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ABSTRACT

Oscillations occurring in industrial process plants often reflect the presence of severe disturbances affecting

process operations. Accurate detection and root-cause analysis of oscillations is of great interest for the

economic viability of the process operation. Standard oscillation detection and root cause analysis methods

require a large enough number of data samples. Unrelated transient changes superimposed on the

oscillation pattern reduce the number of useful data samples. The present paper proposes simple heuristic

methods to effectively detect and remove two types of transient changes from oscillatory signals, namely

step changes and spikes. The proposed methods are used to pre-process oscillatory time series. The

accuracy gained when using auto-correlation function method for oscillation detection1 and transfer

entropy method for oscillation propagation2 is experimentally evaluated. The methods are carried out on a

1.3-Butadiene production process where several measurements showed an established oscillation occurring

after a production level change.

Keywords: Plant-wide disturbances; oscillations; pre-processing; transient removal; fault detection,

chemical process.

1. INTRODUCTION

Disturbances occurring in industrial process systems can travel through the interconnected process

equipment and appear in several measurements in the process resulting in what is often termed ‘plant-wide

disturbances’3. Oscillatory disturbances are a common type of plant-wide disturbances affecting industrial

process systems. The detection and the diagnosis of these oscillatory disturbances are of great importance

as these disturbances can increase the level of process variability and, ultimately, decrease the profit of the

process operation4. Oscillations as “periodic variations that are not completely hidden in noise” 5. Several
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methods for oscillation detection are available in the literature3. Among oscillation detection methods with

successful industrial implementation6 we can cite methods based on spectral PCA analysis7, methods based

on the regularity of the integral absolute error (IAE)8, methods based on the decay ratio of the auto-

correlation function9, methods based on zero-crossings of the auto-correlation functions1 and methods based

on wavelet analysis10.

Methods for the isolation of the root cause of an oscillatory process disturbance include surrogate testing11,12,

bi-spectra and related bi-coherence13, harmonics14 and spectral envelope method15. A method using the

spectral envelope is proposed by Jiang et al.15 and Yuan and Qin16 use Granger causality in the spectral

domain to isolate the root cause of oscillatory disturbances while Bauer et al.2 adopt transfer entropy, a

metric of causality based on information theory introduced by Schreiber 17, for the root cause analysis of

oscillatory as well as non-oscillatory process disturbances.

Jelali and Huang18 claim that oscillation detection methods can nowadays be considered as a largely solved

research topic. In industrial practice, however, the presence of transient disturbances in the oscillatory

signals can lead to a decrease of the accuracy of standard oscillation detection methods18, 19 and therefore

reduce their industrial acceptance.

Cecílio et al.20 define a transient disturbance as “a short deviation of a measurement from its previous and

subsequent trend. In addition, this deviation should seldom repeat within the time horizon of analysis. After

the occurrence of a transient disturbance, the measurement may return to its previous trend or follow a

different trend.” Figure 1 exemplifies two types of transient disturbances affecting an oscillatory signal and

shows that their presence can mislead a visual inspection of oscillations.

Detection of transients affecting oscillatory signals is also a topic of investigation in power systems21. In the

areas of power systems protection and power quality assessment, methods based on time–frequency domain

analysis such as wavelet transform are proposed for transient detection22,23,24. Transient disturbance

detection in power systems differs nevertheless from the problem studied in the present work. The topic

here is the detection and the root cause analysis of oscillatory disturbances affected by transients. In power

systems protection and power quality assessment, the objective is the detection of transients, while the

oscillatory components reflect the nominal behaviour of power, voltage or current signals in an AC power

system. Cecílio et al. propose a method based on nearest neighbours to detect transients20 and a method

based on nearest neighbour imputation is used to remove transients25.

Common industrial practice is either to exclude from the analysis time intervals exhibiting transients or to

completely drop out signals with transients26. However, in order to allow accurate oscillation detection, the

oscillation should persist during eight cycles at minimum and excluding time intervals with transients can
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hinder that1. The same argument holds for root cause analysis methods: for the transfer entropy method, a

minimum number of 2000 samples is recommended in Bauer et al.2 A typical example is the start of an

oscillation during an intermediate phase of the process operation such as a grade transition, a production

level change or a start-up. Pre-processing methods that are able to remove transients from univariate

oscillatory time series are therefore needed to fully exploit the available process data when applying

oscillation detection and root cause analysis methods. The problem is also different from outlier detection27,

which aims at removing single points.

The empirical mode decomposition (EMD) method allows the detection and the quantification of multiple

oscillation modes by iteratively applying it on an extracted non-constant mean.28 This approach inherently

removes the non-constant mean (low-frequency oscillation mode) from the signal. Multivariate empirical

mode decomposition (MEMD)29 extends the EMD method to plant wide oscillation detection and benefits

from the same advantage i.e. the ability to deal with the slowly varying trends. Alternatively, the direct

cosine transform (DCT)30 isolates different frequency components, e.g., multiple oscillations, of a time

series and detects the oscillations by checking the regularity of zero-crossings of the isolated components.

