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Università di Roma La Sapienza and EIEF

Paolo Zaffaroni¶

Imperial College London and Università di Roma La Sapienza
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française de Belgique, and the Australian Research Council grant DP150100210.
‡Académie Royale de Belgique and CentER, Tilburg University.
§Research supported by the PRIN-MIUR Grant 2010J3LZEN.
¶Research supported by the ESRC Grant RES-000-22-3219.

1



Abstract. Factor models, all particular cases of the Generalized Dynamic Factor Model

(GDFM) introduced in Forni, Hallin, Lippi and Reichlin (2000), have become extremely

popular in the theory and practice of large panels of time series data. The asymptotic prop-

erties (consistency and rates) of the corresponding estimators have been studied in Forni,

Hallin, Lippi and Reichlin (2004). Those estimators, however, rely on Brillinger’s dynamic

principal components, and thus involve two-sided filters, which leads to rather poort fore-

casting performances. No such problem arises with estimators based on standard (static)

principal components, which have been dominant in this literature. On the other hand, the

consistency of those static estimators requires the assumption that the space spanned by the

factors has finite dimension, which severely restricts the generality afforded by the GDFM.

This paper derives the asymptotic properties of a semiparametric estimator of the loadings

and common shocks based on one-sided filters recently proposed by Forni, Hallin, Lippi and

Zaffaroni (2015). Consistency and exact rates of convergence are obtained for this estimator,

under a general class of GDFMs that does not require a finite-dimensional factor space. A

Monte Carlo experiment corroborates those theoretical results and demonstrates the excellent

performance of those estimators in out-of-sample forecasting.

JEL subject classification : C0, C01, E0.

Key words and phrases : Generalized dynamic factor models. Vector processes with singular

spectral density. One-sided representations of dynamic factor models. Consistency and rates.

1 Introduction

In the present paper, we provide consistency results and consistency rates for the estimators

recently proposed by Forni, Hallin, Lippi and Zaffaroni (2015) (hereafter, FHLZ) for the

Generalized Dynamic Factor Model (GDFM).

A GDFM, as introduced in Forni et al. (2000) and Forni and Lippi (2001), is a countably

infinite set of observable stochastic processes xit admitting a decomposition of the form

xit = χit + ξit = bi1(L)u1t + bi2(L)u2t + · · ·+ biq(L)uqt + ξit, i ∈ N, t ∈ Z, (1.1)

where ut = (u1t u2t · · · uqt)′ is unobservable q-dimensional orthonormal white noise and the

filters bif (L), i ∈ N, f = 1, . . . , q, are square-summable (L, as usual, stands for the lag oper-
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ator): χit and ξit are called the common and idiosyncratic components, respectively. Detailed

assumptions on (1.1) are given below. Let us only recall here that the idiosyncratic compo-

nents ξit and the common shocks uft are mutually orthogonal at any lead and lag, and that the

idiosyncratic components are “weakly” cross-correlated (cross-sectional orthogonality being

an extreme case).

Much of the literature on Dynamic Factor Models is based on (1.1) under the assumption

that the space spanned by the stochastic variables χit, for t given and i ∈ N, is finite-

dimensional.1 Under that assumption, model (1.1) can be rewritten in the so-called static

representation

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + ξit

Ft = (F1t . . . Frt)
′ = N(L)ut.

(1.2)

Criteria to determine r consistently have been given in Bai and Ng (2002) and, more recently,

in Alessi et al. (2010), Onatski (2010), and Ahn and Horenstein (2013). The vectors Ft and

the loadings λij can be estimated consistently using the first r standard principal components,

see Stock and Watson (2002a,b), Bai and Ng (2002). Moreover, the second equation in (1.2)

is usually specified as a possibly singular VAR, so that (1.2) becomes

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + ξit

D(L)Ft = (I−D1L−D2L
2 − . . .−DpL

p)Ft = Kut,
(1.3)

where the matrices Dj are r× r while K is r× q, r ≥ q. Under (1.3), Bai and Ng (2007) and

Amengual and Watson (2007) provide consistent criteria to determine q.

The assumption of a finite-dimensional factor space, however, is far from being innocuous.

For instance, (1.2) is so restrictive that even the very elementary model

xit = ai(1− αiL)−1ut + ξit, (1.4)

where q = 1, ut is scalar white noise, and the coefficients αi are drawn from a uniform

distribution over the stationary region, is ruled out. In this case, the space spanned, for

given t, by the common components χit, i ∈ N, is easily seen to be infinite-dimensional unless

the αi’s take only a finite number of values.

The problem is that, in the absence of the finite-dimensionality assumption, estimation

of model (1.1) cannot be based on a finite number r of standard principal components. That

1The definition of χit obviously implies that this dimension does not depend on t.
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situation is the one studied in Forni et al. (2000), who are using q principal components in the

frequency domain (Brillinger’s dynamic principal components; see Brillinger (1981)) to esti-

mate the common components χit.
2 However, their estimators involve the application of two-

sided filters acting on the observations xit, and hence perform poorly at the end/beginning

of the observation period. As a consequence, they are of little help for prediction.

In FHLZ, we show how one-sided estimators without the finite-dimensionality assumption

can be obtained, under the additional condition that the common components have a rational

spectral density, that is, each filter bif (L) in (1.1) is a ratio of polynomials in L:

χit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · ·+ ciq(L)

diq(L)
uqt, i ∈ N, f = 1, 2, . . . , q, (1.5)

where

cif (L) = cif,0 + cif,1L+ . . .+ cif,s1L
s1 and dif (L) = dif,0 + dif,1L+ . . .+ dif,s2L

s2

(the degrees s1 and s2 of the polynomials are assumed to be independent of i and f for the

sake of simplicity).

Denote by xt, χχχt, ξξξt the infinite-dimensional column vectors with components xit, χit,

ξit, respectively. Elaborating upon recent results by Anderson and Deistler (2008a, b), FHLZ

prove that, for generic values of the parameters cif,k and dif,k (i.e. apart from a lower-

dimensional subset in the parameter space, see FHLZ for details), the infinite-dimensional

idiosyncratic vector χχχt = (χ1t χ2t · · · χnt · · · )′ admits a unique autoregressive representation

with block structure of the form

A1(L) 0 · · · 0 · · ·

0 A2(L) · · · 0

. . .

0 0 · · · Ak(L)
...

. . .


χχχt =



R1

R2

...

Rk

...


ut, (1.6)

where Ak(L) is a (q+ 1)× (q+ 1) polynomial matrix with finite degree and Rk is (q+ 1)× q.

Denoting by A(L) and R the (infinite) matrices on the left- and right-hand sides of (1.6),

2Criteria to determine q without assuming (1.2) or (1.3) are obtained in Hallin and Lǐska, 2007

and Onatski, 2009.
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respectively, and letting Zt = A(L)xt, it follows that

Zt = Rut + A(L)ξξξt. (1.7)

Under the assumptions of the present paper, the term A(L)ξξξt is still idiosyncratic, so that

(1.7) is a static representation of the form (1.3), with D(L) = I. That static representation

can be estimated via traditional principal components, which does not require two-sided

filters.

FHLZ thus obtain one-sided estimators for the common components without imposing the

standard finite-dimension restriction. Moreover, the high-dimensional VAR (1.6) is obtained

by piecing tothether the low-dimensional matrices Ak(L), each one depending only on the

covariances of q + 1 common components. Therefore, no curse of dimensionality occurs with

the procedure. Estimation of the common components χit, the shocks ut and the filters bif (L)

is based on the sample analogues of representations (1.6) and (1.7):

(i) We start with a lag-window estimator of the spectral density matrix of the observed

vector xnt = (x1t x2t · · · xnt), call it Σ̂̂Σ̂Σx
n(θ).

(ii) Using the first q frequency domain principal components of Σ̂̂Σ̂Σx
n(θ), we construct an

estimator of the spectral density of χχχnt = (χ1t χ2t · · · χnt), call it Σ̂̂Σ̂Σχ
n(θ). Estimators

of the autocovariances of χχχnt are then obtained from Σ̂̂Σ̂Σχ
n(θ); call Γ̂̂Γ̂Γχn,h the estimator

of the covariance between χχχnt and χχχn,t−h. Those Γ̂̂Γ̂Γχn,h’s are used, in a traditional,

low-dimensional way, to construct the autoregressive estimators Âk(L).

(iii) Blockwise estimators of the variables Zjt are obtained by applying the finite-degree

filters Âk(L) to the observed variables xit, while inverting the same Âk(L)’s provides

estimators for the filters bif (L). Estimators for the shocks uft and the matrix Rk are

obtained by using the first q traditional principal components of the variables Zit.

Our consistency results for the estimators described in (ii) and (iii) above are based

on recent results on lag-window spectral estimators in Shao and Wu (2007) and Liu and

Wu (2010), as extended to the multivariate case by Wu and Zaffaroni (2014). Starting with

the observable time series xit, denoting by T the number of observations for each series

and by σ̂ij(θ) a lag-window estimator of the cross-spectrum between xit and xjt, the (i, j)
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entry of Σ̂̂Σ̂Σ(θ), under quite general assumptions on the processes xit, xjt and the kernel,

these papers prove that σ̂ij(θ) is consistent, as T → ∞, uniformly with respect to θ, with

rate
√
BT logBT /T , where BT is the size of the lag window. As an important innovation with

respect to the previous literature on spectral estimation, these results are obtained without

assuming linearity or Gaussianity of the processes xit.

Using of those results here, however, requires some enhancement of the FHLZ assumptions

on the common shocks and the idiosyncratic components. In particular, the vector ut, which

is second-order white noise in FHLZ, is i.i.d. here. This, as well as some other changes

in the FHLZ assumptions, is discussed in detail in Section 2. Under this enhanced set of

assumptions, we prove that the estimators Σ̂̂Σ̂Σχ(θ), Γ̂̂Γ̂Γχ and Âk(L) are consistent with rate

ζnT = max
(√

n−1,
√
T−1BT logBT

)
, (1.8)

where BT diverges as T δ, with 1/3 < δ < 1. Establishing those rates, raises some nontrivial

difficulties. Although model (1.7) is finite-dimensional, indeed, the series Zit are estimated,

not observed. As a consequence, the well-known results from static-factor literature (Stock

and Watson, 2002a and b, Bai and Ng, 2002) do not readily apply, and proving that consis-

tency holds with the same rates ζnT as if Zit were observed requires non negligible efforts.

As pointed out in FHLZ (end of Section 4.5) despite the fact that the dynamic model

studied in this paper is more general than model (1.3), when a dataset is given, with finite n

and T , the static approach might perform well even tough the required finite-dimension

assumptions are not satisfied. A Monte Carlo study is provided in Section 4, in which the

static and dynamic methods have been applied to simulated data. A very short summary of

our results is that (i) when the data are generated by infinite-dimensional models which are

simple generalizations of (1.4), the estimation of impulse-response functions and predictions

via the dynamic method is by far better than those obtained via the static one; (ii) even

when the data are generated by (1.3), still the dynamic method performs slightly better.

Though not conclusive, our Monte Carlo results strongly suggest that the model proposed in

the present paper may be uniformly competitive.

The paper is organized as follows. In Sections 2, we present and comment the main as-

sumptions to be made throughout. Section 3 provides the main asymptotic results. Section 4

gives a detailed description of the Monte Carlo experiments, and their analysis, and Section 5
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concludes. Short proofs are given in the body of the paper, the longer ones in the Appendix.

2 Main assumptions and some preliminary results

2.1 Common and idiosyncratic components

The Dynamic Factor Model studied in the present paper is a decomposition, of the form

xit = χit + ξit, i ∈ N, t ∈ Z

of an observed variable xit into a nonobserved common component χit and a nonobserved

idiosyncratic component ξit. Throughout, we are assuming that the family of stochastic

variables

{xit, χit, ξit, i ∈ N, t ∈ Z},

fulfills the assumptions listed below as Assumptions 1 through 10.

Assumption 1 There exist a natural number q > 0 and

(1) a q-dimensional stochastic zero-mean process ut = (u1t u2t · · · uqt)′, t ∈ Z, and an

infinite-dimensional stochastic process ηηηt = (η1t η2t · · · )′, t ∈ Z;

(2) square-summable filters bif (L), i ∈ N, f = 1, . . . , q;

(3) coefficients βij,k, for i, j ∈ N, k = 0, 1, . . . ,∞, where
∑∞

j=1

∑∞
k=0 β

2
ij,k < ∞ for all i ∈

N;

such that

(i) the vectors St = (u′t ηηη
′
t)
′, t ∈ Z, are i.i.d. and orthonormal, i.e. E(StS

′
t) = I∞; in

particular, cov(uft, ηj,t−k) = 0, f = 1, . . . , q, j ∈ N, k = 0, 1, . . . ,∞;

(ii) χit = bi1(L)u1t + bi2(L)u2t + · · ·+ biq(L)uqt

ξit =

∞∑
j=1

∞∑
k=0

βij,kηj,t−k.
(2.1)
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Clearly, neither ut nor the polynomials bif (L) are identified. Indeed, rewriting the first

equation in (2.1) as χit = bi(L)ut, for any orthogonal matrix Q, the common component χit

has the alternative representation χit =
[
bi(L)Q−1

]
[Qut] = b∗i (L)u∗t . Note that (i) and (2.1)

imply cov(uft, ξi,t−k) = 0 for all f, i, k.

Two differences with respect to FHLZ must be pointed out. Firstly, here ut is i.i.d.,

not just second-order white noise as in FHLZ. Secondly, unlike in FHLZ, the idiosyncratic

components are modeled as (infinite-order) moving averages of the infinite-dimensional i.i.d.

vector ηηηt.

Assumption 2 Conditions on the filters bif (L).

(i) The filters bif (L) are rational. More precisely, there exist natural numbers s1, s2 such

that bif (L) = cif (L)/dif (L), where

cif (L) = cif,0 + cif,1L+ · · ·+ cif,s1L
s1 and dif (L) = 1 + dif,1L+ · · ·+ dif,s2L

s2 , (2.2)

for i ∈ N, f = 1, . . . , q.

(ii) There exists φ > 1 such that none of the roots of dif (L) is less than φ in modulus,

for i ∈ N, f = 1, . . . , q.

(iii) There exists Bχ, 0 < Bχ <∞, such that |cif,j | ≤ Bχ, i ∈ N, f = 1, . . . , q, j = 0, . . . , s1.

Under Assumption 2, the vector χχχnt = (χ1t χ2t · · · χnt)′ has a rational spectral density

matrix ΣΣΣχ
n(θ); denote by λχnj(θ) its j-th eigenvalue (in decreasing order).

Assumption 3 Common component spectral density eigenvalues: divergence and separation.

