
Learning the Optimal Synchronization Rates in
Distributed SDN Control Architectures

Konstantinos Poularakis1, Qiaofeng Qin1, Liang Ma2, Sastry Kompella3, Kin K. Leung4, and Leandros Tassiulas1

1Department of Electrical Engineering and Institute for Network Science, Yale University, USA
2IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

3U.S. Naval Research Laboratory, Washington, DC, USA
4Department of Electrical and Electronic Engineering, Imperial College London, UK

Abstract—Since the early development of Software-Defined
Network (SDN) technology, researchers have been concerned
with the idea of physical distribution of the control plane to ad-
dress scalability and reliability challenges of centralized designs.
However, having multiple controllers managing the network
while maintaining a “logically-centralized” network view brings
additional challenges. One such challenge is how to coordinate
the management decisions made by the controllers which is
usually achieved by disseminating synchronization messages in
a peer-to-peer manner. While there exist many architectures
and protocols to ensure synchronized network views and drive
coordination among controllers, there is no systematic method-
ology for deciding the optimal frequency (or rate) of message
dissemination. In this paper, we fill this gap by introducing
the SDN synchronization problem: how often to synchronize the
network views for each controller pair. We consider two different
objectives; first, the maximization of the number of controller
pairs that are synchronized, and second, the maximization of the
performance of applications of interest which may be affected
by the synchronization rate. Using techniques from knapsack
optimization and learning theory, we derive algorithms with
provable performance guarantees for each objective. Evaluation
results demonstrate significant benefits over baseline schemes that
synchronize all controller pairs at equal rate.

I. INTRODUCTION

A. Motivation

Software Defined Networking (SDN) is a rapidly emerging

technology that brings new flexibility to network management

and therefore facilitates the implementation of advanced traffic

engineering mechanisms [1]. The main principle of SDN is to

shift all the network control functions from the data forwarding

devices to a programmable network entity, the controller. To

ensure availability in case of controller failure, typical SDN

systems deploy multiple controllers. The controllers may be

physically distributed across the network, but they should be

“logically-centralized”. This means that the controllers should

coordinate their decisions to ensure their collective behavior

matches the behavior of a single controller.

The coordination among controllers is an active area of

research with several protocols proposed thus far [2]. For

example, OpenDaylight [3] and ONOS [4], two state-of-the-art

controller implementations, rely on RAFT and Anti-entropy

This publication was supported partly by the U.S. Army Research Labora-
tory and the U.K. Ministry of Defence under Agreement Number W911NF-
16-3-0001 and the Army Research Office under Agreement Number W911NF-
18-10-378.

SDN controller

Data plane node

Domain

A
B

C

!

Failure

Routing path

Temporary

inconsistency

Fig. 1: Impact of inconsistency among controllers on routing

application performance.

protocols for disseminating coordination messages among

controllers. Typically, each controller is responsible for a part

of the network only, commonly referred to as the controller’s

domain. The messages disseminated by a controller to the

other controllers convey its view on the state of its domain

(e.g., available links and installed flows). The composition of

these messages allow the controllers to synchronize and agree

on the state of the entire network.

While different coordination protocols may generate mes-

sages of different types and at different timescales, there exist

two broad protocol categories [5]. The first category contains

the strongly consistent protocols which strive to maintain all

the controllers synchronized in all times. This is ensured by

disseminating messages each time a network change (e.g., a

node or link failure) happens followed by a consensus proce-

dure. The second category contains the eventually consistent

protocols which omit the consensus procedure, yet converge to

a common state in a timely manner usually through periodic

message dissemination.

Despite its benefits, strong consistency is difficult to ensure

in practice as it is challenged by the unreliable nature of

network communications. In addition, this approach gener-

ates significant overheads for message dissemination among

controllers which may be prohibitively large especially when

applied to wireless networks with in-band control channels

of limited capacity [6], [7], [8]. On the other hand, eventual

consistency, where controllers are permitted to temporarily

have inconsistent views of each other’s state, better suits

the needs of the above networks, and, thus, can be used

to extend the applicability of distributed controller solutions.

Yet, the inconsistent views of controller states can harm the

performance of network applications.

To illustrate the impact of inconsistency, we consider the

toy example with three controllers (A, B and C) and their

respective domains in Figure 1. Each pair of controllers

synchronize periodically, e.g., every few seconds. At some

time, controller A receives a request for routing a flow to

a destination node inside the domain of B. Controller A will

respond by computing and setting up a routing path based

on its current view on the state (topology, traffic loads) of

its domain and the other domains. However, controller A

is not aware if the links on the routing path outside of its

domain are still available or have failed (e.g., a failed link in

domain B in Figure 1) since the last synchronization period.

If failures happened, the packets of the flow will have to

wait until the next synchronization period, although there

is an alternative directly available routing path through the

domain of C. Similar problems, if not more serious, can be

identified for more advanced traffic engineering applications

where inconsistency hinders the effective load balancing and

distribution across multiple paths.

The eventually consistent model raises new technical chal-

lenges. In particular, it is important to decide how often (at

what period or rate) to synchronize each pair of controllers in

a given network. One might expect that the straightforward

policy where all controller pairs synchronize at the same

rate would work well. However, some may argue that the

synchronization rate should be higher for domains that are

more dynamic (with many changes in topology and flow

configurations) in order to preserve consistency of the rest

domains.

The issue is further complicated by the requirements of

the network applications. Previous works [9], [10] showed

that certain network applications, like load-balancers, can

work around eventual consistency and still deliver acceptable

(although degraded) performance. In such cases, some addi-

tional effort needs to be made to ensure that conflicts such

as forwarding loops, black holes and reachability violation

are avoided [11]. Therefore, synchronization policies that

completely neglect the specific applications of interest in the

network as well as the impact of synchronization rate on their

performance may end-up being highly inefficient.