Likewise, the DCT method is able to handle slowly varying trends by isolating them (low-frequency

component) and discarding them based on the low regularity of the corresponding component zero crossing.

On the other hand, transient changes like spikes and steps affecting the oscillating time series are not

discussed in Srinivasan and Rengaswamy28, Li et al.30 and Aftab et al.29. The particularity of these transients

is a clear localization in the time domain but no precise localization the frequency domain. This aspect

motivates investigating time domain approaches for the pre-processing of oscillating time series affected by

such transients.

The present work extends the analysis of the transient detection and removal methods introduced by Zhou,

et al.19 where the authors proposed heuristic methods to detect and to remove transients from oscillatory

signals by applying it in conjunction with oscillation and transfer entropy method to study the effects. In

addition to this expansion, the procedure is improved and formulated precisely in mathematical terms. The

methods are here used as a pre-processing step for oscillation detection and root cause analysis methods in

an offline context. In this work, the performance is evaluated on simulated data as well as on an industrial

case study.

The remainder of the paper is organized as follows. The autocorrelation function (ACF) oscillation detection

method and transfer entropy based causal analysis are briefly introduced In Section 2. In Section 3, the

proposed methods for steps and spikes detection and removal are described in detail. In Section 4, a

sensitivity analysis to the tuning parameters is done and recommendations for default parameter settings are
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provided. The proposed methods are tested first in simulation in Section 5 then applied on a real industrial

dataset collected from a 1,3-Butadiene process to demonstrate the improvement both in oscillation detection

and root cause analysis in Section 6. Finally, Section 7 concludes the paper.

Figure 1. Examples of transients affecting oscillatory signals: left side: transient spikes, right side: transient

step.

2. OSCILLATION DETECTION AND USING AUTO-COVARIANCE FUNCTION (ACF) AND

CAUSAL ANALYSIS USING TRANSFER ENTROPY

The ACF method is a method for oscillation detection. 1 This method determines the regularity of the zero

crossings of the auto-covariance function. The ACF of an oscillating signal is itself oscillatory with the same

period as the oscillation in the time trend. The advantage of using the ACF for oscillation detection is that

the impact of noise is reduced because white noise has an ACF that is theoretically zero for lags greater than

zero. The zero crossings of a periodic oscillation are regularly spaced while for a signal that is not oscillating,

the zero crossings of the ACF happen at random times. The zero crossings intervals are therefore similar in

the first case and dissimilar in the second. The standard deviation of the intervals is used as an indication of

the regularity of the oscillation and a clustering algorithm determines which measurements belong to the

same group of oscillations.

Transfer entropy is one possible metric to quantify the influence or causality of one process variable on

another process variable proposed by Bauer et al. for plant disturbance analysis2. This statistical method

evaluates the predictability of a variable from another variable based on Probability Density Functions

(PDF). The causality measure used to quantify the extent of the influence of a variable x on another variable

y is derived from Transfer Entropy The latter is derived from entropy. Entropy is a measure of .17(ܡ|ܠ) ܧܶ

uncertainty of a random variable summing a weighed logarithm of the PDF31. Transfer entropy is calculated

from joint PDF of two variables and provides a measure for the dependencies between those variables. The

causality measure ,ܠ) ܧܶ is derived by comparing the influence of (ܡ x on y with the influence of y on x:

,ܠ) ܧܶ (ܡ  = (ܡ|ܠ) ܧܶ   − A large value of .(ܠ|ܡ) ܧܶ  ,ܠ) ܧܶ indicates therefore a strong causality from (ܡ

x to y.
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3. DETECTION AND REMOVAL OF TRANSIENT DISTURBANCES

This section describes the proposed approach to detect and remove transient disturbances from oscillatory

signals. Following the definition given by Cecílio et al., two types of transient disturbances are considered

in the present work20. Step changes are defined by a fast signal variation followed by a deviation to a value

significantly different from the original one and no return of the signal to its original value within a short

time interval. Spike changes are, on the other hand, defined by a fast signal variation followed by a deviation

to a value significantly different from the original one, and a return of the signal to its original value within

a short time interval. In industrial data, it is possible that spike and step follow each other and appear to

occur at the same time. Also, spikes can occur in quick succession. Generally, steps are considered more

significant as they are persistent and usually have a larger effect on process performance. The proposed

algorithm is able to deal with these occurrences by adjusting its parameters. The data used to develop

parameter guidelines in the following sections, however, does not include the simultaneous occurrence of

steps and spikes.

The proposed approach uses as prior information an estimated value of the signal oscillation frequency

obtained from a standard method for oscillation detection (ACF) with no pre-processing1. Note that

alternative oscillation detection methods can be used to get an estimate of the signal oscillation frequency.

3.1 Step and Spike Detection Algorithm

The detection algorithms are based on an increase in the rate of change. The detection algorithm of steps

and spikes are similar because a step is a large change in one direction while a spike is a large change in one

direction followed by a change in another direction. The key challenge is to identify large changes by setting

appropriate levels and parameters. The parameters here are scaled – where appropriate – to the oscillation

period Tp that was detected in a first analysis.

