1	Supporting Information
2	for
3	Methodology to Relate Black Carbon Particle Number and Mass Emissions
4	
5	
6 7 8 9	Roger Teoh ¹ , Marc E.J. Stettler ¹ *, Arnab Majumdar ¹ , Ulrich Schumann ² , Brian Graves ³ and Adam Boies ³
10 11 12	¹ Centre for Transport Studies, Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
13 14 15	² Deutsches Zentrum für Luft- und Raumfahrt, Institute of Atmospheric Physics, 82234 Oberpfaffenhofen, Germany
16 17 18	³ Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
19	* Corresponding author. E-mail address: <u>m.stettler@imperial.ac.uk</u>
20	
21	

22 S1 – DERIVATION OF THE NEW FRACTAL AGGREGATE (FA) MODEL

23 S1.1 Simplified Derivation of the FA Model (Eq. 15, main text) excluding Cov

23 SIT Simplified Derivation of the PA struct (Eq. 12, india (Ed.) excluding Color
24 Derivation of
$$N = \frac{M}{k_{B}\rho_{0} (\frac{\pi}{k_{B}})^{(k_{TEM})^{3-2D_{\alpha}} dM M^{0} exg(e^{2T_{B}(GED)^{2}})}}$$
 where $\varphi = 3D_{TEM} + (1 - D_{TEM})2D_{\alpha}$
25 Figure S1: Graphical illustration of one BC aggregate consisting of many smaller primary particles
26 Primary particle diameter, generalised form:
27 $d_{pp}[m] = k_{TEM} d_m^{D_{TEM}}$ (Boies et al., 2015; Dastanpour & Rogak, 2014)
30 $d_{pp}^{3} = (k_{TEM})^{3} dm^{3D_{TEM}}$
31 Number of primary particles,
31 $n_{pp} = k_{\alpha} (\frac{d_{m})^{2D_{\alpha}}}{d_{m}} dm^{2D_{TEM}}}$ (Boies et al., 2015; Eggersdorfer et al., 2012a)
34 $n_{pp} = k_{\alpha} (\frac{d_{m}}{d_{pp}})^{2D_{\alpha}}$ (Boies et al., 2015; Eggersdorfer et al., 2012a)
35 Mass of BC aggregate is the sum of the mass of primary particles:
37 Assumption: Single point of contact between pairs of primary particles;
38 Assumption: Single point of contact between pairs of primary particles, where the overlapping
39 $m = n_{pp}\rho_{0}(\frac{\pi}{6})d_{pp}^{3}$ [Substitute $n_{pp} = k_{\alpha}(\frac{dm^{2D_{\alpha}}}{k_{TEM}^{2D_{\alpha}} + dm^{2D_{\alpha}}})$ & $d_{pp}^{3} = (k_{TEM})^{3} dm^{3D_{TEM}}$
31 $m = k_{\alpha}d_{m}^{2D_{\alpha}-2D_{TEM}}dn_{\alpha} + dn_{\alpha}^{2D_{\alpha}}(k_{TEM})^{3-2D_{\alpha}}$
32 $m = k_{\alpha}d_{m}^{2D_{\alpha}-2D_{TEM}}dn_{\alpha}(k_{TEM})^{3-2D_{\alpha}}$
31 $m = k_{\alpha}d_{m}^{2D_{\alpha}-2D_{TEM}}dn_{\alpha}(k_{TEM})^{3-2D_{\alpha}}$
33 $m = k_{\alpha}d_{m}^{2D_{\alpha}-(\frac{\pi}{6})}(k_{TEM})^{3-2D_{\alpha}}$
44 $Mass of a collection of aggregates with size distribution $n(d_{m})$:
45 Mass of a collection of aggregates with size distribution $n(d_{m})$:
46 $M = \int_{0}^{\infty} k_{\alpha}d_{m}q_{\rho}(\frac{\pi}{6})(k_{TEM})^{3-2D_{\alpha}} n(d_{m}) dlogd_{m}$$