The above questions remain open since, until now, the inter-

controller traffic has been often neglected in SDN literature

with most of the existing works focusing on the routing and

balancing of the data traffic (e.g., see the survey in [1] and

the discussion of related work in Section V).

B. Methodology and Contributions

Our goal in this paper is to investigate policies for the syn-

chronization among SDN controllers, and focus particularly on

the impact of the rate of synchronization on the performance

of network applications. We begin by introducing a model

of a system with multiple controllers (and domains) that is

general enough to capture different synchronization overhead

costs, as well as network topologies and domain dynamics. We

then utilize this model to derive the optimal synchronization

rate policy under a total overhead constraint. We explicitly

consider two objectives. First, we target the maximization of

the number of controller pairs that are consistent with each

other, referred to as the consistency level (Obj. 1). We show

that for this objective the synchronization problem is NP-

Hard and develop a pseudopolynomial-time optimal as well

as a Fully Polynomial Time Approximation (FPTA) algorithm

using a connection with the multiple-choice knapsack (MCK)

problem [12].

The second objective (Obj. 2) aims to maximize the per-

formance of network applications rather than the overall con-

sistency level of the system. This is a more complex problem

since, in practice, we do not know the function that maps

the synchronization rate to application performance. To obtain

some quantitative insights on this function, we emulate the

performance of two applications of interest, namely shortest

path routing and load balancing, using a commercial platform

(Mininet) [13] and SDN controller (RYU) [14]. While the

results are quite unsteady, the average performance increases

with the synchronization rate and saturates eventually showing

that a diminishing return rule applies. To overcome the un-

known objective challenge, we use elements from the learning

theory, and propose an algorithm that gradually trains the

system and constructs a solution that is with high confidence

close to the optimal. The contributions of this work can be

summarized as follows:

1) We introduce the problem of finding the optimal syn-

chronization rates among SDN controllers in a network,

using a general model and different objectives. To the

best of our knowledge, this is the first work that studies

this problem.

2) For the consistency level maximization objective (Obj.

1), we show that this problem is NP-Hard and provide a

pseudopolynomial-time optimal and a FPTA algorithm.

3) For the application performance maximization objective

(Obj. 2), we emulate the performance of two popular

applications and obtain insights about the impact of

synchronization rates. We use these results to derive an

algorithm that gradually trains the system in order to

learn the optimal policy.

4) We perform evaluations to show the efficiency of our

proposed algorithms. We find that benefits are realized

for both objectives compared with the baseline policy

that synchronizes all controller pairs at equal rate.

The rest of the paper is organized as follows. Section II

formulates and solves the synchronization problem for the con-

sistency level maximization objective (Obj. 1). In Section III,

we present our emulation results and our learning algorithm

for maximizing the network application performance (Obj. 2).

Section IV presents the evaluation of our proposed algorithms,

while Section V reviews our contribution compared to related

works. We conclude our work in Section VI.

II. MAXIMIZING CONSISTENCY LEVEL

In this section, we show how to optimize the first objective,

i.e., the consistency level. We begin by describing the system

model and problem formulation.

A. Model and Problem Formulation

We adopt a general model representing an eventually-

consistent SDN system with a set C of C controllers distributed

in a network, as shown in Figure 1. Each controller is

responsible for managing a subset of the data plane nodes

in the network, referred to as a domain. The controllers are

aware of the current state information inside their domains

(e.g., available links, flow table entries). This can be achieved

by using a SouthBound protocol (e.g., OpenFlow) for signaling

and statistic collection from the data plane nodes.

The domain states may change dynamically as nodes and

links fail or recover and new data flows are generated. To

model such dynamics, we denote by λi the rate of state

changes in the domain of controller i. Specifically, we assume

that the state changes follow an independent Poisson process at

rate λi. This rate can be predicted by the network operator for a

certain time period (e.g., a few hours). The above assumptions,

made for model tractability, will be relaxed in next section.

We divide the time period into slots (e.g., a few tens of

seconds each). To ensure a minimum level of consistency,

in the beginning of each slot every controller disseminates

a synchronization message conveying the current state of its

domain to every other controller. By the end of a slot, the state

of a controller i might change or remain the same. According

to the Poisson process model, the probability that the state

of controller i remains the same is e−λis, where s is the

time slot length. Therefore, with the above probability the

state of controller i remains consistent with the view that any

other controller j has on it. We note that, for a given pair of

controllers (i, j), it might happen that the state of controller

i is consistent with the respective view of j but not the other

way around. In this case, we say that only the controller pair

(i, j) is consistent, but not the controller pair (j, i). Overall,

the expected number of controller pairs that are consistent

(consistency level) is given by:
∑

i∈C

∑

j∈C,j 6=i

e−λis (1)

To improve the consistency level, the controllers have the

option to disseminate additional synchronization messages

within each slot, as illustrated in Figure 2. We denote by

xij ∈ {0, 1, . . . , R} the number of such messages sent from

controller i to j, where R represents the maximum possible

synchronization rate. We note that the synchronization rates

may be asymmetric in general, i.e., it may happen that

xij 6= xji. A synchronization policy can be expressed by the

respective vector:

x = (xij ∈ {0, 1, . . . , R} : ∀i, j ∈ C, j 6= i) (2)

The dissemination of synchronization messages is not with-

out cost. It consumes network resources such as bandwidth and

energy that can be significant especially in wireless resource-

constrained environments with in-band control channels of

limited capacity. The system operator has to ensure that certain

resource constraint is met. Specifically, we require that:
∑

i∈C

∑

j∈C,j 6=i

xijbij ≤ B (3)

0 s 2s 3s

Decision

Minimum

synchronization points ...

Time

Change rate λi i

Resource cost bij i,j

Additional

synchronization points

x = 2ij

Fig. 2: Overview of synchronization decisions.

where bij is the resource cost of message dissemination

between controllers i and j, which typically depends on the

distance between the two controllers. B is a positive constant

representing the available network resources.

