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Abstract. A fundamental result of Solomyak says that the number of negative

eigenvalues of a Schrödinger operator on a two-dimensional domain is bounded from

above by a constant times a certain Orlicz norm of the potential. Here we show

that in the case of Dirichlet boundary conditions the constant in this bound can be

chosen independently of the domain.

1. Introduction and main result

In this paper we are interested in an upper bound on the number of negative eigen-

values of a Schrödinger operator in two space dimensions. In order to state our main

result, we introduce the functions

A(t) := e|t| − 1− |t| and B(t) := (1 + |t|) ln(1 + |t|)− |t| .

These functions are convex and Legendre transforms of each other. For a measurable

set Ω ⊂ R2 of positive and finite measure we denote by LB(Ω) the class of (almost

everywhere equal) measurable functions on Ω for which

‖g‖B,Ω := sup

{∣∣∣∣∫
Ω

fg dx

∣∣∣∣ : f : Ω→ C measurable such that

∫
Ω

A(f) dx ≤ |Ω|
}

is finite. Also −∆D
Ω denotes the Dirichlet Laplacian on Ω and N(H) denotes the

number of negative eigenvalues, counting multiplicities, of a self-adjoint lower semi-

bounded operator H.

Our main result is

Theorem 1.1. There is a constant C such that for any open set Ω ⊂ R2 of finite

measure and any real V ∈ LB(Ω),

N(−∆D
Ω + V ) ≤ C‖V−‖B,Ω . (1.1)

The main point of this paper is that the constant C can be chosen independently

of Ω. In a fundamental paper [15] Solomyak had shown that

N(−∆N
Ω + V ) ≤ 1 + CΩ‖V−‖B,Ω (1.2)
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for the Neumann Laplacian −∆N
Ω and for bounded, connected open sets Ω ⊂ R2 with

the extension property. (This is essentially Theorem 4’ in [15].) From this bound

and ideas in its proof it is easy to obtain (1.1) for bounded open sets Ω ⊂ R2 with a

constant that depends on Ω. The proof that this constant can be chosen independently

of Ω, however, needs additional ingredients, which we provide in this paper. We also

mention that conversely, it is easy to deduce (1.2) from (1.1).

Using standard arguments one deduces from Theorem 1.1 the validity of Weyl

asymptotics in the strong coupling limit. It is crucial here that the right side of

(1.1) is homogeneous of degree one with respect to V . This is a distinguishing feature

of (1.1) and (1.2) compared to other bounds discussed below.

Corollary 1.2. If Ω ⊂ R2 is an open set and V ∈ LB(Ω) is real, then

lim
α→∞

α−1N(−∆D
Ω + αV ) =

1

4π

∫
Ω

V (x)− dx .

Here we use the notation V (x)− = max{0,−V (x)} for the negative part.

The basic strategy in our proof of Theorem 1.1 is similar to that of Solomyak’s

proof of (1.1) which, in turn, follows the strategy of Rozenblum’s proof of the CLR

bound [11, 12]. The set Ω is covered by cubes which are chosen in such a way that the

Schrödinger operator on each cube with Neumann boundary conditions has at most

one negative eigenvalue. Therefore the number of negative eigenvalues is bounded by

the number of cubes and it remains to bound the latter number. In contrast to earlier

works Rozenblum used overlapping cubes and the selection of the cubes proceeds by

the Besicovich covering lemma. In order to guarantee that the Schrödinger operator

on each cube has at most one negative eigenvalue, the cubes are chosen such that

the norm of V on each cube is equal to a given small constant. This construction is

considerably more difficult in the two-dimensional case (where one deals with an Orlicz

norm) than in the higher-dimensional case (where one deals with the Ld/2-norm). In

fact, the choice of the (non-standard) norm ‖ ·‖B,Ω, which has suitable superadditivity

properties, was one of the key insights in Solomyak’s work.

The new difficulty that we have to face is that intersections of cubes with Ω can

have essentially an arbitrary shape and that our constants have to be in a certain sense

uniform with respect to this shape. In contrast, Solomyak needed only to consider

intersections of cubes, that is, rectangles and the necessary uniformity follows in a

rather straightforward manner. We obtain the necessary uniformity in our case by

carefully reviewing the proof of the Trudinger inequality.

We end this introduction by placing our result in the context of eigenvalue bounds

for Schrödinger operators. As is well-known, the two-dimensional case is a borderline

case and is still not as well understood as the case of three and higher dimensions

and the one-dimensional case. Recently, there have been several results on the two-

dimensional case [4, 8, 13, 3, 6, 7]. Solomyak’s pioneering paper [15] had a profound
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influence on these developments and we would like to dedicate our results here, which

are also a variation on the theme in [15], to his memory.

In order to understand the particularity of the two-dimensional case, we recall that

in dimensions d ≥ 3 the number N(−∆+V ) of negative eigenvalues of the Schrödinger

operator −∆ + V in L2(Rd) is bounded by the Cwikel–Lieb–Rozenblum inequality as

N(−∆ + V ) ≤ Cd

∫
Rd

V (x)
d/2
− dx , (1.3)

where Cd is a constant depending only on d. This inequality should be compared with

the Weyl asymptotics

lim
α→∞

α−d/2N(−∆ + αV ) =
|{ξ ∈ Rd : |ξ| ≤ 1}|

(2π)d

∫
Rd

V (x)
d/2
− dx . (1.4)

These asymptotics are initially proved for continuous, compactly supported V and

then extended, using (1.3), to any V ∈ Ld/2(Rd). Moreover, it is easy to see that if

for V ≥ 0 one has lim supα→∞ α
−d/2N(−∆ + αV ) <∞, then V ∈ Ld/2(Rd).