There exist continuous functions

αχf (θ), f = 1, . . . , q and βχf (θ), f = 0, . . . , q − 1, θ ∈ [−π, π],

and a positive integer nχ such that, for n > nχ,

βχ0 (θ) ≥ λχn1(θ)

n
≥ αχ1 (θ) > βχ1 (θ) ≥ λχn2(θ)

n
≥ · · · ≥ αχq−1(θ) > βχq−1(θ) ≥

λχnq(θ)

n
≥ αχq (θ) > 0,

for all θ ∈ [−π, π].

Assumption 3 is an enhancement of the standard assumption on the eigenvalues of com-

mon components. It will be used in our consistency proof: see, in particular, Lemma 3,

Appendix B.
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Assumption 4 Serial dependence of idiosyncratic components.

There exists finite positive numbers B, Bis, i ∈ N, s ∈ N, and ρ, 0 ≤ ρ < 1, such that

∞∑
s=1

Bis ≤ B, for all i ∈ N (2.3)

∞∑
i=1

Bis ≤ B, for all s ∈ N (2.4)

|βis,k| ≤ Bisρ
k, for all i, s ∈ N and k = 0, 1, . . . (2.5)

An immediate consequence of (2.3) and (2.4) is that

∞∑
i=1

∞∑
s=1

BisBjs ≤ B2, for all j ∈ N. (2.6)

Conditions (2.3) and (2.4) are quite obviously satisfied in the “purely idiosyncratic”

case ξit = ηit, and for finite “cross-sectional moving averages” such as ξit = ηit + ηi+1,t. By

condition (2.5), the time dependence of the variables ξit declines geometrically, at common

rate ρ.

Under Assumption 4, setting βis(L) =
∑∞

k=0 βis,kL
k and ξit =

∑∞
s=1 βis(L)ηst, and de-

noting by ı the imaginary unit,

|βis(e−ıθ)| =

∣∣∣∣∣
∞∑
k=0

βis,ke
−ıkθ

∣∣∣∣∣ ≤
∞∑
k=0

|βis,k| ≤
∞∑
k=0

Bisρ
k ≤ Bis

1

1− ρ
.

Therefore, letting σξij(θ) be the cross-spectral density of ξit and ξjt,

∞∑
i=1

|σξij(θ)| ≤
1

2π

∞∑
i=1

∞∑
s=1

|βis(e−ıθ)βjs(e−ıθ)| ≤ 1

2π(1− ρ)2

∞∑
i=1

∞∑
s=1

BisBjs

≤ B2 1

2π(1− ρ)2
,

(2.7)

by (2.6). Assumption 4 thus implies that the cross-spectra σξij(θ) are bounded, in θ, uniformly

in i and j. On the other hand, Assumption 2, (ii) and (iii), implies that σχij(θ) is bounded,

in θ, uniformly in i and j. Therefore, σxij(θ) = σχij(θ) +σξij(θ) is bounded, in θ, uniformly in i

and j.

The spectral density matrices of the ξ’s and the x’s, and their eigenvalues, ordered in

decreasing order, are denoted by ΣΣΣξ
n(θ), ΣΣΣx

n(θ), λξnj(θ) and λxnj(θ), respectively; under the

above assumptions, they satisfy the following properties.

9



Proposition 1 Under Assumptions 1 through 4,

(i) there exists Bξ > 0 such that λξn1(θ) ≤ Bξ for all n ∈ N and θ ∈ [−π, π] (thus, the ξ’s

are idiosyncratic, see FHLZ, Section 2.2);

(ii) there exists nx ∈ N such that, for n > nx and all θ ∈ [−π, π],

λxn1(θ)

n
> αχ1 (θ) >

λxn2(θ)

n
> · · · > αχq−1(θ) >

λxnq(θ)

n
> αχq (θ),

where the functions αχj (θ) are defined in Assumption 3;

(iii) there exists Bx > 0 such that λxn,q+1(θ) ≤ Bx for all n ∈ N and θ ∈ [−π, π].

Proof. The column and row norms of ΣΣΣξ
n(θ) are equal, and, by (2.7), satisfy

max
j=1,2,...,n

n∑
i=1

|σξij(θ)| ≤ max
j=1,2,...,n

∞∑
i=1

|σξij(θ)| ≤ B
2 1

2π(1− ρ)2
.

On the other hand, the product of the row and the column norms, the square of the column

norm in our case, is greater than or equal to the square of the spectral norm, see Lancaster and

Tismenetsky (1985), p. 366, Exercise 11. As a consequence, setting Bξ = B21/2π(1− ρ)2,

we have λξn1(θ) ≤ Bξ for all n and θ.

Regarding (ii), ΣΣΣx
n(θ) = ΣΣΣχ

n(θ) + ΣΣΣξ
n(θ) implies that

λxnf (θ) ≥ λχnf (θ) + λξnn(θ) and λxnf (θ) ≤ λχnf (θ) + λξn1(θ)

(these are two of the Weyl’s inequalities, see Franklin (2000), p. 157, Theorem 1; see also

Appendix B). By Assumption 3,

λxnf (θ)

n
≥
λχnf (θ) + λξnn(θ)

n
> αχf (θ),

for f = 1, . . . , q, and, for f = 2, . . . , q,

λxnf (θ)

n
≤
λχnf (θ) + λξn1(θ)

n
≤
λχnf (θ)

n
+
Bξ

n
≤ βχf−1(θ) +

Bξ

n
< αχf−1(θ),

for n > nχ, nχ being such that Bξ/nχ < minf=1,2,...,q

[
minθ∈[−π, π](α

χ
f (θ)− βχf (θ))

]
.

As for (iii), λxn,q+1 ≤ λ
χ
n,q+1(θ) + λξn1(θ). On the other hand, λχn,q+1(θ) = 0 for all θ. The

result then follows from (i). �
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Proposition 2 Under Assumptions 1 through 4, the cross-spectral densities σxij(θ) possess

derivatives of any order and are of bounded variation uniformly in i, j ∈ N; namely, there

exists Ax > 0 such that
ν∑
h=1

|σxij(θh)− σxij(θh−1)| ≤ Ax

for all i, j, ν ∈ N and all partitions

−π = θ0 < θ1 < · · · < θν−1 < θν = π

of the interval [−π, π].

Proof. Denoting by γξij,h, h ≥ 0, the covariance between ξit and ξj,t−h,

|γξij,h| =

∣∣∣∣∣
∞∑
k=0

∞∑
s=1

βis,kβjs,k+h

∣∣∣∣∣ ≤
∞∑
k=0

∞∑
s=1

BisBjsρ
kρk+h ≤ ρh

∞∑
k=0

ρ2k
∞∑
s=1

BisBjs ≤ ρh
B2

1− ρ2
,

by (2.6). For h < 0, γξij,h = γξji,−h, so that |γξij,h| ≤ ρ
|h|B2/(1− ρ2). This implies that

σξij(θ) =
1

2π

∞∑
h=−∞

γξij,he
−ıhθ

has derivatives of all orders. Moreover,

|σξij
′
(θ)| = 1

2π

∣∣∣∣∣
∞∑

h=−∞
(−ıh)γξij,he

−ıhθ

∣∣∣∣∣ ≤ B2

π(1− ρ2)

∞∑
h=1

hρh =
B2

π(1− ρ2)(1− ρ)2
,

which entails bounded variation of σξij(θ) uniformly in i and j. Bounded variation of σχij(θ),

uniformly in i and j, is an obvious consequence of Assumption 2. The conclusion follows

from the fact that σxij(θ) = σχij(θ) + σξij(θ). �

2.2 Autoregressive representation of the χ’s

In FHLZ we prove that, for generic values of the parameters cif,k and dif,k in (2.2), the space

spanned by uf,t−k, f = 1, 2, . . . , q, k ≥ 0, is equal to the space spanned by any (q + 1)-

dimensional subvector of χχχt and its lags. In other words, ut is fundamental for all the (q+1)-

dimensional subvectors of χχχt (but not for all q-dimensional ones). Moreover, we prove that,

generically, the (q+ 1)-dimensional subvectors of χχχt admit a finite and unique autoregressive
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representation (see, in particular, Section 4.1, Lemma 3). Following FHLZ, we use these

genericity results as a motivation for assuming that each of the vectors(
χ1t χ2t · · · χq+1,t

)
,
(
χq+2,t χq+3,t · · · χ2(q+1),t

)
, . . . ,

that is, each of the vectors

χχχkt =
(
χ(k−1)(q+1)+1,t · · · χk(q+1),t

)
, k ∈ N,

and its lags spans the space spanned by the u’s and has a unique finite autoregressive repre-

sentation.

Assumption 5 Each vector χχχkt , k ∈ N, has an autoregressive representation

Ak(L)χχχkt = Rkut, (2.8)

where

(i) Ak is (q + 1)× (q + 1), of degree not greater than S = qs1 + q2s2, and Ak(0) = Iq+1;

(ii) Rk is (q + 1)× q and has rank q;

(iii) the representation (2.8) is unique among the autoregressive representations of order

not greater than S, i.e. if B(L)χχχkt = R̃ut, where the degree of B(L) does not exceed S

and B(0) = Iq+1, then B(L) = Ak(L) and R̃ = Rk.

Representation (2.8) is a specification of (1.6) (the degrees of the polynomial matri-

ces Ak(L) and their uniqueness).3 Writing A(L) for the (infinite) block-diagonal matrix

with diagonal blocks A1(L),A2(L), . . ., and letting R = (R1′,R2′, · · · )′, we thus have

A(L)χχχt = Rut. (2.9)

The upper n × n submatrix of A(L) and the upper n × q submatrix of R are denoted

by An(L) and Rn respectively. If n = m(q + 1), so that the first m blocks of size q + 1 are

included,

An(L)χχχnt = Rnut. (2.10)

3Based on a genericity argument, FHLZ assume that (2.8) holds for any (q+ 1)-dimensional vector

(χi1,t χi2,t · · · χiq+1,t), see Assumption A.3. The weaker version in Assumption 5 above is sufficient

for our purposes.
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The following proposition is an immediate consequence of the fact that (2.9) is the dif-

ference between χχχt and its orthogonal projection on its past values; details are left to the

reader.

Proposition 3 Let Assumptions 1 through 5 hold.

(i) Let A∗(L)χχχt = R∗vt, where the degree of A∗(L) is at most S: then, A∗(L) = A(L),

and there exists a q × q orthogonal matrix Q such that R∗ = RQ′ and vt = Qut.

(ii) Let r = (r1 · · · rq) be the row of R (the row of Rk) corresponding to χit: then,

rf = cif (0) = cif,0, f = 1, . . . , q, i ∈ N.

Letting ΨΨΨt = A(L)χχχt = Rut, denote by ΓΓΓψn the variance-covariance matrix of ΨΨΨnt, with

eigenvalues µψnj , j = 1, . . . , n, in decreasing order.

Assumption 6 There exist real numbers αψf , f = 1, . . . , q, βψf , f = 0, . . . , q − 1, and a

positive integer nψ such that, for n > nψ,

βψ0 ≥
µψn1

n
≥ αψ1 > βψ1 ≥

µψn2

n
≥ αψ2 > βψ2 ≥ · · · ≥ α

ψ
q−1 > βψq−1 ≥

µψnq
n
≥ αψq > 0.

Note that the eigenvalues µψnf depend on the coefficients cif,0, see Proposition 3(ii), but

are invariant if R and ut are replaced by RQ′ and Qut respectively.

We now show how the matrices Ak(L) appearing in (2.8) can be constructed from the

spectral density of the χ’s. This construction, with the population quantities replaced by

their estimates, leads to our estimator as explained in Section 3. It proceeds in two steps:

(i) Denoting by ΣΣΣχ
jk(θ) the (q+ 1)× (q+ 1) cross-spectral density between χχχjt and χχχkt , and

by ΓΓΓχjk,s the covariance between χχχjt and χχχkt−s, we have

ΓΓΓχjk,s = E
(
χχχjtχχχ

k
t−s
′ )

=

∫ π

−π
eısθΣΣΣχ

jk(θ)dθ. (2.11)

(ii) The minimum-lag matrix polynomial Ak(L) and the variance-covariance function of

the unobservable vectors

ΨΨΨ1
t = A1(L)χχχ1

t , ΨΨΨ2
t = A2(L)χχχ2

t . . . (2.12)
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follow from that autocovariance function ΓΓΓχkk,s. Indeed, defining

Ak(L) = Iq+1 −Ak
1L− · · · −Ak

SL
S ,

A[k] =
(
Ak

1 Ak
2 · · · Ak

S

)
, Bχ

k =
(
ΓΓΓχkk,1 ΓΓΓχkk,2 · · · ΓΓΓχkk,S

)
(2.13)

and

Cχ
jk =


ΓΓΓχjk,0 ΓΓΓχjk,1 · · · ΓΓΓχjk,S−1

ΓΓΓχjk,−1 ΓΓΓχjk,0 · · · ΓΓΓχjk,S−2
...

...

ΓΓΓχjk,−S+1 ΓΓΓχjk,−S+2 · · · ΓΓΓχjk,0

 , (2.14)

we have

A[k] = Bχ
k

(
Cχ
kk

)−1
= Bχ

k

(
Cχ
kk

)
ad

det
(
Cχ
kk

)−1
, (2.15)

where
(
Cχ
kk

)
ad

stands for the adjoint of the square matrix Cχ
kk.

Non-singularity of Cχ
kk is necessary for the uniqueness of the A[k]’s, and it therefore is

implied by Assumption 5. However, we require a slightly stronger condition to ensure that

the A[k]’s are (uniformly) bounded, in norm, as n tends to infinity.

Assumption 7 There exists a real d > 0 such that det Cχ
kk > d for all k ∈ N.

Letting Zt = A(L)xt, we have

Zt = ΨΨΨt + ΦΦΦt

with ΨΨΨt = Rut ΦΦΦt = A(L)ξξξt.
(2.16)

Denote by ΓΓΓΦ
n the variance-covariance matrix of ΦΦΦnt = (Φ1t Φ2t · · · Φnt) and by µΦ

nj its j-th

eigenvalue: the following holds

Proposition 4 Under Assumptions 1 through 7, there exists BΦ > 0 such that µΦ
n1 ≤ BΦ

for all n ∈ N.