48
$$M = k_a \rho_0(\frac{\pi}{6}) (k_{\text{TEM}})^{3-2D_\alpha} \int_0^\infty d_m^\varphi n(d_m) \, dlogd_m$$

49 Note:
50
$$n(d_m) = N \times p(d_m)$$
 where $p(d_m)$ is the probability density function of distribution $n(d_m)$
51 $\int_{-\infty}^{\infty} p(d_m) = 1$ integrating the total interval of a probability density function is equal to 1
52 $M = k_0 \rho_0 (\frac{\pi}{6}) (k_{\text{TEM}})^{3-2D_0} \int_0^{\infty} d_m^{\varphi} N p(d_m) dlog d_m$
53 $M = N \times k_0 \rho_0 (\frac{\pi}{6}) (k_{\text{TEM}})^{3-2D_0} \int_0^{\infty} d_m^{\varphi} dlog d_m$
54 $M = N \times k_0 \rho_0 (\frac{\pi}{6}) (k_{\text{TEM}})^{3-2D_0} \int_0^{\infty} d_m^{\varphi} dlog d_m$
55 Note: The remaining integral, $\int_0^{\infty} d_m^{\varphi} dlog d_m$ is the φ^{h} moment of a log-normal distribution
58 Moment Generating Function of order φ for the log-normal distribution:
59 $M_{\varphi}(\mu, \sigma) = e^{\varphi \mu + \frac{\varphi^2 \pi^2}{2}}$ (Magnus et al., 2013)
60 or similarly, $E(X^{\varphi}) = \exp(\varphi \mu + \frac{1}{2}\varphi^2 \sigma^2)$
61
62 $M = N \rho_0 (\frac{\pi}{6}) (k_{\text{TEM}})^{3-2D_0} \exp(\varphi + \frac{1}{2}\varphi^2 \sigma^2)$
63
64 Note: $\mu = \ln(\text{GMD})$ & $\sigma = \ln(\text{GSD})$
66 $M = N k_0 \rho_0 (\frac{\pi}{6}) (k_{\text{TEM}})^{3-2D_0} \exp(\varphi \times \ln(\text{GMD}) + \frac{1}{2}\varphi^2 \times [\ln(\text{GSD})]^2)$
67 Recall Logarithmic Power Rule: $log_b(x^2) = y \cdot log_b(x)$
68 $M = N k_0 \rho_0 (\frac{\pi}{6}) (k_{\text{TEM}})^{3-2D_0} \exp(\varphi \exp(\varphi^2 \ln(\text{GMD}^{\varphi}) + \frac{1}{2}\varphi^2 \times [\ln(\text{GSD})]^2)$
69 $M = N k_0 \rho_0 (\frac{\pi}{6}) (k_{\text{TEM}})^{3-2D_0} \text{GMD}^{\varphi} \exp(\varphi^2 \frac{\ln(\text{GSD})^2}{2})$ where $\varphi = 3D_{\text{TEM}} + (1 - D_{\text{TEM}})2D_{\alpha}$
71 **Recarranging equation for** N - **Simplified FA Model:**
72 $N = \frac{M}{k_0 \rho_0 (\frac{\pi}{6}) (k_{\text{TEM}})^{3-2D_0} \text{ GMD}^{\varphi} \exp(\varphi^2 \frac{\ln(\text{GSD}^2)}{2})$ where $\varphi = 3D_{\text{TEM}} + (1 - D_{\text{TEM}})2D_{\alpha}$
73 When $k_0 = 1$ and $D_{\alpha} = \frac{1}{2} D_{fm}$ is assumed for aircraft BC emissions, the FA model becomes:
75 Eln $= \frac{\text{FI}_m}{\rho_0 (\frac{\pi}{6}) (k_{\text{TEM}})^{3-D_{\text{TEM}}} (\frac{\varphi^2 \ln(\text{GSD}^2)}{2})}$ where $\varphi = 3D_{\text{TEM}} + (1 - D_{\text{TEM}})D_{\text{Fm}}$
74 When $k_0 = 1$ and $D_{\alpha} = \frac{1}{2} D_{fm}$ is assumed for aircraft BC emissions, the FA model becomes:
75 Eln $= \frac{P_{\text{FI}}}{\rho_0 (\frac{\pi}{6}) (k_{\text{TEM}})^{3-D_{\text{FI}}} (\frac{\varphi^2 \ln(\text{GSD}^2)}{2})}$ where $\varphi = 3D_{\text{TEM}} + (1 - D_{\text{TEM}})D_{\text{Fm}}$
76 $N = Total number of BC aggregates mas-mob$

