Online Supplement for "Cost-effectiveness of Shared Telemedicine Appointments in Young Adults with T1D: CoYoT1 Trial"

- eTable 1. Impact inventory for cost-effectiveness analysis (CEA)
- eTable 2. Reporting checklist for cost-effectiveness analysis
- eTable 3. Within-trial cost assumptions
- eTable 4. Itemized continuous subcutaneous insulin infusion (CSII) annual cost assumptions
- eTable 5. Itemized blood glucose monitoring annual cost assumptions
- eTable 6. Baseline characteristics of the study populations
- eTable 7. Comparison of within-trial mean costs by the bootstrap method.
- eTable 8. Adjusted baseline costs for prior 9 months
- eTable 9. Within-trial healthcare utilization results
- eTable 10. Comparison of within-trial key outcomes through imputed datasets
- eTable 11. Clinical input parameters for the long-term cost-effectiveness model
- eTable 12. Cost parameters for the long-term cost-effectiveness model
- eTable 13. Health-utility parameters for the long-term cost-effectiveness model
- eTable 14. Lifetime cost-effectiveness analysis results

		Included in this case analy	Notes on	
Sector	Type of Impact	Health Care Sector	Societal	sources of evidence
Formal healt	th care sector			
	Health outcomes (effects)			The within-
	Utility	Yes	Yes	trial CEA
	HbA1c	Yes	Yes	used the
	BMI	Yes	Yes	observed trial
	# of patients having severe hyper events	Yes	Yes	data and the cost
	# of patients having severe hypo events	Yes	Yes	assumptions
11.1	Medical costs			provided in
nealth	Direct trial personnel costs	Yes	Yes	eTables 4-5.
	Medical care costs including	Yes	Yes	
	healthcare services	Yes	Yes	CEA used
	test strip use	Yes	Yes	the modified
	Insulin	No	No	Sheffield
	Device Pump costs	Yes	Yes	T1D model
	Device CGM costs	Yes	Yes	(Thokala et
Informal hea	lth care sector			al. 2013) ¹
health	self-management costs	No	No	and its cost,
Non-health c	are sectors			health-utility,
	costs of unpaid lost productivity due to illness if employed	NA	Yes	and other input
productivity	costs of underperformance due to illness if employed	NA	Yes	parameters provided in
	costs of commute time for a usual care visit	NA	Yes	e l'ables 6-8

Supplementary eTable 1. Impact inventory for cost-effectiveness analysis (CEA)^a

^a The impact inventory table was based on the recommendations of the Second Panel on Cost-Effectiveness in Health and Medicine.²

Element	Journal Article	Technical Appendix
INTRODUCTION		
Background and objectives	Yes	
RESEARCH DESIGN AND METHODS		
Study design	Yes	
Target populations and subgroups	Yes	
Setting and location	Yes	
Study perspective	Yes	
Comparator	Yes	
Time horizon	Yes	
Discount rate	Yes	
Type of analysis	Yes	
Choice of health outcomes	Yes	
Measurement of effectiveness	Yes	
Measurement and valuation of preference-based	Ves	Ves
outcomes	105	105
Estimating resources and costs	Yes	Yes
Currency, price date, and conversion	Yes	Yes
Choice of model	Yes	
Assumptions		Yes
Analytic methods	Yes	
RESULTS		
Study parameters	Yes	Yes
Incremental costs and outcomes	Yes	Yes
Characterizing uncertainty	Yes	Yes
Characterizing heterogeneity	Yes	Yes
DISCUSSION		
Study findings, limitations, generalizability, and	Vac	
current knowledge	Tes	
OTHER		
Source of funding	Yes	
Conflicts of interest	Yes	

Supplementary eTable 2. Reporting checklist for cost-effectiveness analysis^a

^a The reporting checklist was based on the recommendations of the Consolidated Health Economic Reporting Standards (CHEERS) statement. ³

Supplementally classes, within that cost assumptions	Supplementary -	eTable 3.	Within-trial	cost assu	imptions
--	-----------------	-----------	--------------	-----------	----------