The disseminated synchronization messages will improve

the consistency level of the system. Specifically, by spreading

xij messages uniformly over the slot interval s, we can

effectively reduce the interval length by a factor of xij + 1
(as illustrated in Figure 2). Therefore, the probability that

the controller pair (i, j) is consistent increases from e−λis

to e
−

λis

xij+1 . The consistency level will be:

Ω(x) =
∑

i∈C

∑

j∈C,j 6=i

e
−

λis

xij+1 (4)

The objective of the system operator is to find the syn-

chronization policy that maximizes the consistency level while

satisfying the resource constraint:

Obj. 1 : max
x

Ω(x) (5)

s.t. constraints: (2), (3)

B. Complexity and Solution

We first prove the intractability of the problem.

Theorem 1. The SDN synchronization problem for Obj. 1 is

NP-Hard.

Proof. We prove the NP-Hardness of our problem by reduc-

tion from the Knapsack problem (which is NP-Hard), defined

as follows: Given a knapsack of capacity W , and a set of L
items with nonnegative weights w1 to wL and values v1 to

vL, the objective is to place in the knapsack the subset of

items such that the total value V is maximized without the

total weight exceeding W .

Every instance of the knapsack problem can be written as a

special case of our problem where: (i) we set B = W , (ii) we

restrict R = 1 and (iii) we create one controller pair (il, jl)
for each item l. Each such controller pair (il, jl) has cost biljl
equal to the weight of the mapped item wl. The λil rate is set

such that the difference e−
λil

s

2 − e−λil
s is equal to the value

of the mapped item vl. Any other pair of controllers (il, jl′)
where l 6= l′ is excluded by setting bil,jl′ = +∞.

Given a solution to our problem of consistency level V +∑
i∈C

∑
j∈C,j 6=i e

−λis, we can find a solution to the knapsack

problem of total value V by placing in the knapsack the items

corresponding to the pairs of controllers that synchronized

with each other.

Next, we identify a connection of our problem to the

following variant of the knapsack problem:

Definition 1. Multiple-Choice Knapsack (MCK): Given K
classes E1, E2,. . . ,EK of items to pack in a knapsack of

capacity W , where the lth item in class Ek has weight wkl

and value vkl, choose at most one item from each class such

that the total value V is maximized without the total weight

exceeding W .

Specifically, the following lemma holds:

Lemma 1. The SDN synchronization problem for Obj. 1 is

polynomial-time reducible to the problem MCK.

Proof. Given an instance of the synchronization problem, we

construct the equivalent instance of the problem MCK as

follows: We create a knapsack of size equal to B and an item

class Ek for each pair of controllers k = (i, j). Each class

contains R distinct items. The lth item in class k has weight

wkl = bij l and value vkl = e−
λis

l+1 − e−λis.

Each solution of value V to the MCK instance can be

mapped to a solution to the synchronization problem instance

of value V +
∑

i∈C

∑
j∈C,j 6=i e

−λis as follows: If the lth item

in class Ek (where k = (i, j)) is packed in the knapsack, we

synchronize controllers i and j at rate xij = l. Clearly, the

obtained solution spends no more resources than B. The value

of the lth item vkl is equal to the increase in the consistency

level due to the synchronization decision xij = l.

Lemma 1 is very important since it allows us to exploit a

wide range of solution algorithms that have been proposed

for problem MCK to solve our problem. In particular, al-

though MCK is NP-hard, pseudopolynomial-time optimal and

fully-polynomial-time approximation (FPTA) algorithms are

known [12]. By pseudopolynomial we mean that the running

time is polynomial in the input (knapsack capacity and item

weights), but exponential in the length of it (number of digits

required to represent it). The FPTA algorithm ensures that the

performance of the solution is no less than (1 − ǫ) fraction

of the optimal, while its running time is polynomial to 1
ǫ
,

ǫ ∈ (0, 1). Therefore, the running time and performance of

FPTA are adjustable, making it preferable for large problem

instances. Hence, we obtain the following result:

Theorem 2. There exists a pseudopolynomial-time optimal

algorithm and a FPTA algorithm to the SDN synchronization

problem for Obj. 1.

III. MAXIMIZING APPLICATION PERFORMANCE

Our work in the previous section constitutes the first sys-

tematic approach to tackle the SDN synchronization problem.

However, it has two limitations. First, it relies on the as-

sumption that the state dynamics follow a specific distribution

(independent Poisson with known rate λi). Second, while the

consistency level (Obj. 1) is an important indicator of the

performance of network application, it may not be always

accurate. In fact, it is known that certain applications can

tolerate some inconsistency among controllers provided that

conflicts are avoided, while other applications have stricter

requirements [9], [10]. The above motivate us to look for

alternative synchronization methods that (i) are agnostic to

the distribution of state dynamics and (ii) optimize directly the

performance of specific applications of interest rather than the

consistency level. In this section, we describe such a method by

leveraging elements from the learning theory. Before that, we

provide a brief emulation study that will highlight the impact

of synchronization rate on the performance of some popular

network applications.

A. Emulation Study

Below, we describe the emulation setup that will be later

used to test the performance of two network applications,

namely shortest path routing and load balancing.

Emulation setup. We use Mininet [13] to emulate virtual

networks with several nodes and SDN controllers running

on the same CPU machine. Among the set of commercial

controllers that are available online we pick RYU [14] which

is open-source and allows us to develop our own protocols

for the synchronization among controllers. Specifically, we

implement a simple eventually-consistent protocol which peri-

odically disseminates synchronization messages between each

controller pair. Our code is parameterized to allow for any

synchronization period. The disseminated messages convey the

local views of controllers about the topology and installed flow

tables. This information is made available to the controllers by

the OpenFlow protocol.

