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Abstract: The existence of topologically protected edge 
modes is often cited as a highly desirable trait of topologi-
cal insulators. However, these edge states are not always 
present. A realistic physical treatment of long-range hop-
ping in a one-dimensional dipolar system can break the 
symmetry that protects the edge modes without affecting 
the bulk topological number, leading to a breakdown in 
bulk-edge correspondence (BEC). Hence, it is important to 
gain a better understanding of where and how this occurs, 
as well as how to measure it. Here we examine the behav-
iour of the bulk and edge modes in a dimerised chain of 
metallic nanoparticles and in a simpler non-Hermitian 
next-nearest-neighbour model to provide some insights 
into the phenomena of bulk-edge breakdown. We con-
struct BEC phase diagrams for the simpler case and use 
these ideas to devise a measure of symmetry-breaking for 
the plasmonic system based on its bulk properties. This 
provides a parameter regime in which BEC is preserved in 
the topological plasmonic chain, as well as a framework 
for assessing this phenomenon in other systems.

Keywords: topological photonics; bulk-edge correspond-
ence; topological plasmonics.

1  �Introduction

Topological insulators (TIs) are often described as materi-
als that have insulating bulks but support surface or edge 
states that are strongly protected from disorder or other per-
turbations by topology. Some time after the introduction of 
topological physics in the Hermitian quantum world [1–6], 
photonic systems were shown to also exhibit topological 
properties [7–17]. These photonic topological insulators 
(PTIs) have exciting applications for unidirectional wave-
guides [10] and lasing [18–20] and show interesting effects 
in coupling to quantum emitters [21]. In addition, TIs have 
been shown to interact with light in intriguing ways [22]. 
PTIs offer a useful platform to study how TIs are affected 
by non-Hermiticity, which can emerge as a consequence of 
loss, gain and phase information in photonic systems.

The topological properties of a system are specified by 
the symmetries of its Hamiltonian. In the Hermitian case a 
“periodic table” of symmetry classes and the correspond-
ing topological properties has been known for some time 
[23]. In comparison the non-Hermitian equivalent has only 
been found very recently [24, 25]. Prior to this discovery, 
some non-Hermitian symmetries have already been identi-
fied and studied in detail, such as the well known parity-
time (PT) symmetry, where in the photonic context, loss 
and gain are carefully balanced so that the Hamiltonian has 
real valued eigenvalues [26–28]. In this work, we consider 
a one-dimensional system with links to the famous Su-
Schrieffer-Heeger (SSH) model [29, 30], whose topological 
properties emerge due to chiral symmetry. Chiral symmetry 
is often also referred to as sublattice symmetry, because the 
sublattices in a chirally symmetric system are identical.

TIs typically have a topological number associated 
with the bulk and surface or edge states depending on this 
number. Systems that are both in a topological phase and 
which have the correct number of surface or edge states 
related to the bulk topological number are said to have 
bulk-edge correspondence (BEC) [31], which is sometimes 
thought of as a requirement for a system to be a TI. There 
is, however, some discussion in the literature that this may 
be too narrow a definition and that some materials can be 
said to be topological in spite of a lack of edge or surface 
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states [32, 33]. Even so, the existence of topologically pro-
tected edge modes is often desired. The question of the 
existence of BEC is a topic currently of great interest in the 
field of non-Hermitian TIs [34–43], where some propose 
new topological numbers specific to non-Hermiticity 
[44]. Hermitian systems can also exhibit BEC breakdown  
due to breaking of the symmetry that protects the edge 
modes [45].

In a previous work, we studied the one-dimensional 
topological plasmonic chain with retardation and radia-
tive effects and showed that it acts as a non-Hermitian 
topological insulator with edge modes due to an approxi-
mate chiral symmetry [46], as did others with a different 
mathematical approach [47]. In fact, when long-range 
hopping is considered, the chiral symmetry is “trivially” 
[46] broken by an identity term in the Hamiltonian, but 
the system still features the same topological numbers 
and phases because it retains inversion symmetry. 
Although technically any breaking of chiral symmetry 
removes topological protection, when the contribution 
from long-range hopping is small enough edge modes still 
exist and feature some protection. However, in similar 
dipolar models, such as cold atoms and phonon polari-
tons, for certain parameters of the chain, the edge modes 
disappear while the Zak phase remains unchanged [48, 
49]. This is BEC breakdown caused by chiral symmetry 
breaking due to long-range hopping. Given that realistic 
photonic systems often feature some degree of long-range 
hopping, it is necessary to understand how this affects the 
existence of BEC.