Within Trial Cost Assumptions		
Item	Unit Cost (2015 USD) ^a	Source
Direct Personnel Costs: Time of investigators	coordinators devoted to path	ients
Primary care provider	\$94.43/hour	Bureau of Labor Statistics 2016 ⁴
Advanced nurse practitioner	\$47.21/hour	Bureau of Labor Statistics 2016
Registered nurse	\$32.45/hour	Bureau of Labor Statistics 2016
Diabetes educator	\$37.35/hour	Bureau of Labor Statistics 2016
Other provider	\$35.92/hour	Bureau of Labor Statistics 2016
Direct Medical Care Costs		
Average daily insulin use over 6 months	\$0.15/unit of insulin	Redbook 2016
Average daily fingerstick use over 6	\$0.06/lancet	Redbook 2016
months	\$1.02/test strip	
Event Complication Costs		
Outpatient diabetes care: primary care provider	\$94.43/event	Bureau of Labor Statistics 2016
After-hours urgent care clinic visit	\$180.23/event	Mehrotra et al 2005 ⁵
911 call	\$0.86 surcharge/month	National Association of Emergency Numbers ⁶
Outpatient care: emergency department	\$476.06/event	Taubman et al 2014 ⁷
Ambulance use	\$506.36/event	U.S. GAO Report to Congressional Committes, 2012 ⁸
Hospitalization (all causes)	\$10,443.06/event	Healthcare Costs and Utilization Project ⁹
Hospitalization due to hypoglycemic episode	\$16,806.70/event	Ward et al 2014 ¹⁰
Hospitalization due to hyperglycemic episode	\$15,657.00/event	St Charles et al 2009 ¹¹
Hospitalization for other diabetic event	\$10,107.70/event	Healthcare Costs and Utilization Project
Indirect Costs		
Days of work missed due to diabetes patient	Age and sex specific median hourly wage	Bureau of Labor Statistics 2016
Days of underperformance at work with productivity <50%	Age and sex specific median hourly wage	Bureau of Labor Statistics 2016
Commute time for a clinic visit	Age and sex specific median hourly wage	Bureau of Labor Statistics 2016

^a The annual inflation rate for a given year is the percent change from the previous year. Inflation rates were obtained from the Personal Consumption Expenditures: Chain-type Price Index (PCEPI), downloaded through the link: <u>https://fred.stlouisfed.org/series/PCEPI</u>. As an example, to convert a price expressed in 2010 dollars to 2015 dollars, one would use the following equation ((PCEPI(2015)/PCEPI(2010) x Price (2010)= Price (2015)).

Supplementary eTable 4. Itemized continuous subcutaneous insulin infusion (CSII) annual cost assumptions in 2015 USD

Component	Warranty/duration	unit cost ^a	Annual total costs
Insulin pump	4 years	\$7,736.39	\$1,934.10
pump infusion set	2-3 days	\$13.73	\$2,003.93
Pump cartridge/syringe	2-3 days	\$4.681	\$683.46
Total			\$4,621.49 ^b

^a The unit costs of CSII components were obtained in the recently published cost-effectiveness study based on the Diabetes Control and Complications Trial (DCCT)¹², which was based on the products manufactured by Medtronic and Animas.

^b The daily price of \$12.66 was calculated by the total annual price divided by 365.

Supplementary eTable 5. Itemized blood glucose monitoring annual cost assumptions^e used in 2015 USD.

Component	Warranty/duration	unit cost ^a	Annual total costs
CGM sensor	7 days	\$77.98	\$4,066.00
CGM receiver	1 year	\$476.63	\$476.63
CGM transmitter	6 months	\$502.48	\$1,004.96
Total			\$5,547.59 ^b

^a The prices of CGM components were the estimated average allowable prices in the U.S. marketplace and were provided by the Dexcom Pricing Department.

^b The daily price of \$15.20 was calculated by the total annual price divided by 365.