Emulation results. We first test the performance of a

shortest path routing application. With this application, packets

are routed to their destination following the path of minimum

hop count, calculated by Dijkstra’s algorithm. We generate

the random network of 16 nodes and 3 controllers, depicted

in Figure 3a, where links fail or recover randomly and inde-

pendently every one second with probability 0.05, and nodes

with the same color are managed by the same controller. We

further generate data packets with random source-destination

nodes. Unless the controllers synchronize at the time of packet

generation, the packet is at risk of following a failed routing

path.

The performance of routing application is determined by

the number of packets that are successfully routed (without

traversing any failed link) to their destinations. We emulate

the performance for five different scenarios where all the

controller pairs synchronize at the same rate equal to (i) 0.5,

(ii) 0.25, (iii) 0.125, (iv) 0.063 and (v) 0.031 (messages per

second). This translates to a single message disseminated every

2, 4, 8, 16 or 32 seconds. For each scenario, emulations are

run for multiple times and the results are depicted in Figure

3b. Despite a large extent of randomness, we observe that the

average performance (calculated over 20 minutes) increases

with the synchronization rate and saturates eventually showing

that a diminishing return rule applies.

We perform additional emulations to test the performance of

a load balancing application. We consider a similar setup with

the work in [9], depicted in Figure 3c. That is, we generate a

network with two controllers. Each controller manages two

nodes, a switch and a server. The switches generate flows

uniformly at random. The flows can be routed and queued to

any of the two servers. Each controller is aware of the load of

(a)

0.063 0.125 0.25 0.5

Synchronization Rate (Messages per Second)

70

80

90

S
u

c
c
e

s
s
fu

ll
y
 R

o
u

te
d

 P
a

c
k
e

ts
 (

%
)

(b)

Domain A Domain B

Flow A Flow B

Controller A Controller B

(c)

0.063 0.125 0.25 0.5

Synchronization Rate (Messages per Second)

0.04

0.06

0.08

0.1

0.12

0.14

T
h

ro
u

g
h

p
u

t
R

M
S

E
 (

M
b

p
s

2
)

(d)

Fig. 3: Emulation results. Topology and impact of synchronization rate on the performance (box plots and average values) of

(a)(b) shortest path routing and (c)(d) load balancing applications.

the server it manages. It also receives periodic synchronization

messages about the load of the other server by the other

controller. Each time a new flow is generated, the responsible

controller routes it to the server with the currently observed

lowest load. However, this may not be the least loaded server

in reality, since the controllers are not synchronized at all

times.

The emulation results are depicted in Figure 3d. The metric

we consider is the root-mean-square deviation (RMSE) of two

servers’ throughputs. The better the two server loads balance,

the lower the value of this metric becomes. Therefore, this met-

ric captures the performance of a load balancing application.

For convenience, we claim it the cost function, and denote

the performance metric the opposite value of cost function.

Then, coinciding with the routing application, we observe

that the performance improves with the synchronization rate

but gradually saturates showing that a diminishing return rule

applies.

B. Learning Framework

Subsequently, we study the objective of maximizing the

performance of a network application (Obj. 2) such as the

applications emulated in the previous subsection. While the

objective function is expected to have a curve shape similar to

those reported in Figure 3, we cannot express in closed-form

how exactly the synchronization rates will affect application

performance. Therefore, the objective function is unknown,

rendering the problem fundamentally different (and more

challenging) than Obj. 1.

To overcome the unknown objective challenge, we propose

to leverage methods from the learning theory. Such meth-

ods typically train the system by trying-out a sequence of

solutions (synchronization rates) over some training period

T = {1, 2, . . . , T} of T time slots, until they can infer a

“sufficiently good” solution. To describe such training process,

we generalize the vector of synchronization rate variables as:

x = (xt
ij ∈ {0, 1, . . . , R} : ∀i, j ∈ C, j 6= i, t ∈ T) (6)

where xt
ij indicates the synchronization rate between con-

trollers i and j tried-out in time slot t. We further denote

by the vector xt all the variables in time slot t. We emphasize

that the variable values will be typically different from slot to

slot as different synchronization rates need to be explored in

order to train the system.

Given the synchronization rate vector xt tried-out in a slot t,
the application performance will be Ψt(x

t). Here, Ψt(.) is an

unknown function that governs the application performance

in slot t. While the overall function is unknown, the single

value Ψt(x
t) can be observed by the system operator after

the synchronization rate decision x
t is made, in the end of the

slot. For a shortest path routing application, for example, this is

possible by measuring the number of data packets that reached

their destination in time. Such information can be estimated

by the controllers using the TCP acknowledgement packets.

The information can be then passed to the system operator

(e.g., one of the controllers) which can simply aggregate and

sum the respective values.

We emphasize that the function Ψt(.) is time slot-dependent,

meaning that the performance value might change with time

even for the same synchronization rate decision. That is, we

may try-out the same synchronization rate vector xt = x
t′ in

two slots t and t′ but observe different performance values

Ψt(x
t) 6= Ψt′(x

t′). Such uncertainty of observations is

due to the stochastic nature of the network. Intuitively, the

performance value will be large if the network happens to be

stable in a slot but will be much worse in other slots during

which many changes happen.

Despite the uncertainty of observations, the learning method

should be able to infer by the end of the training period T a

“sufficiently good” synchronization rate decision x̂ = (x̂ij :
i, j ∈ C, j 6= i). This should, ideally, maximize the average

performance denoted by an (also unknown) function Ψ̂(.) =
E[Ψt(.)]. While the system operator does not know the average

performance values, we assume that they do not change over

a period of time (e.g., a few hours). Therefore, our second

objective can be written as:

Obj. 2 : max
x̂

Ψ̂(x̂) (7)

s.t.
∑

i∈C

∑
j∈C,j 6=i x̂ijbij ≤ B (8)

where inequality (8) ensures that the inferred synchronization

rate decision will satisfy the resource constraint.