In this work, we study BEC breakdown in this realis-
tic physical model and also a simpler non-Hermitian SSH 
model, defining a model-specific measure of non-chirality 
to elucidate where BEC breakdown occurs.

2  �The topological plasmonic chain
The topological plasmonic chain in question is a one-
dimensional chain of metallic nanoparticles with alternat-
ing spacing, depicted in Figure 1A. There are two particles 
per unit cell labelled A and B with radius a and unit cell 
spacing d. Intracell spacing is given by βd/2  so that the 
parameter β describes the staggering of the chain, with 
β = 1 equally spaced. The alternating spacing is reminis-
cent of the SSH model, which has alternating hopping on 
a one-dimensional lattice [29], and reproduces the physics 
of the SSH model in the quasistatic limit [50–52]. Similar 
SSH-like physics has also been studied in zigzag chains of 
nanoparticles [53, 54].

When the centres of the particles are further apart 
than 3a, the particles are well described using the coupled 
dipole approximation (CDA) [55]
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where pn is the dipole moment of the nth particle, G(rn, rm, 
ω) is the Green’s dyadic between the positions r of the nth 
and mth particles at frequency ω and α(ω) is the polariz-
ability of the particles.

We use the modified long-wavelength approximation 
(MLWA) for the polarizability,
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where the second term in the denominator accounts for 
radiative damping and the third is the dynamic depolari-
zation term [56]. The wavevector magnitude is given by 

/ ,Bk cε ω=  where εB is the background dielectric and 
αqs(ω) is the quasistatic polarizability given by
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Here ε(ω) is the dielectric function of the particles, in 
this work given by the Drude model,
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We consider silver nanoparticles in air, so that ε∞ = 5, 
ħωP = 8.9 eV, τ = 17 fs [57] and εB = 1. We take small particles 
with radius a = 5 nm, leading to a single particle surface 
plasmon resonance (SPR) frequency of ħωsp = 3.36 eV. 
These particles are small such that MLWA and quasistatic 
approximation for the polarizability give very similar 
results, but the use of MLWA allows the potential for larger 
particles. Typically, the quasistatic approximation is rea-
sonable below a radius of 20 nm and MLWA below 50 nm 
[58]. The radius we consider here is large enough to treat 

Figure 1: A depiction of the plasmonic chain and the polarisation of 
its modes.
(A) The schematic diagram of the topological plasmonic chain and 
(B) the two distinct and decoupled polarizations.
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the particles classically (>2  nm) [59], but small enough 
to make the approximation that ω = ωsp in the Green’s 
dyadic, thus linearizing the function. This simplifies cal-
culations by removing ω dependence from the bulk Bloch 
Hamiltonian, and is a good approximation for small par-
ticles because ω varies faster in the polarizability than the 
Green’s function. For larger particles the approximation 
becomes inaccurate at the light line / .x Bk cε ω= ±

For the one-dimensional chain the x, y and z compo-
nents of Equation 1 decouple. This leads to two distinct 
polarizations of the particles, longitudinal (x) and transverse 
(y and z), in Figure 1B. It is helpful to relabel particles by unit 
cell and sublattice, leading to a set of equations given below
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where ν = x, y, z represents the direction of polarization. 
The linearized reduced Green’s functions gν(r) are given by

	

| |

3( ) 2 [1 | |],
| |

spik d r
x

sp
eg r ik d r

r
= − � (6)

	

| |
, 2 2

3( ) [1 | | ( ) | | ],
| |

spik d r
y z

sp sp
eg r ik d r k d r

r
= − − − � (7)

with r the spacing between particles divided by d and 
/sp B spk cε ω=  the magnitude of the wavevector of light 

with the same frequency as the single particle SPR. We 
refer to the third term in the transverse reduced Green’s 
function (Equation 7) as “long range”, as it decays propor-
tional to the inverse of the particle separation. In addition 
we note the finite lifetime of the plasmons, which cause 
decoherence between the nanoparticles. Dipoles can 
only interact coherently if they have separation less than 

/ ,Bcτ ε  which we take into account by setting g(r) to zero 
if > / .Brd cτ ε

This system is physically identical to the one we 
examined in a previous work, but we use a slightly differ-
ent model. By linearising the Green’s functions, we reduce 
the numerical difficulty of the model and allow ourselves 
to consider longer chains. The addition of the plasmon 
lifetime-based cutoff removes physically unrealistic diver-
gences at the light line.

