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Abstract— Heart rate variability (HRV) is an important non-
invasive parameter to monitor the activity of the autonomic
nervous system. This paper proposes an algorithm to analyze
HRV by processing the acoustic data, recorded by placing a
small, wearable sensor on the suprasternal notch (at neck) of
an adult subject, primarily intended to record breathing sounds.
The method used an empirical data analysis approach of the
Hilbert-Huang transform (HHT) to construct an instantaneous
energy envelope and segment the cardiac cycle by detecting
S1 and S2 sounds using the K-means algorithm. The time-
domain HRV analysis for the short-term recordings of 10
subjects demonstrated a close agreement with the reference
ECG signal. The instantaneous heart rate (IHR) comparisons
yielded an accuracy of 95.78% and 92.35% for S1 and S2
sounds respectively. The experimental results showed that the
proposed algorithm can provide an accurate HRV analysis for
the cardiac signals recorded at the neck.

I. INTRODUCTION

Heart rate variability (HRV) measures the variation in the
time intervals of the successive cardiac cycles and serves
as an important physiological parameter to study the effect
of sympathetic and parasympathetic branches of the auto-
nomic nervous system on cardiovascular mortalities [1]. It
is conventionally studied in two forms: inter-beat interval
(IBI) or instantaneous heart rate (IHR), derived from the
consecutive heartbeats. The gold standard method of mea-
suring the HRV is by extracting the RR interval tachogram
from the electrocardiogram (ECG). In recent studies, the
detection of systolic peaks in photoplethysmography (PPG)
signal has also been used to derive pulse rate variability
as a surrogate choice to HRV [2]. While these methods
provide useful cardiac information, the cumbersome ECG
recording setup and the reliability concerns of the PPG signal
limit their application to the HRV analysis using wearable
technology [3]. Cardiac auscultation using phonocardiogram
(PCG) provides an alternative for measuring heart cycle
variation. PCG records the heart sounds by sensing the
mechanical vibrations caused by the closure of the heart
valves. These mainly consists of, what are called, S1 and S2
components, also known as fundamental heart sounds [4].

Only few studies have used the PCG signal to measure
HRV and the majority of these works focus on the extraction
of fetal HRV by recording the acoustic signals from the ab-
dominal maternal wall [5], [6]. To the best of author’s knowl-
edge, this study presents, for the first time, a novel algorithm
to measure HRV from the acoustic signals recorded at the
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neck using a wearable device. Methods for S1-S2 detection
reported in literature have been mainly energy-based ones,
using features such as Shannon energy, Shannon entropy,
absolute amplitude, squared energy, etc. [7]. However, these
techniques assume the input signal to be stationary, and
therefore lose the self-adaptivity towards the processing of
the data. This study overcomes such a limitation by using an
empirical data analysis technique which uses a posteriori-
defined basis, based on, and derived from, the non-stationary
signal, to produce meaningful physical representations.

The rest of the paper is organized as follows: Section II
discusses the proposed algorithm in detail. The experimental
results are documented in Section III and the conclusions
about the study are extracted in Section IV.

II. METHODS

The block diagram in Fig. 1 represents different stages of
the proposed algorithm to detect S1 and S2 sounds from the
acoustic breathing signal, leading to extraction of HRV. The
algorithm is mainly divided in two phases: segmentation and
classification of the heart sounds. Segmentation is performed
by constructing the instantaneous energy envelope from in-
trinsic mode functions (IMFs) derived using empirical mode
decomposition (EMD) and Hilbert-Huang transform (HHT);
whereas the heart sounds are classified by clustering the
features of the energy peaks using the K-means algorithm.
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Fig. 1: Block diagram of the proposed algorithm.

A. Pre-processing

The acoustic signals recorded at the suprasternal notch,
as shown in Fig. 2(a), are not suitable for a direct cardiac
analysis as they are heavily corrupted by the breathing
sounds. An uncontrolled environment during the recording
setup also introduces motion artifacts and background noise.
A higher bandwidth of 20 to 1000 Hz for breathing sounds



allows to separate the cardiac information generally present
below 150 Hz [3]. The signal is processed in blocks of 5 s
duration, which contain multiple heartbeats corresponding to
a heart rate of 40 to 200 bpm, for an adult subject. A third-
order Butterworth bandpass filter with cut-off frequencies of
5 and 150 Hz removes the baseline wandering and higher
frequencies from the signal. The filtered signal originally
sampled at 2205 Hz is downsampled by a factor of 5 to
reduce the number of computational cycles in later stages of
the algorithm. The cardiac signal thus obtained consists of
S1 and S2 sounds as shown in Fig. 2(b).

