show the prediction intervals (two-times the standard deviation) around the predicted relationship. 
For Rdark,a25, the negative relationship with MMT was significant (p<0.0001, n=677, r2 = 0.192; log10 Rdark,a25 = 0.509 – 0.023*MMT) (Fig. S4a).  Similarly, the Rdark,aMMTMMT association (Fig. S4b) was significant (p<0.0001, n=677, r2 = 0.041; log10 Rdark,aMMT = -0.293 + 0.0095*MMT), as were the Rdark,m25MMT (p<0.0001, n=667, r2 = 0.184; log10 Rdark,m25 = 1.468 – 0.023*MMT) and Rdark,mMMTMMT (p<0.0001, n=667, r2 = 0.030; log10 Rdark,mMMT = 0.666 + 0.009*MMT) relationships (Fig. S4c,d).  

[image: ]
Figure S5. Testing key assumptions for area- and mass-based mixed effects models –heterogeneity and normality.  See Table 5 in the main text for details on the models.  The upper panel [(a) and (b)] refer to the model based on area-based values, while the lower panel [(c) and (d)] refers to the mass-based model.
[image: ]

[image: ]
Figure S6. Model validation graphs for the area-based mixed effects model.  Shown are standardised residuals plotted against fitted values for each of the continuous explanatory factors and variables used in the model’s fixed components: (a) plant functional types (PFT) categorised according to JULES (BlT, broadleaved trees; C3H, C3 herbs; NlT, needle-leaved trees; S, shrubs); (b) area-based rates of the Vcmax of Rubisco at 25oC (Vcmax, a25); (c) leaf nitrogen per unit leaf area ([N]a); (d) leaf phosphorus per unit leaf area ([P]a); and,(e) mean temperature of the warmest quarter at each site.  See Table 5 in the main text for details on the models.  Similar graphs were made for the mass-based model (data not shown).  For (a), the central box in each plot shows the interquartile range; the median is shown as the bold line in each box; whiskers extend 1.5 times the interquartile range or the most extreme value, whichever is smaller; any points outside the values are shown as individual points.  (c)
(d)



[image: ]

Figure S7. Standardised residuals plotted against fitted values for variables not used in the area-based model’s fixed components.  See Table 5 in the main text for details on the models.  Similar graphs were made for the mass-based model (data not shown).  Plots show residuals against (a) leaf mass per unit leaf area (Ma) categorised; (b) aridity index (ratio of mean annual precipitation to potential evapotranspiration); (c) precipitation of the warmest quarter at each site.  See Table 5 in the main text for details on the models.  



[image: ]

Figure S8.  Dotchart of the area-based mixed model’s random intercepts by Family. Points represent the difference (shown with 95% prediction intervals) for each family in the Rdark,a25 response above or below the overall population mean after controlling for the model’s fixed terms and site location (Figure S7).  See Table 5 in the main text for details on the models.  Similar graphs were made for the mass-based model (data not shown).




[image: ]



Figure S9.  Dotchart of the area-based mixed model’s random intercepts by site. Points represent the difference (shown with 95% prediction intervals) for each site in the Rdark,a25 response above or below the overall population mean after controlling for the model’s fixed terms and phylogenetic structure (Figure S6).  See Table 5 in the main text for details on the models.  Similar graphs were made for the mass-based model (data not shown)
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