In order to understand the topological properties of the 
system, we study the bulk by considering an infinite chain. 

We relabel particles by unit cell and sublattice A or B and 
apply Bloch’s theorem to arrive at the eigenvalue problem
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where kx is the x-component of the wavevector, the eigen-
value E(ω, kx) = d3/α(ω) and the components of the 2 × 2 
Bloch Hamiltonian matrix are given by
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The matrix is non-Hermitian, which allows E to take 
complex values. Solving the equation for ω gives the bulk 
dispersion relation of the chain. As an example, we con-
sider the case of kspd/π = 0.42, corresponding to d = 77 nm, 
in Figure 2, plotting the real part of the dispersion relation 
for the longitudinal (a) and transverse (b) polarizations 
with β = 0.7, 1 and 1.3. The band structure is symmetric in 
kx due to the inversion symmetry of the system.

The relevant topological number of this system is the 
Zak phase [60] using the periodic gauge [50, 61], given by

	

( ) ( )  mod  2 ,
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φ π φ π
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where φ(kxd) is the relative phase between pA and pB. Although 
a variation on the Zak phase has been proposed which takes 
into account the non-Hermiticity of the system [44, 49], we 
will show that this Zak phase is sufficient here. In a system 
with BEC, a Zak phase of γ = π (γ = 0) predicts the existence 
(non-existence) of topologically protected edge modes [62]. 
The colouring of the bands in Figure 2 shows how φ changes 
moving away from the centre of the Brillouin zone (BZ). We 
see that for β < 1, γ = 0 and for β > 1, γ = π. There is a bandgap 
closure at β = 1 for complex ω (imaginary part not shown in 
the figure), indicating a topological phase transition, and the 
colouring of the bands shows that the Zak phase is not an 
integer. Notably, the closing of the gap in ω is equivalent to 
the closing of the gap in E and it is, therefore, enough to con-
sider the eigenvalues E rather than ω when examining the 
topological properties of the system.

In this case, the topological number is quantised by 
chiral symmetry, where a given Hamiltonian Ĥ satisfies 
the relation ˆ ˆ ,z zH Hσ σ = −  where σz is the Pauli spin matrix. 
We argued in a previous work [46] that although G does 
not satisfy this relation, it is equal to a chirally symmet-
ric matrix plus an identity term G11I. Therefore, it has the 
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same eigenvectors as a chiral matrix and so the Zak phase, 
which is calculated from the eigenvectors, is equal to that 
of the chiral matrix G − G11I. In chirally symmetric systems, 
the eigenvalues come in positive and negative pairs, 
leading to a spectrum that is symmetric about |E| = 0. 
The addition of the identity term shifts the bulk bands by 
G11(kx) in the complex plane.

However, a subtlety not noted is that although the bulk 
topological number is the same, BEC is not necessarily pre-
served. The sublattice operators that guarantee the existence 
and protection of zero eigenvalue edge modes in the finite 
chiral system [30] do not exist for the finite “trivially broken 
chiral” system. Other studies have already argued that the 
existence of large enough A to A and B to B hopping causes 
the disappearance of edge modes in simple Hermitian and 
dipolar non-Hermitian systems [45, 48]. In summary, chiral 
symmetry is the ingredient that protects the edge states, and 
although inversion symmetry or an added identity term in 
the bulk still quantises the Zak phase, they do not guaran-
tee BEC. We study the effect that “trivial chiral symmetry 
breaking” has on the plasmonic chain by considering finite 
systems, which are forced to be chiral, by setting the A to A 
and B to B hopping to zero artificially and then comparing 
these with the physical “full dipolar” model.

Figure 3A and B show |E| for N = 600 particle finite 
chains with β = 1.3 with changing kspd. Chiral bulk modes 
are shown in red and full dipolar modes in blue, with 

topologically protected edge modes colored yellow. The 
dark grey region is where the spacing of the particles is 
too small for the CDA to be applicable, because at these 
shorter spacings, higher order modes come into play. Plots 
of projected real and imaginary frequency ω for β = 1.4 
can be found in the SM. Figure 3A shows the longitudi-
nal polarization. For β > 1, the longitudinal bulk predicts 
a Zak phase of γ = π and in this case we confirm that there 
are topologically protected edge modes fixed at |E| = 0 in 
the chiral case, and in the full-dipolar case these modes 
slightly deviate from zero as the particle spacing increases. 
This is consistent with other works suggesting that the lon-
gitudinal full-dipolar case always features BEC because A 
to A and B to B hoppings are “small enough” for all kspd.

