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Abstract

The hippocampus is able to rapidly learn incoming information, even if that information is only observed
once. Further, this information can be replayed in a compressed format in either forward or reverse modes
during Sharp Wave Ripples (SPW-Rs). We leveraged state-of-the-art techniques in training recurrent spiking
networks to demonstrate how primarily interneuron networks can: 1) generate internal theta sequences to
bind externally elicited spikes in the presence of inhibition from Medial Septum, 2) compress learned spike
sequences in the form of a SPW-R when septal inhibition is removed, 3) generate and refine high-frequency
assemblies during SPW-R mediated compression, and 4) regulate the inter-ripple-interval timing between
SPW-Rs in ripple clusters. From the fast timescale of neurons to the slow timescale of behaviours, interneuron
networks serve as the scaffolding for one-shot learning by replaying, reversing, refining, and regulating spike
sequences.

1 Introduction

Shortly after watching a movie, we can recall many scenes in detail and remember long stretches of dialogue.
However, as time passes, our memories may only preserve some aspects of the plot and a few memorable lines.
This example illustrates how memories operate on separate timescales. On the short timescale, we remember
recent events clearly with only a single viewing, while we lose finer details on longer timescales.

This observation, among others, led to the two-stage model of memory formation [1, 2]. In the initial stage,
a labile form of the memory is imprinted onto the hippocampus. This initial acquisition is accompanied by
a theta oscillation in the hippocampal Local Field Potential (LFP). The second stage of memory formation
occurs during consummatory behaviours such as sleeping or eating. In this stage, strongly correlated activity
is initiated in the hippocampus as a Sharp-Wave-Ripple Complex (SPW-R). The spike sequence elicited by the
stimulus during waking is replayed in compressed time during SPW-Rs [3]. The SPW-R propagates out of the
hippocampus, presumably for long-term memory consolidation in cortex.

This two-stage model requires some mechanism for the initial memory formation. This initial mechanism
should handle the fact that we often only see a stimulus once [4]. Furthermore, this hypothesized fast-learning
mechanism should allow for compressible spiking, as observed in SPW-Rs. Finally, this mechanism should
allow for the reversal of spike sequences. Spike sequences can be compressed in reverse order, even for mice
navigating novel mazes in the initial lap [5].

What known hippocampal dynamics allows for learning subject to these constraints? Narrowing our focus
to episodic memory formation yields one possible candidate, the Internally Generated Theta Sequence (IGTS)
[6, 7]. First reported in CA1, these cells partition time during episodic memory tasks [6]. The IGTSs are
dependent on the Medial Septum (MS) and the hippocampal theta oscillation for normal functioning [7]. Here,
we explore the hypothesis that IGTSs may serve as a compressible backbone to bind information to during
single-trial-learning.

Leveraging recent advances in training spiking neural networks [8], we construct networks of phase precessing
IGTSs using a dual oscillator model [9, 10]. Unlike previous dual oscillator models, we consider a novel
implementation: one oscillator corresponds to inhibition from the medial septum, while another oscillator
corresponds to interneuron control of spike-times during SPW-Rs. In effect, the interference between these
oscillators serves to dilate spike sequences during SPW-Rs to create IGTSs. The IGTS binds new, stimulus-
evoked sequences in a single-trial to form memory engrams that can be compressed and reversed in time.
Our results support a single interneuron mechanism for gating, controlling, transforming and refining spike
sequences for rapid learning.
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2 Results

2.1 Internally Generated Theta Assemblies with Network-Based Dual Oscillators

The network model consists of three layers which we construct and analyze incrementally: the inputs, the
Septal-Hippocampal-Oscillatory-Theta or SHOT network, and the readout layer. The inputs serve as one of
the oscillators. The next layer, the SHOT network, is the critical nucleus of the circuit that creates IGTS and
SPW sequences. The SHOT network contains the second oscillator. The final layer is the readout layer where
sequences must be learned in a single-trial. These to-be-learned-sequences are elicited by an externally applied
supervisor.

Thus, given the architecture of this network model, we interpret these components to correspond to the
Medial Septum (INP-MS, input layer), hippocampal area CA3 (SHOT-CA3), and CA1 (RO-CA1). Finally,
we interpret the supervisor which elicits spiking in the RO-CA1 layer to be the entorhinal cortex (SUP-EC,
supervisor). The interference pattern or “beat” between the SHOT-CA3 network oscillator and the INP-MS
oscillator creates IGTSs, while removal of INP-MS creates compressed sequences (SPWs).

This is our interpretation of an inherently abstract model which we implement in a spiking network.
However, this implementation is not unique. For example, the sources of these oscillations could entirely be
intra-hippocampal (see [11, 12]). Additionally, given that only inhibitory connections are required for sequence
generation in the SHOT network, it may be contained in CA1.

To model the oscillatory and inhibitory nature of MS, the SHOT-CA3 interneurons (SHOT-CA3I) receive
the INP-MS signal:

IMS(t) = IGABA (κ+ cos(2πθMSt)) . (1)

The parameter θMS is the theta oscillation frequency of INP-MS, κ ≥ 1 controls the baseline inhibition levels,
and IGABA < 0 controls the amplitude of this oscillation.

Next, the IGTSs observed in [6] generate sequential firing-fields on a behavioural timescale, while neurons
oscillate at a theta frequency inside the field [6]. The spiking rate within a field is slightly faster than the
LFP theta frequency, an effect termed phase precession [6, 10]. Unlike previous works [11–13], we take the
perspective that firing-fields are created by septal-hippocampal interference of oscillators. This is motivated
by recent work that supports intra-hippocampal theta oscillations [14–16].

Thus, we hypothesized that INP-MS could interact with a recurrent interneuron network that oscillates
at a frequency of θINT (INT for Interneuron) to generate a robust interference pattern. To avoid exhaustive
parameter searches, we used supervised training methods ([8]) to couple the interneurons. We successfully
FORCE trained a population of spiking neurons to oscillate a frequency of θINT , while simultaneously receiving
INP-MS (Figure 1A, Supplementary Figure 1, Materials and Methods, 2000 excitatory and 2000 inhibitory
integrate-and-fire neurons, training only the inhibitory weights). The excitatory neurons (SHOT-CA3E) receive
inputs from the interneurons (SHOT-CA3I) but do not project excitatory connections at this stage. They are
driven to spike due to a constant super-threshold background current (in lieu of dentate gyrus inputs). However,
their spike times are gated by SHOT-CA3I.

Post-training, when INP-MS is present, the SHOT-CA3I fire sequential bursts every theta cycle (Figure
1B,D). The SHOT-CA3E, however, display isolated firing fields on a behavioural timescale (Figure 1B,D).
Population activities displayed minimal signs of the interference (Figure 1C) and are instead locked to the
INP-MS frequency, θMS . This phase locking of population activities to INP-MS is a consequence of the dual
oscillator model(Materials and Methods) and neurons having a uniform phase preference with regards to the
θINT oscillator (Supplementary Figure 2A,B). Removal of INP-MS results in a flat population activity (Figure
1B) with a small oscillatory component at a frequency of θINT which will decrease for larger networks.

Theta-Phase and SPW-R Compression in the SHOT-CA3 Network

When INP-MS is on, the SHOT-CA3E fire IGTSs while the SHOT-CA3I fire bursts (Figure 1D). When INP-
MS is off, the SHOT-CA3E also fire sequential bursts when provided with a sufficiently large (but constant)
background current (Figure 1E). The burst sequence was identical to the IGTS, but compressed in time. Thus,
we naturally interpret these two network states as the theta and SPW state, respectively.

Sequence compression is a consequence of the dual oscillator model. For example, when INP-MS is off, the
non-dimensionalized (Materials and Methods) current is

z(t) = cos(2πθINT t+ ψ) (2)
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where ψ denotes the phase preference of a neuron with respect to the θINT oscillator. The phase preference
dictates a neurons firing order in the compressed SPW sequence. When INP-MS is on, the current is

z(t) = cos(2πθMSt) + cos(2πθINT t+ ψ) (3)

= 2 cos

(
2πt

(
θINT + θMS

2

)
+
ψ

2

)
︸ ︷︷ ︸
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cos

(
2πt

(
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2

)
+
ψ

2

)
︸ ︷︷ ︸
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. (4)

The sum becomes a product of a carrier (C(t)) and envelope (E(t)) function. Note, again, that the currents are
dimensionless and lack amplitude terms (e.g. IGABA). The envelope oscillates on a long timescale ( θINT−θMS

2 )
and controls the IGTS firing-fields. The envelope inherits an identical order of firing from the θINT oscillator
through its phase, ψ

2 when θINT > θMS . This allows for SPW-R-like compression of the IGTS by removing
INP-MS (Supplementary Figure 2).

In order to determine how the SHOT-CA3I control spike sequences, we analyzed the currents that the
neurons receive (Figure 1F). The total current to the SHOT-CA3E displayed characteristics of an interference
pattern, as expected. However, the SHOT-CA3I did not. Their current was dominated by a single oscillation,
θINT . This was surprising as the SHOT-CA3I directly receive INP-MS and generate the θINT oscillation,
unlike the excitatory neurons.

We investigated this further by decomposing the total current into all sources: the background current, the
SHOT-CA3I-synaptic current, and INP-MS (Figure 1G). For both populations, the inhibitory synaptic currents
display an interference pattern. One oscillator is θINT . The second oscillator, however, does not correspond
to INP-MS directly, but instead to a π phase-shifted or vertically ”flipped” version of INP-MS. As the SHOT-
CA3I also receive INP-MS directly, INP-MS destructively interferes with its phase-shifted counterpart, allowing
SHOT-CA3I to oscillate at θINT .