Proof. Let λΦ
nj(θ) be the j-th eigenvalue of the spectral density matrix of ΦΦΦnt. Let us show

that there exists a constant CΦ such that λΦ
n1(θ) ≤ CΦ for all n and θ. Because λΦ

n1(θ), for

all θ, is non-decreasing with n (see Forni and Lippi, 2001), we can assume without loss of

generality that n = m(q + 1). The spectral density of ΦΦΦnt is

An(e−ıθ)ΣΣΣξ
n(θ)A′n(eıθ),
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where An(L) (see equation (2.10)) has the matrices Ak(L) on the diagonal. If a(θ) is an

n-dimensional complex column vector such that a(θ)′a(θ) = 1 for all θ, we have

a(θ)′An(e−ıθ)ΣΣΣξ
n(θ)A′n(eıθ)a(θ) ≤ λξn1(θ)

(
a′(θ)An(e−ıθ)A′n(eıθ)a(θ)

)
≤ λξn1(θ)λAn

1 (θ),

where λAn
1 (θ) is the first eigenvalue of An(e−ıθ)A′n(eıθ), which is Hermitian, non-negative

definite. By Proposition 1 supn λ
ξ
n1(θ) ≤ Bξ. Moreover, given the diagonal structure

of An(L), λAn
1 (θ) = supk=1,2,...,m λ

Ak

1 (θ) ≤ supk∈N λ
Ak

1 (θ), where λA
k

1 (θ) is the first eigenvalue

of Ak(e−ıθ)Ak ′(eıθ). Assumptions 2 and 7 imply that supk∈N λ
Ak

1 (θ) ≤ DΦ for some DΦ > 0

and all θ. On the other hand,

λΦ
n1(θ) = sup a(θ)′An(e−ıθ)ΣΣΣξ

n(θ)A′n(eıθ)a(θ) ≤ BξDΦ,

the sup being over all the vectors a(θ) such that a(θ)′a(θ) = 1. Lastly,

µΦ
n1 = sup b′ΓΓΓΦ

nb =

∫ π

−π

(
b′ΣΣΣΦ

n (θ)b
)
dθ ≤

∫ π

−π
λΦ
n1(θ)dθ ≤ 2πBξDΦ,

the sup being over all the n-dimensional column vectors b such that b′b = 1. �

Note that ΦΦΦt and ΨΨΨt are mutually orthogonal, a consequence of Assumption 1(i). In view

of Assumption 6 and Proposition 4, the model (2.16) is thus a static factor model—a special

case of (1.3), with r = q and N(L) = Iq.

3 Estimation: asymptotics

Our estimation procedure follows the same steps as the population construction in Section 2.2,

with the population spectral density of the x’s replaced with an estimator Σ̂̂Σ̂Σx
n(θ) fulfilling

Assumption 9 below. Based on Forni et al. (2000), we obtain the estimator Σ̂̂Σ̂Σχ
n(θ) by means

of the first q frequency-domain principal components of the x’s (using the first q eigenvectors

of Σ̂̂Σ̂Σx
n(θ)). Then the matrices Γ̂̂Γ̂Γχjk, B̂χ

jk, Ĉχ
jk and Ân(L) are computed as natural counterparts

of their population versions in Section 2.2. Finally, estimators for Rn and ut are obtained

via a standard principal component analysis of Ẑnt = Â(L)xnt. Consistency with exact rate

of convergence ζnT , as defined in equation (1.8), for all the above estimators are provided in

Propositions 7 through 11.
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Explicit dependence on the index n has been necessary in Section 2. From now on, it

will be convenient to introduce a minor change in notation, dropping n whenever possible.

In particular,

(i) ΣΣΣx(θ) =
(
σxij(θ)

)
i,j=1,...,n

and λxf (θ) replace ΣΣΣx
n(θ) and λxnf (θ), respectively.

(ii) ΛΛΛx(θ) denotes the q × q diagonal matrix with diagonal elements λxf (θ).

(iii) Px(θ) denotes the n×q matrix the q columns of which are the unit-modulus eigenvectors

corresponding to ΣΣΣx(θ)’s first q eigenvalues. The columns and entries of Px(θ) are

denoted by Px
f (θ) and pxif (θ), f = 1, . . . , q, i = 1, . . . , n, respectively.

(iv) ΣΣΣχ(θ) =
(
σχij(θ)

)
i,j=1,...,n

, λχf (θ), ΛΛΛχ(θ), Pχ(θ), ΣΣΣξ(θ), etc. are defined as in (i).

(v) All the above matrices and scalars depend on n; the corresponding estimators,

Σ̂̂Σ̂Σx(θ), λ̂xf (θ), Λ̂̂Λ̂Λx(θ), P̂x(θ) and Σ̂̂Σ̂Σχ(θ), λ̂χf (θ), Λ̂̂Λ̂Λχ(θ), P̂χ(θ)

(precise definitions are provided below) depend both on n and the observed values

xit, i = 1, . . . , n, t = 1, . . . , T . For simplicity, we say that they depend on n and T .

(vi) The same notational change applies to ΓΓΓψn and related eigenvalues and eigenvectors.

(vii) A(L) and R, denoting the upper left n × n and n × q submatrices of A(L) and R,

respectively, are used instead of An(L) and Rn; Â(L) and R̂ stand for their estimated

counterparts.

(viii) To avoid confusion, however, we keep explicit reference to n in xnt, χχχnt, Znt etc.,

with estimated counterparts of the form χ̂̂χ̂χnt, Ẑnt, etc.; thus, we write, for instance,

Znt = A(L)xnt = Rut + ΦΦΦnt.

(ix) Lastly, if F is a matrix, we denote by F̃ its conjugate transpose, and by ||F|| its spectral

norm (see Appendix B).

3.1 Estimation of ΣΣΣx(θ)

The following definition, coined by Wu (2005), generalizes the usual measures of time depen-

dence for stochastic processes.
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Definition 1 Physical dependence. Let εεεt be an i.i.d. stochastic vector process, possibly

infinite-dimensional, and let zt = F (εεεt, εεεt−1, . . .), where F : [R×R×· · · ]→ R is a measurable

function; assume that zt has finite p moment for p > 0. Let εεε∗ be a stochastic vector with

the same dimension and distribution as the εεεt’s, such that εεε∗ and εεεt are independent for all t.

For k ≥ 0 the physical dependence δ
[zt]
kp is defined as

δ
[zt]
kp = (E (|F (εεεk, . . . , εεε0, εεε−1, . . .)− F (εεεk, . . . , εεε

∗, εεε−1, . . .)|p))1/p .

Assumption 8 There exist p, A, with p > 4, 0 < A <∞, such that

E (|uft|p) ≤ A, E (|ηit|p) ≤ A, (3.1)

for all i ∈ N and f = 1, . . . , q.

The main result of the section, that the estimate of the cross-spectral density between xit

and xjt converges uniformly with respect to the frequency and to i and j, see Proposition 6,

requires the following results on the p-th moments and the physical dependence of the x’s.

Proposition 5 Under Assumptions 1 through 8, there exist ρ1 ∈ (0, 1) and A1 ∈ (0,∞)

such that, for all i ∈ N,

E (|xit|p) ≤ A1 and δ
[xit]
kp ≤ A1ρ

k
1. (3.2)

Proof. By the Minkovski inequality,

(E (|xit|p))
1
p = (E (|χit + ξit|p))

1
p ≤ (E (|χit|p))

1
p + (E (|ξit|p))

1
p .

Using the Minkovski inequality again, condition (2.3) and Assumption 8, we obtain

(E (|ξit|p))
1
p =

(
E

(∣∣∣∣∣
∞∑
s=1

∞∑
k=0

βis,kηs,t−k

∣∣∣∣∣
p)) 1

p

≤
∞∑
s=1

∞∑
k=0

(E (|βis,kηs,t−k|)p)
1
p

≤
∞∑
s=1

∞∑
k=0

|βis,k|E (|ηs,t−k|p)
1
p ≤ A

1
p

∞∑
s=1

∞∑
k=0

Bisρ
k ≤ A

1
pB

1

1− ρ
.

An analogous inequality can be obtained for the common components, using Assumption 2

and the first of inequalities (3.1). The first inequality in (3.2) follows.
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Turning to the second inequality, for k ≥ 0,

ξik − ξ∗ik =
∞∑
s=1

βis,k(ηsk − η∗s),

where ξ∗ik has the same definition as ξik, with ηs0 replaced by η∗s . The Minkovski inequality,

condition (2.3) and Assumption 8 imply

δ
[ξit]
k,p =

(
E

(∣∣∣∣∣
∞∑
s=1

βis,k(ηsk − η∗s)

∣∣∣∣∣
p)) 1

p

≤
∞∑
s=1

(E (|βis,k(ηsk − η∗s)|p))
1
p

≤ ρk
∞∑
s=1

Bis (E (|ηsk − η∗s)|p))
1
p ≤ ρk2BA

1
p .

An analogous inequality can be ontained for the common components, using Assumption 2

and the first of inequalities (3.1), with ρ replaced by φ−1, φ being defined in Assumption 2.

Then,

δ
[xit]
kp = (E |xit − x∗it|p)

1
p =

(
E (|(χit − χ∗it) + (ξit − ξ∗it)|p)

1
p

)
≤ (E (|χit − χ∗it|)

p)
1
p + (E (|ξit − ξ∗it|)

p)
1
p = δ

[χit]
kp + δ

[ξit]
kp .

The conclusion follows. �

Consider now the lag-window estimator

Σ̂̂Σ̂Σx(θ) =
1

2π

T−1∑
k=−T+1

K

(
k

BT

)
e−ıkθΓ̂̂Γ̂Γxk, (3.3)

of the spectral density ΣΣΣx(θ), where Γ̂̂Γ̂Γxk = 1
T
∑T

t=|k|+1 xtxt−|k|.

Assumption 9 Lag-window estimation of ΣΣΣx(θ).

(i) The kernel function K is even, bounded, with support [−1, 1]; moreover,

(1) for some κ > 0, limu→0 |K(u)− 1| = O(|u|κ),

(2)
∫∞
−∞K

2(u)du <∞,

(3)
∑

j∈Z sup|s−j|≤1 |K(jw)−K(sw)| = O(1) as w → 0;

(ii) For some c1, c2 > 0, δ and δ such that 0 < δ < δ < 1 < δ(2κ+ 1), c1T
δ ≤ BT ≤ c2T

δ.

Proposition 6 Under Assumptions 1 through 9, there exists C > 0 such that

E

(
max
|h|≤BT

∣∣σ̂xij(θ∗h)− σxij(θ∗h)
∣∣2) ≤ C (T−1BT logBT

)
, (3.4)

where θ∗h = πh/BT , for all T , i and j in N.[MF: I would write θh instead of θ∗h both here and

in Prop. 7]
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See Appendix A for the proof.

3.2 Estimation of σχij(θ) and γχij,k

Our estimator of the spectral density matrix of the common components χχχnt is the Forni

et al. (2000) estimator Σ̂̂Σ̂Σχ(θ) = P̂x(θ)Λ̂̂Λ̂Λx(θ) ˜̂Px(θh).

Proposition 7 Under Assumptions 1 through 7,

max
|h|≤BT

|σ̂χij(θ
∗
h)− σχij(θ

∗
h)| = OP (ζnT ) ,

where θ∗h = πh/BT , as T → ∞ and n → ∞, uniformly in i and j. Precisely, for any ε > 0,

there exists η(ε), independent of i and j, such that, for all n and T ,

P

(
maxh≤BT

|σ̂χii(θ∗h)− σχii(θ∗h)|
ζnT

≥ η(ε)

)
< ε.

See Appendix B for the proof.

Our estimator of the covariance γχij,` of χit and χj,t−` is, as in Forni et al. (2005),

γ̂χij,` =
π

BT

∑
|h|≤BT

eı`θ∗h σ̂χij(θ
∗
h), (3.5)

where θ∗h = πh/BT . Recalling that γχij,` =
∫ π
−π e

ı`θσχij(θ)dθ, we have
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|γ̂χij,` − γ
χ
ij,`| ≤

π

BT

∑
|h|≤BT

|eı`θ∗h σ̂χij(θ
∗
h)− eı`θ∗hσχij(θ

∗
h)|

+

∣∣∣∣∣∣ πBT
∑
|h|≤BT

eı`θ∗hσχij(θ
∗
h)−

∫ π

−π
eı`θσχij(θ)dθ

∣∣∣∣∣∣
≤ π

BT

∑
|h|≤BT

|σ̂χij(θ
∗
h)− σχij(θ

∗
h)|

+
π

BT

∑
|h|≤BT

max
θ∗h−1≤θ≤θ

∗
h

|eı`θ∗hσχij(θ
∗
h)− eı`θσχij(θ)|

≤ π max
|h|≤BT

|σ̂χij(θ
∗
h)− σχij(θ

∗
h)| +

πB

BT

∑
|h|≤BT

max
θ∗h−1≤θ≤θ

∗
h

|eı`θ∗h − eı`θ|

+
π

BT

∑
|h|≤BT

max
θ∗h−1≤θ≤θ

∗
h

|σχij(θ
∗
h)− σχij(θ)|

≤ π max
|h|≤BT

|σ̂χij(θ
∗
h)− σχij(θ

∗
h)| (3.6)

+
πB

BT

∑
|h|≤BT

(
|eı`θ∗h−1 − eı`θ̃∗h−1 |+ |eı`θ̃∗h−1 − eı`θ∗h−1 |

)
+
π

BT

∑
|h|≤BT

(
|σχij(θ

∗
h−1)− σχij(θ̌

∗
h−1)|+ |σχij(θ̌

∗
h−1)− σχij(θ

∗
h)|
)
,

whereB is the bound in Proposition 1(i), and θ̃∗h−1 and θ̌∗h−1 are points in the interval [θh−1, θh]

where the functions of θ, |ei`θ∗s − ei`θ| and |σij(θ∗s)− σij(θ)|, respectively, attain a maximum.

Of course, the function eı`θ is of bounded variation, while the functions σχij(θ) are of bounded

variation by Assumption 2, so that the second and third terms are O(1/BT ).

Using Proposition 7, we obtain that |γ̂χij,` − γ
χ
ij,`| is OP (ζnT ) + O(1/BT ). Since ζnT =

max(1/
√
n, 1/

√
T/BT log T ), the latter term is absorbed in the former under Assumption 10

below. Proposition 8 follows.

Assumption 10 The lower bound δ in Assumption 9 satisfies δ > 1/3.

Proposition 8 Under Assumptions 1 through 10, for each ` ≥ 0,

|γ̂χij,` − γ
χ
ij,`| = OP (ζnT ) , (3.7)

as T →∞ and n→∞.
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3.3 Estimation of Ak(L)

Under our assumptions, the common component admits the block-diagonal vector autore-

gressive representation (1.5) of finite order. If the χt’s were observed, estimation by OLS

would be appropriate. However, although we do not observe the χt’s, we do have (consistent)

estimates of their autocovariance function. This naturally leads to a Yule-Walker estimator

of the autoregressive coefficients and the innovation covariance matrix. The definition of Â[k]

then is straightforward from (2.13), (2.14) and (2.15).

Proposition 9 Under Assumptions 1 through 10, ‖Â[k] − A[k]‖ = OP (ζnT ) as T → ∞

and n→∞.

See Appendix C for the proof.

3.4 Estimation of R and ut

We start with Znt = ΨΨΨnt + ΦΦΦnt = Rut + ΦΦΦnt. The covariance matrix of ΨΨΨnt is

RR′ = PψΛΛΛψPψ′ = Pψ(ΛΛΛψ)1/2(ΛΛΛψ)1/2Pψ′,

where ΛΛΛψ is q×q with the non-zero eigenvalues of RR′ on the main diagonal, while Pψ is n×q

with the corresponding eigenvectors on the columns. Thus, we have the representation

Znt = Pψ(ΛΛΛψ)1/2vt + ΦΦΦnt = Rvt + ΦΦΦnt,

say, where vt = Hut, with H orthogonal. Note that, for given i and f , the (i, f) entry of R

depends on n, so that the matrices R are not nested; nor is vt independent of n. However,

the product of each row of R by vt yields the corresponding coordinate of ΨΨΨnt which does

not depend on n.