Figure 3B shows the transverse polarization, with ver-
tical black lines marking the Zak phase transition accord-
ing to bulk calculations. In the chiral case, we see that for 
small enough kspd, where the long-range term in Equation 
6 is small, the Zak phase is equal to that of the longitu-
dinal chain. As kspd increases the Zak phase for β above 
and below 1  swaps at specific values of kspd in what we 
previously called retardation induced topological phase 
transitions, which are caused by the long-range term. 
These phase transitions are non-Hermitian features occur-
ring at exceptional points, where one of the off-diagonal 
terms in the Bloch Hamiltonian is zero. The exceptional 
points come in pairs symmetrically around β = 1; if G12 is 

Figure 2: The real part of the dispersion relation of the topological plasmonic chain with a = 5 nm and kspd = 0.42π, which corresponds to 
d = 77 nm.
(A) Longitudinal polarisation and (B) transverse polarisation. Band coloring shows how φ changes for each band away from the centre of the 
BZ. Not depicted is that the upper and lower bands have a phase difference of π.
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zero for some value of kspd for β = 0.7, then G21 is zero for the 
same kspd for β = 1.3. Therefore, for β = 0.7 the Zak phase is 
exactly opposite to β = 1.3 for all kspd.

In the chiral case, the existence and non-existence of 
zero edge modes are predicted perfectly by the Zak phase; 
as expected the chiral finite chain has BEC. This proves 
that the Zak phase calculation is sufficient for this system 
in this parameter regime despite the non-Hermitian skin 
effect, which has led some to propose a modification of 
the Zak phase in some 1D chiral systems [44, 49, 63]. In 
the full dipolar case, however, the bulk and edge modes 
intersect before the first phase transition, and for higher 
kspd there is no longer BEC. In this work, we will call this 
the BEC breakdown. We emphasise that the breakdown 
of BEC in this system is a chiral symmetry breaking effect 
rather than a non-Hermitian effect, possibly because the 
system is not very non-Hermitian according to measure-
ments of phase-rigidity in similar dipolar models [48, 49]. 
BEC breakdown is not a topological phase transition: edge 
modes are lost in the β > 1 case but not gained in the β < 1 
case (see Supplementary material, SM), and the Zak phase 
does not change. The fact that this happens before the 
first Zak phase transition is consistent with the notion that 
the breakdown occurs because the long-range term gets 
“too large” and, therefore, the A to A and B to B terms get 
too large, as the retardation induced phase transitions are 
also related to the long-range term becoming important.

Another feature to note in the (blue) full dipolar case 
in Figure 3B is the presence of modes outside the bulk 
in the β = 1.3 case for approximately kspd/π > 0.95. These 
modes also exist in other β > 1 cases (see SM), and are 
localized to the edges of the chain. Importantly, their 
existence or non existence does not line up exactly with 
the changing Zak phase, they have eigenvalues far from 
|E| = 0, and they do not appear to be well protected from 
disorder. We therefore do not label these as topologically 
protected edge states and in this work still consider BEC 
to be broken.

Figure 3C shows log plots of the dipole moments |p| 
of two edge modes, one far from the BEC breakdown at 
kspd/π = 0.25 and one close to the breakdown at kspd/π = 0.5. 
In a chiral system, the edge modes are fully supported on 
one sublattice, which would in this case be the A sublat-
tice. Due to the chiral symmetry breaking, edge modes 
spill into the B sublattice, but we apply our exponential fit 
(red line) only to the A sublattice. Unlike the usual descrip-
tion of SSH model phase transitions, the edge modes are 
not fully exponential but rather appear to feature a highly 
localised edge part with localization length ξ, which does 
not change as kspd increases and a bulk-like component 
that grows as kspd increases. It appears that as the BEC 
breakdown approaches there is some mixing between the 
bulk and edge modes. This long bulk-like tail is related to 
the nature of the long-range hopping. In Figure 3A and B 

Figure 3: The eigenvalues of the chiral (red) and full dipolar (blue) 
topological plasmonic chain with changing kspd.
(A) Longitudal and (B) transverse polarizations. Topologically 
protected edge modes are yellow. The dark grey area indicates the 
region where the CDA is not valid as the particles are too closely 
spaced. The vertical black lines indicate the Zak phase transitions as 
predicted by the closing of the bulk gap. (C) The edge mode profiles 
of (B) blue for different choices of kspd.
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6      S.R. Pocock et al.: Topological plasmonic chain

the edge modes are highlighted based on how close they 
are to zero, how localized the edge part is, and how much 
larger the edge part is compared to the average of the bulk 
part.