Next, we investigated the structure of the FORCE trained weight matrices. At first, the weights appeared to
be random (Supplementary Figure 3A-B). However after sorting neurons according to their phase preferences in
θINT , a spatial structure emerged (Supplementary Figure 3A-B). We observed recurring light and dark bands in
the weight matrix, in addition to random, phase-independent inhibitory connections. The random connections
sample from the entire SHOT-CA3I. By receiving these connections, a neuron can detect the population level
oscillation in θMS for destructive interference (Materials and Methods). The banding structure, however,
implies interneurons preferentially inhibit interneurons that already fired in θINT , thus advancing the θINT
oscillation forward. This band reappeared in multiple trials of FORCE training (Supplementary Figure 3C-F).

Finally, by using either the INP-MS oscillation (not shown) or the population activity (Figure 1H,I) as
a reference theta oscillation, both excitatory neurons and interneurons precess in phase. This is a classical
result of dual oscillator models as the carrier, C(t), controls the spike timing in the IGTS [10]. As the carrier
oscillates faster than INP-MS ( θINT+θMS

2 > θMS), the neurons precess in phase relative to the population
activity (average rate precession ≈ −π

2 /s, SD of 0.09π/s n = 100, SHOT-CA3E, and ≈ −0.91π/s, SD of
0.4π/s, n = 100, SHOT-CA3I).

2.2 Firing Field Generation is Robust

For the IGTSs to serve as a compressible backbone for learning, the interference mechanism should be robust.
To that end, we retrained the network under different conditions such as with 1) smaller integration time
steps (Supplementary Figure 4), 2) parameter heterogeneity (Supplementary Figure 5) 3) larger networks
(Supplementary Figure 6C), and 4) different SHOT-CA3E/SHOT-CA3I ratios (Supplementary Figure 6A-
B,D-E) and 5) synaptic failure (Supplementary Figure 7). In all cases, the network generated ordered IGTSs
that compressed when INP-MS was removed and a weight matrix banding structure (Supplementary Figure
5,6).

Next, we considered how the trained network (in Figure 1) would extrapolate to varied θMS frequencies.
If SHOT-CA3 was operating as a linear oscillator, we should expect that the firing-field periodicity scales like
|θMS − θINT |−1 near θINT , while the population activity has a period of θ−1

MS . Furthermore, our model predicts
that IGTS order reverses when θMS > θINT (Materials and Methods). This regime should also induce phase
recession. Finally, we also predict firing fields to emerge near harmonics of θINT . To test this hypothesis,
we slowly swept θMS (2 Hz to 12 Hz, Supplementary Figure 8). We found that SHOT-CA3 behaves like a
linear oscillator for θMS tested. This surprising ability to extrapolate to new inputs is due to the SHOT-CA3I
ability to create destructive interference of any input to maintain the θINT oscillator. The firing fields also
reverse near the harmonics of θINT . Thus, θMS directly determines the frequency of the population activity,
as predicted from a dual oscillator model.
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Finally, ramping the background current to the interneurons has no effect on the frequency of the population
activity and a small yet statistically significant effect on the period of the interference pattern (Supplementary
Figure 9). However, a stronger reduction in the background current destroys θINT and causes SHOT-CA3I
to lock onto INP-MS (not shown). This mirrors recent results where optogenetic suppression of interneurons
reduces phase precession rates but increases intracellular theta amplitude [17]. Ramping the INP-MS oscillation
amplitude (IGABA) has a large and statistically significant effect on the periodicity of the IGTSs and a small
yet significant effect on the frequency of the population activity (Supplementary Figure 9). Thus, the network
is sensitive to large modulations of the INP-MS amplitude but robust to θMS variations.

2.3 Sharp Waves Can Be Initiated Stochastically

So far, the SPWs induced in our model (when INP-MS is deactivated) are periodic and must be activated
by an externally applied current as INP-MS dis-inhibits the SHOT-CA3E. We investigated if SPWs could be
initiated stochastically when INP-MS is off by adding recurrent excitation to the SHOT-CA3E. Once again, we
will do this incrementally to mechanistically understand how ordered SPWs are generated in the SHOT-CA3
network.

First, in lieu of constant background current, we injected SHOT-CA3I with white noise (Figure 2A-D). All
inhibitory connections are identical as before (as in Figure 1). A current pulse to SHOT-CA3I can transiently
activate the θINT oscillator. In the absence of this current, the θINT oscillator is destroyed by the noise as the
oscillator is no longer detected in FORCE oscillator components (Figure 2B), voltage traces (Figure 2C), and
voltage auto-correlations (Figure 2D). However, the spikes are still biased towards a particular order as noise
percolates through the inhibitory weight structure for both populations (Figure 2B).

Next, we investigated potential mechanisms that could initiate and terminate a SPW in lieu of externally
applied currents (in Figure 2B). To initiate a SPW, we densely coupled a subset of 50 SHOT-CA3E (the
initiators). The initiators projected to the rest of the excitatory population. To terminate SPWs, all excitatory
neurons had spike frequency adaptation currents. As noise induces spiking throughout the network, a random
subset of initiators are stimulated to spike (Figure 2E-G). This triggers a positive feedback loop through
recurrent excitation which causes a synchronized burst throughout SHOT-CA3E. However, this triggers the
accumulation of adaptation currents which terminate the burst. This induces a refractory period where SHOT-
CA3E cannot spike until the adaptation current has decayed. As the θINT oscillator has not been activated,
the spikes in the bursts have no sequential ordering and are pathologically synchronized.

Finally, we add SHOT-CA3E to SHOT-CA3I connections (Figure 2H). The SHOT-CA3E self-activate
through recurrent excitation and now also activate the θINT oscillator (Figure 2I-J). The θINT oscillator
protracts the recruitment SHOT-CA3E into the burst, thereby creating an ordered sequence during the SPW
rather than synchronized bursts. The adaptation variable then terminates the burst. The resulting inter-SPW-
interval distributions can be uni-modal with varying amounts of skew, or multi-modal (Supplementary Figure
10). Thus, SPWs can be activated stochastically with interneurons protracting the recruitment of excitatory
neurons into the ordered burst.

2.4 Reverse Compressed Replay

Given that the IGTS is compressible, we investigated if reverse compression was also possible, as in other
models [3, 18]. We discovered three potential mechanisms for reverse compression (Figure 3). The first two
mechanisms (harmonic reversion, and mirror reversion) are based on manipulations to the INP-MS frequency
to reverse the order during the IGTS. The third mechanism utilizes a secondary population of interneurons
(interneuron reversion) to reverse the order of spiking in SHOT-CA3E during the SPW.

In mirror reversion, the frequencies satisfy θMS > θINT which reverses IGTS order (Figure 3A-E) as E(t)
now inherits −ψ

2 from the θINT oscillation. Removing of INP-MS reverses burst order during compressed
replay (Figure 3C). However, this is not a plausible mechanism as this results in phase recession and reversed
theta sequences (Figure 3D), seldom observed experimentally[19, 20]. Harmonic reversion is possible when
θMS is near harmonics of θINT , where IGTS order also reverses. For harmonics smaller than θINT , this does
not induce phase recession. However, memories encoded onto the IGTS under mirror/harmonic Reversion
only display reverse replays as the SPW sequence order is fixed, while both forward and reverse sequences are
observed in SPWs [3, 5].

However, a more plausible mechanism for reverse compression utilizes another population of interneurons.
During SPWs, excitatory neurons receive the non-dimensionalized currents zFOR(t) from the θINT oscillator:

zFOR(t) = cos(2πθINT + ψ). (5)
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The phase preference, ψ, orders the neurons in a sequence. Thus, a reverse replay is equivalent to replacing ψ
with −ψ.

To perform this transform, we utilize another interneuron current (the Reversion Current) where the total
current during reverse replay is now:

zREV (t) = cos(2πθINT − ψ) = zFOR(t) + 2 sin(ψ) sin(2πθINT t)︸ ︷︷ ︸
Reversion Current

(6)

The reversion current we add to Equation (5) is a synchronized pulse of the θINT oscillator. However, each
neuron receives more or less of this pulse through the amplitude term 2 sin(ψ). Thus, we implement the
reversion current as another population of interneurons that receives SHOT-CA3I (Figure 3F-J). This reverses
the excitatory SHOT-CA3 sequences when INP-MS is removed (Figure 3H-I, see Materials and Methods). The
pulse amplitude 2 sin(ψ) need not be exact for (Supplementary Figure 11). The reversion interneurons may
also receive INP-MS to prevent their firing during theta states (see Supplementary Figure 11). Further, phase
recession is not observed in Interneuron Reversion (Figure 3J). Thus, interneurons with selective connectivity
can reverse the timing of spike-timing during SPWs in a plausible way.

2.5 Online and Immediate Learning Using a Theta Backbone

Compressible theta sequences are one component of fast learning in this model. The other component is a
mechanism to write new information onto these sequences. Reading out information falls to a layer of readout
(RO-CA1) neurons, which we interpret to be CA1 pyramidal neurons (Figure 4A).