81 Earlier derivations of the FA model can be found in Stettler & Boies (2014), Teoh et al. (2017),

82 Stettler et al. (2017), Teoh et al. (2018a) and Teoh et al. (2018b).

83 S1.2 Extended Derivation of the FA Model (Eq. 16, main text) including Cov

B4 Derivation of
$$N = \frac{N}{\sigma(\frac{1}{2}) k_{\pm} (\Delta r_{EEM})^{3-2D} (EMOD)^{2} \exp(\frac{2^{1} \log(2D)^{2}}{2})(1-5C_{m}^{2}-6SC_{m}^{2})+k_{EEM}^{2}\frac{1}{2})(1-5C_{m}^{2}-6SC_{m}^{2})+k_{EEM}^{2}\frac{1}{2})(1-5C_{m}^{2}-6SC_{m}^{2})+k_{EEM}^{2}\frac{1}{2})(1-5C_{m}^{2}-6SC_{m}^{2})+k_{EEM}^{2}\frac{1}{2})(1-5C_{m}^{2}-6SC_{m}^{2})-k_{EEM}^{2}\frac{1}{2})(1-5C_{m}^{2}-6$$

111 where
$$\varphi = 3D_{\text{TEM}} + (1 - D_{\text{TEM}})2D_{\alpha}$$
, and $\gamma = 3D$
112

113 Checks: If C_{ov} = 0, the FA model becomes
$$N = \frac{M}{k_a \rho_0(\frac{\pi}{6})(k_{\text{TEM}})^{3-2D} \alpha \text{GMD}^{\varphi} \exp(\frac{\varphi^2 \ln(\text{GSD})^2}{2})}$$

114 S1.3 Sensitivity of the FA Model Outputs to Cov

115 The degree of primary particle overlapping is defined as $C_{ov} = \frac{(r_i+r_j)-d_{ij}}{(r_i+r_j)}$, and C_{ov} is usually 116 obtained from the projected overlapping coefficient estimated from TEM images ($C_{ov,p}$). 117 Brasil et al. (1999) showed that $C_{ov,p}$ can be converted to C_{ov} with the following formula:

118
$$C_{ov} = \zeta_1 C_{ov,p} - \zeta_2$$
, where $\zeta_1 = 1.1 \pm 0.1$ and $\zeta_2 = 0.2 \pm 0.02$

119 According to Bourrous et al. (2018), the $C_{ov,p}$ for BC is between 0.2 and 0.4, and the

- 120 conversion from $C_{ov,p}$ to C_{ov} gives a range of $0.02 \le C_{ov} \le 0.24$.
- 121 Using the SAMPLE III.2 aircraft emissions data from Boies et al. (2015), we explored the
- sensitivity of the FA model outputs (the estimated N or EI_n) to the range of C_{ov} provided by
- Bourrous et al. (2018). For an upper bound of $C_{ov} = 0.24$, Figure S2 shows that the FA model
- 124 outputs could increase by up to 7% relative to the simplified FA model where C_{ov} is assumed
- 125 to be 0.

126

Figure S2: Sensitivity of the FA model outputs to Cov, using data from the SAMPLE III.2 campaign.