Our estimator of R = Pψ(ΛΛΛψ)1/2 is R̂ = P̂z(Λ̂̂Λ̂Λz)1/2, where P̂z and Λ̂̂Λ̂Λz are the eigenvectors

and eigenvalues, respectively, of the empirical variance-covariance matrix of Ẑnt = Â(L)xnt,

that is, xnt filtered with the estimated matrices Â(L). This, as already observed, is the

reason for the complications we have to deal with in Appendix D.

Proposition 10 Under Assumptions 1 through 10, ‖R̂i − RiŴq‖ = OP (ζnT ), as T → ∞

and n → ∞, where Ri is the i-th row of R, and Ŵq is a q × q diagonal matrix, depending

on n and T , whose diagonal entries are either 1 or −1.
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See Appendix D for the proof.

Let us point out again that the i-th row ofR depends on n. Therefore, Proposition 10 only

states that the difference between the estimated entries of R̂ and the entries of R converges

to zero (upon sign correction), not that the estimated entries converge. Now, suppose that

the common shocks can be identified by means of economically meaningful statements. For

example, suppose that we have good reasons to claim that the upper q × q matrix of the

“structural” representation is lower triangular with positive diagonal entries (an iterative

scheme for the first q common components). As is well known, such conditions determine a

unique representation, denote it by Zt = R∗u∗t + ΦΦΦt, or Znt = R∗u∗t + ΦΦΦt, where the n × q

matrices R∗ are nested. In particular, starting with Znt = Rvt+ΦΦΦnt, there exists exactly one

orthogonal matrix G(R) (actually G(R) only depends on the q × q upper submatrix of R)

such that R∗ = RG(R). Thus, while the entries of R depend on n, the entries of RG(R) do

not.

Applying the same rule to R̂ we obtain the matrices R̂∗ = R̂G(R̂). It is easily seen

that each entry of R̂∗ (depending on n and T ) converges to the corresponding entry of R∗

(independent of n and T ) at rate ζnT .

Lastly, define the population impulse-response functions as the entries of the n × q ma-

trix B∗(L) = A(L)−1R∗, and their estimators as those of B̂∗(L) = Â(L)−1R̂∗. Denoting

by b∗if (L) = b∗if,0 + b∗if,1L + · · · and b̂∗if (L) = b̂∗if,0 + b̂∗if,1L + · · · , respectively, such entries,

Propositions 9 and 10 imply that |b̂∗if,k − b∗if,k| = OP (ζnT ) for all i, f and k.

An iterative identification scheme will be used in Section 4 to compare different estimates

of the impulse-response functions.4

Our estimator of vt is simply the projection of ẑt on P̂z(Λ̂z)−1/2, namely,

v̂t = ((Λ̂z)1/2P̂z′P̂z(Λ̂z)1/2)−1(Λ̂z)1/2P̂z′ẑt = (Λ̂z)−1/2P̂z′ẑt.

For that estimation v̂t we have the following consistency result.

Proposition 11 Under Assumptions 1 through 10, ‖v̂t − Ŵqvt‖ = OP (ζnT ), as T → ∞

and n → ∞, where Ŵq is a q × q diagonal matrix, depending on n and T , whose diagonal

4All just-identifying rules considered in the SVAR literature can be dealt with along the same lines,

see Forni et al. (2009).
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entries equal either 1 or −1.

See Appendix E for the proof.

[PZ The finite-dimensional representation in the Znt allows to re-write the model is state

space. Therefore, the loadings R and the dynamic factors vt can be estimated by a quasi

maximum likelihood estimation approach based on the Kalman recursion. Doz, Giannone

and Reichlin (2011,2012) establish the asymptotic theory for this estimation procedure when

the Znt are observed. Besides the additional difficulty of dealing with estimated Znt, possible

gains from using the Kalman filter in our context are likely to be rather limited in practice:

as discussed in Doz et al (2012), making use of the state space of the finite-dimensionl GDFM

is justified whenever the common factors are truly dynamic, such as for instance when these

follow a vector autoregression. In our case, the finite-dimensional representation of the GDFM

in the Znt has white-noise common factors. Hence, the static principal estimator, here studied,

and the quasi maximum likelihood estimator will exhibit in practice very similar statistical

properties. 5 ]

3.5 Estimation and cross-sectional ordering

A fundamental feature of econometric panel data is that cross-sectional ordering is completely

arbitrary. Hence, sensible concepts, and sensible inference methods, as a rule, should be in-

variant under the n! permutations of cross-sectional units. While all definitions above (com-

mon and idiosyncratic components, dynamic eigenvalues and principal components, etc.), as

well as the estimation method proposed in Forni et al. (2000), clearly are insensitive to such

permutations, the FHLZ one-sided estimation method, as just described, is not. The ordering

of the panel indeed has a crucial impact on the selection of the (q+ 1)-dimensional blocks in

the autoregressive representation of Section 2.2.

In principle, any permutation of the n cross-sectional items—more precisely, any of

the n!/(n/(q+ 1))!(q+ 1)!n/(q+1) permutations that lead to distinct partitions of {1, 2, . . . , n}

into n/(q+ 1) subsets of size (q+ 1)—yield distinct estimators, all enjoying the properties we

have been establishing for those associated with the “original” ordering. Those estimators

5Indeed, the static principal components coincide precisely with the maximum likelihood estimator

when the factors are white-noise and the idiosyncratic component has a spherical covariance matrix.
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somehow should be aggregated into a unique one, which should improve performances while

restoring permutational invariance.

If we assume that the n cross-sectional indices are determined randomly, and that all n!

orderings are equally probable, averaging the the n! resulting estimators seems quite natural.

An arbitrarily ordered panel—for instance, the one resulting from ordering the observations

at time t = 1 from smallest to largest—then is a sufficient statistic. If that statistic also

can be assumed complete, the Rao-Blackwellization of the associated estimators leads to an

arithmetic mean of the n! estimators resulting from the n! possible cross-sectional orderings

(see Chapter 2 of Lehmann and Casella 1998). The celebrated Lehmann-Scheffé Theorem

then tells us that this arithmetic mean minimizes the expected square deviation among all

estimators sharing the same bias (as the original one; ibid., page 88).

Now, performing n! dynamic factor analyses and estimations on an n-dimensional panel,

even for moderately large values of n, is infeasible. However, in practice, it appears that,

selecting a few permutations at random and averaging the corresponding estimators leads to

rapidly stabilizing results: see Section 4 for practical details and a numerical illustration.

4 A simulation exercise

In this section, we evaluate numerically the performance of the estimation methods studied in

the previous sections. We focus on (i) estimation of impulse response function, (ii) estimation

of structural shocks and (iii) one-step-ahead forecasts. Regarding (i) and (ii), we compare

FHLZ with the method proposed in Forni et al. (2009), referred to as FGLR. As regards

(iii), the results of FHLZ are compared to the method in Stock and Watson (2002a), referred

to as SW. Let us recall that both FGLR and SW assume the existence of the static factor

representation (1.3), and are based on ordinary principal components. We generate artificial

data according to two simple models: (I) a dynamic factor model with no static factor model

representation (so that neither FGLR nor SW are consistent) and (II) a model admitting a

static factor model representation (under which all methods are consistent).
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4.1 Data-generating processes

We consider the following data-generating processes.

Model I (no static factor model representation)

xit = ai1(1− αi1L)−1u1t + ai1(1− αi2L)−1u2t + ξit.

We generate ujt, j = 1, 2 and ξit, i = 1, . . . , n, t = 1, . . . , T as i.i.d. standard Gaussian

variables; aji as independent variables, uniformly distributed on the interval [−1, 1]; αji as

independent variables, uniformly distributed on the interval [−0.8, 0.8].

Estimation of the shocks and the impulse-response functions requires an identification

rule. Our exercise is based on a Choleski identification scheme on the first q variables.

Precisely, denote by Bq(0) the matrix with bif (0), i = 1, 2, . . . , q, f = 1, 2, . . . , q, in the (i, f)

entry, and let H be the lower triangular matrix with positive diagonal entries such that

HH′ = Bq(0)Bq(0)′. Then, the “structural” shocks, denoted by u∗t , and the impulse-response

functions, denoted by b∗i (L), are b∗i (L) = bi(L)Bq(0)−1H and u∗t = H′Bq(0)′ut, respectively.

Model II (with static factor representation)

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + ξit

Ft = DFt−1 + Kut.

Here Ft = (F1t . . . Frt)
′ and ut = (u1t . . . uqt)

′, D is r × r and K is r × q. Again, ujt,

j = 1, . . . , q and ξit, i = 1, . . . , n, t = 1, . . . , T are i.i.d. standard Gaussian and mutually

independent white noises. Moreover, λhi, h = 1, . . . , r, i = 1, . . . , n and the entries of K

are independently, uniformly distributed on the interval [−1, 1]. Finally, the entries of D are

generated as follows: first we generated entries independently, uniformly distributed on the

interval [−1, 1]; second, we divided the resulting matrix by its spectral norm to obtain unit

norm; third, we multiplied the resulting matrix by a random variable uniformly distributed

on the interval [0.4, 0.9], to ensure stationarity while preserving sizable dynamic responses.

Precisely, bi(L) = λλλi(I−DL)−1K, λλλn being the 1×r matrix having λih as its (i, h) entry. To

identify the “structural” shocks u∗t and the corresponding impulse response functions b∗i (L)

we impose a Cholesky identification scheme on the first q variables as in Model I.
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4.2 Estimation details and accuracy evaluation

Let b∗if (L) =
∑∞

k=0 b
∗
if,kL

k be the f -th entry of b∗i (L). Our target is estimation of b∗if,k,

i = 1, . . . , n, f = 1, . . . , q, k = 0, . . . ,K and u∗ft, f = 1, . . . , q, t = 1, . . . , T , as well as

forecasting of xiT+1, i = 1, . . . , n.

The structural impulse response functions and the structural shocks are estimated by the

FHLZ and the FGLR method. For FHLZ, the number of lags for each (q + 1)-dimensional

VAR is determined by the BIC criterion. The contemporaneous and lagged covariances

of the common components needed to compute the VAR coefficients are estimated by the

FHLR (2000) dynamic principal component method, with a Bartlett lag window of size

BT =
√
T . As regards FGLR, we estimate a VAR for the principal components of the data.

The number of principal components is either assumed known or determined by Bai and

Ng’s ICp2 criterion, the number of lags is determined by the BIC criterion. The number of

structural shocks is assumed to be known: such condition is obviously needed when estimating

the structural shocks and impulse response functions. Identification is obtained by imposing

the Cholesky scheme above.

Regarding prediction, FHLZ forecasts are computed by filtering the estimated shocks

with the estimated impulse response functions:

x̂i,T+1 =

q∑
f=1

(
b̂∗if,1û

∗
fT + b̂∗if,2û

∗
f,T−1 + · · ·

)
.

The number of structural shocks is no longer assumed known. Rather, it is estimated by the

Hallin and Lǐska (2007) method.6 SW forecasts are obtained by regressing xi,T+1 onto either

the ordinary principal components at T and xiT , or the principal components at T alone.

The former method corresponds to the original Stock and Watson (2002a) method; the latter

is motivated by the fact that in both of the models above the idiosyncratic components are

serially uncorrelated. The number of principal components is determined with Bai and Ng’s

ICp2 criterion.

The estimation error for the impulse-response functions is defined as the normalized sum

of the squared deviations of the estimated from the “structural” impulse response coefficients.

6We used the log criterion ICT
2;n with penalty function p1 and lag window equal to

√
T . The

“second stability interval” was evaluated over the grid nj = b(3n/4 + jn/40)c, Tj = T , j = 1, . . . , 10.
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Precisely, let b̂∗if,k be the estimated impulse-response coefficient of variable i, shock f , lag k:

the estimation error on the impulse response functions is measured by∑n
i=1

∑q
f=1

∑K
k=0

(
b̂∗if,h − b∗if,h

)2

∑n
i=1

∑q
f=1

∑K
k=0(b∗if,k)

2
.

The truncation lag K is set to 60. Similarly, denoting by û∗ft the estimate of u∗ft, the estima-

tion error on the “structural” shocks is measured by∑q
f=1

∑T
t=1

(
û∗ft − u∗ft

)2

∑q
f=1

∑T
t=1(u∗ft)

2
.

Finally, the accuracy of the forecast is measured by the sum of the squared deviations of the

forecasts from the unfeasible forecasts obtained by filtering the true structural shocks with

the true structural impulse response functions, i.e. xPiT+1 =
∑q

f=1

∑T
k=1 b

∗
if,ku

∗
fT+1−k. Again,

we normalize by dividing by the sum of the squared targets:∑n
i=1

(
x̂iT+1 − xPiT+1

)2∑n
i=1(xPiT+1)2

.

Model I is evaluated for different sample size combinations, with n = 30, 60, 120, 240

and T = 60, 120, 240, 480. Model II is evaluated for a fixed sample size of n = 120 and T = 240,

but different configurations of q and r, i.e. r = 4, 6, 8, 12 and q = 2, 4, 6, r > q.7 For each

couple (n, T ), Model I, and (r, q), Model II, we generated 500 data sets and computed the

average MSE.

4.3 Cross-sectional permutations

As explained in Section 3.5, the estimators obtained via the FHLZ method should be aver-

aged over n! permutations of cross-sectional items. In order to study the influence of such

permutations, we simulated 500 datasets from Model I and various values of n and T . For

each of the resulting panels, we computed (with the Choleski identification rule described

in Section 4.1) the estimated impulse response functions averaged over m = 1, . . . ,M ran-

domly chosen permutations. For each value of m, the MSEs (over the 500 replications) of

the averaged estimators wee recorded, leading to the following conclusions:

7We impose r > q since for the case r = q, method FHLZ, the regressors of the q + 1-dimensional

VARs are asymptotically collinear.
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Figure 1: Model I. Average MSE of estimated impulse response functions over 500 experiments, as

a function of the number of random reorderings of the variables used in estimation.

(i) as expected, estimates corresponding to different random permutations do differ;

(ii) averaging those estimates yields a clear improvement in the MSE;

(iii) the rate of that improvement declines steadily as the number m of permutations

increases, and rapidly stabilizes until additional permutations produce negligible effect;

(iv) as n and T increase, the improvement decreases, both in absolute and relative terms,

and the number of permutations required for “stabilization” decreases: 10 for (n = 60,

T = 120), only 5 for (n = 240, T = 480).

Results are reported in Figure 1.