We derived a local learning rule that allows us to store new sequences in RO-CA1 onto the IGTSs in
SHOT-CA3 with only one presentation of the to-be-learned RO-CA1 sequences. The learning rule governing
the excitatory weight (ωCA1E,CA3E

pre,post ) from a SHOT-CA3E to a RO-CA1 neuron is given by:

ω̇CA1E,CA3E
pre,post = λ · rCA3E

pre (t)rCA1E
post (t)− λ · rCA3E

pre (t)rCA1E
post (t− τ) (7)

This learning rule is Hebbian (λ ·rCA3E
pre (t)rCA1E

post (t)), with a forgetting term ( λ ·rCA3E
pre (t)rCA1E

post (t− τ)), where

λ dictates the learning rate and r
CA3E/CA1E
pre/post (t) are the synaptically filtered spikes. The learned weights are

interpreted to be Schaffer-Collateral connections. We call this the local Fourier rule based on its origins in
function approximation theory (see Supplementary Figure 12, Supplementary Section S1). Like other rules,
this rule is phenomenological [21, 22].

To test the local Fourier rule, we triggered to-be-learned sequences in RO-CA1 while simultaneously pre-
senting INP-MS (Figure 4B,C) to SHOT-CA3, (Equation (7)). We interpret the external activity which causes
the to-be-learned sequences to come from the Entorhinal Cortex (SUP-EC, SUP for supervisor). Critically,
the ωCA3E,CA3I

pre,post weights are too weak to trigger spikes in the presence of INP-MS and do not interfere with
SUP-EC triggered spikes. However, if INP-MS is removed, RO-CA1 sequences are replayed in compressed
sequential order after a single-trial of learning (Figure 4D).

Surprisingly, this compression does not capture all spikes in RO-CA1. In fact, the local Fourier rule
combined with IGTSs creates high-frequency assemblies in RO-CA1 during compressed replay (Figure 4D,F).
This is due to the Hebbian learning rule as only RO-CA1 neurons that fired in phase with SHOT-CA3E are

remembered. The frequency of assembly firing is Γ = θMS +
θ2
MS

θINT−θMS
(Materials and Methods). For the

parameters we have chosen, this yields Γ = 136 Hz. Lower frequency ranges, including within the gamma
range, are possible with smaller values of θMS for a fixed θINT .

Our result implies that theta oscillations and Hebbian plasticity can induce the formation of high-frequency
assemblies, which appear during SPWs. Unlike other mechanisms of high-frequency oscillations [23–25], the
assemblies here are learned through Hebbian plasticity operating on phase precessing IGTSs rather than
recurrence, or different populations serving as separate gamma and theta oscillators [26]. Stimulating the
reversion interneurons triggers a reverse replay of these assemblies (Figure 4E). More complicated spiking
patterns can also be learned (Figure 4G).

Finally, we show that the local Fourier rule is robust to synchronized supervisors (Supplementary Figure
13), non-uniform phase distributions in SHOT-CA3 (Supplementary Figure 5A-C), heterogeneity in SHOT-CA3
(Supplementary Figure 5D-F), different E/I balances in SHOT-CA3 (Supplementary Figure 6), and synaptic
failure in SHOT-CA3 (Supplementary Figure 7). Our model implies that MS inhibition in conjunction with
Hebbian plasticity can regulate spike timing on the short (gamma and higher), intermediate (theta), and long
(behavioural) timescales simultaneously.
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2.6 Triggering Sharp-Wave Ripples

With the network layers constructed and analyzed, we add the final component to the model: interneurons
in RO-CA1. The RO-CA1 excitatory neurons (RO-CA1E) excite RO-CA1 interneurons (RO-CA1I) while
RO-CA1I inhibits RO-CA1E (Figure 5A) [23, 24].

The RO-CA1E were (as in Figure 4) stimulated to spike in a to-be-learned sequence by SUP-EC (Figure
5C). The local Fourier rule constructed a memory engram in a single trial. The INP-MS was removed and
triggered a compressed replay of the now-learned sequence (Figure 5B-D). The population activity (Figure 5F)
in RO-CA1 displayed ripple-like high-frequency oscillations during compression. The activity in SHOT-CA3,
however, demonstrated a sharp increase when INP-MS was removed (Figure 5G). This is a combined effect
of removing INP-MS from SHOT-CA3I and applying a super-threshold current to SHOT-CA3E. Compression
resulted in high-frequency assembly formation in RO-CA1E (Figure 5C,D) while RO-CA1I fired high-frequency
synchronous volleys (Figure 5E). The number of RO-CA1E assemblies was less than the number of bursts
triggered in RO-CA1I (8 vs. 10).

The majority of the activity is due to RO-CA1I which are locked to the population activity ripples (Figure
5H). If we regard the population activity as a proxy (albeit a poor one) for the LFP, then our results mirror PV-
basket cells locking to LFP ripples [27, 28]. The RO-CA1E assemblies also display some locking to the ripples
(Figure 5H). However, the assemblies precede the ripple peaks as RO-CA1E synapses onto RO-CA1I trigger
the synchronized ripples. This is similar to the Pyramidal Interneuron Network Gamma (PING) mechanism
[23, 24].

As SHOT-CA3 and Reversion interneurons coordinated spike timing, we investigated if RO-CA1I performed
a similar function. To test this hypothesis, we disabled RO-CA1I post-learning while triggering a compressed
replay (Figure 5I) by removing INP-MS. The assemblies in RO-CA1E were no longer segregated to discrete
moments in time and overlapped extensively. In fact, the first assembly overlapped with the last assembly
during replay. This implies that RO-CA1I may be refining the duration of learned pyramidal assemblies and
segregating them to discrete intervals of time (Figure 5J) with strong, synchronized pulses of inhibition. Indeed,
in vivo, it appears that pulses of inhibition dominate during ripples in CA1 over excitation [29]. This may help
to transmit information reliably out of the hippocampus. It is possible to manually separate these assemblies,
for example (as in Figure 4D). However, adding interneurons in RO-CA1 in these cases will still refine assembly
segregation further (as in Figure 5D,I). As with SHOT-CA3 and Reversion interneurons, our results support
the idea that interneurons in CA1 also regulate spike-timing by refining the width of learned assemblies in CA1
via a PING-like mechanism [23, 24].

2.7 High-Frequency Assemblies Nested on a Theta Oscillation

Assembly discretization occurs during SPW-Rs in our model. However, gamma oscillations (of varying fre-
quency) are often nested with theta and implicated in memory tasks [30, 31]. These gamma oscillations are
also found during SPW-Rs [3, 32, 33]. Thus, we investigated if high-frequency assemblies would persist in theta
states (Supplementary Figure 14).

Providing a stronger background current to SHOT-CA3E results in RO-CA1E firing as phase precessing
assemblies nested on theta. This occurs after learning with the local Fourier rule (as in Figure 5). Thus,
theta phase segregation and Hebbian learning rules can generate theta-nested assemblies. This is similar to
the operations of a working memory buffer (suggested in [34]). Here, the number of assemblies/items in this
buffer is

Nitems ≤
θMS

θINT − θMS
. (8)

The period of the INP-MS oscillation (θMS)−1 acts as the buffer’s temporal resolution while the IGTS period
(θINT − θMS)−1 determines the capacity of the buffer (Materials and Methods). Our model parameters yield
a maximum of 16 items in the buffer.

2.8 Ripple-Clusters Minimize Fragmentation of Memories

Finally, we investigated how stochastic SPW-R initiation would alter replays [3, 35].
Here, we consider a more controlled and phenomenological model of stochastic SPW-R activation, rather

than recurrent excitation (considered in Figure 2). We disabled INP-MS post-learning and stochastically turned
on extra excitation to initiate SPW-Rs (Figure 5K). This phenomenological model of SPW-Rs initiation caused
random replays of the learned memory (seen in Figure 5K). We found that depending on when the SPW-R was
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initiated, replays could display an error we term phase distortion. In phase distortion, the replay is fragmented
into disordered pieces. Phase distortion occurs when SPW-Rs are initiated in the wrong phase of θINT (Figure
5K). To reduce phase distortions, SHOT-CA3I can bias the probability of SPW initiation to the correct phase
range of θINT . We considered the probability p(t) of initiating a SPW-R as

p(t) = p0 + pA cos(2πθINT t+ ψi) (9)

where ψi is the phase that minimizes phase distortion. The parameter p0 serves as the background SPW
activation rate and pA determines how strong the SPW generation probability oscillates. The oscillatory
component is decoded from SHOT-CA3I (see Materials and Methods). A relative refractory period was also
incorporated (see Materials and Methods). This strategy to minimize phase distortions has an observable effect
on inter-SPW-R-interval distributions. The inter-SPW-R-intervals now display a strong θINT modulation
(Figure 5L). This is qualitatively similar to distributions recently reported in [36] which are multi-modal
with peaks at 110 ms, 220 ms, 330 ms, and 440 ms. The inter-SPW-R-intervals from [36] may imply some
theta modulation in SPW-R initiation with a potential θINT ≈ 9.1 Hz. Thus, our results support the idea
that inhibition can also influence SPW-R initiation and inter-SPW-R-interval distributions to minimize replay
fragmentation.

3 Discussion

Our memory systems have to handle multiple simultaneous constraints to record, store, and catalog important
events. One constraint is that stimuli are often presented only once. Thus, we investigated whether single-
trial learning was possible utilizing background spiking activity as a backbone for learning. The background
spiking activity took the form of the Internally Generated Theta Sequence (IGTS) [6, 7], generated with a
dual oscillator model. We interpreted one oscillator as intra-hippocampal that controlled spike timing during
SPWs. The second oscillator was externally applied and interpreted as the Medial Septum (MS). We found
that this was sufficient to create stable firing-fields in pyramidal, but not interneurons. Removal of the INP-MS
oscillator can trigger compression of the firing-fields as ordered bursts. A dedicated population of interneurons
can also induce reverse replays.