The time trends is defined as:

ݔ = ,ଵݔ]  ⋯ , [ேݔ (1)

with time index n and N the number of samples of the selected time period. In the first step, any linear time

trend for the selected time period is subtracted:

′ݔ = ݔ − ݔ (2)

where ݔ
 = ܾ + ܾଵ݊ is the linear regression of with linear regression coefficients computed form ݔ .ݔ

Similarly, parabolic time trend can be removed by using a quadratic polynomial regression model.
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To eliminate high frequency components a moving average filter is applied with window length 2M+1:

ݔ
ᇱᇱ = ଵ

ଶெାଵ
∑ ା′ାெݔ

ୀିெ (3)

where ܯ = ቒ ்

ఈ
ቓ


 with smoothing level ߙ . For both step and spike detection the rate of change is

important. To approximate differentiation, the difference vector is computed:

݀ = ݔ
ᇱᇱ − ିଵ for n = 2…N′′ݔ (4)

3.1.1 Rate of change detection

The mean ௗ and standard deviationߤ ௗߪ  of difference vector are computed over the selected time series N

to define the threshold for change detection. Change detection occurs for the points that exceed the threshold

݀: |݀ − |ௗߤ > ௗߪߚ (5)

with deviation threshold factor ߚ . To differentiate between fast and moderate changes, two different

threshold factors, which replace β are introduced, namely βfast and βmod. This results in ݀௦௧ and ݀ௗ.

Moderate changes may be required to be considered for spike detection because the spike can occur over a

number of samples, which are not necessarily consecutive.

Most steps and spikes do not occur over one or two samples but over several samples. Therefore fast or

moderately changing points need to be grouped into intervals. The start of an interval is defined as sample

݊
௦௧௧  and end point of interval as ݊

ௗ, the sample after the last detected change. The duration of the

interval is defined ݊
ௗ − ݊

௦௧௧ + 1. There will be K intervals indexed from 1…k for the sample period of

N samples.

3.1.2 Consolidation of step and spike intervals

The grouping of large changes into intervals needs to be done particularly carefully as it has a significant

effect on the detection and is different for steps and spikes.

In steps, only consecutive samples of fast changing samples are added into one interval.

For spikes, the shift from a sharp increase to decrease of variable x’’ can result in a short period of little

change. It is therefore useful to define a threshold below which the samples belong to the same interval. The

threshold is scaled to the oscillation period as Tp/δ where δ is the adjacency level factor.  The samples in

between two fast changing intervals that are close together are also added to the interval. After consolidating

the intervals in this way, moderately changing are added to the interval if they within the proximity defined

by Tp/δ of existing intervals. No new intervals are defined by moderately changing peaks.
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3.1.3 Definition of pre- and post-interval levels

To establish whether the increase in the rate of change is a step or a spike the amplitude levels before and

after the detected change have to be evaluated. These intervals are referred to as ‘pre’ and ‘post’ events and

are of length Tp/γ where γ is the adjacency factor and Tp the estimated oscillation period. If there is a

sufficiently large difference between pre- and post-levels then the interval is defined as a step. If the levels

are sufficiently similar then the interval is defined as a spike.

The K pre-intervals are defined as:

ݔ
 = ቂݔೖ,ೝ

ೞೌೝ ′′ ⋯ ೖ,ೝݔ
 ′′ቃ (6)

with mean ߤ
  and standard deviation ߪ

  of ݔ
  where ݊,

௦௧௧ = ݊
௦௧௧ − ்

ఊ
 and ݊,

ௗ = ݊
௦௧௧  and

adjacency level ,Conversely .ߛ

x୩
୮୭ୱ୲ = ቂx୬ౡ,౦౩౪

౩౪౨౪ ′′ ⋯ x୩ౡ,౦౩౪
ౚ ′′ቃ (7)

with corresponding mean ߤ
௦௧ and standard deviation ߪ

௦௧.

3.1.4 Threshold for significance

Arguably the most important step is to set thresholds what levels of change in amplitude account for both

step and spike. The threshold for each interval is defined by the standard deviation of the periods before and

after the change event, ‘pre’ and ‘post as follows:

Δ୩ = ϵ ∙ max {σ୩
୮୰ୣ,σ୩

୮୭ୱ୲} (8)

Where ߳ is the deviation level factor, which is different for steps ߳௦௧  and spikes ߳௦ , resulting in Δ
௦௧

and Δ
௦ .