Although in the case of transverse polarization 
chiral symmetry is strongly broken as kspd becomes large 
enough, the system still has a quantised Zak phase due to 
its inversion symmetry represented by σxG(kx)σx = G( − kx). 
Although this no longer corresponds to the presence of 
edge modes, there is some evidence that the topological 
properties of inversion symmetric systems manifest in 
other ways [32, 33], and that there may be measureable 
consequences of topological phase independent of the 
existence of edge modes [21].

Missing from our current description of BEC break-
down is an understanding of exactly how the A to A and B 
to B hoppings have to behave to break down the topologi-
cal protection of the system. In order to better understand 
the effect that “trival” chiral symmetry breaking has on 
BEC, we take a slight mathematical diversion to study a 
much simpler non-Hermitian, next nearest neighbour 
extension to the SSH model. This will aid us when we 
return to the plasmonic chain afterwards.

3  �Non-Hermitian NNN SSH model
We consider a next nearest neighbour (NNN) SSH model 
much like in a work by Pérez-González et  al. [45] with 
the addition of symmetric complex valued hopping as in 
Figure 4A, which makes the model non-Hermitian. This 
is a simplified version of a model studied by Li et al. [64] 
Intracell hopping is given by | | ,viv v e φ=  intercell hopping 
by | | wiw w e φ=  and A to A and B to B hopping by | | .JiJ J e φ=  
The Hamiltonian is given by
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where H.c. is the Hermitian conjugate. This model has 
bulk Bloch Hamiltonian
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This Hamiltonian has similarities to G in that it has 
inversion symmetry and chiral symmetry broken by an 

identity term, in this case proportional to the complex 
variable J. In fact, the chiral system that this model shares 
bulk eigenvectors with is exactly the non-Hermitian SSH 
model studied by Lieu [28] and the system has Zak phase 

Figure 4: Diagram and eigenvalues of the non-Hermitian NNN SSH 
model.
(A) The diagram of the next nearest neighbour SSH model with 
complex hopping v, w and J. (B) and (C) Bulk (blue) and edge mode 
(yellow) eigenvalues of the non-Hermitian NNN SSH model for 
changing values of |J|, for different choices of hopping parameters 
and phases in (B) and (C). The modes with larger |J| values are 
darker. The red dashed line is given by perturbation theory (see 
SM). (D) The edge mode profiles for the choice of parameters given 
in (c) for different choices of |J|. For real and imaginary projections 
see SM.
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γ = π (γ = 0) when |w| > |v| (|w| < |v|), with topological phase 
transition at |w| = |v|.

Solving the eigenvalue problem gives the bulk 
eigenvalues,

	
2 2

bulk 2 cos( ) 2 cos( ),E J k v w vw k= ± + + � (13)

while the variation of edge eigenvalues from the chiral sys-
tem’s Eedge = 0 caused by the addition of small J is given by 
perturbation theory (see SM), which confirms the fit pro-
duced by Pérez-González et al. [45] in the Hermitian case,

	
edge 2 .vE J

w
= − � (14)

Figure 4B and C show the evolution of finite chain 
eigenvalues E as |J| increases for chains with N = 200 parti-
cles with |v| = 0.3, |w| = 0.9, φv = 0.75π, φw = 0.4π and two dif-
ferent choices of phase for J, φJ = 0.4π in (b) and φJ = − 0.1π 
in (c). Bulk modes are colored blue and edge modes are 
colored yellow, with a red dashed line showing the pre-
dicted path of edge modes according to Equation 14. Real 
and imaginary projected plots are provided in the supple-
mentary material. As expected, we see that edge modes 
enter the bulk for some value of |J| and then disappear, 
marking the breakdown of the BEC in the system. Figure 
4B shows a choice of parameters where the bulk bands 
move to close and cross the path of the edge modes, while 
Figure 4C shows the case where the bulk does not close, 
but the edge modes move into one of the bulk bands and 
thereby destroy BEC. From these figures, we see that there 
are the two phenomena that appear to govern the destruc-
tion of BEC for long chains: the movement of the bulk as in 
(b) and the movement of the edge modes as in (c). In fact, 
there is a third case where the bands close due to finite size 
effects, but we ignore this for now as we cannot quantify 
it with the bulk Hamiltonian and its effect can be reduced 
by increasing the number of particles in the chain. For any 
set of parameters v, w and J, BEC breakdown is caused by 
a combination of these effects.