We derived a local learning rule that could successfully bind to-be-learned sequences that were generated
by external inputs onto the IGTS. Forward or reverse replays could be induced by removing the INP-MS.
Surprisingly, through a combination of the local Fourier rule and theta oscillations during learning, high-
frequency assemblies emerged during replays. These assemblies also persisted in the presence of MS inhibition,
where they nested on the theta oscillation. These assemblies triggered ripple-like oscillations in RO-CA1. The
RO-CA1I were the dominant component of the population activity and displayed phase locking to the ripples
in the population activity. The ripples served to segregate learned assemblies and prevent assembly overlap.
Finally, we demonstrated that SHOT-CA3I can prevent memory fragmentation due to phase distortions during
replay by modulating the probability of SPW-R initiation. We predicted that this would have an observable
effect on inter-SPW-R interval distributions that has been observed experimentally [36]. Our results support
the role of interneurons in generating, compressing, reversing, and refining spike sequences for stable learning.

A Link Between Theta-Phase Compression and Sharp-Wave-Ripple Compression

Our results suggest that the mechanism for SPW-R compression and compression within a theta cycle may
be one and the same. The timing of spikes during both events can be coordinated by a single population of
interneurons, operating in two modes, which are delineated by the presence of MS inhibition. When INP-MS
was present, the sequence compression within a theta cycle is due to the SPW regulating current, θINT .

The hypothesis that these compression mechanisms are related is supported by two lines of experimental
evidence. First, the SPW-R compression ratio is only slightly larger (30%) than theta-phase compression
[3, 37]. Second, in extended replay, SPW-Rs often occur in clusters containing multiple SPW-Rs [36, 38].
The individual SPW-Rs within a cluster have a 100-150 ms gap, or a theta period, between them [3, 36, 38].
Strikingly, in [36], the authors find theta-harmonics in the inter-SPW-R-interval as peaks in the distribution
at 110, 220, 330, and 440 ms. It is important to note that SPW-R clusters also form due to phase locking in
7-10 Hz sleep-spindles [39]. However, SPW-R clusters are reliably evoked during quite awake, when an animal
is exploring longer mazes [36, 38].
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Experimental Predictions from Our Model

We suggest a novel experiment to assess whether dual oscillators support IGTSs. First, employing the left/right
alternation task as in [6] should yield stable firing-fields during wheel running [6, 7] (Figure 6A). We suggest
using a closed loop feedback system to [40–42] optogenetically drive the MS to oscillate at different frequencies
during wheel running (Figure 6A). For a sufficiently large driving frequency, θD > θINT , interference theory
predicts sequence reversal in the IGTS and phase recession (Figure 6A). For further model predictions, see
supplementary discussion (Supplementary Note S1) and Table 2.

Limitations of the Model

While our model displays many of the intrinsic rhythms and behaviours of the hippocampus, like all models,
it is a simplification. Here, we consider discrepancies between our model and experimental data. We list the
following four limitations: 1) interneurons display limited or no phase precession, 2) the presence of attractor
network dynamics in CA3, 3) the gamma/high-frequency oscillation that we predict due to CA3 is faster than
observed and 4) the aperiodicity of observed IGTSs. We discuss the limitations of our model more in the
supplementary discussion (Supplementary Note S1).

While pyramidal cells precess in phase under a variety of conditions [6, 10], interneuron phase precession is
less clear. Some interneurons in CA1 display phase precession due to strong, monosynaptic connectivity with
a phase precessing pyramidal neuron [43]. Other measurements of interneuron phase precession demonstrate
a greater variability in phase precession slopes [19], with some interneurons even displaying bouts of phase
recession (see Figure 3,4 in [19]). Interestingly, the authors ([19]) note that interneurons fire wider bursts
which might make phase precession more difficult to assess. However, as the leaky-integrate-and-fire model
has limitations in producing the rich dynamics of real neurons, interneuron phase precession in our network
model may be eliminated by considering other neuron models.

Our model uses no recurrent excitatory connectivity to create sequences. The recurrent activity is used
only to activate interneuron networks. Both phase precessing and SPW spike sequences are internally created
in our model by inhibitory weights. While interneuron spike sequences have been documented [44], both
experimental work [45] and theoretical modelling [11, 12, 46] have demonstrated that excitatory connectivity
is an important factor for sequence generation and compression. It would be interesting to combine our model
with attractor-like dynamics in the future.

Other Models of Replay and Theta Sequences

Dual oscillator models have been suggested as a mechanism for phase precession long before this study [10].
Other studies have considered somato-dendritic interference as a source of phase precession [47]. Recent studies
have demonstrated how multiple intra-hippocampal oscillators with uniform phase clustering at discrete values
could yield a slower oscillation in the global population activity [11, 12]. This mirrors our result with the
continuous uniform distribution endowing INP-MS control over population activities. Here, we consider the
novel hypothesis that phase precession arises from the need to dilate pre-existing SPW sequences for single-
trial-learning of new sequences.

Multiple-oscillator models were also considered as a mechanism of grid cell firing [9]. In these models, the
theta frequency is linked to animal velocity in velocity controlled oscillator’s (VCO’s). By using three VCO’s
with phase-shifts separated by 2π

3 , hexagonal grid patterns emerge in space. However, recent experiments
have cast doubt on this mechanism as grid cells still occur in bats without theta oscillations [48]. Further,
in vivo patch recordings demonstrate that an underlying ramp of depolarization encodes significantly more
spatial information than the theta oscillation envelope [49, 50]. Here, we considered a different hypothesis:
the interference arises between an oscillator controlling the spike-times during SPWs, and the medial septum.
This creates a compressible IGTS for single-trial learning.

Finally, other models have either linked theta sequences to SPW-Rs [46] or considered the problem of
fast-learning in the hippocampus. We summarize these in the supplementary discussion (Supplementary Note
S1).

Conclusion

A long-standing hypothesis is that interneurons control spike timing. Here, we demonstrate how populations
of interneurons can 1) generate theta oscillations in the hippocampus through recurrent and septal inhibition
2) create phase precessing theta sequences, 3) trigger compressed replay of these sequences in forward or

8



reversed modes 4) facilitate single-trial learning of spike trains as high-frequency-assemblies and 6) refine said
assemblies by minimizing their overlap in time, 7) nest these assemblies on a theta oscillation after learning
and finally 8) modulate the inter-SPW-R-intervals to prevent the replay fragmentation. This intricate control
over spiking in our model was facilitated with little more than a pair of oscillators, interneuron/pyramidal
reciprocal connectivity, and Hebbian plasticity.
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Figure 1: FORCE Training the SHOT-CA3 network

(A) Schematic of Septal-Hippocampal Oscillatory Theta, SHOT-CA3 network. (Left) When GABAergic inputs
(gold) from INP-MS are present, firing fields emerge in SHOT-CA3E (red) while SHOT-CA3I (blue) fire theta-
frequency bursts. (Right) When INP-MS is absent, all SHOT-CA3 neurons fire bursts. The SHOT-CA3I are
trained to oscillate at a θINT = 8.5 Hz frequency while receiving INP-MS oscillating at θMS = 8 Hz. (B)
The voltage traces for 3 excitatory neurons (red), 3 interneurons (blue). The overline denotes the presence
(gold, first 5 s) or absence (brown, last 500 ms) of INP-MS. The result is an interference pattern generated
due to these two oscillatory currents. (C) The population activities are computed as histograms by binning
spikes over 1 ms bins for the excitatory (blue), inhibitory (red) and total (grey) populations in addition to the
smoothed time averages (black, 20 ms box filter). The population activities oscillate at θMS in the presence
of INP-MS. (D) The SHOT-CA3E are sequentially active (red) and have long timescale firing fields, while
the SHOT-CA3I are sequentially active on the θINT timescale. The firing fields are plotted as synaptically
filtered spike trains r(t) (τR = 2 ms and τD = 20 ms). Removal of INP-MS (last 500 ms) results in burst
firing. (E) A zoomed-in segment consisting of 500 ms without INP-MS present. The order of compressed
bursts is identical to the order of firing fields. (F) Voltage traces and total current (black) to an excitatory
(red) and inhibitory (blue) SHOT-CA3 neuron. (G) Decomposition of the total current arriving to SHOT-
CA3 excitatory neuron (left) and SHOT-CA3 interneuron (right) into background (green), synaptic (purple)
and INP-MS (gold) sources. (H) Phase precessing spikes for an excitatory neuron (red points, spike times)
and an interneuron (blue points, spike times) in the network in reference to total population activity (using
N = NCA3E +NCA1I = 4000, grey) with INP-MS present. (I) The slope of phase precession for an excitatory
neuron (−0.51π/s, n = 22 firing-fields) and an interneuron (−0.97π/s, n = 22 firing-fields).
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Figure 2: Stochastically Initiating Sharp-Waves and Compressed Replay