The analogue of (1.3) is not true in dimension two. Indeed, in two dimensions

for any potential V 6≡ 0 with
∫
R2 V (x) dx ≤ 0 the operator −∆ + V has a negative

eigenvalue. However, not even a modified bound with the right side in (1.3) replaced

by Cd(1+
∫
R2 V (x)− dx) can hold, since a more subtle failure of (1.3) was discovered in

[1]. For any q > 1 there are potentials V ∈ L1(R2) such that limα→∞ α
−qN(−∆+αV )

exists and is finite and positive. Therefore no bound like (1.3), which implies a linear

growth in α of N(−∆ + αV ), can hold. In fact, the modified asymptotics hold for

any long-range potential which behaves like −|x|−2(ln |x|)−2(ln ln |x|)−1/q as |x| → ∞.

Moreover, if q = 1 in these examples then limα→∞ α
−1N(−∆ + αV ) exists, but is

different from the right side of (1.4). We also mention that not only the slow decay

at infinity can give rise to modified asymptotics but also strong (but integrable) local

singularities. This can be understood via the conformal invariance of the problem.

More concretely, the same modified asymptotics hold for any potential behaving like

−|x|−2| ln |x||−2(ln | ln |x||)−1/q as |x| → 0. Note that the latter function belongs to

LB(Ω) for an open set Ω containing 0 if and only if q < 1, so the modified asymptotics

for q ≥ 1 do not contradict our Corollary 1.2.

These examples raise the question of characterizing all V ∈ L1(R2) (or all 0 ≤ V ∈
L2(R2)) such that either lim supα→∞ α

−1N(−∆ + αV ) <∞ or such that (1.4) holds.

This problem was solved in the radial case in [6], but is still open in general. The

eigenvalue bounds in [15, 4, 13, 3, 7] can be understood as sufficient conditions for an

asymptotically linear bound. Other, faster growing bounds can be found, for instance,

in [8, 17, 19].

This paper is organized as follows. In Section 2 we explain the strategy of the proof

of Theorem 1.1 and Corollary 1.2 and reduce it to two main ingredients, namely a

Sobolev-type inequality and a covering argument, which will be discussed in Sections
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3 and 4, respectively. We present all facts about Orlicz spaces which are relevant for

us in Appendix A and include a proof of the Besicovich theorem in Appendix B.

Acknowledgements. Partial support by the U.S. National Science Foundation through

grant DMS-1363432 (R.L.F.) is acknowledged.

2. Strategy of the proof

The proof of Theorem 1.1 is based on two ingredients, namely Sobolev-type inequal-

ities and a covering argument. We present these ingredients in this section and then

explain how to derive Theorem 1.1 from them.

Proposition 2.1. There is a constant S2 > 0 such that for any open set Ω ⊂ R2 of

finite measure and any u ∈ H1
0 (Ω),∫

Ω

A(S2|u|2/‖∇u‖2) dx ≤ |Ω| . (2.1)

Moreover, there is a constant S ′2 > 0 such that for any open set Ω ⊂ R2, any open

cube Q ⊃ Ω and any u ∈ H1(Ω) which vanishes near Q∩∂Ω and satisfies
∫

Ω
u dx = 0,∫

Ω

A(S ′2|u|2/‖∇u‖2) dx ≤ |Ω| . (2.2)

The crucial point for us is that the constants S2 and S ′2 do not depend on Ω. Note

that we can take Ω = Q in the second part of the proposition and then (2.2) becomes∫
Q

A(S ′2|u|2/‖∇u‖2) dx ≤ |Q| (2.3)

for any u ∈ H1(Q) with
∫
Q
u dx = 0. This inequality, however, is weaker than the

second part of the proposition. Indeed, while it is true that functions u ∈ H1(Ω) which

vanishes near Q ∩ ∂Ω and satisfy
∫

Ω
u dx = 0 can be extended by zero to functions

in H1(Q) with mean value zero, applying (2.3) to this extension gives (2.2) only with

|Q| on the right side and not with |Ω|. The proof of Proposition 2.1 will be discussed

in Section 3.

The second ingredient in the proof of Theorem 1.1 is the following covering result.

By a cube we always mean an open cube with edges parallel to the coordinate axes,

and by a covering of a set K ⊂ R2 by cubes Q1, . . . , QM we mean that K ⊂
⋃
j Qj.

The multiplicity of such a covering is supx∈R2 #{j : x ∈ Qj}.

Proposition 2.2. Let Ω ⊂ R2 be an open set of finite measure and let 0 ≤ W ∈ LB(Ω)

with compact support. Then for any 0 < A ≤ ‖W‖B,Ω there is a covering of Ω by open

cubes Q1, . . . , QM ⊂ R2 of multiplicity at most 4 such that

‖W‖B,Qm∩Ω = A for all 1 ≤ m ≤M . (2.4)

Moreover,

M ≤ 17A−1‖W‖B,Ω . (2.5)
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The proof of this proposition will be discussed in Section 4.