Figure 4D shows the edge modes of Figure 4C for 
particular choices of |J|. As before, they delocalize as we 
approach the BEC breakdown, but unlike the plasmonic 
topological insulator case they are completely exponen-
tial and as |J| increases so does the localization length ξ, 
until they are no longer localised.

Ignoring the finite size effects, we can find where 
the bulk and edge modes first intersect by solving 
Eedge(k) = Ebulk(k) for J(k). We then plot this value of J for each 
k in the BZ, constructing the phase diagrams as in Figure 
5. Figure 5A shows the BEC phase diagram for the param-
eters used in Figure 4B and C. If the system starts at the 

origin with |J| = 0 and moves in a straight line away as the 
chirality breaking parameter |J| increases, the edge modes 
and bulk meet when we cross the black line from the white 
region to the green region. Therefore, the white region cor-
responds to the values of J with BEC and the green region 
corresponds to values where it is broken. The red dashed 
and blue solid lines correspond to choices of φJ from 
Figure 4B and C, respectively. We can see that for Figure 4B, 
the bulk bands are shifted directly towards |E| = 0, whereas 
in Figure 4C they do not move towards |E| = 0, so that the 
slower movement of the edge modes causes BEC break-
down. This illustrates that breakdown occurs for different 
degrees of chiral symmetry breaking, |J|, depending on the 
direction the bands are shifted due to choice of parameter 
φJ. For |v| << |w|, as in Figure 5A, the phase corresponding 

Figure 5: Bulk edge correspondence phase diagrams constructed 
using bulk and edge eigenvalues for the non-Hermitian NNN SSH 
model.
(A) The BEC phase diagram with predicted region of BEC (white) 
and its breakdown (green) for parameters of the chain from Figure 
4, with φJ from Figure 4A (red dashed line) and Figure 4B (blue 
line), yellow cross at w/2 and dotted line along φw. (B) The BEC 
phase diagrams for |v| ≈ |w| and varying φv. The red, blue and green 
colorings represent different regions where the BEC breakdown 
occurs for different choices of φv, with red for φv = 0.73π, red and 
blue for φv = 0.7π, and finally all of red, blue and green for φv = 0.5π.
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8      S.R. Pocock et al.: Topological plasmonic chain

to the smallest |J| at which BEC breakdown occurs is φJ = φw 
and the transition happens at J = w/2 (yellow cross). Com-
paring Figures 4 and 5A we see that when φJ ~ φw, the BEC 
breakdown is dominated by bulk movement and when φJ 
is far from φw it is dominated by edge movement. In the 
Hermitian model, φJ = φw always. Non-Hermiticity allows 
for complex J and, therefore, leads to different behaviours 
depending on the “path” of the bulk in complex space.

Figure 5B shows the case where |v| is similar but still 
smaller than |w|, for different values of φv. The colour-
ing represents different regions where breakdown occurs 
for different choices of φv, with red for φv = 0.73π, red and 
blue for φv = 0.7π and finally all of red, blue and green for 
φv = 0.5π. As φv gets closer to φw, the region of BEC becomes 
larger, until at φv = φw it theoretically only breaks down 
when φJ = φw. However, for φJ further from φw, the break-
down is dominated by finite size effects that shrink the BEC 
region. In this case, when φv is not similar to φw we also see 
that the shortest path in J space is not necessarily along φJ.

We briefly summarise the results that will be useful for 
our study of the plasmonic chain. Increasing chiral sym-
metry breaking causes both the bulk and edge modes to be 
shifted in complex space until one collides with the other, 
at which point BEC breakdown occurs. We have observed 
a system where, depending on the choices of parameter, 
either the bulk or edge mode movement can be made to act 
as the dominant effect. The parameter in question chooses 
the direction in which the bands are shifted in complex 
space, which has a significant effect on exactly how much 
chiral symmetry breaking causes BEC breakdown. This is an 
important question only in a non-Hermitian system where 
eigenvalues are complex, because in a Hermitian system 
the “direction parameter” is fixed along the real line.