Summing up, averaging over random permutations until the resulting estimates stabilize

is essentially equivalent to averaging over the n! possible permutations, hence restores the

independence of the FHLZ method with respect to the panel ordering, while significantly

improving the small-sample performance of FHLZ. Such averaging moreover does not modify

the asymptotic results of Section 3.
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4.4 Results

We now turn to a performance comparison between the FHLZ method and its competitors.

Table 1 reports the results for the estimation of impulse response functions and structural

shocks, Model I. The upper panel reports results for the FHLZ method without averaging;

the central panel for the FHLZ with averaging over 30 reorderings; the lower panel for the

FGLR method. The estimates obtained with FGLR, despite being theoretically inconsistent,

approach the target as n and T get larger. This is because the number of estimated static

factors increases with n and T , so that the static model achieves a fairly good approximation

of the underlying “infinite-factor” model.8 However, FHLZ clearly outperforms FGLR. Re-

garding impulse response functions, FHLZ, with and without averaging, dominates the static

method for all n-T configurations. The error is up to 50-60% smaller than the one of FGLR.

As for the shocks, the performance of FHLZ with averaging is similar to that of FGLR for

large T , but dominates FGLR for small T .Forecast results are reported in Table 2. Not surprisingly, the SW method (central and

lower panels) performs better when lagged x’s are not included among the regressors, ow-

ing to the fact that the idiosyncratic components are serially uncorrelated. Indeed, we are

comparing forecasts of the common components of the x’s, i.e. the χ’s, rather than the x’s

themselves. FHLZ forecasts (with averaging) outperforms SW for all (n, T ) configurations,

with an improvement ranging from 20 to 40%.9 Observe that here we no longer impose the

correct q, but estimate it with Hallin and Lǐska’s (2007) criterion, so that both forecasts in

the upper an central panels are feasible.

Table 3 reports results for Model II, estimation of impulse response functions and struc-

tural shocks. Here both FHLZ and FGLR are consistent. Somewhat surprisingly, FHLZ (with

averaging, upper panel) over-performs FGLR for all (r, q) configurations. With this model,

Bai and Ng’s criterion tends to underestimate the number of factors.10 Hence, we computed

the (unfeasible) FGLR estimation obtained by imposing the correct r (lower panel), to see

whether the above result can be ascribed to underestimation of r. In general, FGLR performs

better when imposing the correct number of factors; nonetheless, FHLZ still exhibits the best

8The average r̂ is 2.01 for n = 30, T = 60 and 4.00 for n = 240, T = 480.
9FHLZ without averaging, not reported here, performs better than SW but worse than FHLZ with

averaging, in line with the results in Table 1.
10On average, r̂ is smaller than r for all n and T configurations.
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Table 1: Model I, estimated impulse response functions and structural shocks. Average and standard

deviation (in brackets) of normalized MSE across 500 data sets of different size. For the static method,

the number of static factors is determined by Bai and Ng’s ICp2 criterion.

Impulse response functions Structural shocks

T 60 120 240 480 60 120 240 480

n FHLZ method , no averaging

30 0.93 (0.51) 0.54 (0.34) 0.32 (0.11) 0.22 (0.11) 0.84 (0.48) 0.59 (0.31) 0.48 (0.11) 0.45 (0.06)

60 0.68 (0.39) 0.41 (0.26) 0.25 (0.11) 0.17 (0.04) 0.55 (0.45) 0.38 (0.26) 0.30 (0.12) 0.28 (0.04)

120 0.58 (0.34) 0.34 (0.11) 0.22 (0.04) 0.15 (0.03) 0.38 (0.42) 0.23 (0.13) 0.18 (0.05) 0.16 (0.03)

240 0.55 (0.32) 0.33 (0.12) 0.21 (0.04) 0.15 (0.02) 0.31 (0.40) 0.17 (0.15) 0.11 (0.05) 0.10 (0.02)

n FHLZ method , with averaging

30 0.66 (0.31) 0.39 (0.19) 0.23 (0.06) 0.15 (0.04) 0.64 (0.30) 0.49 (0.18) 0.41 (0.07) 0.39 (0.05)

60 0.54 (0.29) 0.32 (0.15) 0.18 (0.05) 0.12 (0.03) 0.45 (0.32) 0.32 (0.16) 0.25 (0.05) 0.24 (0.03)

120 0.48 (0.24) 0.28 (0.10) 0.17 (0.04) 0.11 (0.02) 0.32 (0.29) 0.21 (0.11) 0.15 (0.04) 0.14 (0.02)

240 0.46 (0.23) 0.27 (0.09) 0.16 (0.04) 0.10 (0.02) 0.25 (0.29) 0.15 (0.10) 0.10 (0.04) 0.08 (0.02)

n static factor method (FGLR)

30 0.86 (0.45) 0.52 (0.20) 0.38 (0.07) 0.31 (0.05) 0.74 (0.45) 0.51 (0.20) 0.42 (0.08) 0.38 (0.06)

60 0.71 (0.38) 0.45 (0.13) 0.34 (0.05) 0.20 (0.03) 0.54 (0.44) 0.34 (0.15) 0.27 (0.05) 0.23 (0.04)

120 0.63 (0.32) 0.42 (0.09) 0.33 (0.04) 0.28 (0.03) 0.40 (0.38) 0.24 (0.11) 0.17 (0.05) 0.13 (0.03)

240 0.60 (0.28) 0.42 (0.10) 0.32 (0.03) 0.27 (0.02) 0.32 (0.34) 0.19 (0.13) 0.12 (0.04) 0.08 (0.02)

performance in most cases.

Forecasts errors, reported in Table 4, confirm the result that FHLZ performs better than

SW for most (r, q) configurations.

5 Conclusions

An estimate of the common-component spectral density matrix Σ̂̂Σ̂Σχ is obtained using the

frequency-domain principal components of the observations xit. The central idea of the

present paper is that, because Σ̂̂Σ̂Σχ has large dimension but small rank q, a factorization of Σ̂̂Σ̂Σχ

can be obtained piecewise. Precisely, the factorization of Σ̂̂Σ̂Σχ only requires the factorization

of (q + 1)-dimensional subvectors of χχχt. Under our assumption of rational spectral density

for the common components, this implies that the number of parameters to estimate grows

as n, not n2.
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Table 2: Model I, one-step-ahead forecasts. Average and standard deviation (in brackets) of the

normalized mean square deviation from the population forecasts across 500 data sets of different size.

For the dynamic method, the number of dynamic factors is determined by Hallin and Lǐska’s log

criterion. For the static method, the number of static factors is determined by Bai and Ng’s ICp2

criterion.

T = 60 T = 120 T = 240 T = 480

FHLZ method, with averaging

n = 30 0.97 (0.65) 0.91 (1.06) 0.73 (0.61) 0.74 (0.67)

n = 60 0.82 (0.32) 0.68 (0.35) 0.59 (0.95) 0.50 (0.35)

n = 120 0.74 (0.21) 0.58 (0.16) 0.47 (0.27) 0.39 (0.22)

n = 240 0.70 (0.18) 0.53 (0.14) 0.41 (0.14) 0.33 (0.14)

static factor method (SW), with lagged x’s

n = 30 2.58 (3.46) 1.65 (2.99) 1.12 (1.81) 0.89 (0.88)

n = 60 2.17 (2.22) 1.28 (1.00) 0.99 (2.31) 0.73 (0.61)

n = 120 1.94 (1.53) 1.16 (0.72) 0.83 (0.90) 0.64 (0.43)

n = 240 1.87 (1.51) 1.08 (0.62) 0.75 (0.47) 0.60 (0.35)

static factor method (SW), no lagged x’s

n = 30 1.90 (2.62) 1.33 (2.05) 0.94 (0.95) 0.80 (0.74)

n = 60 1.52 (1.54) 1.02 (0.75) 0.86 (1.84) 0.68 (0.54)

n = 120 1.32 (0.89) 0.89 (0.48) 0.72 (0.66) 0.61 (0.39)

n = 240 1.24 (0.69) 0.82 (0.41) 0.64 (0.38) 0.56 (0.33)

The rational spectral density assumption also has the important consequences that χχχt has

a finite autoregressive representation and that the dynamic factor model can be transformed

into the static model zt = Rvt + φφφt, where zt = A(L)xt. We construct estimators for

A(L), R and vt starting with a standard non-parametric estimator of the spectral density of

the x’s. This implies a slower rate of convergence as compared to the usual T−1/2. However,

in Section 3, we prove that our estimators for A(L), R and vt do not undergo any further

reduction in their speed of convergence.

The main difference of the present paper with respect to previous literature on GDFM’s

is that although we make use of a parametric structure for the common components, we do

not make the standard, but quite restrictive assumption that our dynamic factor model has

a static representation of the form (1.3). Section 4 provides important empirical support to

the richer dynamic structure of unrestricted GDFM’s.
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Table 3: Model II, estimated impulse response functions and structural shocks. Average and standard

deviation (in brackets) of the normalized MSE across 500 data sets with different configurations of

static and dynamic factors. For the static method, the number of static factors is determined by Bai

and Ng’s ICp2 criterion.

Impulse response functions Structural shocks

r 4 6 8 12 4 6 8 12

q FHLZ method, with averaging

2 0.13 (0.05) 0.11 (0.05) 0.10 (0.05) 0.09 (0.07) 0.17 (0.08) 0.12 (0.07) 0.10 (0.06) 0.08 (0.07)

4 0.15 (0.09) 0.15 (0.11) 0.14 (0.15) 0.27 (0.15) 0.22 (0.16) 0.17 (0.17)

6 0.17 (0.09) 0.15 (0.10) 0.34 (0.13) 0.24 (0.16)

FGLR method, r determined with ICp2

2 0.16 (0.14) 0.16 (0.13) 0.15 (0.13) 0.12 (0.14) 0.21 (0.25) 0.17 (0.26) 0.12 (0.19) 0.08 (0.13)

4 0.18 (0.15) 0.19 (0.16) 0.20 (0.23) 0.35 (0.26) 0.31 (0.28) 0.23 (0.28)

6 0.20 (0.13) 0.22 (0.15) 0.43 (0.22) 0.35 (0.25)

FGLR method , r assumed known

2 0.10 (0.07) 0.09 (0.07) 0.08 (0.07) 0.07 (0.06) 0.17 (0.14) 0.13 (0.13) 0.12 (0.10) 0.11 (0.06)

4 0.14 (0.12) 0.15 (0.14) 0.14 (0.19) 0.28 (0.22) 0.25 (0.23) 0.21 (0.23)

6 0.18 (0.13) 0.17 (0.14) 0.38 (0.21) 0.28 (0.21)

Table 4: Model II, one-step-ahead forecasts. Average and standard deviation (in brackets) of the

normalized mean square deviations from the population forecasts, across 500 data sets with different

configurations of static and dynamic factors. For the dynamic method, the number of dynamic factors

is determined by Hallin and Lǐska’s log criterion. For the static method, the number of static factors

is determined by Bai and Ng’s ICp2 criterion.

r = 4 r = 6 r = 8 r = 12

FHLZ method, with averaging

q = 2 0.79 (1.59) 0.68 (0.75) 0.59 (0.97) 0.56 (0.52)

q = 4 0.44 (0.36) 0.44 (0.28) 0.40 (0.20)

q = 6 0.40 (0.28) 0.38 (0.18)

static factor method (SW), no lagged x’s

q = 2 1.00 (2.10) 0.67 (1.04) 0.52 (64) 0.49 (0.66)

q = 4 0.61 (1.37) 0.53 (0.67) 0.43 (0.37)

q = 6 0.50 (0.58) 0.42 (0.34)
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Appendix

A Proof of Proposition 6

Adding and subtracting E(σ̂xij(θ
∗
h)) within the absolute value in E

(
max
|h|≤BT

∣∣σ̂xij(θ∗h)− σxij(θ∗h)
∣∣2 )

and re-arranging gives

E
(

max
|h|≤BT

∣∣σ̂xij(θ∗h)− σxij(θ∗h)
∣∣2 ) ≤ E( max

|h|≤BT

∣∣σ̂xij(θ∗h)− Eσ̂xij(θ∗h)
∣∣2 )+

(
max
|h|≤BT

∣∣Eσ̂xij(θ∗h)− σxij(θ∗h)
∣∣2 ).

The first term (variance) on the right hand satisfies

E
(

max
|h|≤BT

∣∣σ̂xij(θ∗h)− Eσ̂xij(θ∗h)
∣∣2 ) ≤ C(BT logBT /T ),

by Lemma 10 of Wu and Zaffaroni (2015) with ν = 2. Specifically, assumptions 1 and 2 of

Wu and Zaffaroni (2015) are implied by ours and, moreover, δ
[xit]
kp ≤ A1ρ

k
1, by our Proposition

5, implying Θ
[i]
0,4 ≤ A1/(1− ρ1) <∞.

As for the second (squared bias) term, simple calculations give

Eσ̂xij(θ)− σxij(θ) =
1

2π

( T−1∑
u=−T+1

e−ıuθ(1− u

T
)γxij,uK(

u

BT
)−

∞∑
u=−∞

e−ıuθγxij,u

)
.

Smoothness of the cross-spectra σxij(θ) and standard arguments (see for instance Theorem

V.4.10, p.282, of Hannan, 1970) imply that

max
|h|≤BT

∣∣Eσ̂xij(θ∗h)− σxij(θ∗h)
∣∣2 ≤ CB−2κ

T ≤ CT−2δκ.

The constant C is independent of i, j since, for some 0 < ρ1 < 1 and constant C1, for every

i, j ∈ N

|γxij,u| ≤ |γ
χ
ij,u|+ |γ

ξ
ij,u| ≤ C1ρ

u
1

by Assumption 2 and Proposition 2. Finally, note that the squared bias term tends to zero

faster than O(BT logBT /T ) whenever 1 < δ(2κ+ 1). �

B Proof of Proposition 7

The proof below closely follows Forni et al. (2009). Denote by µj(A), j = 1, 2, . . . , s, the

(real) eigenvalues, in decreasing order, of a complex s × s Hermitian matrix A, and by
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‖B‖ =
√
µ1(B̃B) the spectral norm of an s1 × s2 matrix B. The norm ‖B‖ coincides with

the Euclidean norm of B when B is a column matrix and is equal to |µ1(B)| when B is square

and Hermitian. Recall that, if B1 is s1 × s2 and B2 is s2 × s3, then

‖B1B2‖ ≤ ‖B1‖‖B2‖. (B.1)

We will use the fact that, for any two s× s Hermitian matrices A1 and A2,

|µj(A1 + A2)− µj(A1)| ≤ ‖A2‖, j = 1, . . . , s. (B.2)

This fact is an obvious consequence of Weyl’s inequality µj(A1 + A2) ≤ µj(A1) + µ1(A2)

(Franklin, 2000, p. 157, Theorem 1).

The proof of Proposition 7 is divided into several intermediate propositions. Denote by Si

the n × 1 matrix with 1 in entries (i, 1) and 0 elsewhere, so that S ′1A is the i-th row of A,

and define ρT = T/BT logBT .