(A) The SHOT-CA3E and SHOT-CA3I receive white noise to initiate spiking. A reduced background drive
to SHOT-CA3I destroys the θINT oscillation. A pulse of current to all neurons transiently activates the θINT
oscillator (FORCE component is shown in light blue). (B) The SHOT-CA3I (blue spike raster) and SHOT-
CA3E (red spike raster) are driven by a Gaussian pulse current. This transiently activates θINT (reflected
in FORCE component, light blue). (C) The voltage traces for SHOT-CA3I and SHOT-CA3E do not exhibit
signs of θINT . (D) The voltage auto-correlations for the SHOT-CA3 neurons (red), SHOT-CA3I (blue) and
the average of 20 neurons in each population for 1000 seconds of simulation with noise present. (E) The
excitatory population now contains recurrent excitation. (F) A small sub-population of 50 neurons have dense
recurrent coupling and projects to the rest of the population. This initiates stochastic synchronized bursting.
The θINT oscillator is not activated by the excitatory coupling (G) A zoom of a synchronized burst triggered
by recurrent excitation. (H) The recurrently coupled excitatory population now also projects to the inhibitory
population to recruit the θINT oscillator transiently. (I) Ordered transient bursts are now initiated by the
networks recurrence. (J) A zoom of the ordered burst generated by the recurrent excitation.
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Figure 3: Two Mechanisms of Reverse Compression

(A) (Top) A SHOT-CA3 network schematic of reverse compression when the INP-MS frequency is faster
than the recurrent oscillation (θMS > θINT ). (Bottom) Schematic of the mathematical mechanism for mirror
reversion. (B) The filtered spikes (r(t), τD = 20 ms, τR = 2 ms) fired by the SHOT-CA3E. The overline
denotes the presence (gold, first 10 seconds) or absence (brown, last 1 second) of INP-MS. (C) The zoomed
500 ms (highlighted in blue) segment in (B). The bursts occur in reverse order as in the firing fields from (B).
(D) A zoomed-in segment of activity from (B). (E) Both excitatory (red dots, spike times) and interneurons
(blue dots, spike times) recess in phase relative to the population activity (grey, average inhibitory recession
rate 0.72π/s, S.D. 0.37π/s, n = 100, average excitatory rate, 0.4π/s, S.D., 0.1π/s, n = 100). (F) (Top) A
network schematic of Interneuron Reversion, a reverse compression mechanism using a dedicated population
of interneurons to trigger reverse compression. (Bottom) The mathematical mechanism that allows for this
compression. The reversion interneurons first bursts of inhibition locked in time to θINT , with the burst rate
varying as a function of the phase preference for the excitatory SHOT-CA3 neuron. (G) The firing fields are
now in the same order as in Figure 1D. As in Figure 2(B), INP-MS is on for the first 10 seconds and deactivated
for the final 1 second. The reversion interneurons are brought online when INP-MS is off. The overline’s denote
periods when INP-MS is present (gold), absent (brown), and when the reversion interneurons are turned on
(orange). (H) A zoomed-in, 500 ms segment of reverse compression. The excitatory neurons fire bursts in
reverse order relative to the firing fields. (I) The population activity for interneurons in SHOT-CA3 (blue),
excitatory neurons in SHOT-CA3 (red) and the reversion interneurons (orange) for 500 ms before and 500 ms
after INP-MS is removed. (J) Both excitatory (red dots, spike times) and interneurons (blue dots, spike times)
precess in phase relative to the network theta-oscillation (grey) when the reversion interneurons are off. Phase
precession rates are identical to Figure 1 (population activity using N = NCA3E +NCA1I = 4000, in grey).
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Figure 4: Single-Trial Learning with a Septal-Hippocampal Oscillatory Theta Network

(A) Schematic of the network consisting of the SHOT-CA3 network (red for excitatory, blue for inhibitory),
the reversion interneurons (orange), the RO-CA1 network (black). Inputs from the SUP-EC (purple) trigger
the to-be-learned spike sequences in RO-CA1. (Left) In the learning phase, a set of feedforward weights are
learned from SHOT-CA3 to the 2000 neurons in RO-CA1 using the local Fourier rule (connections in green)
when INP-MS is on. The RO-CA1 neurons are activated in sequential order by external inputs (in purple).
(Middle) In the replay phase, compressed and sequentially ordered bursts are triggered by removing INP-MS.
(Right) Reverse compression can be elicited by activating the reversion interneurons simultaneously to removal
of INP-MS. (B) The spike-raster plot for the excitatory neurons in the SHOT-CA3 network (red dots). The
overlines denote the presence (gold) or absence (brown) of INP-MS, activation of the local Fourier rule (green),
and activation of the reversion interneurons (orange). The INP-MS is on for the first 4 seconds during learning
and is turned off twice (t ∈ [4.015, 4.11], t ∈ [4.54, 4.675]) with the reversion interneurons turned on for the
second interval. (C) Spike-raster plot for the excitatory neurons in RO-CA1 (black dots). The purple overline
denotes the presence of external inputs triggering sequential burst firing (inset in the left is a zoom). (D)
A zoomed-in segment of compressed replay of the RO-CA1 neurons. The compressed replay takes the form
of a sequence of high-frequency assemblies. (E) A zoomed-in segment of reverse compressed replay. (F)
A schematic for the emergence of high-frequency assemblies from a combination of theta-phase segregation
of spiking and the local Fourier rule. The activity in the SHOT-CA3E is segregated to specific phases in
the theta oscillation which implies that spikes in RO-CA1 must fire spikes coincident with these phases for
Hebbian learning. This creates assemblies during compression. (G) (Left) Similar as in (B), only with a
different downstream spike sequence (X shape) where neurons have multiple firing fields. The INP-MS are
turned off only once during t ∈ [3.95, 4.11] to trigger a compressed replay. (Right) A zoomed-in segment of the
compressed spike-replay when INP-MS is off. (B).
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Figure 5: Single-Trial Learning in Hippocampus

(A) Network schematic with SHOT-CA3 receiving INP-MS and a downstream RO-CA1 network. Inputs from
SUP-EC (purple) trigger the to-be-learned spike sequences in RO-CA1. (Left) In the learning phase, SUP-EC
inputs trigger sequential firing in RO-CA1E (black). The local Fourier rule binds the RO-CA1 spiking activity
to the firing fields in the SHOT-CA3E (red). (Right) Compressed replay can be triggered after learning by
turning off INP-MS. (B) The spike raster plot of SHOT-CA3E (red dots). The overlines denote the presence
(gold) or absence (brown) of INP-MS, and the activation of the local Fourier rule (green). (C) The spike raster
plot of RO-CA1E (black dots). The purple overline denotes the presence of inputs from SUP-EC. RO-CA1E
are stimulated to fire bursts (see inset) by SUP-EC inputs during t ∈ [1, 2]. The INP-MS are turned off during
[4.03, 4.13] to trigger a compressed replay. (D) Zoom of compressed assembly replay triggered when INP-MS
is off. (E) The spike raster plot for the RO-CA1Is (teal dots, time aligned with (D)). (F) The total population
activity for the RO-CA1 (grey, time aligned with (B) and (C)). The band-pass (150-250 Hz) filtered population
activity. (G) The total population activity in the SHOT-CA3 (grey). (H) A zoomed segment of the total
RO-CA1 population activity (grey), the RO-CA1I population activity (teal), the RO-CA1E population activity
(black), and the filtered ripple band (burgundy). Note that population activities have been normalized to have
maximum activity set to unity, and are not to scale. High-frequency oscillations are triggered by the excitatory
population. RO-CA1E high-frequency assemblies trigger the interneuron network to fire at a high frequency.
(I) Compressed replay triggered by removing INP-MS while disabling the RO-CA1I. This causes the learned
assemblies to overlap. (J) Schematic for sharp-wave-ripple formation and high-frequency-assembly refinement.
The SHOT-CA3E trigger ordered but overlapping assembly spiking in RO-CA1 through their Excitatory Post
Synaptic Potentials (EPSPs). When interneurons are included, the excitatory assemblies trigger the RO-CA1I
to fire. The SHOT-CA3 EPSPs are refined in width by RO-CA1 IPSPs. (K) The INP-MS are kept off
and sharp-wave-ripples are initiated by stochastically turning on an extra current (in orange) with a constant
probability per unit time (see Materials and Methods). The learned connections from SHOT-CA3 to RO-CA1E
are identical as in (B). Some replays are correct (green), while other replays are fragmented (red). One of the
FORCE decoded θINT oscillators (light blue) demonstrates that correct replays are locked to the ascending
component of the θINT oscillation while fragmented replays are locked to the descending phase of the θINT
oscillation. We term this type of error phase distortion. (L) Phase distortion may be minimized by locking the
probability of ripple initiation to the underlying θINT oscillation in the SHOT-CA3E. The inter-ripple-interval
distribution (estimated after 3000 seconds of simulation) is a good qualitative match for the multi-modal
distribution from [36] (top inset) which has peaks at the harmonics of a theta oscillation period of 110 ms
although there are some quantitative errors as we use a slower θINT , θ−1

INT = 150 ms.

22



Figure 6

23



Figure 6: Experimental Predictions in Rodents

(A) Suggestion of a novel experiment to test our model of firing field formation. (Left) During the normal
two choice alternating reaction task, ordered firing fields emerge during wheel running [6]. (Right) We suggest
running the same task, only optogenetically stimulating interneurons in the medial septum with an oscillatory
input of driving frequency of θD. The driving frequency θD is varied from wheel running trial to trial. When
θD > θINT , the firing field orientation should reverse. Further, we predict that the resulting firing fields will
display similar transitions as in our sweep protocol in Supplementary Figure 8.
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4 Methods

Data Availability Statement

The data that support the findings in this study are available from the corresponding author upon request.

Code Availability Statement

The relevant code to generate the results of this paper can be found on modelDB [51], under accession number
243447.