	Intervention (n=42)	Control (n=39)	P-value
Demographic characte	eristics		
Gender - Female (%)	19 (45)	19 (49)	0.83
Race (%)			0.44
White	35 (83)	35 (90)	
Black	1 (2)	2 (5)	
Other	6 (14)	2 (5)	
Age			0.10
mean \pm SD	19.8 ± 1.7	20.5 ± 1.9	
range	18 - 24	18 - 25	
Insurance (%)			0.90
Private	36 (86)	33 (85)	
Public (Medicaid)	4 (10)	5 (13)	
Military (Tricare)	2 (5)	1 (3)	
Healthcare utilization	at baseline for last 3 m	onths	
# of clinic visits in last of	one year		0.28
mean \pm SD	2.6 ± 1.1	2.3 ± 1.0	
range	1 - 5	1 - 5	
Daily strip test			0.69
mean \pm SD	3.0 ± 2.1	3.5 ± 2.7	
range	0.2 - 9	0.3 - 11	
Pump use - Yes (%)	19 (45)	20 (51)	0.66
CGM use - Yes (%)	4 (10)	11 (30)	0.04
Clinical characteristics	s at baseline		
HbA1c			0.62
mean \pm SD	8.7 ± 1.7	8.7 ± 1.8	
range	6.5 - 13.4	6.7 - 13.1	
BMI			0.59
mean \pm SD	25.2 ± 5.4	25.2 ± 3.7	
range	17.9 - 42.3	19.4 - 33.6	
SBP			0.72
mean \pm SD	114.1 ± 9.7	114.7 ± 11.3	
range	84 - 130	96 - 148	
DBP			0.43
mean \pm SD	73.1 ± 7.5	75.7±7.6	
range	50 - 89	65 - 97	
# of patients having sev	ere hypoglycemia in last	3 months	1.00
<u>n (%)</u>	0	1 (3)	1.00
# of patients having sev	ere hyperglycemia in las	t 3 months	1.00
n (%)	0	1 (3)	1.00
TID Duration (year)	0.0 . 1.7	117.55	<0.01
mean \pm SD	8.2 ± 4.7	11.7 ± 5.5	
range	0.2 - 17.1	1.0 - 21.1	0.01
Smoke - Yes (%)	3(7)	0 (0)	0.24
Albuminutia - Yes	3 (7)	0 (0)	0.24
<u>(%)</u>	× /	~ /	
Quality of life at baseli	ne		
Utility	0.01 0.11	0.00 0.12	0.99
mean \pm SD	0.91 ± 0.11	0.90 ± 0.12	
range	0.63 - 1.0	0.58 - 1.0	
Diabetes distress	1.07 0.00	1.0.0 .0.00	0.87
mean \pm SD	1.97 ± 0.88	1.86 ± 0.69	
range	1.00 - 4.47	1.12 - 3.82	

Supplementary eTable 6. Baseline characteristics of the study populations

	Mean DID (interve	Mean DID (intervention - control)		of DID
	by original dataset	by bootstrap	Lower	Upper
Per-Patient Costs (\$)				
Total direct costs	-2955	-2969	-15195	3357
Trial-treatment medical care	128	130	91	170
Other medical care	-3855	-3854	-10276	348
Strip test use	108	110	-93	355
Pump use	1140	1138	554	1819
CGM use	911	908	310	1633
Total indirect costs	-365	-366	-1304	-54
Missed work	-159	-159	-464	49
Poor performance	-214	-214	-918	16
Total commute time for in-	2	2	4	11
_person visits	5	3	-4	11
Total costs	-3010	-2965	-12199	2777

Supplementary eTable 7. Comparison of within-trial mean costs by the bootstrap method. The significant differences in bold.