129 S2 – ASSUMPTION OF $k_a = 1$ AND $D_{fm} = 2D_a$ FOR AIRCRAFT BC EMISSIONS

130 The prefactor-exponent assumptions of $k_a = 1$ and $2D_{\alpha} = D_{fm}$ are used to estimate aircraft

131 BC emissions in the FA model. In this section, the validity of these assumptions is evaluated

- using different methodologies and datasets published in the literature.
- 133 For aggregates formed via diffusion limited cluster aggregation (DLCA), Eggersdorfer &
- 134 Pratsinis (2012) showed that the k_a is inversely correlated with the GSD of primary particle
- diameters (figure 4 on Eggersdorfer & Pratsinis (2012)). Using data on the size distribution of

- primary particle diameters (d_{pp}) from a CFM56-7B26 single annular combustor (SAC)
- 137 aircraft gas turbine engine (Liati et al., 2014), the GSD of aircraft BC primary particles at
- different engine thrust settings (F/F_{00}) can be estimated. This aircraft primary particle GSD
- 139 can subsequently be used to estimate the range of k_a values by interpolating the results
- 140 presented in figure 4 on Eggersdorfer & Pratsinis (2012).
- 141 Table S1 shows the soot primary particle size distribution data from Liati et al. (2014), while
- Table S2 shows the aircraft BC primary particle GMD and GSD at different F/F_{00} (which
- 143 were estimated from the size distribution of BC primary particles).

144	Table S1	l: Aircraft BC primary p	article size distribut	tion data from Liati et al. (2014)
		BC Primary Particle	Mean diameter	Frequency (%)

BC Primary Particle	Mean diameter,]	Frequency (%)	
Diameter (nm)	<i>d</i> _i (nm)	$F/F_{00} = 0.07$	$F/F_{00} = 0.65$	$F/F_{00} = 1.00$
0 – 5	2.5	0	0	2
5 - 10	7.5	10	4.5	6
10 - 15	12.5	61	17.6	16.7
15 - 20	17.5	28	32.2	24
20 - 25	22.5	1	26.7	19.3
25 - 30	27.5	0	16	15.3
30 - 35	32.5	0	2.2	8.4
35 - 40	37.5	0	0.8	4.2
40 - 45	42.5	0	0	1.8
> 45	50	0	0	2.3

146 The GMD and GSD of aircraft BC primary particles are estimated using the following

147 equations (Eq. S1 and S2) from Hinds (1999):

$$GMD = \exp(\frac{\sum_{i=1}^{j} N_i \ln(d_m)_i}{N}), \qquad (S1)$$

$$GSD = \exp(\frac{\sum_{i=1}^{j} N_i (ln(d_m)_i - ln(GMD))^2}{N-1})^{\frac{1}{2}}.$$
 (S2)

148

149 Table S2: Aircraft BC primary particle GMD and GSD at different F/F₀₀

F/F00	Primary Particle GMD (nm)	Primary Particle GSD
0.07	13.1	1.2761
0.65	18.6	1.3978
1.00	19.3	1.6827

150

Using the aircraft primary particle GSD results from Table S2, the range of k_a is interpolated using the results presented in figure 4 on Eggersdorfer & Pratsinis (2012), adopting a DLCA assumption. For $0.07 \le \frac{F}{F_{00}} \le 1.0$, the interpolated k_a is within the range of 0.8 to 1.0. Hence, the assumption of $k_a = 1$ for aircraft BC emissions across all engine type and thrust settings is supported. 156 Secondly, using data from the SAMPLE III.2 campaign, k_a and D_{α} values at certain F/F₀₀ can

also be approximated using Eq. S3, which is derived by equating n_{pp} from Eq. 1 and Eq. 6 in the main text, and subsequently substituting *m* with Eq. 2:

$$k_{\rm a} = \frac{k}{\rho_0} (k_{\rm TEM})^{2D_{\alpha}-3}$$
 and $D_{\alpha} = \frac{3D_{\rm TEM}-D_{\rm fm}}{2(D_{\rm TEM}-1)}.$ (S3)

159 The variables k, D_{fm} , k_{TEM} and D_{TEM} required to estimate k_a and D_{α} at certain F/F₀₀ are

available from Boies et al. (2015) and Johnson et al. (2015), where the data used in these two studies were collected from the same campaign and experimental set up. Table S3 shows the approximation of k_a and D_a values from a CFM56-5B4-2P double annular combustor (DAC) engine at certain F/F₀₀. Outliers from three data points (F/F₀₀ = 9.5% and F/F₀₀ = 30.9%) are identified from Johnson et al. (2015) and excluded in this analysis.