4.1 Leaky Integrate and Fire Network

The Septal Hippocampal Oscillatory Theta (SHOT-CA3) network consists of coupled leaky integrate-and-fire
neurons:

τmv̇
CA3I
i = −vCA3I

i +RICA3I +R

NCA3I∑
j=1

ωCA3I,CA3I
ij rCA3I

j (t)

+ RIGABA(κ+ cos(2πθMSt)), i = 1, 2, . . . NCA3E (10)

τmv̇
CA3E
i = −vCA3E

i +RICA3E +R

NCA3I∑
j=1

ωCA3E,CA3I
ij rCA3I

j (t) +RICA3E,REV
syn,i (t), i = 1, 2, . . . NCA3I(11)

τmv̇
REV
i = −vREVi +RIREV +R

NCA3I∑
j=1

ωREV,CA3I
ij rCA3I

j (t), i = 1, 2, . . . NREV (12)

where CA3E,CA3I denote the excitatory and inhibitory populations of SHOT-CA3, respectively while REV
denotes the reversion interneurons (see Materials and Methods Section 4.9). The neurons receive a constant
background current Iα for α = CA3E,CA3I,REV current set at or above the threshold (see Table 1 for
parameters). The parameter R = 1 · 109 Ω serves as the resistance. When the voltage variables reach a
threshold value, vthreshold, they are immediately reset to vreset followed by an absolute refractory period,
τref during which the neuronal dynamics are quenched at the reset value. The membrane time constant,
τm determines the degree to which the synaptic currents are filtered by the voltage dynamics. The spikes
themselves are filtered by the double exponential synapse:

ṙαj = −
rαj
τd

+ hαj (13)

ḣαj = −
hαj
τr

+
1 · pA ·ms2

τrτd

∑
tjk<t

δ(t− tjk) (14)

where τr is the synaptic rise time, and τd is the decay time tjk is the kth spike fired by the jth neuron. The
SHOT-CA3I all receive INP-MS where θMS is the input frequency, and κ > 1 determines the tonic level of
inhibitory drive. The INP-MS has amplitude IGABA = −10 pA for i = 1, 2, . . . NI . The excitatory neurons
do not receive INP-MS. The reversion interneurons do not receive INP-MS (Figure 3-4) but our results still
hold when the reversion interneurons receive INP-MS (Supplementary Figure 11). The network consists of
NCA3E = NCA3I = NREV = 2000 spiking neurons. However, the hippocampus is a circuit consisting of O(105)
neurons (in rat), and our network model of CA3 is not-to-scale. Thus, our results may not reflect the full
behaviour of the much larger circuit.

The weight matrices ωCA3I,CA3I , ωCA3E,CA3I are described in further detail in the section FORCE Training
Internal Sequences. All weight matrices that we consider are unitless with the units of current (pA) carried
by the synaptically filtered spike trains r(t) (see Equation (14)). The SHOT-CA3E also receive a current from
the reversion interneuron population (in Figures 2 and 4), ICA3E,REV

syn (t), which is described in greater detail in
the section Reversion Interneuron Population. In all cases, when we refer to the filtered spike train, we mean
rα(t) as given by Equation (13). However, the filtering time constants differ for different figures and different
populations of neurons (see Table of Parameters). Note that the only connections in Equations (10)-(12) are
from the SHOT-CA3I (rCA3I(t)) or the reversion interneurons (rREV (t)).
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For Figure 4, the RO-CA1 layer was included in the simulation:

τmv̇
CA1E
i = −vCA1E

i +RICA1E +R

NE∑
j=1

ωCA1E,CA3E
ij rCA3E

j (t) +RICA1,EC
syn,i (t) (15)

where the weights ωCA1E,CA3E
ij were trained using the local Fourier Rule. A series of external input currents

ICA1,EC
syn (t) were transiently applied to elicit bursting. Further details are described in the supplementary notes.

Finally, we added another population of interneurons to RO-CA1 in Figure 5:

τmv̇
CA1I
i = −vCA1I

i +RICA1I +R

NCA1E∑
j=1

ωCA1I,CA1E
ij rCA1E

j (t) +Rζi(t), i = 1, 2, . . . NCA1I

τmv̇
CA1E
i = −vCA1E

i +RICA1E +R

NCA1I∑
j=1

ωCA1E,CA1I
ij rCA1I

j (t)

+ R

NCA3E∑
j=1

ωCA1E,CA3E
ij rCA3E

j (t) +RICA1E,EC
syn,i (t), i = 1, 2, . . . NCA1E

where ζi(t) is an independent white noise term with mean 0 and standard deviation σ = 0.2 pA. This noise
term was added to the interneurons to prevent pathological synchrony in the RO-CA1Is. The weight matrices
ωCA1E,CA1I , ωCA1E,CA1I are untrained and discussed further in the section Further Methods for Figure 5. The
inputs from the entorhinal cortex to the RO-CA1Es, ICA1E,EC

i (t) are also described in the section Further
Methods for Figure 5. Finally, the weight matrix ωCA1E,CA3E is trained by the local Fourier rule, which is
discussed further in the Supplementary Materials Section S1. Finally, we note that the synaptic currents from
SHOT-CA3I, ICA3E,CA3I

syn (t), ICA3I,CA3I
syn (t), display characteristics of an interference pattern between θINT and

θMS oscillations. These currents can be non-dimensionalized as follows:

ICA3E,CA3I
i,syn (t) = b1i zi(t) + b0i (16)

zi(t) ≈ cos(2πθMSt) + cos(2πθINT t+ ψi) (17)

where b1i carries the amplitude (and dimensions) of the current, b0i carries the baseline amount, and zi(t)
is the fluctuating component that displays the interference between oscillations. We consider all analytical
derivations on the dimensionless current, zi(t). The parameters b1i and b0i are auxiliary-parameters in the
subsequent derivations and need not be explicitly computed.

4.2 FORCE Training Inhibitory Connections in a Balanced E/I Network

The weight matrices ωαβ = Sαβ +Lαβ, α, β = CA3E,CA3I are decomposed into static terms (Sαβ) that are
chosen to form an initial balanced spiking network, and learned terms (Lαβ) that are FORCE trained [8]. The
static term is given by:

Sαβij =


γ·g√
pNβ

ιαβij β = CA3E

− g√
pNβ

ιαβij β = CA3I
(18)

With NCA3E excitatory neurons and NCA3I interneurons, each neuron receives precisely CCA3E = pNCA3E

excitatory connections and CCA3I = pNCA3I inhibitory connections from the rest of the network where p is
the degree of sparsity in the network. The variable ιαβij = 1 if a connection is present between neuron j in
population β (presynaptic) and neuron i in population α (postsynaptic), and 0 otherwise. The variable g
controls the coupling strength while γ =

√
CCA3I/CCA3E is used to balance the weight matrix in cases where

CCA3I 6= CCA3E . Here however, we do not train a balanced E/I network, but rather a balanced I network (see
Materials and Methods: FORCE Training a Balanced I Network) [54]. We include this section for completion.

In normal FORCE training, the learned term is given by the following:

Lαβij = q
(
ηαi · φ

β
j

)
(19)

where q determines the amount of learned recurrence the network receives and ηαi and φβj are referred to as
the neural encoders and decoders, respectively [8]. The encoders help determine the tuning preferences of the
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neurons. The decoders are trained using Recursive Least Squares (RLS), an online L2 minimization scheme
described in further detail in the section Recursive Least Squares. The network approximant of the intended
dynamics is given by the following

x̂(t) = φT
(
rCA3E(t)
rCA3I(t)

)
(20)

Here we want to pre-specify which neuron is excitatory and which is inhibitory (although that would not
be necessary for hippocampus [3]). To that end, it is sufficient (but not necessary) to constrain the learned
component of the weight matrix:

Lαβij =


q|ηαi · φ

β
j |, β = CA3E, ηαi · φ

β
j > 0

−q|ηαi · φ
β
j |, β = CA3I, ηαi · φ

β
j < 0

0 otherwise

(21)

While implementing the boundary condition (Equation (21)) on Lαβij is sufficient, it is time consuming during

learning as it requires O(N2) computations to bound every weight in the weight matrix. We opt to impose a
condition on the encoders and decoders separately. Consider the following operations:

(s)+ =

{
s, s ≥ 0

0 s < 0
, (s)− =

{
s, s ≤ 0

0 s > 0
(22)

where the operation (s)± sets s to 0 if its negative (positive) and retains its value otherwise.
First, we decompose the decoders and encoders as follows:

ηαi · φ
β
j =

(
(ηαi )+ + (ηαi )−

)
·
((
φβj

)
+

+
(
φβj

)
−

)
= (ηαi )+ ·

(
φβj

)
+

+ (ηαi )+ ·
(
φβj

)
−

+ (ηαi )− ·
(
φβj

)
+

+ (ηαi )− ·
(
φβj

)
−

= (ηαi )+ ·
(
φβj

)
+

+ (ηαi )− ·
(
φβj

)
−

(23)

+ (ηαi )+ ·
(
φβj

)
−

+ (ηαi )− ·
(
φβj

)
+

(24)

Note that the terms on line (23) are positive while the terms on line (24) are negative. Thus, we can consider
the following weights

Lαβij =

(ηαi )+ ·
(
φβj

)
+

+ (ηαi )− ·
(
φβj

)
−

β = CA3E

(ηαi )+ ·
(
φβj

)
−

+ (ηαi )− ·
(
φβj

)
+

β = CA3I
(25)

which implements an alternate boundary condition to (21). Furthermore, implementing (25) only requires
O(N) computations as only encoders and decoders are bounded by their signs. This derivation, among other
results, is originally owed to [52].