Supplementary eTable 8. Adjusted baseline costs for prior 9 months^a in 2015 USD

	Interve	ntion (n=42)	Cont	rol (n=39)	P-value
Per-Patient Costs (\$)	mean (SD)	median (IQR)	mean (SD)	median (IQR)	
Total direct costs	3,502 (5036)	1892 (860, 4345)	4,222 (3528)	3956 (944, 5469)	0.13
Trial staff for intervention/control	152 (65)	175 (117, 175)	136 (60)	117 (58, 175)	0.28
Other medical care	1029 (5189)	0 (0, 399)	583 (2054)	0 (0, 373)	0.99
Strip test use	821 (567)	735 (435, 1034)	959 (735)	708 (435, 1293)	0.69
Pump use	1,443 (1607)	0 (0, 3190)	1724 (1612)	0 (0, 3190)	0.44
CGM use	365 (1138)	0 (0, 0)	1,139 (1775)	0 (0, 3830)	0.02
Total indirect costs	2276 (428)	55 (28, 417)	315 (532)	45 (15, 309)	0.75
missed work	111 (266)	0 (0, 0)	134 (276)	0 (0, 242)	0.49
poor performance	134 (342)	0 (0, 121)	149 (371)	0 (0, 0)	0.64
commute time for an in-person visit	31 (20)	25 (15, 45)	33 (30)	23 (11, 45)	0.53
Total costs	3,705 (5000)	2851 (875, 4729)	4,504 (3606)	4190 (944, 6163)	0.11

^a The adjustment was by multiplying the costs data for 3 months with three to make the baseline costs for 9 months.

		Interver	ntion (N=42)		Cont	rol (N=39)	р-
Outcomes in utilization	Mean	SD	Median (range)	Mean	SD	Median (range)	value ^a
Diabetes self-care costs during the tria	ıl						
mean N of daily strip tests over visits	3.8	3.52	2.5 (0.1, 16.9)	3.58	1.94	3 (0.4, 7.2)	0.38
CGM use at 9 months - Yes (%)	14 (47)			4 (36)			0.73
Pump use at 9 months - Yes (%)	11 (37)			3 (30)			1.00
Clinical trial staff for intervention/cont	trol durin	g the tri	al				
N of Clinical visits	3.38	1.1	4 (1, 4)	0.53	0.61	0 (0, 2)	< 0.01
Healthcare utilization due to T1D duri	ng the tria	al					
911 calls	0.14	0.78	0 (0, 5)	0.23	1.08	0 (0, 6)	0.54
ER visits	0.09	0.52	0 (0, 3)	0.14	0.59	0 (0, 3)	0.55
Urgent care visits	0.00	0.00	0 (0, 0)	0.00	0.00	0 (0, 0)	1.00
Hospitalizations	0.00	0.00	0 (0, 0)	0.23	1.08	0 (0, 6)	0.15
Non-study outpatient visits	1.27	2.38	0 (0, 9)	3.00	3.12	3 (0, 11)	0.01
Patients work costs if they were employ	yed durin	g the tri	al				
N of missed workdays	1.32	3.20	0 (0, 15)	3.05	7.97	0 (0, 42)	0.56
N of workdays with < 50% productivity	1.95	4.49	0 (0, 24)	8.58	31.69	0 (0, 180)	0.29
Commute hours for in-person clinic visit	1.13	1.00	1.00 (0, 4)	0.99	1.40	0.15 (0, 6.67)	0.16

Supplementary eTable 9. Within-trial results in healthcare utilization

^a Wilcoxon rank-sum test was used to compare the two groups.

Supplementary eTable 10. Comparison of within-trial key outcomes through imputed datasets

Outcomos	Mean DID	95% CI of DID	
Outcomes	(Intervention - control)	lower	upper
QALYs	0.016	-0.007	0.038
Utility ^a	0.038	-0.017	0.093
Total direct costs	-1554	-6531	3424
Trial-treatment medical care	130	94	166
Other medical care	-3256	-8283	1771
Strip test use	172	-175	520
Pump use	737	-141	1615
CGM use	658	-150	1465
Total indirect costs	-305	-1242	631
missed work	-116	-420	187
poor performance	-190	-980	600
commute time for in-person visits	3	-7	12
Total costs	-1866	-6893	3161

a The p-value for the treatment effect by LMM using the imputed datasets was 0.0575.