As most of the arguments below depend on equalities and inequalities that hold for

all θ ∈ [−π, π], the notation has been simplified by dropping θ. Properties holding for

max|h|≤BT
F (θh), where F is some function of θ, are often phrased as holding for F uniformly

in θ. The meaning of uniformity in i, or i and j, has been clarified in the statement of

Proposition 7.

All lemmas in this Appendix hold and are proved under Assumptions 1 through 10.

Lemma 1 As T → ∞ and n→∞,

(i) max|h|≤BT
n−1‖Σ̂̂Σ̂Σx −ΣΣΣx‖ = OP (ρ

−1/2
T );

(ii) max|h|≤BT
n−1/2‖S ′i(Σ̂̂Σ̂Σx −ΣΣΣx)‖ = OP (ρ

−1/2
T ) uniformly in i;

(iii) max|h|≤BT
n−1‖Σ̂̂Σ̂Σx −ΣΣΣχ‖ = OP (max(n−1, ρ

−1/2
T ));

(iv) max|h|≤BT
n−1/2‖S ′i(Σ̂̂Σ̂Σx −ΣΣΣχ)‖ = OP (max(n−1/2, ρ

−1/2
T )) = OP (ζnT ) uniformly in i.

Proof. We have

µ1((Σ̂̂Σ̂Σx −ΣΣΣx)(
˜̂
Σ
˜̂
Σ̂̃Σx − Σ̃̃Σ̃Σx)) ≤ trace((Σ̂̂Σ̂Σx −ΣΣΣx)(

˜̂
Σ
˜̂
Σ̂̃Σx − Σ̃̃Σ̃Σx)) =

n∑
i=1

n∑
j=1

|σ̂xij − σxij |2.

Using (3.4) and the Markov inquality,

n−2 max
|h|≤BT

n∑
i=1

n∑
j=1

|σ̂xij − σxij |2 ≤ n−2
n∑
i=1

n∑
j=1

max
|h|≤BT

|σ̂xij − σxij |2 ≤ Cρ−1
T .
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Statement (i) follows. In the same way,

n−1S ′i(Σ̂̂Σ̂Σx −ΣΣΣx)(
˜̂
Σ
˜̂
Σ̂̃Σx − Σ̃̃Σ̃Σx)Si = n−1

n∑
j=1

|σ̂xij − σxij |2 ≤ Cρ−1
T ,

where C is independent of i. Statement (ii) follows. As regards (iii), ΣΣΣx = ΣΣΣχ + ΣΣΣξ implies

that Σ̂̂Σ̂Σx −ΣΣΣχ = Σ̂̂Σ̂Σx −ΣΣΣx + ΣΣΣξ, so that, by the triangle inequality for matrix norm,

‖Σ̂̂Σ̂Σx −ΣΣΣχ‖ ≤ ‖Σ̂̂Σ̂Σx −ΣΣΣx‖+ ‖ΣΣΣξ‖.

The statement follows from (i) and the fact that ‖ΣΣΣξ‖ = λξ1 is bounded. Statement (iv) is

obtained in a similar way, using (ii) instead of (i). �

Lemma 2 As T → ∞ and n→∞,

(i) max|h|≤BT
n−1

∣∣∣λ̂xf − λχf ∣∣∣ = OP (max(n−1, ρ
−1/2
T )) for f = 1, 2, . . . , q;

(ii) letting

Gχ =

 Iq if λχq = 0,

n(ΛΛΛχ)−1 otherwise,
and Ĝx =

 Iq if λ̂xq = 0,

n(Λ̂̂Λ̂Λx)−1 otherwise,
,

max|h|≤BT
n−1‖ΛΛΛχ‖ and max|h|≤BT

‖Gχ‖ are O(1), max|h|≤BT
n−1‖Λ̂̂Λ̂Λx‖ and max|h|≤BT

‖Ĝx‖

are OP (1).

Proof. Setting A1 = ΣΣΣχ and A2 = Σ̂̂Σ̂Σx −ΣΣΣχ, (B.2) yields |λ̂xf − λ
χ
f | ≤ ‖Σ̂̂Σ̂Σ

x −ΣΣΣχ‖; hence,

statement (i) follows from Lemma 1 (iii). Boundedness of n−1‖ΛΛΛχ‖ and ‖Gχ‖, uniformly

in θ, is a consequence of Assumption 3. Boundedness in probability of n−1‖Λ̂̂Λ̂Λx‖ and ‖Ĝx‖,

uniformly in θ, follows from statement (i). �

Lemma 3 As T → ∞ and n→∞,

(i) max|h|≤BT
n−1‖P̃χP̂xΛ̂̂Λ̂Λx −ΛΛΛχP̃χP̂x‖ = OP (max(n−1, ρ

−1/2
T ));

(ii) max|h|≤BT
‖ ˜̂PxPχP̃χP̂x − Iq‖ = OP (max(n−1, ρ

−1/2
T ));

(iii) there exist diagonal complex orthogonal matrices Ŵq = diag(ŵ1 ŵ2 · · · ŵq), |ŵj |2 = 1,

j = 1, . . . , q depending on n and T , such that max|h|≤BT
‖ ˜̂PxPχ−Ŵq‖ = OP (max(n−1, ρ

−1/2
T )).

Proof. Using inequality (B.1) and the fact that ‖P̃χ‖ = ‖P̂x‖ = 1, we have

‖P̃χP̂xΛ̂̂Λ̂Λx −ΛΛΛχP̃χP̂x‖ = ‖P̃χ(Σ̂̂Σ̂Σx −ΣΣΣχ)P̂x‖ ≤ ‖Σ̂̂Σ̂Σx −ΣΣΣχ‖.
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Statement (i) thus follows from Lemma 1 (iii). Turning to (ii), set

a = ˜̂PxPχP̃χP̂x, b =
[
˜̂PxPχP̃χP̂x

]
n−1Λ̂̂Λ̂ΛxĜx = ˜̂PxPχ

[
P̃χP̂xn−1Λ̂̂Λ̂Λx

]
Ĝx,

c = ˜̂PxPχ
[
n−1ΛΛΛχP̃χP̂x

]
Ĝx=

[
n−1 ˜̂PxΣΣΣχP̂x

]
Ĝx, d =

[
n−1 ˜̂PxΣ̂̂Σ̂ΣxP̂x

]
Ĝx = n−1Λ̂̂Λ̂ΛxĜx,

and f = Iq; we have∥∥∥ ˜̂PxPχP̃χP̂x − Iq

∥∥∥ ≤ ‖a− b‖+ ‖b− c‖+ ‖c− d‖+ ‖d− f‖. (B.3)

Using Lemma 2, statement (i), and the boundedness in probability, uniformly in θ, of ‖ ˜̂PxPχ‖,

‖Ĝx‖ and ‖ ˜̂PxPχP̃χP̂x‖, all terms on the right-hand side of inequality (B.3) can be shown

to be OP (max(n−1, ρ
−1/2
T )), uniformly in θ.

Turning to (iii), note that, from statement (i), n−1 ˜̂Px
hPχ

k (λχk−λ̂
x
h) = OP (max(n−1, ρT

−1/2)).

Assumption 3 (asymptotic separation of the eigenvalues λχf (θ)) implies that, for h 6= k,

˜̂Px
hPχ

k = OP (max(n−1, ρT
−1/2)). Moreover,

∑q
f=1 |

˜̂Px
hPχ

f |
2 − 1 = OP (max(n−1, ρT

−1/2))

from statement (ii). Therefore,

| ˜̂Px
hPχ

h|
2 − 1 = (| ˜̂Px

hPχ
h| − 1)(|P̃χ

hP̂x
h|+ 1) = OP (max(n−1, ρT

−1/2)).

The conclusion follows. �

Note that Lemma 3 clearly also holds for n−1‖ ˜̂PxPχΛΛΛχ− Λ̂̂Λ̂Λx ˜̂PxPχ‖, ‖P̃χP̂x ˜̂PxPχ − Iq‖

and ‖ ˜̂PχP̂x − ˜̂Wq‖.

Lemma 4 As T → ∞ and n→∞,

max
|h|≤BT

‖S ′i
(
Pχ(ΛΛΛχ)1/2Ŵq − P̂x(Λ̂̂Λ̂Λx)1/2

)
‖ = OP (ζnT ), (B.4)

uniformly in i.

Proof. We have

‖S ′i(Pχ(ΛΛΛχ)1/2Ŵq − P̂x(Λ̂̂Λ̂Λx)1/2)‖ ≤ ‖S ′i(n1/2PχŴq − n1/2P̂x)(n−1ΛΛΛχ)1/2‖

+‖S ′iP̂x(n−1/2(ΛΛΛχ)1/2 − n−1/2(Λ̂̂Λ̂Λx)1/2)‖.

By Lemma 2 (i), thus, we only need to prove that

‖n1/2S ′iPχŴq − n1/2S ′iP̂x‖ = OP (max(n−1/2, ρT
−1/2)).
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Firstly, we show that

‖n1/2S ′iPχ‖ ≤ A, (B.5)

for some A and all θ and i. Assumption 2 implies that σχii =
∑q

f=1 λ
χ
f |p

χ
if |

2 ≤ B, for some B

and all θ and i. As all the terms in the sum are positive, λχf |p
χ
if |

2 = (λχf /n)n|pχif |
2 ≤ B, for

all θ and i. By Assumption 3, λχf /n ≥ C > 0 for all θ and f , so that n|pχif |
2 ≤ D for all θ

and i. Hence, n S ′iPχP̃χSi is bounded uniformly in θ and i; (B.5) follows. Next, define

g = n1/2S ′iPχ
[
Ŵq

]
, h = n1/2S ′iPχ

[
P̃χP̂x

]
= n1/2S ′iPχ[P̃χP̂xΛ̂x/n](Λ̂x/n)−1,

i = n1/2S ′iPχ[(Λχ/n)P̃χP̂x](Λ̂x/n)−1 = [n−1/2S ′iΣΣΣχ]P̂x(Λ̂x/n)−1,

and
j = [n−1/2S ′iΣ̂̂Σ̂Σx]P̂x(Λ̂x/n)−1 = n1/2S ′iP̂x.

Lemma 3(iii) and inequality (B.5) imply that ‖g−h‖ is OP (max(n−1, ρT
−1/2)) uniformly in θ

and i. Inequality (B.5), Lemma 3(i) and Lemma 2(ii) imply that ‖h−i‖ isOP (max(n−1, ρT
−1/2))

uniformly in θ and i. Moreover, ‖P̂x(Λ̂x/n)−1‖ = OP (1), uniformly in θ, by Lemma 2(ii)

and the fact that ||P̂x|| = 1. Thus, using Lemma 1(iv), it is seen that, uniformly in θ and i,

‖i− j‖ is OP (max(n−1/2, ρT
−1/2)). The result follows. �

Proposition 7 now follows from

Σ̂̂Σ̂Σχ =

[
P̂x
(
Λ̂̂Λ̂Λx
)1/2

] [(
Λ̂̂Λ̂Λx
)1/2 ˜̂Px

]
= P̂χΛ̂̂Λ̂Λχ ˆ̃P

χ
.

and

ΣΣΣχ =
[
Px (ΛΛΛx)1/2 Ŵq

] [
ˆ̃Wq (ΛΛΛx)1/2 P̃x

]
= PχΛΛΛχP̃χ.

�

Note that the eigenvectors Pχ are defined up to post-multiplication by a complex diagonal

matrix with unit modulus diagonal entries. In particular, using the eigenvectors ΠΠΠχ = PχŴq,

(B.4) would hold for ΠΠΠχ(ΛΛΛχ)1/2− P̂x(Λ̂̂Λ̂Λx)1/2 . For the sake of simplicity, we avoid introducing

a new symbol and henceforth refer to the result of Lemma 4 as

max
|h|≤BT

‖S ′1(Pχ(ΛΛΛχ)1/2 − P̂x(Λ̂̂Λ̂Λx)1/2)‖ = OP (max(n−1/2, ρT
−1/2)) (B.6)

and the result of Lemma 3(iii) as

‖ ˜̂PxPχ − Iq‖ = OP (max(n−1, ρT
−1/2)).

In the same way, we drop Ŵq in Lemmas 6, 7, 8, though not in the conclusion of Appendix D,

nor in Appendix E.
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C Proof of Proposition 9

To start with, note that, as the extreme right-hand side in (3.6) contains the term

πB

BT

∑
|h|≤BT

(
|eı`θ∗h−1 − eı`θ̃∗h−1 |+ |eı`θ̃∗h−1 − eı`θ∗h−1 |

)
,

convergence in (3.7) is not uniform with respect to `. However, estimation of the matrices Bχ
k

and Cχ
jk only requires the covariances γ̂χij,` with ` ≤ S, where S is finite. Therefore, Propo-

sition 8 implies that ‖B̂χ
k −Bχ

k‖ and ‖Ĉχ
jk −Cχ

jk‖ are OP (max(n−1/2, ρ
−1/2
T )). From (2.15),

applying (B.1),

‖Â[k] −A[k]‖ ≤ ‖B̂χ
k‖‖(Ĉ

χ
kk)
−1 −

(
Cχ
kk

)−1 ‖+ ‖B̂χ
k −Bχ

k‖‖
(
Cχ
kk

)−1 ‖.

By Assumption 2, ‖Bχ
k‖ ≤ W for some constant W > 0, so that ‖B̂χ

k‖ is bounded in

probability. By Assumptions 2 and 7, ‖
(
Cχ
kk

)−1 ‖ ≤ W1 for some W1 > 0. Observing that

the entries of
(
Cχ
kk

)−1
are rational functions of the entries of Cχ

kk, and that det
(
Cχ
kk

)
> 0 by

Assumption 7, Proposition 8 implies that ‖(Ĉχ
kk)
−1 −

(
Cχ
kk

)−1 ‖ is OP (max(n−1/2, ρ
−1/2
T )).

The conclusion follows. �

D Proof of Proposition 10

Consider the static model Znt = Rvt + ΦΦΦnt. If Znt = A(L)xnt were observed, i.e. if the

matrices A(L) were known, then Proposition 10, with an estimator of R based on the em-

pirical covariance ΓΓΓz of the Znt, would be straightforward. However, we only have access to

Ẑnt = Â(L)xt and its empirical covariance matrix Γ̂̂Γ̂Γ
z
, which makes the estimation ofR signifi-

cantly more difficult. The consistency properties of our estimator follow from the convergence

result (D.4) in Lemma 11, which establishes the asymptotic behavior of the difference ΓΓΓz−Γ̂̂Γ̂Γ
z
;

Lemmas 5 through 10 are but a preparation for that key result. All lemmas in this Appendix

hold, and are proved under Assumptions 1 through 10.