Having introduced our tools we are now in position to give the

Proof of Theorem 1.1. We first assume that suppV− is bounded. We denote by S2

and S ′2 the constants from Proposition 2.1. If ‖V−‖B,Ω ≤ S2, then we can use the first

part of this proposition as well as the definition of ‖ · ‖B,Ω to bound for any u ∈ H1
0 (Ω)∫

Ω

(
|∇u|2 + V |u|2

)
dx ≥ ‖∇u‖2

(
1− S−1

2

∫
Ω

V−
S2|u|2

‖∇u‖2
dx

)
≥ ‖∇u‖2

(
1− S−1

2 ‖V−‖B,Ω
)
≥ 0 .

Thus, N(−∆D
Ω − V ) = 0 and the theorem holds in this case.

We now assume that ‖V−‖B,Ω > S2. We apply Proposition 2.2 with W = V−
and A = min{4−1S ′2, S2}. We obtain a covering of Ω by open cubes Q1, . . . , QM of

multiplicity at most 4 such that

‖V−‖B,Qm∩Ω ≤ 4−1S ′2 for all m = 1, . . . ,M

and

M ≤ 17 max
{

4(S ′2)−1, S−1
2

}
‖V−‖B,Ω .

Thus, for any u ∈ H1
0 (Ω) which satisfies the orthogonality conditions∫

Qm

u dx = 0 for all m = 1, . . . ,M

we can bound, using the second part of Proposition 2.1,

∫
Ω

(
|∇u|2 + V |u|2

)
dx ≥

M∑
m=1

∫
Qm

(
1

4
|∇u|2 − V−|u|2

)
dx

=
1

4

M∑
m=1

‖∇u‖2
L2(Qm)

(
1− 4

S ′2

∫
Qm∩Ω

V−
S ′2|u|2

‖∇u‖2
L2(Qm)

dx

)

≥ 1

4

M∑
m=1

‖∇u‖2
L2(Qm)

(
1− 4

S ′2
‖V−‖B,Qm∩Ω

)
≥ 0 .

By the variational principle, this implies that N(−∆D
Ω − V ) ≤ M , and the upper

bound on M from the covering result proves the theorem in the case where suppV−
is bounded.

In the general case, we fix ε > 0 and, by a similar argument as in Lemma A.4, we

choose R > 0 such that W := 1{|x|<R}V− satisfies ‖W − V−‖B,Ω ≤ εS2. Then for any
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u ∈ H1
0 (Ω) we have∫

Ω

(
|∇u|2 + V |u|2

)
dx ≥ (1− ε)

∫
Ω

(
|∇u|2 − (1− ε)−1W |u|2

)
dx

+ ε

∫
Ω

(
|∇u|2 − ε−1(V− −W )|u|2

)
dx

≥ (1− ε)
∫

Ω

(
|∇u|2 − (1− ε)−1W |u|2

)
dx

+ ε

∫
Ω

|∇u|2 dx
(
1− (εS2)−1‖V− −W‖B,Ω

)
≥ (1− ε)

∫
Ω

(
|∇u|2 − (1− ε)−1W |u|2

)
dx .

By the variational principle, this implies N(−∆D
Ω + V ) ≤ N(−∆D

Ω − (1 − ε)−1W ),

and by the first part of the proof this can be bounded by C(1 − ε)−1‖W‖B,Ω ≤
C(1−ε)−1‖V−‖B,Ω, where the last inequality follows easily from the definition of ‖·‖B,Ω
norm (see also the proof of Lemma A.2). The proof of Theorem 1.1 is complete. �

Proof of Corollary 1.2. We use an approximation argument similarly to that at the

end of the proof of Theorem 1.1. For fixed ε > 0 and continuous and compactly

supported W we write

−∆D
Ω + αV = (1− ε)

(
−∆D

Ω + α(1− ε)−1W
)

+ ε
(
−∆D

Ω + αε−1(V −W )
)

and bound, using the variational principle and Theorem 1.1,

N(−∆D
Ω + αV ) ≤ N(−∆D

Ω + α(1− ε)−1W ) +N(−∆D
Ω + αε−1(V −W ))

≤ N(−∆D
Ω + α(1− ε)−1W ) + Cαε−1‖V −W‖B,Ω .

Using the Weyl asymptotics for continuous and compactly supported potentials, we

obtain

lim sup
α→∞

α−1N(−∆D
Ω + αV ) ≤ (1− ε)−1 1

4π

∫
Ω

W (x)− dx+ Cε−1‖V −W‖B,Ω . (2.6)

Similarly, we write

−∆D
Ω + α(1− ε)W = (1− ε)

(
−∆D

Ω + αV
)

+ ε
(
−∆D

Ω + αε−1(1− ε)(W − V )
)

and bound

N(−∆D
Ω + α(1− ε)W ) ≤ N(−∆D

Ω + αV ) +N(−∆D
Ω + αε−1(1− ε)(W − V ))

≤ N(−∆D
Ω + αV ) + Cαε−1(1− ε)‖W − V ‖B,Ω .