% difference **Boies et al. (2015)** Johnson et al. (2015) F/F00 *k*тем [m] Est. Da Est. ka between $D_{\rm fm}$ and - % kтем [nm] k DTEM $D_{\rm fm}$ $2D_{\alpha}$ 9.5 0.54 141.54 0.03 0.86 2.91 17.4 0.86 0.75 7.72 2.73 0.005 0.96 1.382 -29.67% 1.39 11.72 0.001 1.157 0.764 17.4 0.65 2.76 -16.16% 17.6 0.71 32.19 0.011 1.05 1.032 -25.53% 0.8 2.82 24.4 1.17 0.74 10.28 0.005 1.019 0.888 2.75 -25.89% 24.4 0.80.79 33.73 2.81 0.01 1.048 1.196 -25.41% 30.9 0.44 0.291 0.98 823.33 3 0.92 30.9 0.56 823.33 3 0.107 Average 1.0468 1.0524 -24.53%

165 Table S3: Estimation of k_a and D_a values from a CFM56-5B4-2P DAC engine using Eq. S3.

166

167 Using this approach, the average k_a value for a DAC engine is estimated to be 1.05 (0.75 \leq

168 $k_a \le 1.4$), which also supports the assumption of $k_a = 1$ for aircraft emissions in the FA

model. Finally, Table S3 also showed that values of $2D_{\alpha}$ and D_{fm} differs by approximately

170 25%, where the discrepancy could be due to the uncertainties from experimental

- 171 measurements.
- 172

173 S3 – DETAILED METHODOLOGY & EXPERIMENTAL SET-UP OF THE 174 DATASETS USED TO VALIDATE THE FA MODEL

175 This section describes the experimental set-up and methodology of the different datasets used

to validate the FA Model. The FA model is validated with BC emissions data from three

- 177 different sources: A compression ignition direct injection (CIDI) internal combustion engine,
- a soot generator, and two aircraft gas turbine engines at ground and cruise conditions.
- 179

180 S3.1 Validation – CIDI Internal Combustion Engine

- 181 BC emissions and aggregate morphology data from a CIDI engine, a six-cylinder Cummins
- 182 ISX were obtained by Graves et al. (2015). The dataset consists of 16 data points measured
- 183 from six different engine operating conditions, where the engine is set at a certain percentage
- 184 of its maximum load based on the European Stationary Cycle (EU, 1999). Figure S3 shows
- the experimental set-up used to collect the BC emissions data from the CIDI engine.

186

Figure S3: Experimental set-up used to collect data on the BC concentration and properties from the
 CIDI internal combustion engine (Graves et al. (2015), reproduced with permission).

189 The exhaust gas sample from the engine is first diluted at a ratio of 11:1 before passing

190 through a differential mobility analyser (DMA; Model 3081, TSI Inc., Shoreview, MN, USA)

and a thermodenuder (operating at 200°C to remove volatile particles in the sample flow).

192 Next, the sample flow is split into two. Half of the flow passes through a second DMA and a

193 condensation particle counter (CPC; TSI Model 3775, 5 nm D₅₀) to measure the particle

194 number concentration for a given d_m interval (n_i). The subscript '*i*' accounts for each particle

- size interval consisting of a defined $d_{\rm m}$ interval. The process of measuring $n_{\rm i}$ is repeated for
- 196 successive particle size intervals until the entire size range is covered. Using the formulation

197 of Gormley & Kennedy (1948), particle line loss correction factors are applied to the

198 measured n_i to account for diffusional deposition losses along the thermodenuder. Particle

199 losses along the sampling line and thermophoretic losses along the thermodenuder were not

200 corrected due to the large degree of uncertainty in its correction factor (Graves et al., 2015).