A step is detected if the difference of the measurement at the beginning and end of the interval is larger than

the threshold:

ቚݔೖ
 − ೖݔ

ೞೌೝቚ > Δ
௦௧ (9)

A second condition is that the difference between the mean of the pre- and post transient level must be larger

than the same threshold:

หߤ
 − ߤ

௦௧ห > ߂
௦௧ (10)



8

A spike is detected if the difference of the measurement at the beginning and end of the interval is smaller

than the threshold:

ቚݔೖ
 − ೖݔ

ೞೌೝቚ < ߂
௦ (11)

A second condition for the spike is that the difference between the mean of the pre- and post-transient level

must be smaller than the same threshold:

หߤ
 − ߤ

௦௧ห < ߂
௦  . (12)

3.1.5 Graphical explanation

Figure 2 shows an exemplary data trend that includes a step and gives the key variables of the previous

section. The top panel shows the time trend with linear trend removed and after filtering. The step is detected

between samples 17 and 20 which are marked as ݊
௦௧௧  and ݊

ௗ respectively. The periods before and after

the interval are eight samples long, marked as grey dots and are labeled ‘pre’ and ‘post’. The mean value of

the pre and post periods ߤ
 and ߤ

௦௧ are used to differentiate between steps and spikes. The bottom panel

shows the difference vector dn for the selected time trend.



9

Figure 2. Graphical representation of an exemplary time trend, linear trend and mean removed and

filtered. Bottom panel shows the difference vector dn.

3.2 Step and Spike Removal Algorithm

As the aim of this work is to improve the use of oscillation detection using autocorrelation functions (ACF),

it is important to note that the method of ACF requires a level of stationarity as a preliminary. The step

removal algorithm aims to improve the stationarity by replacing spikes and steps.

The step removal method consists of three stages illustrated by Figure 3. First, the mean and linear trends

are removed from the signal as defined in the previous section detailing the detection. Thus, the algorithm

starts with vector From this signal, a baseline containing steps and slow drifts is computed using a median .′ݔ

filter with filter length ܶ:

ܾ = ିݔ)݊ܽ݅݀݁݉ ்/ଶ … ାݔ ்/ଶ)

The median is defined as the value in the middle if the data set is sorted in ascending or descending order.

This baseline is subtracted to remove steps and slow drifts from the signal.

ݕ = ′ݔ − ܾ

Note that median filters are traditionally used to remove outliers32. Applying a median filter with a window

length equal to the oscillation period ܶ to a zero mean periodic signal leads to an identically null filtered

signal. The reason is that a median value evaluated over a complete cycle of a periodic signal is equal to its

mean value. It follows that the periodic part of the signal is removed. Therefore, the baseline only contains

the steps and slow drifts of the original signal. Subtracting the baseline from the signal reveals oscillations

and other fine deviations other than steps or slow drifts.

Figure 3. Step removal method. Pre-transient and post-transient areas are marked in thick grey lines.

The spike removal algorithm follows the same procedure as the step removal, that is, mean and the linear

function are subtracted from the time trend and a median filter is applied. Then, time intervals where a spike

is detected are replaced by an averaged value of sample points taken over the pre- and post-intervals where
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no spike occurs. The start and end of the spike intervals were stored in ݊
௦௧௧  and ݊

ௗ . This method

requires the signal to be stationary, i.e. without steps or drifts, in order to ensure that transient free cycles of

the time series are similar and that their averaged values are a good estimate of the transient time intervals.

The spike removal method is illustrated in Figure 4.

Figure 4. Spike removal method. Two spikes are occurring where the second spike rises and falls quickly.

The first spike is less pronounced and somewhat masked by the oscillation.

4. PARAMETER SETTINGS

The objective of the spike and step removal is to improve other detection methods, such as oscillation

detection. These methods do not work well in the presence of spikes and steps. A measurement for the

correct identification of oscillations is therefore introduced to measure the success of the spike and step

removal. The parameters of the step and spike removal algorithms are optimised so that oscillations are

detected successfully.

This section analyses the sensitivity of the proposed methods to their respective tuning parameters. It also

provides suggestions for selecting default parameters. A set of experiments is performed on a dataset

collected from a real-world industrial process. The dataset consists of measurements generated by pressure,

flow and temperature sensors. Through visual inspection, 219 signals are found to be oscillatory, nine

signals include steps and 39 include spikes. The F1 score is used to evaluate the performance of the proposed

detection method33. The F1 score is a metric used to evaluate the performance of binary classification

methods and is defined as follows:

ଵܨ = 2 ×
ܲ × ܴ
ܲ + ܴ

with precision P defined as

ܲ = ܰ

ܰை
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where NC is the number of correctly detected oscillatory measurements and NO is the number of all

measurements detected as oscillatory. Recall R is defined as

ܴ = ܰ

ܰ

where NA is the number of actual measurements that show an oscillation.

Figure 5. F1 score evaluated for various values of the step detection parameters. Parameters are

dimensionless values.

Figure 6. F1 Score evaluated for various values of the spike detection parameters. Parameters are

dimensionless values.

Figure 5 and Figure 6 illustrate respectively the effect of the value of the parameters used in the step and in

the spike detection methods based on their influence on the F1 score value. During each test, a single

parameter is varied while the others are set to their recommended values. After running the step and the

spike detection method with all possible combinations of parameters, two sets of recommended default

parameter settings are provided in Table 1. The spike and step removal is considered successful when it

leads to the correct detection of oscillations. As there are 39 spikes and nine steps in the data sets, this means

that all of them have to be correctly identified. In addition, only those occurrences of steps and spikes must

be detected and no others. If this is the case, then the F1 score will be equal to one.