We obtain

lim inf
α→∞

α−1N(−∆D
Ω +αV ) ≥ (1− ε) 1

4π

∫
Ω

W (x)− dx−Cε−1(1− ε)‖W −V ‖B,Ω . (2.7)
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By an argument as in Lemma A.4, there is a sequence of continuous Wn with compact

support such that ‖Wn−V ‖B,Ω → 0. We also note that with C ′ such thatA(1/C ′) = 1,

we have

‖g‖L1(Ω) = C ′
∫

Ω

sgn g

C ′
g dx ≤ C ′‖g‖B,Ω

and therefore ‖Wn − V ‖L1(Ω) ≤ C ′‖Wn − V ‖B,Ω → 0. Replacing W by Wn in (2.6)

and (2.7) and letting n→∞ we obtain

(1− ε) 1

4π

∫
Ω

V (x)− dx ≤ lim inf
α→∞

α−1N(−∆D
Ω + αV )

≤ lim sup
α→∞

α−1N(−∆D
Ω + αV ) ≤ (1− ε)−1 1

4π

∫
Ω

V (x)− dx .

Since ε > 0 is arbitrary, the corollary follows. �

3. Trudinger’s inequality

Our goal in this section is to prove Proposition 2.1. At least the first part of this

proposition is well-known and goes back to the works [20, 10, 18]. Since we will need

some intermediate result from this proof for the proof of the second part, we recall it

here, following [9].

Lemma 3.1. There is a constant α0 > 0 and a continuous function [0, α0) 3 α→ Cα
with C0 = 0 such that for any open set Ω ⊂ R2 of finite measure, any u ∈ H1

0 (Ω) and

any 0 ≤ α < α0. ∫
Ω

A
(
α|u|2

‖∇u‖2

)
dx ≤ Cα|Ω| .

Proof. We begin by showing that for q > 2 and u ∈ H1(R2),(∫
R2

|∇u|2 dx
)1−2/q (∫

R2

|u|2 dx
)2/q

≥ 2

q
(4π)(q−2)/q

(∫
R2

|u|q dx
)2/q

. (3.1)

The point here is the explicit expression of the constant on the right side and, in

particular, its behavior as q →∞.

In order to prove this inequality we apply, with a parameter κ > 0 to be determined,

the Hausdorff–Young and the Hölder inequality to get

‖u‖q ≤ (2π)−(q−2)/q‖û‖q′ ≤ (2π)−(q−2)/q‖(|ξ|2 + κ2)1/2û‖‖(|ξ|2 + κ2)−1/2‖2q/(q−2) .

Since ∥∥(|ξ|2 + κ2)−1/2
∥∥2q/(q−2)

2q/(q−2)
= 2π

∫ ∞
0

k dk

(k2 + κ2)q/(q−2)
=
q − 2

2
π κ−4/(q−2) ,

we obtain

‖u‖2
q ≤ (8π)−(q−2)/q (q − 2)(q−2)/q κ−4/q

(
‖∇u‖2 + κ2‖u‖2

)
.

We optimize the right side by choosing κ2 = (2/(q− 2))‖∇u‖2/‖u‖2 and obtain (3.1).
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If u ∈ H1
0 (Ω), we can use∫

Ω

|u|2 dx ≤ |Ω|1−2/q

(∫
Ω

|u|q dx
)2/q

and obtain from (3.1)(∫
Ω

|∇u|2 dx
)q/2
|Ω| ≥

(
2

q

)q2/(2(q−2))

(4π)q/2
∫

Ω

|u|q dx .

Thus, ∫
Ω

A
(
α|u|2

‖∇u‖2

)
dx =

∞∑
n=2

1

n!

∫
Ω

(
α|u|2

‖∇u‖2

)n
dx ≤ Cα |Ω|

with

Cα =
∞∑
n=2

nn
2/(n−1)

n!

( α
4π

)n
.

Using Stirling’s asymptotics and the root test we see that Cα converges if 0 ≤ α < 4π/e

and defines a continuous function with C0 = 0. �

Proof of Proposition 2.1. Let Cα be the constant from Lemma 3.1. For the proof of

the first part, we simply choose S2 > 0 such that CS2 ≤ 1.

For the proof of the second part, let Q̃ be the cube with the same center as Q but

with three times its side length and let E : H1(Q)→ H1(Q̃) be the extension operator

by repeated reflection. Thus,∫
Q̃

|Eu|2 dx = 9

∫
Q

|u|2 dx and

∫
Q̃

|∇Eu|2 dx = 9

∫
Q

|∇u|2 dx .

Let η ∈ C∞0 (Q̃) be a real function with η ≡ 1 on Q. We choose this function to be of

the form η(x) = η0((x − a)/L), where a and L are the center and the side length of

Q, respectively, and where η0 is a universal function. Then the operator Ẽ defined by

Ẽu = ηEu maps H1(Q) into H1
0 (Q̃) and satisfies∫

Q̃

|∇Ẽu|2 dx =

∫
Q̃

(
η2|∇Eu|2 − η∆η|u|2

)
dx

≤ 9‖η0‖2
∞

∫
Q

|∇u|2 dx+ 9‖η0∆η0‖∞|Q|−1

∫
Q

|u|2 dx .