Cohort baseline characteristics	Mean (SD)	
Gender-female (%)	47%	
Race-white (%)	86%	
Smokes (%)	4%	
Age	20.16 (1.83)	
T1D duration (year)	9.86 (5.34)	
HbA1c	8.70 (1.71)	
Systolic blood pressure	114.92 (9.04)	
High-density lipoprotein	57.08 (19.22)	
Total cholesterol	170.02 (47.63)	

Supplementary eTable 11. Clinical input parameters for the long-term cost-effectiveness model

Definition	Base-Case Value (2015 USD)	References	
Blood glucose monitoring ^a related costs			
Daily blood glucose monitoring (CGM)		See Table 3	
Daily blood glucose monitoring (control)		See Table 3	
Kidney related costs			
Microalbuminuria	21.75	St Charles et al, 2009	
Macroalbuminuria	32.01	St Charles et al, 2009	
End-stage renal disease	109,315.22	Beckwith et al, 2012^{13}	
Neuropathy related costs			
Neuropathy	1,443.79	Beckwith et al, 2012	
Amputation, year of event	55,688.88	Beckwith et al, 2012	
Amputation, year 2+ after event	1.959.42	Beckwith et al. 2012	
Eye related costs	,		
Background diabetes retinopathy	9,551.63	Li et al, 2013 ¹⁴	
Proliferative diabetes retinopathy	13,802.06	Li et al, 2013	
Macular edema	8,640.82	Li et al, 2013	
Blindness	4,716.18	St Charles et al, 2009	
Cataract	3,275.50	Palmer et al, 2004^{15}	
Cardiovascular complication costs			
Myocardial infarction, year of event	43,711.23	St Charles et al, 2009	
Myocardial infarction, year 2+ after event	2,416.25	St Charles et al, 2009	
Fatal Myocardial infarction	3,329.18	Clarke et al, 2003 (UKPDS 65) ¹⁶	
Stroke, year of event	57,885.35	St Charles et al, 2009	
Stroke, year 2+ after event	19,318.56	St. Charles et al, 2009	
Fatal stroke	9,007.58	UKPDS 65	
Heart failure, year of event	17,693.98	McQueen et al, 2011 ¹⁷	
Heart failure, year 2+ after event	1,858.42	McQueen et al, 2011	
Fatal heart failure	13,349.89	UKPDS 65	
Angina, year of event	8,671.93	St Charles et al, 2009	
Angina, year 2+ after event	3,754.94	St Charles et al, 2009	
Glycemic control relate costs			
Severe hypoglycemia	1,391.14	St Charles et al, 2009	
Non-severe hypoglycemia	20.32	Foos et al, 2015 ¹⁸	
Hyperglycemia	15,657.10	St Charles et al, 2009	

Supplementary eTable 12. Cost assumptions of the long-term cost-effectiveness analysis

^a Blood glucose monitoring costs include costs of test strips and CGM sensor, transmitter, and receiver initial purchase and replacements. The cost of insulin was excluded since CGM did not modify insulin intake.

Supplementary eTable	13. Health-utility	assumptions of th	e long-term cost	-effectiveness
analysis				

Event/state	Utility/disutility ^{a,b}	References
Diabetes no complication (CGM, control)	0.916	Trial data
Kidney related events/states		
End-stage renal disease	0.552	Joyce et al, 2011^{19}
Neuropathy related events/states		
Neuropathy	0.703	Begg et al, 2007 ²⁰
Amputation, year of event ²	-0.109	Palmer et al. 2004
Amputation, year 2+ after event	0.766	Clarke et al. 2002^{21}
Eye related costs		
Proliferative diabetes retinopathy	0.894	Begg et al, 2007
Macular edema	0.89	Begg et al, 2007
Blindness	0.826	Clarke et al, 2002
Cardiovascular complication events/states		
Myocardial infarction, year of event	-0.129	Clarke et al, 2002
Myocardial infarction, year 2+ after event	0.82	Clarke et al, 2002
Stroke, year of event	-0.181	Clarke et al, 2002
Stroke, year 2+ after event	0.614	Clarke et al, 2002
Heart failure, year of event	-0.129	Clarke et al, 2002
Heart failure, year 2+ after event	0.829	Clarke et al, 2002
Angina	0.768	Clarke et al, 2002
Glycemic control related events		
Severe hypoglycemia event	-0.0052	N.I.C.E., 2002 ²²
Non-severe hypoglycemia event ^c	-0.00045	N.I.C.E., 2002 and Harris et al, 2014 ²³
Hyperglycemia event	-0.001	Walters, 2006 ²⁴