We need to emphasize that the average performance Ψ̂(x̂)
can be in fact the aggregate of many (rather than only one)

applications. Either way, the performance is not the only

criterion that determines the efficiency of a learning method.

Another important criterion in this context is the running (or

training) time T , i.e., how many time slots are required for

training in order to infer the synchronization rate decision x̂.

In the next subsection, we will propose a learning method that

has adjustable average performance and running time.

C. Learning Algorithm

To handle the uncertainty of an observed performance

value Ψt(x
t), a learning method would typically try-out the

same synchronization decision x
t multiple times, in different

time slots. Then, the empirical mean of the observations will

be used to estimate the average performance value Ψ̂(xt).
By repeating the above training process for every possible

synchronization decision, an estimate of the entire objective

function Ψ̂(.) can be obtained. However, there exists an

exponential number of possible decisions; (R + 1)C(C−1)

decisions in total. Therefore, this approach would require an

exponential number of time slots for training, which is clearly

not practical.

To overcome the high dimensionality of the synchronization

decision space, we could leverage learning methods proposed

recently that do not require the estimation of the objective

function at every possible decision. For instance, the Exp-

Greedy algorithm proposed in [15] can infer a close-to-optimal

decision in polynomial-time provided that the objective func-

tion follows a diminishing return rule, as the one observed in

the emulation results in Figure 3. Still, however, the running

time of this algorithm may be too large for our problem, as

we will show numerically in the next section, hindering its

application in practical scenarios.

Based on the above, we propose an alternative more-

practical learning algorithm for which we can flexibly adjust

the running time by setting appropriate values to its input

parameters. We refer to this algorithm as Stochastic Greedy

and summarize it in Algorithm 1. To ease presentation, we

have assumed that the resource costs are equal and normal-

ized to one for all the controller pairs, i.e., bij = 1 ∀i, j.

However, the algorithm and analysis can be easily extended

for heterogeneous resource costs.

In a nutshell, the Stochastic Greedy algorithm starts with the

all-zero synchronization decision and then gradually constructs

the decision to be returned by iteratively increasing by 1 the

synchronization rate of a single controller pair. This procedure

will end when the B resource constraint is reached, i.e., after

B iterations. Each iteration requires multiple time slots for

training so as to be confident that the controller pair selected

to increase its rate by 1 will improve the average performance

more than other controller pairs. The length of the training

period can be adjusted by two input parameters σ and τ . The

value of σ is between 1 and C(C − 1), while τ can take any

positive integer value.

Formally, the algorithm maintains a synchronization rate

decision x̂, initially set to the zero vector 0 (line 1). It

spends the first τ time slots trying out the zero synchronization

Algorithm 1: Stochastic Greedy with (σ, τ) input

1 Initialize x̂ = 0;

2 Try out xt = x̂ and observe Ψt(x
t) ∀t ∈ {1, . . . , τ};

3 Estimate Ψ̂(x̂) = 1
τ

∑τ

t=1 Ψt(x
t);

4 for each iteration k from 1 to B do

5 Pick σ random controller pairs p for which

x̂p < R;

6 for each picked pair p from 1 to σ do

7 Set x̂′ = x̂ where x̂′
p = x̂p + 1;

8 Try out xt = x̂
′ and observe Ψt(x

t) ∀t ∈
{(k− 1)στ + pτ +1, . . . , (k− 1)στ + pτ + τ};

9 Estimate Ψ̂(x̂′) = 1
τ

∑(k−1)στ+pτ+τ

t=(k−1)στ+pτ+1 Ψt(x
t);

10 Set D(x̂, x̂′) = Ψ̂(x̂′)− Ψ̂(x̂);
end

11 Update x̂ = argmax
x̂

′D(x̂, x̂′);
end

12 Output: x̂;

decision and uses the τ observations to estimate Ψ̂(0) (lines

2-3). In the next B iterations (lines 4-11), the algorithm will

iteratively select a controller pair and increase the respective

synchronization rate by 1, updating x̂. At each iteration

k = 1, 2, . . . , B, the algorithm will initially pick σ random

pairs of controllers as candidates (line 5). For each such

pair p = 1, 2, . . . , σ, the synchronization decision x̂
′ will

be set accordingly (line 7) and τ time slots will be spent to

estimate Ψ̂(x̂′) (lines 8-9). The marginal performance gain of

switching from decision x̂ to x̂
′, denoted by D(x̂, x̂′), will be

estimated (line 10). Among the σ candidate controller pairs,

the algorithm will include in the current decision x̂ the pair

with the maximum estimated marginal performance gain (line

11).

The algorithm spends τ time slots to estimate Ψ̂(x̂) for

x̂ = 0, and στ more slots for each iteration. Therefore, the

total running (or training) time is T = τ + στB time slots.

The following theorem describes the average performance of

the algorithm. Since the algorithm makes random decisions,

the average performance bound holds in expectation.

Theorem 3. Algorithm 1 achieves average performance Ψ̂(x̂)
that is in expectation a factor 1− e−(1−ǫ)µ from the optimal

where ǫ = e
−σ B

C(C−1)R and µ is the expected fraction of the

observed marginal gain in a slot over the actual marginal

gain.

To facilitate reading, we defer the proof of the theorem

to the appendix. We emphasize that the average performance

bound depends on the value of µ. This value captures the

uncertainty of the observed performance values since the

changes in network state may be unevenly distributed across

the time slots. If µ = 1, it means that the performance value

does not depend on the time slot of observation and hence

the estimated maximum performance will be the actual one.

However, as the µ value goes to 0 the observations become

more uncertain.