This inequality is, in particular, valid for functions u ∈ H1(Ω) which vanish near Q ∩
∂Ω, because such functions can be extended by zero to functions in H1(Q). Moreover,

if in addition
∫

Ω
u dx =

∫
Q
u dx = 0, then we can bound the last term on the right side

by the Poincaré inequality on Q and we finally obtain∫
Q̃

|∇Ẽu|2 dx ≤ c

∫
Q

|∇u|2 dx

with c = 9 (‖η0‖2
∞ + π−2‖η0∆η0‖∞).
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Moreover, let Ω̃ ⊂ Q̃ be the set obtained from Ω by repeated reflection on the

boundaries of the cubes. Then |Ω̃| = 9|Ω|. If u ∈ H1(Ω) vanishes near Q ∩ ∂Ω, then

Ẽu ∈ H1
0 (Ω̃) and therefore by the inequality from Lemma 3.1,∫
Ω

A

(
α|u|2

‖∇u‖2
L2(Ω)

)
dx ≤

∫
Ω̃

A

(
cα|Ẽu|2

‖∇Ẽu‖L2(Ω)

)
dx ≤ Ccα|Ω̃| = 9Ccα|Ω| .

Choosing S ′2 > 0 such that 9CcS′
2
≤ 1, we obtain the claimed inequality. �

4. The covering lemma

Our goal in the section is to prove Proposition 2.2. In a first step we will see that

around each point we can center a cube for which the norm of a given function has a

prescribed Orlicz norm. This requires some basic facts about Orlicz spaces, which we

recall in Appendix A. In a second step we apply the Besicovich theorem to obtain a

suitable finite collection of cubes. The relevant version of the Besicovich theorem will

be recalled in Appendix 4.

Lemma 4.1. Let Ω ⊂ R2 be an open set of finite measure, let 0 ≤ W ∈ LB(Ω) and

let 0 < A < ‖W‖B,Ω. Then for any x ∈ Ω there is an open cube Qx centered at x with

‖W‖B,Qx∩Ω = A .

If Qx is chosen maximal with this property, then Ω 3 x 7→ |Qx| is upper semi-

continuous.

Proof. First, we fix x ∈ Ω and consider the function j(l) := ‖V ‖B,(x+lQ)∩Ω, where

Q := (−1/2, 1/2)d, so x + lQ is the open cube centered at x with side length l. By a

simple property of the norm (see (A.1)), j is a non-decreasing function of l.

We claim that j is continuous on [0,∞) with j(0) = 0. To prove this, we let

(ln) ⊂ (0,∞) with ln → l ∈ [0,∞). Setting En := (x+ lnQ)∩Ω and E := (x+ lQ)∩Ω,

we clearly have |En∆E| → 0 as n→∞ and therefore, according to Lemma A.5,

j(ln) = ‖V ‖B,En → ‖V ‖B,E = j(l) ,

proving the claimed continuity and the fact that j(0) = 0.

Also, it is easy to see that liml→∞ j(l) = ‖V ‖B,Ω. Thus, for any 0 < A < ‖V ‖B,Ω
there is an l such that j(l) = A. We denote lx := max{l : j(l) = A}, making the

dependence on x explicit.

We now prove the upper semi-continuity statement. This will follow if we can show

that for (xn) ⊂ Ω and (ln) ⊂ (0,∞) with xn → x ∈ Ω and ln → l ∈ (0,∞) one has

‖V ‖B,(xn+lnQ)∩Ω → ‖V ‖B,(x+lQ)∩Ω .

Indeed, if we apply this statement to ln = lxn , then we obtain that ‖V ‖B,(x+lQ)∩Ω = A,

and by maximality of lx we conclude that lx ≥ l, which proves upper semi-continuity.

To prove the statement above, we apply again Lemma A.5, this time with En :=

(xn + lnQ) ∩ Ω and E := (x + lQ) ∩ Ω. Again one easily checks that |En∆E| → 0 as
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n → ∞, so the assumption of this lemma is satisfied. This finishes the proof of the

lemma. �

We are now in position to give the

Proof of Proposition 2.2. We may assume that 0 < A < ‖V ‖B,Ω. Then Lemma 4.1

yields for any point x ∈ Ω an open cube Qx centered at x with ‖V ‖B,Qx∩Ω = A.

Moreover, the side length |Qx|1/2 depends in an upper semi-continuous way on x. Thus,

the Besicovitch lemma (Proposition B.1) yields a countable covering of multiplicity 4

and with the property that the cubes can be divided into families Ξk, k = 1, . . . , 17,

each of which consists of disjoint cubes.

It remains to show that the covering is finite and with the claimed upper bound on

the number M of cubes. For any k = 1, . . . , 17, by the superadditivity property of the

Orlicz norm (Lemma A.1),

(#Ξk)A =
∑
Q∈Ξk

‖V ‖B,Q∩Ω ≤ ‖V ‖B,Ω .

Summing over k we obtain

MA ≤ 17 ‖V ‖B,Ω ,

which is the claimed bound. �

Appendix A. Orlicz spaces

In order to make this paper self-contained in this appendix we provide proofs of the

results from Orlicz space theory which we need. For a deeper treatment we refer, for

instance, to [5].

Throughout this section we consider a convex function A on [0,∞) satisfying A(t) =

0 if and only if t = 0, as well as

lim
t→∞

A(t)

t
=∞ and lim

t→0

A(t)

t
= 0 .

(Such functions are called Young functions.) The example relevant for the rest of this

paper is the function

A(t) = e|t| − 1− |t| ,

but our arguments are valid for general A.

Let B be the Legendre transform of A, that is,

B(s) = sup
t≥0

(st−A(t)) for s ≥ 0 .