^a Negative values indicate *per episode disutilities* of events, and positive values indicate *annual utilities of health-states*. For events that may happen more than once per year (e.g., glycemic control related events), the disutilites were multiplied by the event count.

^b Literature based utilities were adjusted to reflect health-utilities observed in the trial.

^c Harris et al, 2014²³ report disutilities of -.0056 and -0.003 for day-time and nocturnal non-severe hypoglycemia, and -0.0592 and -.0277 for day-time and nocturnal severe hypoglycemia, respectively. We calculated the disutility of an episode of non-severe hypoglycemia by multiplying the severe hypoglycemia disutility in N.I.C.E., 2002²² by the ratio of severe and non-severe hypoglycemia disutilities reported in Harris et al, 2014²³ (approximately 10%).

	Intervention	Control		
BASE-CASE CEA				
Life-time probability of				
Background diabetic retinopathy	389	6		
Proliferative diabetic retinopathy	319	31%		
Macular edema	17%			
Blindness	2%			
Macroalbuminuria	66%			
End stage renal disease	61%			
Neuropathy	449	44%		
Amputation	149	14%		
Myocardial infarction	30%	30%		
Stroke	5%	5%		
Angina	15%	15%		
Heart failure	8%)		
Expected life years (mean and [95% CI])	40.66 [40.55 - 40.76]			
Difference in expected life years	-			
Discounted QALYs (means)	16.99	17.94		
Difference in QALYs (mean and [95% CI])	0.95 [.91	0.95 [.9199]		
Discounted total costs (means)	361,513 [358,969 - 363,834]			
Difference in costs (mean)	-			
SENSITIVITY CEA: duration of intervention ef	fectiveness (year):			
1 year: Diff in QALYs (mean and [95% CI])	0.10 [0.02	2, 0.21]		
5 years: Diff in QALYs (mean and [95% CI])	0.24 [0.20), 0.28]		
10 years: Diff in QALYs (mean and [95% CI])	0.43 [0.39, 0.47]			
SUBGROUP CEAs				
Subgroup with high baseline HbA1c				
Difference in QALYs (mean and [95% CI])	1.19 [1.15	5, 1.23]		
Subgroup with low baseline HbA1c				
Difference in QALYs (mean and [95% CI])	-			