Table 1: Recommended parameter settings for step and spike detection methods.
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Parameter Description Recommended

value step

detection

Recommended

value spike

detection

ߙ Smoothing level of moving average filter,

factor influencing the window length of the

mean filter

10 15

௦௧ߚ , ௗߚ Deviation threshold factor to detect fast and

moderate changes (moderate changes for

spikes only)

3, n.a. 3, 2.5

ߛ Adjacency level factor to define length of pre-

and post-transients

1 1

ߜ Adjacency level factor to define acceptable

length between intervals, for spikes only

n.a. 2

߳௦௧ , ߳௦ Deviation level to define detection threshold 3 3

5. TEST EXPERIMENT ON SIMULATED DATASET

This section describes the results of the proposed transient detection and removal methods on simulated

data. Seven datasets are generated corresponding to different scenarios of transients and disturbances

(oscillatory signal/ oscillatory signal with white noise and/or with a baseline drift). In Figure 7, from left to

right, the columns depict the raw signal, the signal after step removal, the signal after step removal rescaled

for better visualization and the signal after spike removal. If step and spike are both present in a signal, a

step removal is performed first, then a spike removal follows. In Figure 7 dataset ‘Data1’ is a sinusoidal

signal with a step. After step removal and rescaling (row one, column three) a “residual” spike can be

observed. This “residual” spike is present because the step magnitude is significantly greater than the

oscillation magnitude. The step removal is then corrected by a spike removal (row one, column four).

Dataset ‘Data2’ is a sinusoidal signal with a step and white noise. From Figure 7 (row two, column three),

we can see the proposed transient detection and removal methods work well despite the presence of noise.

Dataset ‘Data3’ is a sinusoidal signal with two consecutive steps and white noise. The transient detection

and removal method are able to remove both steps (row three, column four). Dataset ‘Data4’ is a sinusoidal

signal with a baseline drift and a spike. As no step is present in the signal, the step detection and removal
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methods have no effect on the signal (row four, column three). The spike detection and removal methods

completely remove the spike (row four, column four) despite the presence of the drift. Dataset ‘Data5’ is a

sinusoidal signal with a drift, two consecutive spikes and white noise. Both spikes are removed by the

proposed transient detection and removal methods despite the presence of noise and baseline drift.

Figure 7. Proposed transient removal methods are applied to simulated oscillatory signals including steps

and spikes.

Dataset ‘Data6’ is a sinusoidal signal with a spike followed by a step. The step is first removed (row six,

column two). Then the spike is removed in (row six, column four). Dataset ‘Data7’ is a sinusoidal signal

with two steps and spikes for which all the transients are removed by the proposed method (row seven,

column four). Datasets ‘Data6’ and ‘Data7’ illustrate the ability of the proposed method to remove

combinations of transients affecting an oscillatory signal.

6. INDUSTRIAL CASE STUDY

The advantage of using the proposed transient detection and removal is evaluated in this section. The

increase in accuracy of both the Auto-Correlation Function (ACF) and the transfer entropy methods is

quantified. The analysis is conducted on a 1.3-Butadiene purification section of a chemical plant located in

Germany.
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Figure 8. Simplified process schematic of a 1.3-Butadiene process.

An overview of the simplified process schematic of the 1.3-Butadiene process is provided in Figure 8. The

process input consists of a flow of raw C4. Pure 1.3-Butadiene is obtained after separation of impurities,

e.g. C3 fraction, raffinate, and 1.2-butadiene via two conventional and two extractive distillation units34.

The process data is presented in an Excel file with a one-minute sampling time. Some examples of collected

process data are provided in Figure 9.

Figure 9. Examples of oscillatory process variables.



15

The analysed dataset contains 670 signals in total. Forty eight signals are discarded from the analysis due to

high compression rate. Through visual inspection, 219 process variables are considered as oscillatory and

403 as non-oscillatory through visual inspection. The 219 oscillatory signals consist of 115 flow

measurements, 43 level measurements, 11 pressure measurements, 43 temperature measurements and 7

quality measurements.  The 219 oscillatory signals exhibit a similar oscillation with a time period close to

60 minutes and originate from various plant units, suggesting that the oscillations might result from the

propagation of the same root cause.  Process units affected by the oscillatory plant-wide disturbance are

listed in Table 2.

Table 2. Process units affected by the plant wide oscillatory disturbance.

Unit index (refer to Fig. 8) 1 2 3 4 5 6 7 8 10 other units

Number of oscillatory signals 25 8 37 17 36 37 17 2 20 20

6.1 Improvement of oscillation detection with transient removal

Description of the experimental tests

The improvement gained when using the proposed transient removal methods is demonstrated by comparing

the performance of the ACF method1 in two conditions, with and without applying transient removal.