4.3 Recursive Least Squares

The decoders are determined dynamically to minimize the squared error between the approximant and intended
dynamics, e(t) = x̂(t)−x(t). The Recursive Least Squares (RLS) technique updates the decoders accordingly:

φ(t) = φ(t−∆t)− e(t)P (t−∆t)r(t)

1 + r(t)TP (t−∆t)r(t)
(26)

P (t) = P (t−∆t)− P (t−∆t)r(t)r(t)TP (t−∆t)

1 + r(t)TP (t−∆t)r(t)
(27)

and r(t) = (rCA3E(t), rCA3I(t))T . RLS and FORCE training is described in greater detail in [8, 53]. The
network is initialized with φ(0) = 0, P (0) = INµ

−1, where IN is an N -dimensional identity matrix, and µ
controls the learning rate of RLS.
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4.4 FORCE Training a Balanced I Network

In addition to the procedure described above, a balanced network can be generated with recurrent inhibition
alone [54]. In particular, we can consider the same network equations as before with the constraints:

SCA3E,CA3E
ij = 0, SCA3I,CA3E

ij = 0,

ICA3I = Ithreshold +O(
√
pNCA3I)

ICA3E = Ithreshold +O(
√
pNCA3I)

where the interneuron network receives a super-threshold ICA3I > Ithreshold = −40 pA background current that
is being balanced by the recurrent inhibition. The excitatory neurons in the population also receive inhibitory
connections and thus have a super-threshold background current after FORCE training is concluded. However,
during FORCE training, the current ICA3E is clamped to below the threshold (ICA3E < Ithreshold) to prevent
firing in the excitatory neurons thereby eliminating both EE and IE weights. This occurs through the
dependence of Equation (26) on rCA3E(t), and φ(0) = 0.

4.5 Internally Generated Theta Sequence

To construct a SHOT-CA3 network with a recurrently generated theta sequence of firing, we FORCE train
the network to learn the following supervisor:

xi(t) = cos(2πθINT t+ χi), i = 1, 2, . . . ,m (28)

Here, θINT is the frequency of the oscillation that is embedded in the recurrent weights of the network and χi
is a phase shift for the m components of the supervisor. The m components of the supervisor yield an N ×m
dimensional matrix of encoders and decoders with m = 100 components. For each neuron, exactly one encoder
element is non-zero and is set to 1. The phase shift is randomly selected and uniformly distributed over [0, 2π].
When trained in this fashion, the inhibitory currents and INP-MS combine to generate an interference pattern
in the excitatory neurons (see Supplementary Figure 1-2):

zi(t) ≈ cos(2πθMSt) + cos(2πθINT t+ ψi), i = 1, 2, . . . NCA3E (29)

We interpret zi(t) to be the fluctuating, dimensionless, component of the current an excitatory SHOT-CA3
neuron receives. Note that we have written ψi as opposed to χi as the phases of the excitatory neurons are
only indirectly related to the phases in the supervisor (Equation (28)). This is due to the operations applied
in Equation (25).

4.6 Interference Based Control of the Population Activity by INP-MS

With the currents arriving at each neuron given by Equation (29), we consider the conditions under which
INP-MS influences the population activity of SHOT-CA3. In particular, we will set out to provide sufficient
conditions under which the population activity ρ(t) is a periodic function in time with period θ−1

MS . Proceeding
generally, we assume that a network transforms its currents via some unspecified differentiable non-linearity
F (z) where F (z) ≥ 0 into spike rates. This implies that the population activity is given by the following:

ρ(t) =

∫ 2π

0
ρψ(ψ)F [cos(2πθINT t+ ψ) + cos(2πθMSt)] dψ (30)

The function ρ(t) is the population activity for a network of neurons with identical tuning curves F (z) receiving
heterogeneous currents, zi(t). The heterogeneity is in the phases of the currents, zi(t) through the variable ψ̃i.
We assume that this parameter comes from a static distribution with density function ρψ(ψ). Now, consider
ρ(t+ θ−1

MS):

ρ(t+ θ−1
MS) =

∫ 2π

0
ρψ(ψ)F

[
cos(2πθINT

(
t+ θ−1

MS

)
+ ψ) + cos(2πθMS(t+ θ−1

MS))
]
dψ (31)

=

∫ 2π

0
ρψ(ψ)F

[
cos(2πθINT t+ ψ + 2πθINT θ

−1
MS) + cos(2πθMSt)

]
dψ (32)

=

∫ 2π+2πθINT θ
−1
MS

2πθINT θ
−1
MS

ρψ(ω − 2πθINT θ
−1
MS)F [cos(2πθINT t+ ω) + cos(2πθMSt)] dω (33)
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If the phase distribution is uniform (ρψ(ψ) = 1
2π ), then:

ρ(t+ θ−1
MS) =

∫ 2π+2πθINT θ
−1
MS

2πθINT θ
−1
MS

1

2π
F [cos(2πθINT t+ ω) + cos(2πθMSt)] dω (34)

=

∫ 2π

0

1

2π
F [cos(2πθINT t+ ω) + cos(2πθMSt)] dω (35)

= ρ(t) (36)

where line (35) is justified by the fact that G(ω, t) = F [cos(2πθINT t+ ω) + cos(2πθMSt)] is periodic in ω
with period 2π and phase shifts (2πθINT θ

−1
MS in line (34)) do not alter integrals of periodic functions. This

implies that a uniform distribution is a sufficient condition for θMS control of population activities. Finally,
we consider ρ(t) when INP-MS is removed:

ρ(t) =

∫ 2π

0
ρψ(ψ)F [cos(2πθINT t+ ψ)] dψ

ρ̇(t) = −2πθINT

∫ 2π

0
ρψ(ψ)Fz [cos(2πθINT t+ ψ)] sin(2πθINT + ψi) dψ

where Fz denotes the derivative of the function F (z), F ′(z). If we again assume that ψ is uniformly distributed,
then we arrive at the following:

ρ̇(t) = −θINT
∫ 2π

0
Fz [cos(2πθINT t+ ψ)] sin(2πθINT t+ ψ) dψ

=
1

2π
F [cos(2πθINT t+ ψ)]

∣∣∣∣2π
0

= 0

and thus ρ(t) is a constant and given by ρ(t) = ρ(0) = 1
2π

∫ 2π
0 F (cos(ψ))dψ. Thus for uniformly distributed

phase preferences, the population activity is constant in the absence of INP-MS despite the fact that all the
neurons are oscillating.

4.7 Interference Based SPW-R and Theta Phase Compression of Spike Sequences

Multiple-oscillator models are well studied in the literature [9, 10, 55, 56]. However, here we demonstrate
that reversible sharp-wave ripple compression is also well explained by interference theory, and that the phase
precession based compression and sharp-wave based compression share the same mechanism in interference
theory. Considering the current arriving at the SHOT-CA3E, zi(t), again,

zi(t) = cos(2πθMSt) + cos(2πθINT t+ ψi) (37)

= 2 cos

(
2πt

(
θMS + θINT

2

)
+
ψi
2

)
︸ ︷︷ ︸

C(t),Carrier

cos

(
2πt

(
θMS − θINT

2

)
− ψi

2

)
︸ ︷︷ ︸

E(t),Envelope

(38)

Equation (38) implies that the firing field order is controlled by the envelope cos
(

2πt
(
θMS−θINT

2

)
− ψi

2

)
and

in particular the phases ψi
2 . If the phase distribution of ψi is uniform, then the firing-fields are uniformly

distributed in time. If θMS < θINT then the envelopes have phases ψi/2, while if θMS > θINT the phases
become reversed with −ψi/2. The end effect of this transformation is to either preserve or reverse the order of
the firing fields (the envelope).

4.8 Reverse Compressed Replay with Dual Oscillator Based Mechanisms

If INP-MS is removed, the interference pattern collapses and the neurons receive the input

zFORi (t) = cos(2πθINT t+ ψi) (39)

where FOR is short for forward compression. Removal of INP-MS triggers a compression provided that the
neurons also receive an additional super-threshold constant current. Thus, the default compression mode is a
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forward compression, where bursts occur in the same order as the firing-fields when INP-MS is present. This
compression can be reversed in two ways: 1) reverse the order of the firing fields zi(t) and maintain zFORi (t)
or 2) reverse zFORi (t) and maintain the order of firing fields.

In mirror reversion, INP-MS is present and satisfies the frequency relationship θMS > θINT . The firing
fields are reversed in order relative to the compression phase. However, this is not a valid mechanism for
reverse compression as θMS > θINT , both excitatory and interneuron populations recess in phase. To our
knowledge, phase recession has only been observed once [19]. In harmonic reversion, the firing-fields reverse
near harmonics of θINT (see Supplementary Figure 8). For θMS just slightly larger than θINT /2, the firing
fields reverse and display phase precession instead of phase recession.

Finally, directly reversing zFORi (t) also triggers a reverse compressed replay. An additional population of
interneurons, the reversion interneurons, is sufficient for this type of reversion. Reverse compression corresponds
to SHOT-CA3E receiving the current:

zREVi (t) = cos(2πθINT t− ψi)
= cos(2πθINT t+ ψi) + (cos(2πθINT t− ψi)− cos(2πθINT t+ ψi))

= cos(2πθINT t+ ψi) + 2 sin(ψi) sin(2πθINT t)

= zFORi (t) + 2 sin(ψi) sin(2πθINT t)

= zFORi (t) +AMP (ψi) sin(2πθINT t)

Thus, reversion interneurons should be inhibited by SHOT-CA3I (through sin(2πθINT t)) while subsequently
inhibiting the excitatory neurons. The amount of inhibition an excitatory neuron in SHOT-CA3 receives from
the reversion population is controlled by the amplitude function AMP (ψi) = 2 sin(ψ̃i).