4  �BEC breakdown in the plasmonic 
chain

Previous works have discussed the fact that a breakdown 
in BEC occurs in the transverse case when the long-range 
term in the Green’s function becomes large enough that A 
to A and B to B hoppings are comparable to the A to B and 
B to A hoppings [48, 49]. In the following, we elaborate on 
what these requirements actually are and how we can find 
where this occurs by considering bulk terms.

As discussed in the previous section, depending on the 
parameters of a system, BEC breakdown can be dominated 
by the movement of the bulk or of the edge modes. Although 
it is difficult to exactly align parameters of the plasmonic 
system with parameters from the NNN system, we can see 

from plots like Figure 3B and others (see SM) that the edge 
modes do not move far from zero before they enter the bulk. 
We note that the edge modes do move a little more when 
β is further from β = 1, but nevertheless conclude that the 
movement of the bulk dominates and that it is reasonable 
to approximate Eedge = 0. The bulk bands Ebulk(kx) are given 
by the off-diagonal terms of the bulk Bloch Hamiltonian 

12 21( ) ( )x xk k± G G  plus a shift in complex space by the chiral 
symmetry breaking on-diagonal term G11(kx). In the Hermi-
tian case [45], one of the bands can cross zero when, for 
some value of kx in the Brillouin zone, the magnitude of the 
chirality breaking shift is equal to that of the chiral bands,

	 11 12 21| ( )| | ( ) ( )| .x x xk k k=G G G � (15)

As we saw in the previous section, when consider-
ing a non-Hermitian system, we must be careful because 
depending on the parameters, the bands are not necessar-
ily shifted towards |E| = 0. The plasmonic system’s equiva-
lent parameter to the NNN system’s φJ is the phase of G11, 
which differs in that it has kspd dependence. In much the 
same way that kx was the parameter for the breakdown 
value of J in Figure 5, we are interested in where in the BZ, 
given by kx, the bulk bands of the plasmonic system first 
cross |E| = 0, in order to identify which direction the phase 
of G11 points to. By observing bulk band structures, we see 
that dips at the light line lead to the zero-line crossing as 
kspd increases, because these dips give the minimum |E| for 
one of the bands. We also observe that at the light line the 
phases of G11(kx) and one of 12 21( ) ( )x xk k± G G  are approxi-
mately equal, possibly related to the phase contribution 
given by exp(ikspd ± ikxd) = 1 at the light lines.

These observations tell us that the plasmonic system 
is in a situation roughly equivalent to the NNN φJ ≈ φw ≈ φv 
case. The edge mode eigenvalues do not move signifi-
cantly, and for certain kx the bulk bands move almost 
directly towards |E| = 0 as kspd increases. This means that 
for certain kx, when the shift G11(kx) is equal in magnitude 
to the chiral bands 

12 21( ) ( ),x xk kG G  we expect the bands to 
cross |E| = 0. In light of this, we define a measure of non-
chirality for this system,

	

11
BZ

12 21

| ( ) |
max .

| ( ) ( ) |x

x
k

x x

k
k k

η
∈

=
G

G G
� (16)

We plot η in Figure 6 for changing kspd versus β for the 
transverse modes of the chain, overlaid with red crosses 
where the edge modes of finite chains of N = 600 enter 
the bulk. The colour saturates so that white corresponds 
to values of η > 1. The grey dashed line is the minimum 
value of kspd, for which the CDA is a good approximation. 
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From the definition, when η = 0 the system is fully chiral. 
We consider η by once again fixing β, starting with small 
kspd, then increasing to see how the BEC breakdown 
occurs as we do so. For small kspd, when η < 1, the bulk 
cannot have crossed the zero line, so we expect the edge 
modes to still exist and to have bulk edge correspondence. 
Approximately, when η = 1, one of the bulk bands touches 
the zero line and therefore the edge modes have entered 
the bulk, with some small disagreement due to the Eedge = 0 
and phases being equal at the light lines approximations. 
Finally, when η > 1  we expect BEC to have broken down 
because the edge modes have already entered the bulk. 
In Figure 6, we see that η = 1 at roughly the same kspd for 
which BEC breakdown occurs in the finite systems, again 
shown as red crosses. This supports the notion that η is a 
good measurement of non-chirality for the system.