The ACF method is first applied with a broad band pass filter. Filter cut-off frequencies are set to values

significantly distant from the estimated value of the oscillation frequency 2π ܶ⁄  ensuring that no spurious

oscillations are generated by the filter7. The result (Table 3) indicates missed and misclassified oscillation

of signals with transients. Next, the ACF method is used with a narrow band-pass filter to show that transient

disturbances cannot be removed no matter how the filter is configured. Furthermore, the performance of

oscillation detection is degraded because spurious oscillations are generated due to the filter settings. Finally,

when transient removal is applied to the signals prior to using the ACF method, the result shows that all

oscillatory signals are properly detected and clustered.

More specifically, the cut-off frequencies of the broad band-pass filter are set to [17 120]  minutes

([1.39 9.80] × 10ିସHz) and the bandwidth (8.42 × 10ିସHz) satisfies the requirement of minimum band

width (2.24 × 10ିସHz) of the ACF method7: bandwidth > f୧୪୲ୣ୰ୡୣ୬୲୰ୣ/2.5. The cut-off frequencies of the

narrow band-pass filter are [35 67] minutes ([2.49 4.75] × 10ିସHz) and the bandwidth of the narrow filter

(2.27 × 10ିସHz) satisfies the requirement of minimum bandwidth (1.45 × 10ିସHz). The lower cut-off
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frequency (67 min, 2.49 × 10ିସHz) of the narrow band-pass filter is relatively close to the oscillation

frequency (60 min, 2.78 × 10ିସHz). This leads to generation of spurious oscillations that adds to the 60

min oscillation present in the signal7. Finally, the proposed approach to remove transient disturbances is

used prior to applying the ACF method with filter settings identical to the broad band-pass filter

([17 120]min, [1.39 9.80] × 10ିସHz).

6.2.2 Case study results

Figure 10. Power spectrum of the measurement used by the step detection and removal methods, before

transient removal (first three panels) and after transient removal (fourth panel).

In Table 3, the number of oscillatory measurements detected at the actual frequency of

60 min, 1.66 10ିସHz, the number of oscillatory measurements detected at an incorrect frequency, as well

as the undetected oscillations and the false positives (false alarms) based on a visual inspection of the dataset

are provided.

If transients are not removed before applying the ACF method, six signals are misclassified, i.e. their

oscillation time period is wrongly estimated and therefore they are grouped into a wrong oscillation cluster.

Performance improvements of the ACF method with transient removal compared to the ACF method

without transient removal (both with broad band-pass filter) in term of correctly detected oscillatory signals

is 7.4% (15 signals) and 24.4% (10 signals) in term of false alarms. Note that a misclassification also affects

the root cause analysis as root cause analysis is performed within each cluster and therefore the obtained

diagnostic can be misled. Visual inspection of the misclassified and missed oscillatory signals shows that

they exhibit transient changes. This means that transient changes can affect clustering. The reason why

transient changes can affect oscillation detection is revealed in Figure 10, which shows that some spectral

components of the transient being relatively close to the oscillation frequency cannot be removed by linear

filtering as illustrated by the narrow-filtered signal power spectrum (third panel). Alternatively, the power

spectrum of the signal after applying the proposed approach shows an effective removal of the spectral

components close to the oscillatory frequency (fourth panel).
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Table 3. Influence of transient removal on the performance of the ACF method.

Filter Correctly

detected

Misclassified Missed False

alarms

Without transient removal Broad 204 6 9 41

Without transient removal Narrow 209 10 0 159

With transient removal Broad 219 0 0 31

6.2 Improvement of root cause analysis with transient removal

Description of the experimental tests

The improvement gained by using the proposed transient removal methods is demonstrated by comparing

the outcome of a root cause analysis using the transfer entropy method on raw oscillatory signals and on

oscillatory signals with transient removal. The root cause analysis using the transfer entropy method is

applied to each unit of the 1.3-Butadiene process described in Section 6.1. For each unit, the oscillatory

signals detected using the ACF method as described in Section 4.2. Three root cause analysis are conducted

at the unit level. First on the vaporiser unit, then on the pre-degassing towers unit and finally on the steam

distribution unit.

Case study results

Root cause analysis on vaporiser unit. Oscillating process variables detected by the ACF method in Section

6.2 and belonging to the vaporiser unit are displayed on a simplified process schematic in Figure 11. The

oscillatory process variables are marked in dark circles while the non- oscillatory process variables are

marked in grey circles. Note that the oscillatory process variables are connected to each other through the

process flow.
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Figure 11. Simplified process schematic of the vaporiser unit indicating the location of detected

oscillatory measurements (dark circles), non-oscillatory measurements are marked in grey circles.