Supplementary eTable 14. Lifetime cost-effectiveness analysis results

References

- 1. Thokala P, Kruger J, Brennan A, et al. Assessing the cost-effectiveness of type 1 diabetes interventions: the Sheffield type 1 diabetes policy model. *Diabet Med.* 2014;31(4):477-486.
- 2. Sanders GD, Neumann PJ, Basu A, et al. Recommendations for Conduct, Methodological Practices, and Reporting of Cost-effectiveness Analyses: Second Panel on Cost-Effectiveness in Health and Medicine. *JAMA*. 2016;316(10):1093-1103.
- 3. Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. *Value Health*. 2013;16(2):e1-5.
- 4. Bureau of Labor Statistics USDoL. Usual weekly earnings of wage and salary workers fourth quarter 2016. 2016.
- 5. Mehrotra A, Liu H, Adams JL, et al. Comparing costs and quality of care at retail clinics with that of other medical settings for 3 common illnesses. *Annals of internal medicine*. 2009;151(5):321-328.
- 6. National Emergency Number Association. 9-1-1 Surcharge--User Fees by State. 2017.
- 7. Taubman SL, Allen HL, Wright BJ, Baicker K, Finkelstein AN. Medicaid increases emergency-department use: evidence from Oregon's Health Insurance Experiment. *Science*. 2014;343(6168):263-268.
- 8. United States Government Accountability Office. Ambulance Providers: Costs and Medicare Margins Varied Widely; Transports of Beneficiaries Have Increased. UNT Libraries Government Documents Department. 2012.
- 9. Pfuntner A, Wier LM, Steiner C. Costs for Hospital Stays in the United States, 2010: Statistical Brief #146. *Healthcare Cost and Utilization Project (HCUP) Statistical Briefs*. Rockville (MD)2006.
- 10. Ward A, Alvarez P, Vo L, Martin S. Direct medical costs of complications of diabetes in the United States: estimates for event-year and annual state costs (USD 2012). *J Med Econ.* 2014;17(3):176-183.
- St Charles M, Lynch P, Graham C, Minshall ME. A cost-effectiveness analysis of continuous subcutaneous insulin injection versus multiple daily injections in type 1 diabetes patients: A third-party US payer perspective. *Value in Health.* 2009;12(5):674-686.
- 12. Herman WH, Braffett BH, Kuo S, et al. The 30-year cost-effectiveness of alternative strategies to achieve excellent glycemic control in type 1 diabetes: An economic simulation informed by the results of the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC). *J Diabetes Complications*. 2018;32(10):934-939.
- 13. Beckwith J, Nyman JA, Flanagan B, Schrover R, Schuurman HJ. A health economic analysis of clinical islet transplantation. *Clin Transplant*. 2012;26(1):23-33.
- 14. Li R, Bilik D, Brown MB, et al. Medical costs associated with type 2 diabetes complications and comorbidities. *The American journal of managed care*. 2013;19(5):421.
- 15. Palmer AJ, Roze S, Valentine WJ, et al. The CORE Diabetes Model: Projecting longterm clinical outcomes, costs and cost-effectiveness of interventions in diabetes mellitus (types 1 and 2) to support clinical and reimbursement decision-making. *Curr Med Res Opin.* 2004;20 Suppl 1:S5-26.

- 16. Clarke P, Gray A, Legood R, Briggs A, Holman R. The impact of diabetes-related complications on healthcare costs: results from the United Kingdom Prospective Diabetes Study (UKPDS Study No. 65). *Diabetic Medicine*. 2003;20(6):442-450.
- 17. McQueen RB, Ellis SL, Campbell JD, Nair KV, Sullivan PW. Cost-effectiveness of continuous glucose monitoring and intensive insulin therapy for type 1 diabetes. *Cost Effectiveness and Resource Allocation*. 2011;9(1):13.
- 18. Foos V, Varol N, Curtis BH, et al. Economic impact of severe and non-severe hypoglycemia in patients with Type 1 and Type 2 diabetes in the United States. *Journal of medical economics*. 2015;18(6):420-432.
- 19. Lee JM, Rhee K, O'grady MJ, et al. Health utilities for children and adults with type 1 diabetes. *Medical care*. 2011;49(10):924.
- 20. Begg S, Vos T, Barker B, Stevenson C, Stanley L, Lopez AD. The burden of disease and injury in Australia 2003. 2007.
- 21. Clarke P, Gray A, Holman R. Estimating utility values for health states of type 2 diabetic patients using the EQ-5D (UKPDS 62). *Medical Decision Making*. 2002;22(4):340-349.
- National Institute for Clinical Excellence. Guidance on the use of long-acting insulin analogues for the treatment of diabetes insulin glargine.
 2002(www.nice.org.uk/nicemedia/pdf/53 Insulin analogues full guidance.pdf).
- 23. Harris S, Mamdani M, Galbo-Jørgensen CB, Bøgelund M, Gundgaard J, Groleau D. The effect of hypoglycemia on health-related quality of life: Canadian results from a multinational time trade-off survey. *Canadian journal of diabetes*. 2014;38(1):45-52.
- 24. Walters N, Gordois A, Brown A, Lindsay P, Gonzalo F, Comas S. Quantifying the impact of fear of hypoglycemia on quality of life. *Value in Health.* 2006;9(6):A238.