Lemma 5 For f = 1, . . . , q, as T → ∞ and n→∞,

(i) | pχif |= O(n−1/2) and | p̂xif |= OP (n−1/2), uniformly in θ and i;

(ii) for any positive integer d, n−1
∑n

i=1 | p
χ
if |

d and n−1
∑n

i=1 | p̂xif |d are O(n−d/2)

and OP (n−d/2), respectively, uniformly in θ.
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Proof. The first part of (i) follows from B.5. As regards the second part, let us first prove

that σ̂xii is OP (1) uniformly in θ and i. We have

max
h

σ̂xii(θh) ≤ max
h

σxii(θh) + max
h
|σ̂xii(θh)− σxii(θh)|.

By Assumptions 2 and 4, the first term on the right-hand side is bounded uniformly in i. By

the Markov inequality and (3.4),

P (max
h
|σ̂xii(θh)− σxii(θh)| ≥ η) ≤ η−2E

(
max
|h|≤BT

|σ̂xii(θ∗h)− σxii(θ∗h)|2
)

≤ η−2C(T−1BT logBT )

Thus, for any ε > 0, we can set

η(ε) ≥
[

maxT C(T−1BT logBT )

ε

]1/2

,

irrespectively of θh and i. Because σ̂χii ≤ σ̂xii, we have that σ̂χii =
∑q

f=1 λ̂
x
f |p̂xif |2 = OP (1)

uniformly in θ and i. As all the terms in the sum are positive, λ̂xf |p̂xif |2 = (λ̂xf/n)n|p̂xif |2

is OP (1) as well, uniformly in θ and i. Lemma 2 (i) and Assumption 3 imply that λ̂xf/n

is OP (1) and bounded away from zero in probability uniformly in θ. The conclusion follows.

Statement (ii) is proved by induction. Consider Pχ
f . It follows from statement (i)

that n−1
∑n

i=1 |p
χ
if | is O

(
n−1/2

)
, uniformly in θ. Assume now that the result holds for d− 1,

with d ≥ 2. Using the first part of (i), uniformity in i in particular, we have

n−1
n∑
i=1

| pχif |
d = n−1

n∑
i=1

| pχif |
d−1| pχif |

≤
(
max
i≤n
|pχif |

)
n−1

n∑
i=1

| pχif |
d−1= O(n−1/2 n−(d−1)/2) = O

(
n−d/2

)
.

The same argument applies to P̂x
f . �

Lemma 6 As T → ∞ and n→∞,

max
|h|≤BT

∥∥∥Pχ
(
ΛΛΛχ
)1/2 − P̂x

(
Λ̂̂Λ̂Λx
)1/2∥∥∥ = OP (n1/2 max(n−1, ρ

−1/2
T )). (D.1)

Proof. The left-hand side of (D.1) equals the left-hand side of (B.4) when Si is replaced

by In. The proof goes along the same lines as that of Lemma 4. Firstly, ‖n1/2Pχ‖ is O(n1/2).
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Both ‖g−h‖ and ‖h− i‖ are OP (n1/2 max(n−1, ρ
−1/2
T )). As for ‖i− j‖, the conclusion follows

from Lemma 1 (iii). �

Lemma 7 For f = 1, . . . , q, as T → ∞ and n→∞, |pχif−p̂
x
if | = OP (n−1/2 max(n−1/2, ρ

−1/2
T )),

uniformly in θ and i.

Proof. By (B.6), pχif (λχf )1/2 − p̂xif (λ̂xf )1/2 = OP (max(n−1/2, ρ
−1/2
T )), uniformly in θ and i.

Now,

pχif (λχf )1/2 − p̂x(λ̂xf )1/2 = pχif

(
(λχf )1/2 − (λ̂xf )1/2

)
+ (λ̂xf )1/2

(
pχif − p̂

x
if

)
. (D.2)

The former term on the right-hand side can be written as

n1/2pχif
(λχf − λ̂

x
f )/n(

(λχf )1/2 + (λ̂xf )1/2
)
/n1/2

,

which isOP (max(n−1, ρ
−1/2
T )), uniformly in θ and i, since the numerator isOP (max(n−1, ρ

−1/2
T )),

uniformly in θ, by Lemma 2(i); the denominator is bounded away from zero, uniformly in θ,

by Assumption 3 and n1/2pχif is O(1), uniformly in θ and i, by Lemma 5(i). It follows that

the latter term in (D.2), (λ̂xf )1/2
(
pχif − p̂

x
if

)
, is OP (max(n−1/2, ρ

1/2
T )), uniformly in θ and i.

By Lemma 2(ii), n−1/2(λ̂xf )1/2 is bounded away from zero in probability, uniformly in θ. The

result follows. �

Lemma 8 For any integer d ∈ N, for f = 1, . . . , q, as T → ∞ and n→∞,

n−1
n∑
i=1

| pχif − p̂
x
if |d= OP ((n−1 max(n−1, ρ−1

T ))d/2), (D.3)

uniformly in θ.

Proof. Lemma 7 implies that
(
maxi≤n | pχif−p̂

x
if |
)
, and therefore n−1

∑n
i=1 | p̂xif − p

χ
if |,

are OP ((n−1 max(n−1, ρ−1
T ))1/2), uniformly in θ. By induction, assume now that the result

holds for d− 1, d ≥ 2. We have

n−1
∑n

i=1 | p
χ
if − p̂

x
if |d = n−1

∑n
i=1 | p

χ
if − p̂

x
if |d−1| pχif − p̂

x
if |

≤
(
maxi≤n | pχif−p̂

x
if |
)
n−1

∑n
i=1 | p

χ
if−p̂

x
if |d−1

= OP ((n−1 max(n−1, ρ−1
T ))1/2) OP

(
(n−1 max(n−1, ρ−1

T ))(d−1)/2
)
,

uniformly in θ, as was to be shown. �
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Lemma 9 For n→∞ and T →∞, uniformly in θ,

(i) n−2
n∑
i=1

n∑
j=1

| σ̂χij(θ)− σ
χ
ij(θ)|

d = OP ((max(n−1, ρ−1
T ))d/2);

(ii) n−1
n∑
i=1

| σ̂χij(θ)− σ
χ
ij(θ) |

d= OP ((max(n−1, ρ−1
T ))d/2) for any 1 ≤ j ≤ n;

(iii) n−1
n∑
i=1

| σ̂χii(θ)− σ
χ
ii(θ) |

d= OP ((max(n−1, ρ−1
T ))d/2).

Proof. We have

σ̂χij − σ
χ
ij = (λ̂x1 − λ

χ
1 )p̂xi1

¯̂pxj1 + · · ·+ (λ̂xq − λχq )p̂xiq
¯̂pxjq + λχ1 p̂

x
i1(¯̂pxj1 − p̄

χ
j1)

+λχ1 p̄
χ
j1(p̂xi1 − p

χ
i1) + . . .+ λχq p̂

x
iq(

¯̂pxjq − p̄
χ
jq) + λχq p̄

χ
jq(p̂

x
iq − p

χ
iq).

Using the triangular and Cr inequalities, by Lemmas 2, 5 and 8,

n−2
n∑
i=1

n∑
j=1

| σ̂χij − σ
χ
ij |

d

≤ (3q)d−1
(
| λχ1 − λ̂

x
1 |d

(
n−1

n∑
i=1

| p̂xi1 |d
)2

+ · · ·+ | λχq − λ̂xq |d
(
n−1

n∑
i=1

| p̂xiq |d
)2)

+ (3q)d−1(λχ1 )d
(
n−2

n∑
i=1

| p̂xi1 |d
n∑
j=1

| pχj1 − p̂
x
j1 |d +n−2

n∑
j=1

| pχj1 |
d

n∑
i=1

| pχi1 − p̂
x
i1 |d

)
+ · · ·

+ (3q)d−1(λχq )d
(
n−2

n∑
i=1

| p̂xiq |d
n∑
j=1

| pχjq − p̂
x
jq |d +n−2

n∑
j=1

| pχjq |
d

n∑
i=1

| pχiq − p̂
x
iq |d

)
= OP ((max(n−1, ρ

−1/2
T ))d) +OP ((max(n−1, ρ−1

T ))d/2) = OP ((max(n−1, ρ−1
T ))d/2).

Statement (i) follows. For statement (ii),

n−1
n∑
i=1

| σ̂χij − σ
χ
ij |

d

≤ (3q)d−1
(
| λχ1 − λ̂

x
1 |d|p̂xj1|d n−1

n∑
i=1

|p̂xi1|d + · · ·+ | λχq − λ̂xq |d |p̂xjq|d n−1
n∑
i=1

| p̂xiq |d
)

+ (3q)d−1(λχ1 )d
( ∣∣∣pχj1 − p̂xj1∣∣∣d n−1

n∑
i=1

|p̂xi1|
d +

∣∣∣pχj1∣∣∣d n−1
n∑
i=1

| pχi1 − p̂
x
i1 |d

)
+ · · ·

+ (3q)d−1(λχq )d
(∣∣∣pχjq − p̂xjq∣∣∣d n−1

n∑
i=1

∣∣p̂xiq∣∣d +
∣∣∣pχjq∣∣∣d n−1

n∑
i=1

| pχiq − p̂
x
iq |d

)
= OP ((max(n−1, ρ

−1/2
T ))d) +OP ((max(n−1, ρ−1

T ))d/2) = OP ((max(n−1, ρ−1
T ))d/2).

Statement (iii) follows along the same lines, by setting j = i. �
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Lemma 10 For n → ∞ and T → ∞, n−2
S∑
`=0

n∑
i=1

n∑
j=1

| γ̂χij,` − γ
χ
ij,`|

d and, for any given j

in {1, . . . , n}, n−1
S∑
`=0

n∑
i=1

| γ̂χij,` − γ
χ
ij,` |

d, are OP
(
(max(n−1, ρ−1

T ))d/2
)
.

Proof. We have |γ̂χij,` − γ
χ
ij,`| ≤ Uij + V` +Wij , where Uij , V` and Wij are the terms in the

extreme right-hand side of (3.6). Using the Cr inequality, we get

n−2
n∑
i=1

n∑
j=1

|γ̂χij,0 − γ
χ
ij,0|

d ≤ n−23d−1
n∑
i=1

n∑
j=1

Udij + n−23d−1
n∑
i=1

n∑
j=1

Vd` + n−23d−1
n∑
i=1

n∑
j=1

Wd
ij .

The first term on the right-hand side is bounded in view of Lemma 9. Since ` takes only a

finite number of values, the second term is O(B−dT ) (see the proof of Proposition 9). Because

the functions σxij are of bounded variation uniformly in i and j, see Proposition 2, the third

term is O(B−dT ). The same argument used to obtain Proposition 8 applies. The second

statement is proved in the same way. �

We are now able to state and prove the main lemma of this section. Assume, without

loss of generality, that n increases by blocks of size q + 1, so that n = m(q + 1).

Lemma 11 Denoting by Ẑ the T ×n matrix with Ẑit in entry (t, i), let Γ̂̂Γ̂Γz = Ẑ′Ẑ/T. Then,

as n→∞ and T →∞,

n−1‖Γ̂̂Γ̂Γz −ΓΓΓz‖ = OP (ζnT ) and n−1/2‖S ′i(Γ̂̂Γ̂Γz −ΓΓΓz)‖ = OP (ζnT ), (D.4)

where Γz is the population covariance matrix of Znt.

Proof. Denote by Γ̌z = Z′Z/T the empirical covariance matrix we would compute from

the Znt’s, were the matrices A(L) known. We have

‖Γ̂̂Γ̂Γz −ΓΓΓz‖ ≤ ‖Γ̂̂Γ̂Γz − Γ̌̌Γ̌Γz‖+ ‖Γ̌̌Γ̌Γz −ΓΓΓz‖, (D.5)

so that the lemma can be proved by showing that (D.4) holds with ‖Γ̂̂Γ̂Γz − ΓΓΓz‖ replaced by

any of the two terms on the right-hand side of (D.5).

First consider ‖Γ̌̌Γ̌Γz −ΓΓΓz‖. Since A(L) = In −A1L− · · · −ASL
S , where

As =


A1
s 0 · · · 0

0 A2
s · · · 0

...
. . .

0 0 · · · Am
s

 , s = 1, . . . , S
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and A0 = In, we obtain

‖Γ̌̌Γ̌Γz−ΓΓΓz‖2≤
S∑
s=0

S∑
r=0

‖AsΓ̂̂Γ̂Γ
x
s−rA

′
r−AsΓΓΓ

x
s−rA

′
r‖2 =

S∑
s=0

S∑
r=0

‖As

(
Γ̂̂Γ̂Γxs−r−ΓΓΓxs−r

)
A′r‖2, (D.6)

which is a sum of (S + 1)2 terms, where we set Γ̂̂Γ̂Γxs−r = T−1
∑T

t=1 xt−rx
′
t−s. Inspection of

the right-hand side of (D.6) shows that (D.4) holds, with ‖Γ̂̂Γ̂Γz −ΓΓΓz‖ replaced with ‖Γ̌̌Γ̌Γz −ΓΓΓz‖,

under Assumptions 2 and 7, and in view of Propositions 2 and 6.

Turning to ‖Γ̂̂Γ̂Γz − Γ̌̌Γ̌Γz‖, since

‖Γ̂̂Γ̂Γz − Γ̌̌Γ̌Γz‖2 ≤
S∑
s=0

S∑
r=0

‖ÂsΓ̂̂Γ̂Γ
x
s−rÂ

′
r −AsΓ̂̂Γ̂Γ

x
s−rA

′
r‖2,

it is sufficient to prove that (D.4) still holds with ‖Γ̂̂Γ̂Γz − ΓΓΓz‖ replaced with any of the

‖ÂsΓ̂̂Γ̂Γ
x
s−rÂ

′
r − AsΓ̂̂Γ̂Γ

x
s−rA

′
r‖’s. Denoting by ajsα, 1 ≤ α ≤ q + 1, the α-th column of Aj

s
′
,

we have

‖ÂsΓ̂̂Γ̂Γxs−rÂ
r′ −AsΓ̂̂Γ̂Γxs−rA

r ′‖2 ≤
m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(
âj′sαΓ̂̂Γ̂Γxjk,s−râ

k
rβ − aj′sαΓ̂̂Γ̂Γxjk,s−ra

k
rβ

)2

≤ 2

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(
(âjsα − aj′sα)Γ̂̂Γ̂Γxjk,s−râ

k
rβ

)2

+ 2
m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(
aj′sαΓ̂xjk,s−r(â

k
rβ − akrβ)

)2
,

(D.7)

where Γ̂̂Γ̂Γxjk,s−r is the (j, k)-block of Γ̂̂Γ̂Γxs−r, and the second inequality follows from applying

the Cr inequality to each term of the form

(âj′sαΓ̂̂Γ̂Γxjk,s−râ
k
rβ − aj′sαΓ̂̂Γ̂Γxjk,s−ra

k
rβ)2 = ((âjsα − ajsα)′Γ̂̂Γ̂Γxjk,s−râ

k
rβ − aj′sαΓ̂̂Γ̂Γxjk,s−r(â

k
rβ − akrβ))2.