It can be shown that B is again a Young function. In the example above, we have

B(s) = (1 + |s|) ln(1 + |s|)− |s| .
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For a finite measure space (X, dx) we denote by LB(X) the set of measurable functions

g : X → C for which

‖g‖B,X = sup

{∣∣∣∣∫
X

fg dx

∣∣∣∣ : f : X → C measurable such that

∫
X

A(|f |) dx ≤ |X|
}

is finite (identifying almost everywhere equal functions). Clearly, ‖ · ‖B,X defines a

norm. We first show that this norm is superadditive.

Lemma A.1. Let g ∈ LB(X) and let E1, E2, . . . be pairwise disjoint measurable subsets

of X. Then ∑
j

‖g‖B,Ej
≤ ‖g‖B,X .

Note that this implies, in particular, that

‖g‖B,E ≤ ‖g‖B,X if E ⊂ X . (A.1)

Proof. Consider any sequence of measurable functions f1, f2, . . . on E1, E2, . . . with∫
Ej

A(|fj|) dx ≤ |Ej| for all j .

We define functions sj on Ej with |sj| = 1 and sjfjg = |fjg| pointwise on Ej. We

define a function f̃ on X by f̃ |Ej
:= sjfj for each j and f̃ := 0 on X \

⋃
j Ej. Then∫

X

A(|f̃ |) dx =
∑
j

∫
Ej

A(|sjfj|) dx =
∑
j

∫
Ej

A(|fj|) dx ≤
∑
j

|Ej| ≤ |E| .

Thus, ∑
j

∣∣∣∣∣
∫
Ej

fjg dx

∣∣∣∣∣ =
∑
j

∫
Ej

f̃jg dx =

∫
X

f̃ g dx ≤ ‖g‖B,X .

Taking the supremum over all functions fj with the specified properties we arrive at

the inequality in the lemma. �

Lemma A.2. Let g ∈ LB(X), let E,F ⊂ X be measurable with |E| ≤ |F | and assume

that g vanishes on X \ (E ∩ F ). Then

‖g‖B,E ≤ ‖g‖B,F ≤
|F |
|E|
‖g‖B,E .

Proof. We first observe that, since f vanishes off E ∩ F and since A is monotone, we

have

‖g‖B,E = sup

{∣∣∣∣∫
E∩F

fg dx

∣∣∣∣ : f : E ∩ F → C measurable with

∫
E∩F
A(|f |) dx ≤ |E|

}
and

‖g‖B,F = sup

{∣∣∣∣∫
E∩F

fg dx

∣∣∣∣ : f : E ∩ F → C measurable with

∫
E∩F
A(|f |) dx ≤ |F |

}
.

Since |E| ≤ |F |, this immediately implies ‖g‖B,E ≤ ‖g‖B,F .
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To prove the converse inequality, let f be a measurable function on E ∩ F with∫
E∩F A(|f |) dx ≤ |F |. Since A is convex with A(0) = 0 we have A(θt) ≤ θA(t) for

any 0 ≤ θ ≤ 1 and any t ≥ 0. Thus, f̃ := (|E|/|F |)f satisfies
∫
E∩F A(|f̃ |) dx ≤ |E|,

and therefore

‖g‖B,E ≥
∣∣∣∣∫
E∩F

f̃ g dx

∣∣∣∣ =
|E|
|F |

∣∣∣∣∫
E∩F

fg dx

∣∣∣∣ .
Taking the supremum over all f as before, we deduce ‖g‖B,E ≥ (|E|/|F |)‖g‖B,F , as

claimed. �

Lemma A.3. For any g ∈ LB(X),∫
X

B
(
|X| |g|
‖g‖B,X

)
dx ≤ |X| .

Proof. As a preliminary remark we note that

sB′(s) = A(B′(s)) + B(s) for all s ≥ 0 , (A.2)

where here and in what follows we denote by B′ the right sided derivative of B (which

exists by convexity). In fact, by convexity B(σ) ≥ B(s) + B′(s)(σ − s) for all σ and

therefore sB′(s)−B(s) = supσ (σB′(s)− B(σ)). Since A is the Legendre transform of

B, we obtain (A.2).

We now turn to the proof of the lemma. Clearly, we may assume that ‖g‖B,X = |X|.
Let f := sgn gB′(|g|). We shall show momentarily that∫

X

A(|f |) dx ≤ |X| . (A.3)

Because of this inequality and the definition of ‖g‖B, we have

|X| = ‖g‖B,X ≥
∣∣∣∣∫
X

fg dx

∣∣∣∣ .
On the other hand, because of (A.2) we have

fg = |f ||g| = A(|f |) + B(|g|) , (A.4)

and therefore ∫
X

fg dx =

∫
X

A(|f |) dx+

∫
X

B(|g|) dx ≥
∫
X

B(|g|) dx ,

which yields the inequality in the lemma.