The total BC particle number concentration, *N* is calculated by the summation of n_i for each d_m interval,

203

$$N = \sum_{i=1}^{J} n_i , \qquad (S3)$$

where the subscript '*j*' is the total number of size intervals covering the entire size range. For each engine operating mode, the GMD and GSD are estimated using Eq. S1 and Eq. S2. The other half of the sample flow is sent to a CPMA to measure the average mass of one BC aggregate (*m*) for a given d_m interval. With measurements of *m* and d_m , prefactor-exponent coefficient pairs of *C* and $D_{\rm fm}$ can be estimated by a power-law fit using Eq. 2 (main text) and Eq.5 (main text) is then applied to estimate $\rho_{\rm eff}$. While tandem measurements of the total BC mass concentration (*M*) were not directly measured in this experimental campaign, it is

estimated using the integrated particle size distribution (IPSD) method (Liu et al., 2009),

$$M = \sum_{i=1}^{j} n_i (\rho_{\text{eff}})_i (\frac{\pi}{6} d_{\text{m}}^{3})_i , \qquad (S4)$$

where the central $d_{\rm m}$ value in each size interval is used to estimate $\rho_{\rm eff}$ (from Eq. 7 in the main text) and the volume of BC aggregate $(\frac{\pi}{6}d_{\rm m}^{-3})$. Given the lack of repeated measurements for *M* to obtain a standard deviation, the uncertainty bound of $\rho_{\rm eff}$ for each engine mode was approximated from a generalised trendline ($\rho_{\rm eff} = k d_{\rm m}^{-D_{\rm fm}-3}$) to cover 95% of the measured data points, where *k* and $D_{\rm fm}$ are extracted from Graves et al. (2015). The uncertainty bounds of $\rho_{\rm eff}$ are shown in Figure S4, and we assume that the uncertainties in directly propagates to the estimated *M*, given that *m* and $\rho_{\rm eff}$ are directly proportional, $m = \rho_{\rm eff}(\frac{\pi}{6})d_{\rm m}^{-3}$.

- Using the same CIDI engine, Dastanpour et al. (2016) found k_a and D_{α} values for each engine
- operating mode, which will be referred to as $k_{a,opt}$ and $D_{\alpha,opt}$. Values of $k_{a,opt}$ and $D_{\alpha,opt}$

221 (presented in Table S4) are estimated using a least squares regression between TEM

determined d_{pp} and Eq. S5 (Dastanpour et al., 2016), which is derived by equating Eq. 1 and

Eq. 8 in the main text,

$$d_{pp} = \left(\frac{\pi k_a \rho_0}{6m} (d_m)^{2D_\alpha}\right)^{\frac{1}{2D_\alpha - 3}},$$
(S5)

- 224 The performance of the FA model is compared by using (i) $k_{a,opt}$ and $D_{\alpha,opt}$ values from
- Dastanpour et al. (2016), and (ii) the constant $k_a = 0.998$ and $D_{\alpha} = 1.069$ values (Eggersdorfer
- et al., 2012b) in Section 4.1 (main text). Finally, k_{TEM} and D_{TEM} coefficients of
- 227 2.644×10^{-6} and 0.39 are used for all engine modes (Dastanpour & Rogak, 2014).

Engine Mode	$D_{lpha, \mathrm{opt}}$	k _{a,opt}
B75 20% EGR	1.08	0.83
B75 0% EGR	1.2	0.79
B50 20% EGR	1.13	1.13
B37 20% EGR	1.13	1.2
B25 20% EGR	1.01	1.4
A63 80% Premixed	1.1	1.19

Table S4: Fitted values of $k_{a,opt}$ and $D_{\alpha,opt}$ for each engine mode from Table 2 of Dastanpour et al. (2016)

Figure S4: Uncertainty bounds of ρ_{eff} for each engine mode of the CIDI engine, which are then propagated to estimate the uncertainties of *M*. Values of *k* and *D*_{fm} are obtained from Graves et al. (2015).