Another issue is that the performance bound in Theorem

12 18 24

Resource Constraint B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
o
n
s
is

te
n
c
y
 L

e
v
e
l

Homogeneous

MCK

(a)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

State Change Rate

0

0.5

1

1.5

2

2.5

3

C
o

n
s
is

te
n

c
y
 L

e
v
e

l

Homogeneous

MCK

(b)

12 18 24

Resource Constraint B

92

93

94

95

96

O
p
ti
m

a
lly

 R
o
u
te

d
 P

a
c
k
e
ts

 (
%

)

0

200

400

600

800

1000

T
im

e
 S

lo
ts

 R
e
q
u
ir
e
d

Homogeneous

Stochastic Greedy

ExpGreedy

Stochastic Greedy (time slots)

ExpGreedy (time slots)

(c)

93.7 93.8 93.9 94 94.1 94.2 94.3 94.4 94.5 94.6

Optimally Routed Packets (%)

0

100

200

300

400

500

600

700

800

T
im

e
 S

lo
ts

 R
e
q
u
ir
e
d

Stochastic Greedy

ExpGreedy

(d)

0 20 40 60 80 100 120 140 160

Time Slots

84

86

88

90

92

94

96

98

O
p
ti
m

a
lly

 R
o
u
te

d
 P

a
c
k
e
ts

 (
%

)

Performance in one slot

Average Performance

(e)

1 1.5 2

Ratio of Arrival Rates

1.5

2

2.5

3

3.5

4

4.5

5

5.5

T
h
ro

u
g
h
p
u
t
R

M
S

E
 (

M
b
p
s

2
)

Homogeneous

Stochastic Greedy

(f)

Fig. 4: Consistency level for different (a) resource budgets and (b) rates of network state changes. (c) Performance and training

time for different resource budgets, (d) tradeoff between performance and training time and (e) learning process under the

shortest path routing application. (f) RMSE cost for different ratios of flow arrival rates under the load-balancing application.

3 holds in expectation, which means that it may be violated

in practice. Therefore, it is important to bound the extent to

which this happen, as we show in the following theorem.

Theorem 4. Algorithm 1 achieves average performance Ψ̂(x̂)
that is a factor 1 − e−(1−ǫ)(1−γ)µ from the optimal with

probability 1− e−
γBτ

2 for any γ ∈ (0, 1).

The average performance bounds of our algorithm can be

better understood through an example. In particular, consider

the system with C = 5 controllers, B = 10 available resources

and s = 30 seconds per time slot. By picking σ = 5 out of the

20 possible controller pairs and τ = 3 time slots per try-out,

the total running (training) time of the algorithm will be about

one hour. Moreover, if the observed marginal performance

gains are 50% or more of the actual ones (µ = 0.5) and R = 1,

the average performance achieved by the algorithm will be in

expectation at least 37% of the optimal. Picking a larger σ
value will increase the average performance (cf. Theorem 3).

Picking a larger τ value will increase the probability that the

performance bound is not violated (cf. Theorem 4).

IV. EVALUATION RESULTS

In this section, we carry out evaluations to show the benefits

of the proposed algorithms. Overall, we find that benefits

are realized for both objectives compared with the baseline

algorithm that synchronizes all the controller pairs at equal

rate (referred to as Homogeneous). Especially for Obj. 2,

our Stochastic Greedy algorithm achieves better performance-

training time tradeoff than a state-of-the-art learning algorithm

(ExpGreedy in [15]).

Evaluation setup. We choose the same network topologies

and applications as in our emulations in Section III-A (16-

node shortest path routing and 2-server load balancing). For

Obj. 1, we compare the optimal algorithm according to our

model (MCK) with the Homogeneous algorithm. For Obj.

2, we compare our Stochastic-Greedy algorithm with both

the Homogeneous and ExpGreedy algorithms. To eliminate

randomness, we run each algorithm 10 times and take the

average value.

Evaluation of Obj. 1. We start with Obj. 1 and focus on

the 16-node network with C = 3 controllers (domains). We set

the rate of changes of the ith domain as λi = niλ, where ni is

the size of domain i, i.e., the number of data plane nodes, and

λ = 0.05. In Figure 4a, we calculate the consistency level of

both MCK and Homogeneous algorithms for different resource

budgets B. While the consistency level increases with B for

both algorithms, Homogeneous cannot reach the same level of

consistency as MCK. Furthermore, in Figure 4b we investigate

the impact of state change rate λ. In accordance with intuition,

the more frequently changes happen, the more enhancement

of consistency we can achieve by optimizing Obj. 1.

Evaluation of Obj. 2: Shortest path routing application.

Next, we study Obj. 2, i.e., the performance of network appli-

cations. We first consider the shortest path routing application

in the 16-node network. A performance metric of interest for

this application is the percentage of packets that are optimally

routed to their destinations, i.e., following paths of the same

number of hops as the optimal path. Figure 4c depicts the

performance for different resource budgets B. We notice that

the proposed Stochastic-Greedy algorithm routes optimally

more packets than Homogeneous and ExpGreedy algorithms.

The training time required by our algorithm increases linearly

with B. On the other hand, the time of ExpGreedy increases

more dramatically, which shows that our algorithm is more

scalable. Specifically, our algorithm requires around 200 time

slots (about an hour and a half) for training while ExpGreedy

may consume more than 800 time slots (6-7 hours), which

may be prohibitively large in practice.

The training time can be reduced for both algorithms by

adjusting the input parameter values they take (σ and τ for

our algorithm). However, this will be at the cost of reduced

performance (as we described in Theorems 3 and 4). Figure 4d

depicts the detailed tradeoff between performance and training

time. It shows that we can flexibly trade the performance

and training time of our algorithm (from 93.9% to 94.5%
optimally routed packets and from 50 to 210 slots). For the

same performance, ExpGreedy typically takes more than twice

the time compared to our algorithm. Figure 4e illustrates the

learning process when Stochastic Greedy is run for B = 18,

σ = 2 and τ = 4. Although in each time slot the algorithm

observes a performance value with large randomness, it is able

to allocate resources to proper pairs and increase the average

performance over time.

Evaluation of Obj. 2: Load balancing application. Fi-

nally, we examine the load balancing application. Similar to

the emulations in Section III-A, we randomly generate flows

at two switches. We define one time slot as 60 seconds.