It remains to prove (A.3). For M > 0 let fM := f1{|f |≤M} and note that (A.4)

yields

fMg = |fM ||g| = A(|fM |) + 1{|f |≤M}B(|g|) ≥ A(|fM |) .
We choose M large enough such that 1{|f |≤M}B(|g|) does not vanish almost everywhere

and obtain ∫
X

fMg dx >

∫
X

A(|fM |) dx . (A.5)
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We now show that α :=
∫
X
A(|fM |) dx ≤ |X|, which implies (A.3) by monotone

convergence. We argue by contradiction and assume that α > |X|. Note that α <∞
since fM is bounded. As in the previous proof, by convexity, we have A(|X| |fM |/α) ≤
(|X|/α)A(|fM |) and therefore

∫
X
A(|X| |fM |/α) dx ≤ |X|. By definition of ‖g‖B,X ,∫

X

fMg dx =
α

|X|

∫
X

|X| fM
α

g dx ≤ α

|X|
‖g‖B = α .

This contradicts (A.5), and therefore we obtain α ≤ |X|. �

Lemma A.4. Assume that B satisfies

lim sup
t→∞

B(2t)

B(t)
<∞ . (A.6)

Then L∞(X) is dense in LB(X).

In the theory of Orlicz spaces, (A.6) is called ∆2 condition. Note that the function

B(t) = (1 + |t|) ln(1 + |t|)− |t| satisfies this condition (while A(t) = e|t| − 1− |t| does

not).

Proof. Let g ∈ LB(X). We show that gM := g1{|g|≤M} → g in LB(X) as M →∞.

Let λ := ‖g‖B,X/|X|, so that
∫
X
B(|g|/λ) dx < ∞ by Lemma A.3. Moreover,

B(|gM − g|/λ) ≤ B(|g|/λ) and therefore, by dominated convergence,
∫
X
B(|gM −

g|/λ) dx → 0 as M → ∞. It is easy to see that assumption (A.6) implies that

for any ε > 0 and k ∈ N there is a Ck,ε <∞ such that

B(2kt) ≤ Ck,εB(t) + ε for all t ≥ 0 .

Let f be a measurable function with
∫
X
A(|f |) dx ≤ |X|. Then by the definition of B

as Legendre transform,

|f |2k|gM − g|/λ ≤ A(|f |) + B(2k|gM − g|/λ) ≤ A(|f |) + Ck,εB(|gM − g|/λ) + ε .

Thus, ∣∣∣∣∫
X

f2k(gM − g)/λ dx

∣∣∣∣ ≤ (1 + ε)|X|+ Ck,ε

∫
X

B(|gM − g|/λ) dx

and, taking the supremum over f ,

(2k/λ)‖gM − g‖B,X = ‖2k(gM − g)/λ‖B,X ≤ (1 + ε)|X|+ Ck,ε

∫
X

B(|gM − g|/λ) dx .

Letting M →∞ gives

lim sup
M→∞

‖gM − g‖B,X ≤ λ2−k(1 + ε)|X| ,

and letting k →∞ gives gM → g in LB(X). �

Lemma A.5. Assume that B satisfies (A.6). Let g ∈ LB(X) and let E1, E2, . . . and

E be measurable subsets of X with |En∆E| → 0 as n→∞. Then, as n→∞,

‖g‖B,En → ‖g‖B,E .
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Proof. We first claim that we may assume that g is bounded. Indeed, from Lemma

A.4 we know for any ε > 0 there is an gε ∈ L∞(X) such that ‖gε − g‖B,X ≤ ε.

Thus, by the triangle inequality and by (A.1) we have for any measurable F ⊂ X,

|‖gε‖B,F − ‖g‖B,F | ≤ ‖gε − g‖B,F ≤ ‖gε − g‖B,X ≤ ε. Applying this with F = En and

with F = E, we see that it is enough to prove the lemma for g ∈ L∞(X), as claimed.

Let us define gn := g1En∩E. Then

|‖g‖B,En − ‖g‖B,E| ≤ |‖g‖B,En − ‖gn‖B,En|+ |‖gn‖B,En − ‖gn‖B,E|
+ |‖gn‖B,E − ‖g‖B,E| .

We have, using (A.1),

|‖gn‖B,En − ‖g‖B,En| ≤ ‖gn − g‖B,En = ‖gχEn\E‖B,En ≤ ‖g‖∞‖χEn\E‖B,En

≤ ‖g‖∞‖χEn\E‖B,X .

and similarly

|‖gn‖B,E − ‖g‖B,E| ≤ ‖gn − g‖B,E = ‖gχE\En‖B,E ≤ ‖g‖∞‖χE\En‖B,E
≤ ‖g‖∞‖χE\En‖B,X .

It is a simple exercise (using Jensen’s inequality) to compute that for any measurable

F ⊂ X,

‖χF‖B,X = |F | A−1(|X|/|F |) ,
where A−1 is the inverse function of A; see [5, Subsection II.9.3]. Since A(t)/t→∞ as

t→∞, we deduce that ‖χF‖B,X → 0 as |F | → 0. Thus, the assumption |En∆E| → 0

implies that

|‖g‖B,En − ‖gn‖B,En|+ |‖gn‖B,E − ‖g‖B,E| → 0

as n→∞.

According to (A.1) and Lemma A.2 we have

|‖gn‖B,En − ‖gn‖B,E| ≤
(

max{|En|, |E|}
min{|En|, |E|}

− 1

)
‖g‖B,X .

Again, since |En∆E| → 0, we deduce that

‖gn‖B,En − ‖gn‖B,E → 0

as n→∞. This completes the proof. �

Appendix B. The Besicovich lemma

In this section we state and prove a version of Besicovich’s covering lemma. We

follow the exposition in [2], but since we get a better constant under an additional semi-

continuity assumption (which is satisfied in our application), we include the details.