B. EMD Decomposition and HHT

The heart sounds behave as a non-stationary time-series
signal as their corresponding frequencies vary as a function
of time. Therefore, a suitable way of processing the cardiac
signal is by computing its instantaneous characteristics using
HHT which provides meaningful physical interpretations of
the data from non-stationary processes [8]. HHT rely on a
posteriori-defined basis and consists of two phases: EMD
and Hilbert spectral analysis (HSA). EMD is an adaptive
method which decomposes a signal into different intrinsic
modes of oscillations, also called IMFs using a sifting
process [9]. An IMF represents a simple oscillation and
satisfies two criteria: (a) the difference between the number
of local extrema and zero crossings should not differ by more
than 1; (b) the mean of the envelope constructed by local
maxima and local minima is zero.
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Fig. 2: EMD decomposition of the input signal. (a) Original
acoustic signal, (b) Filtered cardiac signal, (c) IMF1, (d) IMF2, (e)
IMF3, (f) IMF4, (g) Sum of all the four IMFs. n.u. - normalized
units, a.u. - absolute units (after IMF decomposition).

The EMD decomposition was implemented in MATLAB
using a sifting tolerance of 0.1 in the Cauchy type conver-
gence criterion. It was empirically observed that the first
four IMFs obtained from the filtered cardiac signal in Fig.
2(c)-(f) were able to reconstruct the signal in Fig. 2(g). It
can be observed that the IMFs eliminates the riding waves
and introduces symmetry in the data, providing meaningful

instantaneous characteristics of the signal. For every IMFm

where 1≤m≤4, the HSA computes the analytic signal (ASm)
by determining its complex conjugate (IMF∗

m), using the
Hilbert transform to derive the corresponding instantaneous
frequency (IFm) and instantaneous amplitude (IAm) as fol-
lows:

ASm = IMFm + ιIMF∗
m, where ι =

√
−1 (1)

IAm =
√

(IMFm)2 + (IMF∗
m)2 (2)

θm = tan−1

(
IMF∗

m

IMFm

)
(3)

IFm =
1

2π
× dθm

dt
(4)

The instantaneous energy (IEm) of an IMF is obtained by
squaring its instantaneous amplitude.

IEm = (IAm)2 = (IMFm)2 + (IMF∗
m)2 (5)

C. Instantaneous Energy Envelope

The pre-processing stage removes the breathing infor-
mation, to an extent. Therefore, the remaining frequencies
mainly correspond to the heart sounds. Since the IMFs are
essentially a breakdown of the filtered cardiac signal, the
proposed algorithm selects the instantaneous energy corre-
sponding to the maximum instantaneous frequency among
all the four IMFs to construct the energy envelope. It can
be observed that higher energies are obtained for the S1 and
S2 sounds in Fig. 3(a). The noisy transitions in the systolic
and diastolic period of the cardiac cycle also introduce some
energy peaks. Such erroneous peaks are removed by clipping
the normalized energy envelope using an energy threshold
shown by dash-dot line in Fig. 3(a). The initial threshold to
process first 30 s of the data is set to 0.05. For nth signal
block of 5 s duration, the number of energy peaks are defined
as Tn. The threshold for subsequent segments is decreased in
steps of 0.01 (if required) until the desired number of energy
peaks as defined in (6) are obtained.

Tn = mean(Tn−1,Tn−2,Tn−3) (6)

Since the oscillations in the morphology of the heart
sounds also introduce multiple energy peaks, all the peaks
lying within a time distance of ±50 ms [3] from the central
peak are included to interpolate the envelope of the S1 and
S2 sounds as shown in Fig. 3(b). This is done to preserve
the actual time width of the fundamental heart sounds. A
moving average filter with a span of 50 ms is further used
to smoothen the energy envelope. Since the heart rate of 200
bpm results in a minimum time duration of 300 ms for a
cardiac cycle, all the redundant peaks lying within this time
frame and possessing lower amplitudes are removed.