Under the same B value, we compare the Stochastic Greedy

and Homogeneous algorithms for various flow arrival rates.

When the arrival rates at the two switches are equal, the

Homogeneous algorithm should be optimal because of the

symmetry. In this case, as Figure 4f shows, our algorithm gets

almost the same RMSE cost. Next, we set different arrival

rates at the two switches. As a result, when the ratio of

arrival rates gets larger, our algorithm leads to lower cost than

the Homogeneous algorithm. For example, our algorithm can

decrease the RMSE by around 20% when the ratio of flow

arrival rates at the two switches is equal to 2.

V. RELATED WORK

Distributed SDN controller deployments require a coordina-

tion protocol among controllers, which could easily generate

significant amount of control traffic, e.g., see the measurement

studies in [6] and [7]. However, the control traffic is often

neglected in literature with most of the existing works focusing

on the routing and balancing of the data traffic, e.g., see [16]

and the survey in [1].

Some recent works proposed to reduce the overheads of

control traffic by strategically placing the controllers in the

network [17] or by finding the appropriate forwarding paths

for load balancing on control traffic [8]. Nevertheless, the

above approaches should be considered as complementary

to our work, rather than competitive. On the one hand, the

controller placement decisions are taken in a different (much

slower) timescale than the synchronization. On the other

hand, the control traffic forwarding can be combined with

the synchronization rate decisions we make, since the former

directly impacts the resource cost values bij used as input to

our problem.

Eventual consistency, where the controllers coordinate pe-

riodically rather than on demand basis, is another way to

reduce control overheads. Levin et al. [9] showed that certain

network applications, like load-balancers, can work around

eventual consistency and still deliver acceptable performance.

This would require some additional effort to be made to

ensure that conflicts such as forwarding loops, black holes

and reachability violation are avoided [11].

Few recent works suggested the dynamic adaptation of

synchronization period (or rate) among controllers in an

eventually-consistent system so as to improve the performance

of network applications while maintaining a scalable sys-

tem [18], [19]. While interesting and relevant, the above works

did not provide any mathematical formulation or optimization

framework. To the best of our knowledge our work is the

first to systematically study the synchronization problem and

propose optimization and learning methods.

VI. CONCLUSION

In this paper, we studied the problem of finding the opti-

mal synchronization rates among controllers in a distributed

eventually-consistent SDN system. We considered two differ-

ent objectives, namely, (i) the maximization of the number of

controller pairs that are consistent, and (ii) the maximization

of the performance of applications which may be affected by

the synchronization decisions, as highlighted by emulations

on a commercial SDN controller. For these objectives, we

characterized the complexity of the problem and proposed

algorithms to achieve the optimal synchronization rates. Eval-

uation results demonstrated significant performance benefits

over the baseline policy that synchronizes all controller pairs

at equal rate. Overall, the synchronization problem deserves

more research attention, analogous to other problems in SDN

framework. Our work in this paper can be seen as a kick-off

for systematically studying optimization and learning methods

to tackle this important problem.

REFERENCES

[1] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S.
Azodolmolky, S. Uhlig, “Software-Defined Networking: A Comprehen-
sive Survey”, Proc. of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

[2] Y.E. Oktian, S. Lee, H. Lee, J. Lam, “Distributed SDN Controller System:
A Survey on Design Choice”, Computer Networks, vol. 121, no. 5, pp.
100-111, 2017.

[3] https://www.opendaylight.org
[4] http://onosproject.org
[5] F. Botelho, T. A. Ribeiro, P. Ferreira, F. M. V. Ramos, A. Bessani, “Design

and Implementation of a Consistent Data Store for a Distributed SDN
Control Plane”, IEEE EDCC, 2016.

[6] A.S. Muqaddas, P. Giaccone, A. Bianco, G. Maier, “Inter-controller
Traffic to Support Consistency in ONOS Clusters”, IEEE Transactions
on Network and Service Management, vol. 14, no. 4, pp. 1018-1031,
2017.

[7] Q. Qin, K. Poularakis, G. Iosifidis, L. Tassiulas, “SDN Controller Place-
ment at the Edge: Optimizing Delay and Overheads”, IEEE Infocom,
2018.

[8] S.-C.- Lin, P. Wang, I.F. Akyildiz, M. Luo, “Towards Optimal Network
Planning for Software-Defined Networks”, IEEE Transactions on Mobile
Computing, 2018.

[9] D. Levin, A. Wundsam, B. Heller, N. Handigol, A. Feldmann, “Log-
ically Centralized? State Distribution Trade-offs in Software Defined
Networks”, ACM HotSDN, 2012.

[10] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, S. Shenker, “SCL:
Simplifying Distributed SDN Control Planes”, USENIX NSDI, 2017.

[11] Z. Guo, M. Su, Y. Xu, Z. Duan, L. Wang, S. Hui, H. J. Chao, “Improv-
ing the Performance of Load Balancing in Software-Defined Networks
through Load Variance-based Synchronization”, Computer Networks, vol.
68, pp. 95-109, 2014.

[12] M.S. Bansal, V.C. Venkaiah, “Improved Fully Polynomial time Approx-
imation Scheme for the 0-1 Multiple-choice Knapsack Problem”, SIAM
Conference on Discrete Mathematics, 2004.

[13] B. Lantz, B. Heller, N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-defined Networks”, ACM HotSDN, 2010.

[14] http://osrg.github.io/ryu
[15] A. Singla, S. Tschiatschek, A. Krause, “Noisy Submodular Maximiza-

tion via Adaptive Sampling with Applications to Crowdsourced Image
Collection Summarization”, AAAI, 2016.

[16] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Adaptive
Resource Management and Control in Software Defined Networks”, IEEE
Transactions on Network and Service Management, vol. 12, no. 1, pp. 18-
33, 2015.