We prove the result in general dimension d.

We recall that by a cube we always mean an open cube with edges parallel to the

coordinate axes, and by a covering of a set K ⊂ Rd by cubes Q1, . . . , QM we mean

that K ⊂
⋃
j Qj. The multiplicity of such a covering is supx∈Rd #{j : x ∈ Qj}.
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We denote Q := (−1/2, 1/2)d, so that a + lQ is the cube centered at a ∈ Rd with

side length l > 0.

Proposition B.1. Let d ≥ 1, let K ⊂ Rd be a compact set and let l be a positive,

upper semi-continuous function on K. Then there is a (finite or infinite) sequence

(xj) ⊂ K such that the cubes Qj = xj + l(xj)Q, j = 1, 2, 3, . . . , are a covering of K

with multiplicity at most 2d. Moreover, the sequence (Qj) can be divided into 4d + 1

sequences Ξk = (Qk
j ) such that for any 1 ≤ k ≤ 4d + 1, the cubes in Ξk are disjoint

(that is, Qk
j1
∩Qk

j2
= ∅ if j1 6= j2).

In the proof we use the notation |x|∞ = max{|x(j)| : 1 ≤ j ≤ d} for x =

(x(1), . . . , x(d)) ∈ Rd.

Proof. Since the function l is upper semi-continuous on the compact set K, it attains

its maximum at some point x1 ∈ K. Now assume that for some m ∈ N, the points

x1, . . . , xm have already been chosen. If K \
⋃m
j=1 Qj = ∅, then the selection process is

finished. Otherwise, we take xm+1 ∈ K \
⋃m
j=1Qj such that the maximum of l over the

compact K \
⋃m
j=1Qj is attained at xm+1. This procedure leads to a finite or infinite

sequence of points xj. Let us show that they have all the required properties.

We claim that (
xi +

l(xi)

2
Q

)
∩
(
xj +

l(xj)

2
Q

)
= ∅ if i 6= j . (B.1)

Indeed, to show this we may assume that i < j. Then, by construction xj 6∈ Qi and

therefore |xi − xj|∞ ≥ l(xi)/2. By construction we have l(xi) ≥ l(xj) and therefore

|xi − xj|∞ ≥ (l(xi) + l(xj))/4. This implies (B.1).

We also claim that

xi 6∈ Qj if i 6= j . (B.2)

Indeed, this is clear from the construction if i > j. On the other hand, if i < j, then,

again from the construction, we have l(xi) ≥ l(xj) and xj 6∈ Qi, which implies that

|xj − xi|∞ ≥ l(xi)/2 ≥ l(xj)/2. Thus, (B.2) also holds in this case.

Using the compactness of K, one easily deduces from (B.1) that, if the sequence

(Qj) is infinite, then

l(xj)→ 0 as j →∞ . (B.3)

We now prove that (Qj) covers K. This is clear from the construction if the sequence

(Qj) is finite. So we may assume that it is infinite. We argue by contradiction and

assume that there is an x ∈ K \
⋃
j Qj. Then, because of (B.3), there is a j such that

l(xj) < l(x). This, however, contradicts the construction of xj.

Next, we show that the multiplicity of the covering is at most 2d, that is, any point

x ∈ K belongs to at most 2d of the cubes Qj. To do this, we divide Rd into 2d

hyper-quadrants with boundaries passing through x and parallel to the d coordinate

hyper-planes. It suffices to show that in each closed hyper-quadrant there is at most

one point xj such that x ∈ Qj. We argue by contradiction and assume that there are
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two distinct points xi and xj in the same closed hyper-quadrant with x ∈ Qi ∩ Qj.

We may assume that |xj − x|∞ ≥ |xi − x|∞. Since x ∈ Qj, the set of all points y in

the same hyper-quadrant as xj satisfying |y − x|∞ ≤ |xj − x|∞ is contained in Qj. In

particular, we have xi ∈ Qj. This contradicts (B.2).

Finally, we have to rearrange the sequence into 4d + 1 disjoint sequences. We first

claim that for any j there are at most 4d cubes among the cubes Q1, . . . , Qj−1 which

have non-empty intersection with Qj. To see this, note that if k < j and if Qk∩Qj 6= ∅,
then Qk contains at least one of the 2d vertices of Qj. (This follows from the fact that

l(xk) ≥ l(xj) for k < j.) However, by the bound on the multiplicity, any fixed vertex

of Qj is contained in at most 2d cubes. Thus, there are at most 2d× 2d cubes Qk with

k < j which have non-empty intersection with Qj.

We now use this fact to decompose our sequence. We are going to define inductively

r = 4d+1 sequences Ξ1, . . . ,Ξr of cubes. To start, we set Qj ∈ Ξj for j = 1, . . . , r. Now

let j ≥ r+1 and assume that the families Ξ1, . . . ,Ξr contain all the cubes Q1, . . . , Qj−1

and that each Ξk consists of disjoint cubes. By the above fact, Qj can intersect at

most r− 1 cubes among the cubes Q1, . . . , Qj−1. Since there are r families of cubes in

total, there must be a k ∈ {1, . . . , r} such that Qj does not intersect any of the cubes

in Ξk. We put Qj ∈ Ξk. This defines inductively the claimed partitioning of the Qj.

The proof of the proposition is complete. �
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