4.9 Reversion Interneuron Population

The reversion population is a population of NREV interneurons with LIF dynamics that receives inhibition
from SHOT-CA3I. For simplicity, we take NREV = NCA3I and ωREV,CA3I = −ωREV,CA3IINCA3I

, where INCA3I

is the NCA3I×NCA3I identity matrix and ωREV,CA3I is a scalar quantity with (ωREV,CA3I = 1) that determines
the amount of inhibition the reversion population receives. The only parameter difference between the reversion
population and the other neurons is the background current, IREV , which varies when INP-MS is present or
absent (see Figure 3, Figure 4 Captions).

From the preceding section, we require the reversion population to transmit the signal 2 sin(ψi) sin(2πθINT t)
in a biologically plausible manner. First, the reversion interneurons must be locked into the internally generated
theta oscillation through the term sin(2πθINT t). Thus, we train a decoder φREV that can decode sin(2πθINT t)
from the activity of the reversion population:

ŝ(t) = (φREV )TrREV (t) ≈ sin(2πθINT t) = s(t) (40)

where φREV is trained using the decoded internal oscillators of the SHOT-CA3 network as a supervisor. The
training is not performed online as in RLS but is learned immediately through L2 optimization:

φREV =

(∫ T

0
rREV (t)rREV (t)T + INREV δ

)−1(∫ T

0
rREV (t)s(t)T

)
dt (41)

where δ = 50 acts as a regularization parameter and T = 25 s was used to compute φREV . Finally note that
the current:

ICA3E,REV
syn,i (t) = −AREV (2− 2 sin(ψi)ŝ(t)) < 0 (42)

is strictly inhibitory and performs the necessary reversion in the excitatory neurons. The parameter AREV is
used to scale the current upward so that the SHOT-CA3 interneuron and reversion interneuron currents are
of similar magnitude (AREV = 10 pA). As the excitatory neurons receive an extra source of inhibition, they
require a larger excitatory drive when INP-MS is deactivated. Further, as the current ICA3E,REV

syn,i (t) is strictly

negative, a set of weights ωCA3E,REV can be found by a constrained optimization problem

argminωCA3E,REV ‖ωCA3E,REV rREV (t)− ICA3E,REV
syn (t)‖2 ωCA3E,REV

ij ≤ 0, ∀i, j

This problem can be solved numerically for example with the MATLAB function lsqnonneg. However, for
simplicity, we do not take this approach and simply apply the negative current (42) to the SHOT-CA3E.
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4.10 High Frequency Assembly Frequency as a Function of θINT and θMS

Here, we will derive the relationship between, θMS , the interneuron recurrent oscillation frequency, θINT , and
the high-frequency assemblies during compressed replay (without INP-MS). We refer to the frequency of these
assemblies as Γ. As in experimental data, these assemblies nest on both theta and SPW states [30–32, 57–59]

The quantity nx denotes the number of cycles of the oscillation x (either x = MS or x = INT ) in a specific
time period while τMS = θ−1

MS , τINT = θ−1
INT , and τ = (θINT − θMS)−1 is the period of the firing field. First,

as the number of theta cycles (θMS), determines the number of assemblies (Figure 5F), then the total number
of theta cycles is

nΓ = nθ =
τ

τMS
=

θMS

θINT − θMS
(43)

then the frequency of assemblies during SPW-R compression, which we define as Γ = nΓ
τINT

is given by

Γ =
nΓ

τINT
=

θINT · θMS

θINT − θMS
(44)

As our analysis in the Methods section Interference Based Control of the Population Activity by INP-MS
demonstrates, we only observe θMS in the population activity or other aggregate/macroscopic metrics. Thus,
it is useful to write θINT = θMS + ε, ε = 1

τ , and thus:

Γ = ε−1(θMS + ε)θMS = θMS +
θ2
MS

ε
(45)

which in our case yields ε = 0.5 Hz, θMS = 8 Hz, yields an assembly frequency of Γ = 136 Hz. This is in good
agreement with the results of Figure 4 and Figure 5. In Figure 4, we see 13 assemblies over an 88 ms interval,
yielding Γ ≈ 147.7 Hz (forward replay), 13 assemblies over 98 ms, yielding Γ ≈ 132.65 (reverse replay), while
in Figure 5 we see 8 assemblies over a 70 ms interval yielding Γ ≈ 114 Hz.

4.11 Statistical Methods

Due to the deterministic nature of the model, the only statistical tests performed in this manuscript were in
Supplementary Figure 9, to determine if network responses to current or amplitude ramps were non-zero.

An F-test was used in all cases, as implemented in the MATLAB fitlm model. All residuals were assumed
to be normal, although this was not formally tested. For small current ramps, the data in Supplementary
Figure 9 showed some skewness inconsistent with normality. We opted not to exclude this data as this effect
vanishes for larger values of ICA3I . Additionally, some of the data tested in Supplementary Figure 9 displayed
a minor amount of nonlinearity, inconsistent with a linear regression assumption. However, we opted for a
simple first order (linear fit), rather than more elaborate methods. No statistical methods were used to pre-
determine sample sizes, due to the underlying system being deterministic. See Life Science Reporting Summary
for additional details.
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Parameter Value SHOT-CA3I SHOT-CA3E REV RO-CA1E RO-CA1I

N 2000 2000 2000 2000 (1000, Figure 4F) 2000

tref 2 ms 2 ms 2 ms 2 ms 2 ms

tm 10 ms 10 ms 10 ms 10 ms 10 ms

Iα 10 pA -5 pA -40 pA -40 pA -37.5 pA

vreset -65 mV -65 mV -65 mV -65 mV -65 mV

vthreshold -40 mV -40 mV -40 mV -40 mV -40 mV

τd 20 ms 20 ms 20 ms 5 ms 20 ms

τr 2 ms 2 ms 2 ms 2 ms 2 ms

g (FORCE) 0.1 0.1 N/A N/A N/A

q (FORCE) 15 15 N/A N/A N/A

CE (FORCE) 200 200 N/A N/A N/A

CI (FORCE) 200 200 N/A N/A N/A

∆t (FORCE) 0.5 ms 0.5 ms N/A N/A N/A

µ−1 (FORCE) 0.0025 ms 0.0025 ms N/A N/A N/A

θINT 8.5 Hz N/A N/A N/A N/A

θMS 2-12 Hz N/A N/A N/A N/A

κ 1-1.5 (varies) N/A N/A N/A N/A

IGABA -10 pA 0 pA 0 pA 0 pA 0 pA

FORCE Training Time 19 s 19 s N/A N/A N/A

Table 1: The parameters used for the SHOT-CA3 neurons, the reversion interneurons, and RO-CA1 excitatory
and inhibitory populations. For all networks, we use an integration time step of dt = 0.05 ms and Euler
integration. Some of the parameters are not applicable (N/A). Also note that the background current to
neurons can also vary depending on the presence/absence of INP-MS. See Further Methods for Figures for
more details.
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Experimental Constraints Used to Build the Model

Medial Septum (MS) inhibits interneurons via GABAergic connections
to the hippocampus.

[45, 62, 63]

MS controls frequency of LFP, and population activities in hippocampus. [40, 42, 64]

Overall activity in the MS drops during SPW-Rs. [45]

Hippocampus can internally generate theta sequences. [6, 7]

MS is critical for theta sequences. [7]

Limited recurrent excitation in CA1. [65]

Single trial learning, compression, reverse compression of spike se-
quences.

[5, 37]

Intrahippocampal Theta Oscillations [14–16, 66–69].

Model Postdictions

Phase precession of excitatory neurons. [10]

Creation of internally generated theta sequences. [6, 7]

Theta sequences can be compressed into SPWs. [70, 71]

Gamma assembly formation nested on theta oscillation, and SPW-Rs. [72, 73]

Sharp wave compression ratio is higher than theta phase precession com-
pression ratio.

[3, 37, 45, 74]

Stochastic SPW initiation (via recurrent excitation) with unimodal
inter-event-intervals.

[35]

Multi-modal inter-sharp-wave interval distributions. [36]

Interneurons are phase-locked to ripple oscillations [75–77]

Limitations of the Model

Phase precession of interneurons (limited documentation [19],[43]).

Internally generated theta sequences are not periodic. [6]

Gamma from CA3 is significantly higher in the model than in data. [59, 78–80]

Evidence of attractor/assembly dynamics in CA3. [45]

Model Predictions

Driving the MS continuously changes theta sequence order, phase pre-
cession slopes.

Driving the MS changes replay structure from single to clustered SPW-
Rs.

Driving the MS changes peak gamma frequencies in the hippocampus.

Interneuron sequences exist (some evidence, see [44]) and are critical for
learning.

Phase recession and sequence reversal possible when θMS > θINT .

Extrinsic sequences in CA1 bound to interneuron sequences in CA3 in-
directly via Schaffer Collaterals.

A population of interneurons firing a synchronized burst with variable
rates can reverse a replay.

A combination of local and global inhibitory connections creates com-
pressible sequences in the hippocampus.

When MS is off, driving excitatory and inhibitory neurons in CA3 creates
periodic SPWs (more regular distribution).

Perturbation of the Entorhinal Cortex destroys learning.

Blocking OLM cells during quiet awake disrupts reverse replay.

Shutting down CA1 interneurons leads to assembly overlap.

Table 2: Table summarizing the relationship between our network model, and the experimental literature.
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