D. S1 and S2 Detection

The energy envelope allows an easy segmentation of the
cardiac cycle by producing peaks corresponding to the S1
and S2 sounds. The classification of these peaks is performed
in two different scenarios as follows:



1) The energy threshold ensures that the number of peaks
for the segment under consideration is, at least, Tn. For
the signal blocks with Tn peaks, the amplitude ‘Amp’
and the time difference ‘∆d’ between the successive
peaks (except the last) are determined. These features
are used as an input to the K-means algorithm to divide
all the data points in 3 different clusters, namely: S1,
S2 and A (artifact). The data points denoted by ‘o’
and their centroids denoted by ‘∗’ are plotted in Fig.
3(c) using the fact that the systolic period is lower than
the diastolic period for normal subjects. Depending on
the comparison of the y-coordinate of A centroid (Ay)
with S1 and S2 centroids (Spy) in (7), the cluster A is
classified as follows:

∆dSp =
|Spy − Ay|

Ay
p = 1, 2 (7)

A =


S1, if ∆dS1 ≤ 0.25

S2, if ∆dS2 ≤ 0.25

A, otherwise
(8)

As an illustration, the cluster A in Fig. 3(c) was clas-
sified as S1 and the corresponding annotations were
assigned to the heart sounds in Fig. 3(d).
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Fig. 3: Heart sounds segmentation and classification without arti-
facts. (a) Energy of maximum frequencies among four IMFs along
with the threshold line (marked as dash-dot), (b) Interpolated energy
envelope, (c) Features clustering using K-means algorithm, (d) S1-
S2 classification in the averaged energy envelope.

2) The presence of artifacts in a signal block can produce a
count of peaks higher than Tn. Since the artifacts occur
as short bursts of energy, they usually possess lower
amplitudes (Amp) and time widths (w) in the signal
reconstruction after the initial filtering process, as shown
in Fig. 4(a). These features are plotted in Fig. 4(b),
where the data points inside the ellipse are classified
as artifacts due to a lower amplitude as compared to
S1 and S2 sounds. Further, the clustering algorithm as
explained above is repeated to annotate the heart sounds,
separating them from the artifacts in Fig. 4(c).

The time indexes ti corresponding to the maximum ampli-
tude of the annotated S1 and S2 sounds, denoted by ‘∗’ in
Fig. 4(c) are recorded for every signal block. For a total of N
cardiac cycles segmented and classified using the proposed

algorithm, the IBI and IHR, corresponding to both heart
sounds, are obtained as follows:

IBIi = ti+1 − ti, where i ∈ [1,N-1] (9)

IHRi =
60

ti+1 − ti
(10)
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Fig. 4: Heart sounds segmentation and classification with artifacts.
(a) Cardiac signal reconstructed using four IMFs, (b) Time width
and amplitude of the energy peaks, (c) S1-S2 and artifact classifi-
cation in the averaged energy envelope.

E. Database

The signals used to validate the algorithm, corresponding
to 10 adults subjects, were from an anonymized database
resulting from a study at the National Hospital for Neu-
rology and Neurosurgery, UK. The experimental procedures
involving human subjects described in this paper were ap-
proved by both, MHRA and REC and had reference number
09/H0716/2. The signals in this study were recorded at a
sampling frequency of 2205 Hz whilst subjects were sleeping
by placing a custom, small, wearable acoustic sensor on the
suprasternal notch [10]. The ECG signal was also recorded
synchronously using the FDA approved SOMNOmedics
monitor [11] to provide a reference IBI and IHR time series.

III. EXPERIMENTAL RESULTS

A. Time-domain HRV Analysis

The IBI variations for the RR, S1S1 and S2S2 intervals
(generally known as NN intervals [1]) are quantified in
Table I. These were obtained using the selected time-domain
measures for a short-term recording of 5 minutes duration. A
close correlation between the performance metrics of all the
NN intervals can be observed. This was also validated using
the Wilcoxon rank sum test which estimates the p-value to
test the null hypothesis that the HRV estimations from the
acoustic signal and the ECG data are in close agreement.
Two p-values for RR-S1S1 and RR-S2S2 comparisons are
provided in Table I. The p-values obtained at 5% significance
level do not provide enough evidence to reject the null
hypothesis concluding that the HRV measures obtained from
the proposed algorithm yields a high degree of statistical
agreement with the HRV estimations from the ECG signal.