The two terms on the right-hand side of (D.7) can be dealt with in the same way. Let us

focus on the first of them. Using twice the Cauchy-Schwartz inequality, then subsequently

the Cr and Jensen inequalities, we obtain

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

((âjsα − ajsα)′Γ̂̂Γ̂Γxjk,s−râ
k
rβ)2
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≤
m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

((âjsα − ajsα)′(âjsα − ajsα
)
âk′rβΓ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

=
m∑
k=1

q+1∑
β=1

m∑
j=1

q+1∑
α=1

(âjsα − ajsα)′(âjsα − ajsα)âk′rβΓ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ
x
jk,s−râ

k
rβ

≤
m∑
k=1

q+1∑
β=1

[ m∑
j=1

[ q+1∑
α=1

(âjsα − ajsα)′(âjsα − ajsα)
]2]1/2[ m∑

j=1

(
âkrβ
′Γ̂̂Γ̂Γxjk,s−r

′Γ̂̂Γ̂Γxjk,s−râ
k
rβ

)2]1/2
= m

[ m∑
j=1

[ q+1∑
α=1

(âjsα − aj′sα)(âjsα − ajsα)
]2]1/2 1

m

m∑
k=1

q+1∑
β=1

[ m∑
j=1

(
âk′rβΓ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2]1/2
≤ AB, say,

where

A = m(q + 1)1/2
[ m∑
j=1

q+1∑
α=1

(
(âjsα − ajsα)′(âjsα − ajsα)

)2]1/2
and

B =
1

m

m∑
k=1

q+1∑
β=1

[ m∑
j=1

(
âk′rβΓ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2 ]1/2
≤

[
(q + 1)/m

m∑
k=1

q+1∑
β=1

m∑
j=1

(
âk′rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2 ]1/2
= C, say.

First consider A. Letting aj′sα = (ajsα,1 ajsα,2 · · · a
j
sα,q+1), note that ajsα,δ = e′αA[j]gsδ,

where eα and gsδ stand for the α-th and (s − 1)(q + 1) + δ-th unit vectors in the (q + 1)-

and (q+1)S-dimensional canonical bases, respectively. Writing, for the sake of simplicity, Bj

and Cj instead of Bχ
j and Cχ

jj , as defined in (2.13) and (2.14), we obtain, from (B.1), and

applying subsequently the Cr, the triangular, the Cr again and then twice the Cauchy-

Schwartz inequalities,[
m∑
j=1

q+1∑
α=1

(
(âjsα − ajsα)′(âjsα − ajsα)

)2 ]1/2
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≤ (q + 1)1/2
( m∑
j=1

q+1∑
α=1

q+1∑
δ=1

(âjsα,δ − a
j
sα,δ)

4
)1/2

= (q + 1)1/2
( m∑
j=1

q+1∑
α=1

q+1∑
δ=1

[
eα

(
(B̂j −Bj)Ĉ

−1
j + BjĈ

−1
j (Ĉj −Cj)C

−1
j

)
gsδ

]4 )1/2
≤ 23/2(q + 1)3/2

( m∑
j=1

‖(B̂j −Bj)Ĉ
−1
j ‖

4 + ‖BjĈ
−1
j (Ĉj −Cj)C

−1
j ‖

4
)1/2

≤ 23/2(q + 1)3/2
([ m∑

j=1

‖B̂j −Bj‖8
]1/2[ m∑

j=1

‖Ĉ−1
j ‖

8
]1/2

+
[ m∑
j=1

‖Ĉj −Cj‖8
]1/2[ m∑

j=1

‖B̂jĈ
−1
j ‖

8‖C−1
j ‖

8
]1/2)1/2

≤ 23/2(q + 1)3/2
([ m∑

j=1

‖B̂j −Bj‖8
]1/2[ m∑

j=1

‖Ĉ−1
j ‖

8
]1/2

+
[ m∑
j=1

‖Ĉj −Cj‖8
]1/2[ m∑

j=1

‖B̂j‖16
] 1
4
[ m∑
j=1

‖Ĉ−1
j ‖

16‖C−1
j ‖

16
] 1
4
)1/2

.

Denoting by bjiδ the entries of Bj , i = 1, . . . , q + 1, δ = 1, . . . , S(q + 1), the Cr inequality and

Lemma 10 entail

m∑
j=1

‖B̂j −Bj‖8 ≤
m∑
j=1

( q+1∑
i=1

S(q+1)∑
δ=1

(b̂jiδ − b
j
iδ)

2
)4

≤ (q + 1)6S3
m∑
j=1

q+1∑
i=1

S(q+1)∑
δ=1

(b̂jiδ − b
j
iδ)

8 = OP (m(max(n−1, ρ−1
T ))4).

In a similar way, one can prove that
∑m

j=1 ‖Ĉj −Cj‖8 is OP (m(max(n−1, ρ−1
T ))4). Moreover,

Assumptions 2 and 7 together with Lemma 10 imply that
∑m

j=1 ‖B̂j‖16 and
∑m

j=1 ‖C
−1
j ‖16,

as well as
∑m

j=1 ‖Ĉ
−1
j ‖8 and

∑m
j=1 ‖Ĉ

−1
j ‖16, are OP (m).

Collecting terms yields

A = m(q + 1)1/2
[ m∑
j=1

q+1∑
α=1

(
(âjsα − ajsα)′(âjsα − ajsα)

)2]1/2
≤ 23/2(q + 1)2m

( m∑
i=1

‖Âi
s −Ai

s‖4
)1/2

= OP
(
m3/2 max(n−1, ρ−1

T )
)
. (D.8)
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Turning to C, we obtain, by means of similar methods,

C ≤ ((q + 1)/m)1/2
{[ m∑

k=1

( q+1∑
β=1

(âk′rβâ
k
rβ)2

)2]1/2[ m∑
j=1

( m∑
k=1

(
trace[Γ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−r]

)4)1/2]}1/2

≤ ((q + 1)/m)1/2
{[

(q + 1)

m∑
k=1

q+1∑
β=1

(âk′rβâ
k
rβ)4

]1/2[ m∑
j=1

( m∑
k=1

(
trace[Γ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−r]

)4)1/2]}1/2

≤ (q + 1)1/2
[
(q + 1)4

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(âkr,αβ)8
]1/4[

m−1
m∑
j=1

m∑
k=1

(
trace[Γ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−r]

)4]1/4
≤ (q + 1)3/2

[ m∑
k=1

q+1∑
α=1

q+1∑
β=1

(âkr,αβ)8
]1/4[

((q + 1)6/m)

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(γ̂xjk,αβ(s− r))8
] 1
4

= OP (m1/2),

where γ̂xjk,αβ(s− r) stands for the (α, β) entry of Γ̂̂Γ̂Γxjk,s−r. Collecting terms again, we get

m−1‖ÂsΓ̂
x
s−rÂ

′
r −AsΓ̂

x
s−rA

′
r‖ ≤

(
1

m2
AC
)1/2

= OP (ζnT ) , r, s = 0, ..., S.

Now consider the second statement in (D.4). Again, it is sufficient to prove that it holds

with ‖Γ̂̂Γ̂Γz − ΓΓΓz‖ replaced with any of the ‖ÂsΓ̂̂Γ̂Γ
x
s−rÂ

′
r − AsΓ̂̂Γ̂Γ

x
s−rA

′
r‖’s. The two terms on

the right-hand side of (D.7) must be dealt with separately. In the first of those two terms,

dropping one of the summations for k = 1, . . . ,m and setting k = i,

m∑
j=1

q+1∑
α=1

q+1∑
β=1

(
(âjsα − ajsα)′Γ̂̂Γ̂Γxji,s−râ

i
rβ

)2
= OP

(
m(max(n−1, ρ−1

T ))
)
.

Indeed, the left-hand side is bounded by a product DE , say, where

D = m1/2(q + 1)1/2
[ m∑
j=1

q+1∑
α=1

(
(âjsα − ajsα)′(âjsα − ajsα)

)2 ]1/2
and

E =

q+1∑
β=1

( 1

m

m∑
j=1

(
âi′rβΓ̂̂Γ̂Γx′ji,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

i
rβ

)2)1/2

can be bounded along the same lines as A and B in the proof of the first statement.

As for the second term of (D.7), using arguments similar to those used in the first part

of the proof, we obtain
m∑
j=1

q+1∑
α=1

q+1∑
β=1

(
(âisα − aisα)′Γ̂̂Γ̂Γx′jk,s−ra

j
rβ

)2

≤ m
[[ q+1∑
α=1

(âisα − aisα)′(âisα − aisα)
]2]1/2[ 1

m

m∑
j=1

q+1∑
β=1

(aj′rβΓ̂̂Γ̂Γ
x
ji,s−rΓ̂̂Γ̂Γ

x′
ji,s−ra

j
rβ)

= FG, say.
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It easily follows from Proposition 9 that F = OP (mζ2
nT ), while G = OP (1) can be obtained

from the arguments used to bound C in the proof of the first statement. Collecting terms,

we obtain, as desired,

m−1/2‖S ′i(ÂsΓ̂
x
s−rÂ

′
r −AsΓ̂

x
s−rA

′
r)‖ = Op (ζnT ) , r, s = 0, ..., S. �

Starting with Lemma 11, which plays here the same role as Proposition 6 does for the

proof of Proposition 7, we can easily prove statements that replicate in this context Lemmas 1,

2, 3 and 4, using the same arguments as in Section B, with x, χ and ξ replaced by Z, Ψ

and Φ, respectively. More precisely,

(I) In the results corresponding to Lemma 1 we obtain the rate ζnT for (i), (ii), (iii) and (iv).

Note that no reduction from 1/n to 1/
√
n occurs between (iii) and (iv), as in Lemma 1.

For, (iii) has OP (ζnT ) +O(1/n) = OP (ζnT ), while (iv) has OP (ζnT ) +O(1/
√
n), which

is OP (ζnT ).

(II) The same rate ζnT is obtained for the results of Lemma 2.

(III) The same holds for Lemma 3. The orthogonal matrix in point (iii), call it again Ŵq,

has either 1 or −1 on the diagonal; thus ˜̂Wq = Ŵq.

(IV) Lastly, Lemma 4 becomes∥∥∥S ′i (P̂z
(
Λ̂̂Λ̂Λz
)1/2

−Pψ
(
ΛΛΛψ
)1/2

Ŵq

)∥∥∥ =
∥∥∥R̂i −RiŴq

∥∥∥ = OP (ζnT ) . (D.9)

Going over the proof of Lemma 4, we see that ‖i − j‖ has the worst rate, whereas

here ‖g − h‖, ‖h − i‖ and ‖i − j‖ all have rate OP (ζnT ). This completes the proof of

Proposition 10. �

Finallly, in the same way as the proof of Lemma 4 can be replicated to obtain (D.9), the

proof of Lemma 6 can be replicated to obtain

‖P̂z(Λ̂̂Λ̂Λz)1/2 −Pψ(Λψ)1/2Ŵq‖ = OP

(
n1/2ζnT

)
. (D.10)
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E Proof of Proposition 11

We have

v̂t =
(
(Λ̂z)1/2P̂z′P̂z(Λ̂z)1/2

)−1
(Λ̂z)1/2P̂z′Ẑt = (Λ̂z)−1/2P̂z′Ẑt

= (Λ̂z)−1/2P̂z′(Â(L)−A(L)
)
xt +

(
(Λ̂z)−1/2P̂z′ − Ŵq(Λ

ψ)−1/2Pψ′)A(L)xt

+Ŵq(Λ
ψ)−1/2Pψ′A(L)ξt + Ŵq(Λ

ψ)−1/2Pψ′Pψ(Λψ)1/2vt. (E.11)

Considering the first term on the right-hand side of (E.11),

‖(Λ̂z)−1/2P̂z′(Â(L)−A(L)
)
xt‖ = ‖(Λ̂z/n)−1/2P̂z′n−1/2

(
Â(L)−A(L)

)
xt‖

≤ ‖(Λ̂z/n)−1/2‖‖P̂z′‖‖n−1/2
(
Â(L)−A(L)

)
xt‖.

Since ‖(Λ̂z/n)−1/2‖ = OP (1) and ‖P̂z‖ = 1, by (D.8), we get

‖n−1/2
(
Â(L)−A(L)

)
xt‖ ≤ n−1/2

p∑
r=0

( m∑
i=1

xi′t−r(Â
i
r −Ai

r)
′(Âi

r −Ai
r)x

i
t−r

)1/2

≤
p∑
r=0

(
n−1

m∑
i=1

(xi′t−rx
i
t−r)

2
)1/4(

n−1
m∑
i=1

( q+1∑
j=1

q+1∑
h=1

(âir,jh − air,jh)2
)2)1/4

≤
p∑
r=0

(
n−1

m∑
i=1

(xi′t−rx
i
t−r)

2
)1/4(

(q + 1)3n−1
m∑
i=1

‖Âi
r −Ai

r‖4
)1/4

= OP (ζnT )

where xt = (x1′
t ...x

i′
t ...x

m′
t )′ stands for sub-vectors xit of size (q + 1)× 1.

Next, considering the second term on the right-hand side of (E.11),

‖
(

(Λ̂z)−1/2P̂z′ − Ŵq(Λ
ψ)−1/2Pψ′

)
A(L)xt‖

= ‖(Λ̂z/n)−1
(

(Λ̂z)1/2P̂z′ − ŴqΛ̂
z(Λψ)−1/2Pψ′

)
A(L)xt/n‖

= ‖(Λ̂z/n)−1
(

(Λ̂z)1/2P̂z′ − Ŵq[Λ̂
z −Λψ + Λψ](Λψ)−1/2Pψ′

)
A(L)xt/n‖

≤ ‖(Λ̂z/n)−1‖‖
(

(Λ̂z)1/2P̂z′ − Ŵq(Λ
ψ)1/2Pψ′

)
‖‖A(L)xt/n‖

+‖(Λ̂z/n)−1‖‖Ŵq(Λ̂
z −Λψ)(Λψ)−1/2Pψ′‖‖A(L)xt/n‖ = OP (ζnT ) ,

since, by (D.10), ‖(P̂z(Λ̂z)1/2 −Pψ(Λψ)1/2Ŵq)‖ = OP
(
n1/2ζnT

)
, and

‖Â(L)xt/n‖ = n−1/2
(
x′tÂ

′(L)Â(L)xt/n
)1/2

≤ n−1/2
p∑
r=0

(
x′t−rÂ

′
rÂrxt−r/n

)1/2

≤ n−1/2
p∑
r=0

(x′t−rxt−r/n)1/2(λ1(Â′rÂr))
1/2 = OP (n−1/2),
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boundedness of λ1(Â′rÂr) being a consequence of Assumptions 2 and 7. As for the third

term on the right-hand side of (E.11), (Λψ)−1/2Pψ′A(L)ξt is OP (n−1/2). To conclude, note

that the last term Ŵq(Λ
ψ)−1/2Pψ′Pψ(Λψ)1/2vt is equal to Ŵqvt. The conclusion follows. �
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