In Figure 6, we see that increasing kspd, with fixed β  
after η > 1 sometimes leads to a region where η < 1, such as 
the yellow islands surrounded by white. We do not neces-
sarily expect the return of exact BEC, confirmed by finite 
chain simulations like those in Figure 3B. However, if η 
ever returns to η = 0, then BEC must return because the 
system must be perfectly chiral. This means it is difficult 
to claim anything certain about these particular cases. 
Peaks at kspd/π = n where n is an integer are due to the 
light lines meeting at the edge of the BZ and combining 
to cross the |E| = 0 line for lower kspd. Finally, for the lon-
gitudinal case in this region and all regions examined, 
we find η < 1, which agrees with the fact that we always 
expect BEC with this polarization.

From both the bulk measure η and finite systems 
(red crosses), we observe that for a given value of particle 
radius, here a = 5 nm, as the period of the chain increases, 
BEC breaks down in agreement with our discussion of the 
breaking of chiral symmetry. The measure η is a useful 
measure of the non-chirality of the system, which can 
be used as a map for experimentalists to search for para-
meters of kspd that can be expected to exhibit BEC. In the 
figure kspd/π = 1 corresponds to d = 184 nm, so for example 
a chain with β = 1.4 can be expected to retain BEC up to 
approximately d = 120 nm. For larger values of β, the value 
of the period for which BEC breakdown occurs increases. 
Hence, it would be experimentally favourable to choose 
larger values of β and larger periods d to observe topologi-
cal edge modes in these plasmonic chains as the particles 
would not need to be very closely spaced, relaxing fabrica-
tion constraints. Regarding particle size, we expect quali-
tatively similar results for particles up to 20  nm radius. 
Here radiative effects would be more prominent but the 
topological properties would be qualitatively the same 
as we describe in this paper for smaller particles [46]. 
Experimental techniques such as cathodoluminescence 
spectroscopy and non-linear light generation can be used 
to probe topological band structures in photonics [54, 65]. 
A plasmonic system with similar SSH-like physics have 
also been studied experimentally [66, 67]. Other dipolar 
systems, such as chains of cold atoms or phonons in SiC, 
would also be expected to exhibit similar topological 
behavior because they exhibit the same type of hoppings 
[48, 49].

Beyond the topological plasmonic chain, individual 
systems featuring chiral symmetry breaking must be 
examined on a case-by-case basis to understand where 
BEC breakdown occurs, by considering the behaviour of 
the edge modes and bulk. As demonstrated by the above 
study, one can apply some of the knowledge gained from 
the simple non-Hermitian NNN SSH model to develop a 
measure for a more complicated system.

5  �Conclusion
In this article we have broadened the discussion of BEC 
in non-Hermitian systems, elaborating on the question 
of what happens when chiral symmetry is broken in one 
dimensional systems. We have shown that the question of 
how strictly chiral symmetry must be obeyed in order to 
observe topological protection is an important one if we 
wish to be careful about real world TIs like the topological 
plasmonic chain.

Figure 6: η for the transverse modes of the chain, for different β and 
kspd, which saturate so that values of η > 1 are white.
The red crosses correspond to the locations where edge modes 
enter the bulk in finite 600 particle chains, possibly indicating the 
BEC breakdown. The grey dashed line corresponds to the minimum 
value of kspd/π for which the CDA is a good approximation.

Brought to you by | Imperial College London
Authenticated

Download Date | 5/30/19 1:14 PM



10      S.R. Pocock et al.: Topological plasmonic chain

We recalled the model for a chain of metallic nanopar-
ticles with alternating spacing and discussed how such a 
chain has been shown to exhibit topological properties 
such as a quantised Zak phase and topological protec-
tion of edge modes. Photonic systems like the plasmonic 
chain are natural non-Hermitian systems and can provide 
a valuable tool for theoretical and experimental explora-
tions of topological insulators. The chain was shown to 
exhibit a breakdown of this BEC in the transverse polar-
ised case for large spacing, although the existence of pre-
dicted “retardation induced phase transitions” could still 
be measured as a kind of weak topological insulator with 
inversion symmetry.

We examined the non-Hermitian, next nearest neigh-
bour SSH model to provide some basic intuition for the 
phenomenon of BEC breakdown, which is shown to be 
caused by the movement of the bulk, the edge modes and 
finite size effects, the first two of which could be visual-
ized with phase diagrams. This informed our study of the 
plasmonic chain, where we defined a measure of chiral 
symmetry breaking η to find a parameter regime for exper-
imentalists to search for topologically protected trans-
verse edge modes in the system.

Beyond the models considered in this article we have 
provided a framework for assessing the breakdown of BEC 
in systems where the movement of the bulk movement 
dominates and is directed towards zero in eigenspace, or 
the bulk and edge modes move predictably.
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