B. IHR Comparisons

Table II lists the performance metrics of the IHR com-
parisons for the whole dataset. It can be observed that
the mean absolute error (MAE), mean (µ) and standard



TABLE I: Time-domain HRV parameters for IBI estimated from ECG and acoustic breathing signals.

Subject SDNN (ms) SDSD (ms) MeanNN (ms) RMSSD (ms) pNN50 (%)
RR S1S1 S2S2 RR S1S1 S2S2 RR S1S1 S2S2 RR S1S1 S2S2 RR S1S1 S2S2

1 62.37 60.25 67.93 28.34 27.20 32.98 907.19 908.24 903.43 28.18 27.15 32.79 9.93 9.59 11.42
2 53.28 49.23 58.77 20.59 22.67 27.51 1093.68 1095.73 1086.96 20.51 22.65 27.46 7.68 6.19 4.30
3 94.84 82.08 90.35 61.25 54.37 59.21 910.52 911.99 898.07 61.08 54.28 59.10 32.30 30.74 39.41
4 74.84 74.24 75.88 54.97 55.89 53.63 1076.85 1076.17 1078.21 54.88 55.77 53.52 29.21 26.47 27.18
5 81.91 78.43 84.62 52.03 46.29 51.75 1448.61 1450.28 1455.23 51.95 46.23 51.58 23.18 22.51 25.32
6 42.57 49.26 52.31 25.91 27.20 35.82 753.02 751.73 754.35 25.89 27.17 35.76 5.59 9.15 12.39
7 45.25 44.89 45.57 24.78 24.66 25.43 834.09 834.00 835.27 24.76 24.63 25.32 9.15 9.81 9.43
8 22.93 33.31 29.91 28.46 26.00 31.49 1061.18 1067.85 1064.33 28.39 25.97 31.41 11.29 4.11 7.83
9 66.59 66.37 67.62 48.19 45.60 49.93 967.59 969.46 959.76 48.03 45.54 49.81 27.05 27.34 29.13
10 95.73 98.66 99.15 71.58 74.30 79.65 876.92 878.37 881.58 71.52 74.19 79.62 46.90 51.25 48.93
p – >0.05 >0.05 – >0.05 >0.05 – >0.05 >0.05 – >0.05 >0.05 – >0.05 >0.05

deviation (σ) in the Bland-Altman plot for RR-S1S1 and RR-
S2S2 comparisons achieve low values demonstrating a high
degree of agreement between the acoustic and ECG outputs.
Fig. 5 illustrates such a comparison for an adult subject.
The accuracy is determined by counting all the heart rate
differences lying within a ±5% variation with respect to the
ground truth. The higher energies of S1 sounds allowed its
reliable detection, therefore, providing a high IHR accuracy
of 95.78% as compared to 92.35% for S2 sounds.

TABLE II: Performance Metrics of the IHR determination for a
total of 10 subjects.

Comparison
MAE µ σ Accuracy
(bpm) (bpm) (bpm) (%)

RR-S1S1 1.26 0.01 2.64 95.78
RR-S2S2 1.97 0.03 3.19 92.35
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Fig. 5: IHR time series of an adult subject generated from (a) S1S1,
(b) S2S2, (c) and RR intervals. (d) Bland-Altman comparison for
S1, (e) and S2 sounds with respect to ECG outputs.

IV. CONCLUSION

This work proposed an algorithm to utilize the breathing
sounds recorded at neck, and localize the fundamental heart
sounds to determine the HRV of an adult subject. The
cardiac cycle was processed using an empirical data analysis
approach which provided meaningful representations of the
non-stationary cardiac signal. The validation of the study
included both the IHR comparisons and the time-domain

HRV analysis using standard measurements defined by the
Task Force [1]. The algorithm achieved a high IHR accuracy
and obtained time-domain HRV measures in close agreement
with the ECG signal, despite the absence of a specific
characteristic point in the morphology of the heart sounds.
This is however just a pilot study and hence, full future
validation would require a greater number of subjects.
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