[17] Z. Su, M. Hamdi, “MDCP: Measurement-Aware Distributed Controller
Placement for Software Defined Networks”, IEEE ICPADS, 2015.

[18] M. Aslan, A. Matrawy, “Adaptive Consistency for Distributed SDN
Controllers”, IEEE Networks 2016.

[19] E. Sakic, F. Sardis, J.W. Guck, W. Kellerer, “Towards Adaptive State
Consistency in Distributed SDN Control Plane”, IEEE ICC, 2017.

[20] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrak,, A. Krause,
“Lazier Than Lazy Greedy”, AAAI, 2015.

APPENDIX

PROOF OF THEOREM 3

To facilitate the presentation of the proof, we describe an

alternative representation of the synchronization rate decisions

using the following set of elements (ground set):

G = {grij : ∀i, j ∈ C, j 6= i, r ∈ {1, . . . , R}} (9)

Here, each of the elements {g1ij , g
2
ij , . . . , g

R
ij} indicates a

separate message disseminated between controllers i and j.

Each subset of elements X̂ ⊆ G indicates a synchronization

policy x̂ where the synchronization rate x̂ij is equal to the

number of the aforementioned elements included in X̂ .

We denote by the subsets A ⊆ G and O ⊆ G the solution

returned by the Stochastic Greedy approximation algorithm

and the optimal, respectively. We also denote by the subset

Ak = {α1, . . . , αk} ⊆ A the solution returned by the

Stochastic Greedy algorithm after the first 0 ≤ k ≤ B
iterations. Then, similar to the proof in [20], we compute the

probability that the set S of σ elements that is randomly picked

by Stochastic Greedy at iteration k+ 1 does not overlap with

the optimal set O besides of the elements already in Ak:

Pr[S ∩ (O \ Ak) = ∅] =
(
1−

|O \ Ak|

|G \ Ak|

)σ

≤ e
−σ

|O\Ak|

|G\Ak| ≤ e
−σ

|O\Ak|

C(C−1)R (10)

where the first inequality is because (1− x)a ≤ e−ax for any

x ∈ (0, 1). The second inequality is because |G| = C(C−1)R.

Then, we have:

Pr[S ∩ (O \ Ak) 6= ∅] ≥ 1− e
−σ

|O\Ak|

C(C−1)R

≥ (1− e
−σ B

C(C−1)R)
|O \ Ak|

B
= (1− ǫ)

|O \ Ak|

B
(11)

where the second inequality is because the function 1 −
e
−σ x

C(C−1)R is concave with respect to x ∈ [0, B]. The last

equality is because of the definition of ǫ.

At iteration k + 1, Stochastic Greedy adds the element

αk+1 to the solution Ak which is estimated to maximize the

marginal gain Ψ̂(Ak+1) - Ψ̂(Ak). However, the element with

the real maximum marginal gain may be different, namely

α′
k+1 6= αk+1. Given that αk+1 is picked after τ try-outs, the

following equation holds:

Ψ̂(Ak ∪ {αk+1})− Ψ̂(Ak) =
(τ∑

t=1

µt
k+1

τ

)(
Ψ̂(Ak ∪ {α′

k+1})− Ψ̂(Ak)
)

(12)

where µt
k+1 is the ratio of marginal gains according to try-out

t = 1, 2, . . . , τ . Each µt
k+1 value is taken from a distribution

with mean value µ.
By definition, Ψ̂(Ak∪{α′

k+1})−Ψ̂(Ak) is at least as much

as the marginal value of an element randomly chosen from the

set S ∩ (O \ Ak) (if non-empty). This is actually an element

randomly chosen from the entire set O \ Ak, since the set S
itself is randomly chosen. Thus, we have:

Ψ̂(Ak ∪ {α′
k+1})− Ψ̂(Ak)

≥ Pr[S ∩ (O \ Ak) 6= ∅]

∑
o∈O\Ak

(Ψ̂(Ak ∪ {o})− Ψ̂(Ak))

|O \ Ak|

≥
1− ǫ

B

∑

o∈O\Ak

(Ψ̂(Ak ∪ {o})− Ψ̂(Ak))

≥
1− ǫ

B
(Ψ̂(O)− Ψ̂(Ak)) (13)

where the second inequality is because of (11). The third

inequality is due to the rule of diminishing returns. By

combining (12) and (13) we obtain:

Ψ̂(Ak+1)−Ψ̂(Ak) = Ψ̂(Ak ∪ {αk+1})− Ψ̂(Ak)

≥
(1− ǫ)

∑τ
t=1 µt

k+1

τ

B
(Ψ̂(O)− Ψ̂(Ak)) (14)

By induction, we can show that:

Ψ̂(AB) ≥
(
1−

(
1−

(1− ǫ)
∑B

k=1

∑τ
t=1 µt

k

Bτ

B

)B)
Ψ̂(O)

≥
(
1− e−(1−ǫ)

∑B
k=1

∑τ
t=1 µt

k
Bτ

)
Ψ̂(O) (15)

Since the µt
k values are drawn from a distribution with mean

value µ, it will be
∑B

k=1

∑τ
t=1 µt

k

Bτ
= µ in expectation, which

concludes the proof.

APPENDIX

PROOF OF THEOREM 4

Let µ1
1, . . . , µ

τ
B be the marginal gain ratios associated with

the Bτ try-outs of the Stochastic greedy algorithm. Since µt
k ∈

(0, 1), ∀t, k with mean value µ, we can apply the Chernoff

bound and obtain for each γ ∈ (0, 1):

Pr[
1

Bτ

B∑

k=1

τ∑

t=1

µt
k < (1− γ)µ] < e−

γµBτ
2 (16)

Therefore, with probability 1 − e−
γµBτ

2 , the empirical mean

value will be at least as much as (1 − γ)µ. With the same

probability, the performance will be at least as much as 1 −
e−(1−ǫ)(1−γ)µ.