The time trends of the oscillatory signals belonging to the vaporiser unit are shown in Figure 12. Figure 14

shows the oscillatory signals after applying transient removal. Transfer entropy is computed pairwise

between a given oscillatory measurement and all the other oscillatory measurements belonging to the

vaporiser unit. Trends in Figure 12 and Figure 14 are sorted according to the value of the computed transfer

entropy. Finally, propagation paths are obtained in the form of causality maps. Causality maps are

constructed by connecting the measurements with directed lines if a significant causal relationship is

detected by the pairwise computed transfer entropy and if there exists a physical connection between this

pair of measurements. The causality map obtained on measurements without applying transient removal is

shown in Figure 13, while the causality map obtained on measurements on which transient removal is

applied is shown in Figure 15.
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Figure 12. Time trends of oscillatory measurements detected in the vaporiser unit without transient removal

and sorted according to the transfer entropy criteria.

Figure 13. Causality map of the oscillatory measurements detected in the vaporiser unit obtained without

transient removal.

From Figure 13 and Figure 15, the root cause analysis of the oscillatory disturbance affecting the vaporiser

unit when using raw time trends, i.e. without transient removal, points towards the temperature and the

pressure measured at the top of the vaporiser column as being the closest to the root cause of the oscillation.

The causality map in Figure 15 and the process schematic in Figure 11 suggest that the oscillatory
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disturbance originates from temperature T21 and pressure P21 since the measurements located upstream of

T21 and P21 i.e. LC21, FC24 and FC25 are not oscillatory. The oscillatory disturbance is transmitted first

to T22 and FC23 then to T23, T24 FC32 and FC22. The root cause analysis conducted on the raw time

trends suggests therefore that the oscillatory disturbance originates from within the vaporiser.

On the other hand, the root cause analysis of the oscillatory disturbance affecting the vaporiser unit when

using the proposed transient removal method, points towards two flow measurements both originating from

the steam supply unit FC21 and FC22.

Figure 14. Time trends of oscillatory measurements detected in the vaporiser unit after transient removal

and sorted according to the transfer entropy criteria.

The causality map of the reconstructed data and the process schematic suggests that the oscillation originate

from the steam supply FC21 and FC22, propagates to the central vaporiser column where it affects the top-

side column pressure P21 and temperature T21 and further to the flow FC23. Additionally, the oscillation

travels to the bottom-temperature T22 and further affects the solvent temperature T23. The root cause

analysis conducted on the pre-processed oscillatory signal using the proposed transient removal method

suggests therefore that the oscillatory disturbance originates from the steam supply unit i.e. not from the

process itself but rather from the auxiliary system.
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Figure 15. Causality map of the oscillatory measurements detected in the vaporiser unit obtained after

transient removal.

Root cause analysis on pre-degassing unit

Oscillating process variables detected by the ACF method in Section 6.2 and belonging to the pre-degassing

unit are displayed on a simplified process schematic in Figure 16. The oscillatory process variables are

marked in dark circles while the non- oscillatory process variables are marked in grey circles.
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Figure 16. Simplified process schematic of the pre-degassing unit indicating the location of detected

oscillatory measurements (dark circles), non-oscillatory measurements are marked in grey circles.

The time trends of the oscillatory signal belonging to the pre-degassing unit are shown in Figure 17. Figure

19 shows the same oscillatory signals after applying the proposed transient removal method. Trends are

again sorted according to the value of the computed transfer entropy. The causality map resulting from the

analysis of oscillatory measurements without transient removal is shown in Figure 18, the causality map

resulting from the analysis of oscillatory measurements on which transient removal is applied after transient

removal is shown in Figure 20.

From Figure 18 and Figure 20, the root cause analysis of the oscillatory disturbance affecting the pre-

degassing unit using oscillatory measurements without transient removal suggests that either the steam

supply FC51, the temperature T56 (together with the solvent temperature T57), or the C4 flow FC52

(together with temperature T58) could all potentially be the closest measurements to the root cause of the

oscillatory disturbance. This result is consistent with the analysis conducted on the vaporiser unit that
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pointed to the steam supply unit as a potential location of the root cause of the oscillatory disturbance. The

C4 flow FC52 originates from the heat exchanger unit (Unit4 in Figure 8). A closer look at the measurements

of the process variables related to the solvent reveals that the solvent source is not oscillatory, meaning that

it cannot be the root cause of the oscillatory disturbance under investigation.

Figure 17. Time trends of oscillatory measurements detected in the pre-degassing unit without transient

removal and sorted according to the transfer entropy criteria.

The root cause analysis of the oscillatory disturbance affecting the pre-degassing unit when using the

proposed transient removal method suggests conclusions similar to the root cause analysis conduction on

raw oscillatory signals with a slight difference that a significant causal relationship between the steam supply

FC51 and the temperature T56 is revealed.
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Figure 18. Causality map of the oscillatory measurements detected in the pre-degassing unit obtained

without transient removal.
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Figure 19. Time trends of oscillatory measurements belonging to the pre-degassing unit after transient

removal and sorted according to the transfer entropy criteria.
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Figure 20. Causality map of the oscillatory measurements detected the pre-degassing unit obtained after

transient removal.

In summary, both root cause analysis conducted on the pre-degassing oscillatory signals with and without

transient removal suggest that the oscillatory disturbance originates from the steam supply unit.

Root cause analysis on steam supply unit

The analysis conducted on two of the 1.3-Butadiene process units pointed to the steam supply unit as a

possible location for the root cause of the oscillatory disturbance affecting 219 process variables. It is

important to note that auxiliary systems, because of their plant wide connectivity, can propagate

disturbances across multiple units of a process. The oscillatory measurements collected from the steam

supply unit are displayed on a simplified process schematic in Figure 21. Again, the oscillatory

measurements are marked in dark circles, the non-oscillatory measurements are marked in grey circles.
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Figure 21. Simplified process schematic of steam unit indicating the location of detected oscillatory

measurements (dark circles), non-oscillatory measurements are marked in grey circles. “D” stands for

“Steam processing column”.

The time trends of the oscillatory signal belonging to the steam supply unit are shown in Figure 22. Figure

24 shows the oscillatory signal after applying the proposed transient removal method. The causality map

obtained on measurements without applying transient removal is shown in Figure 23, while the causality

map obtained on measurements on which transient removal is applied is shown in Figure 25.

From Figure 23 and Figure 25 the root cause analysis of the oscillatory disturbance affecting the steam

supply unit using oscillatory measurements without transient removal suggests that the steam pressures P01,

PC01 and PC02 are the closest to the root cause, pointing towards the middle pressure steam header.
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Figure 22. Time trends of oscillatory measurements detected in the steam unit without transient removal

and sorted according to the transfer entropy criteria.
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Figure 23. Causality map of the oscillatory measurements detected in the steam unit obtained without

transient removal.

The root cause analysis of the oscillatory disturbance affecting the steam supply unit when using the

proposed transient removal method suggests conclusions similar to the root cause analysis conduction on

raw oscillatory signals.
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Figure 24. Time trends of oscillatory measurements detected in the steam distribution unit after transient

removal and sorted according to the transfer entropy criteria.
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Figure 25. Causality map of the oscillatory measurements detected in the steam unit after transient removal.

In summary as for the case of the pre-degassing unit, root cause analysis conducted on the pre-degassing

oscillatory signals with and without transient removal suggest the same root cause: the middle pressure

steam header.

Conclusion on root cause analysis

The root cause analysis of the oscillation disturbance conducted on three units of the 1.3-Butadiene process

pointed towards the middle pressure steam header as the source from which originates a plant wide

disturbance affecting 219 of the 1.3-Butadiene process variables. For two of the unit level root cause analysis

(pre-degassing unit and steam supply unit), the proposed transient detection and removal method did not

modify the results obtained by the transfer entropy causal analysis. In one of the unit level root cause analysis

(vaporiser unit), the proposed transient detection and removal method modified the results obtained by the

transfer entropy causal analysis. It is important to emphasize that the result obtained after applying the

proposed transient detection and removal method, the transfer entropy causal analysis pointed to a root cause

and a propagation path that agree with the analysis conducted on the two other unit i.e. from middle pressure

steam header to unit steam supply to process units. The fault propagation paths after transient removal

revealed a more complete picture.

7. CONCLUSION
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In this paper we proposed simple heuristic methods to detect and remove transients from oscillatory time

series. Such methods are instrumental in improving the accuracy of oscillation detection and oscillation

causal analysis methods. Two types of transients are considered: steps and spikes. In the proposed step

detection method, the oscillatory signal is first de-trended and smoothed then, fast signal variations are

detected and the amount of deviation before and after the detected fast signal change is evaluated. In the

proposed spike detection method, after de-trending and smoothing, in order to capture different type of

spikes with fast/slow rising and falling edges, the signal first derivative is evaluated and compared to two

thresholds corresponding to a fast and a slow variation of the signal. Pairs of peaks of opposite signs that

are close enough in time are grouped to form a transient time interval and the amount of deviation before

and after the detected transient time interval is evaluated. In the step removal method, the mean and linear

trend are removed from the signal, a baseline containing steps and slow drifts is computed using a median

filter and subtracted from the signal. In the spike removal method, time intervals where a spike is detected

are replaced with an averaged value of sample points taken from the time intervals where no spike occurs.

The proposed heuristic methods to detect and remove transients were used to pre-process process

measurements prior to applying the auto-covariance function oscillation detection method and the transfer

entropy causality analysis method. Validation of the two methods on a dataset collected from a 1.3-

Butadiene process plant affected by a plant wide oscillatory disturbance demonstrated their ability to

significantly improve the performance of the ACF in term of missed and misclassified oscillations reduction

and of the root cause analysis using the transfer entropy method when transient changes are present in the

process data.

There are still limitations to this approach and the parameter guidelines are based on the assumption that

there is no simultaneous occurrence of spikes and steps, or spikes and steps lying in close proximity. In

addition, the use of a single estimated oscillation period to compute a baseline in the step and spike removal

algorithm (Section 3.2) limits the applicability of the proposed method to oscillations with single or multiple

integer frequencies. These cases should be investigated in future work. It also has to be noted that this way

of dealing with spikes and steps is recommended for detection methods that require stationarity. Removing

steps and spikes in this manner for system identification, for example, will be counter-productive.
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