234 S3.2 Validation – Soot Generator

A laboratory-based experiment was conducted at the combustion laboratory in the University

of Cambridge to measure the emissions characteristic of BC produced by a soot generator.

The custom-made soot generator was previously used by Stettler et al. (2013b) to evaluate the

dependence of smoke number (SN) and mass concentration of BC (C_{BC}) on the BC particle

size distribution. Figure S5 shows the schematic diagram of the experimental set-up.

Figure S5: Experimental set-up to measure the BC concentration and properties produced from a soot
generator.

BC aggregates are produced from a burner/soot generator by mixing propane (C_3H_8),

nitrogen (N_2) , and air in a co-flow inverse diffusion flame, and sampled at around 200mm

above the flame by a stainless-steel probe. The sample flow then enters an ageing chamber to

coagulate and form larger BC aggregates with steady sizes, and the BC concentration and

size distribution are varied by changing the residence time in the ageing chamber. A catalytic

stripper with an internal temperature setting of 350°C is then connected downstream to

250 remove volatile particles. Stainless steel and conductive silicone tubing are used to minimise

the particle losses along the sampling flow, and no particle line loss corrections were applied.

252 Following the catalytic stripper, the aerodynamic aerosol classifier (AAC, Cambustion,

253 United Kingdom) is set to select four particle sizes, which were 50nm, 100nm, 150nm and

254 200nm respectively to obtain BC particles that are monodisperse. The particle size

distribution is measured using a scanning mobility particle sizer (SMPS, TSI, Inc.,

256 Shoreview, MN, USA:3080 Electrostatic Classifier, 3081 DMA, 3776 condensation particle

counter [CPC]), of which diffusion and multiple charge correction have been applied.

258 Simultaneously, repeated measurements of N and M are made by a CPC and Micro-

259 Aethalometer (MicroAeth AE51, AethLabs, United States) respectively.

260 Overall, 13 data points are produced from this experiment and their corresponding particle

size distributions are shown in Figure S6. Although particle line loss correction factors were

not applied, stainless steel and conductive silicon tubing were both used to minimise the

- 263 particle losses along the sampling flow.
- The assumed k_{TEM} and D_{TEM} coefficients are 2.465 × 10⁻⁶ and 0.29 respectively
- (Dastanpour & Rogak, 2014), while constant values of $k_a = 0.998$ and $D_{\alpha} = 1.069$
- (Eggersdorfer et al., 2012b) were used due to the lack of data on the $k_{a,opt}$ and $D_{\alpha,opt}$ values.

Figure S6: BC particle size distribution for the 13 data points produced by the soot generator.

270 S3.3 Additional Notes for Validation of Aircraft Gas Turbine Engines

271 Ground-level BC measurements from other studies (Lobo et al., 2015; Timko et al., 2010;

272 Wey et al., 2006) were not included due to a lack of volatile particle remover (VPR) that

could have led to the inclusion of some volatile particles. Additionally, an SMPS cut-off size

of 15 nm could also lead to an underestimation of EI_n at lower engine thrust settings (< 7%)

275 F/F₀₀), where aircraft BC $d_{\rm m}$ is estimated to be below 15 nm (Durdina et al., 2014).

276

277 S4 – FA MODEL VALIDATION FOR THE CIDI ENGINE

278 The respective $k_{a,opt}$ and $D_{\alpha,opt}$ values for each engine mode are previously listed in Table S4,

while $k_{\text{TEM}} = 2.64 \times 10^{-6}$ and $D_{\text{TEM}} = 0.29$ is prescribed for all engine operating conditions

(Dastanpour & Rogak, 2014). The validation data used in Figure 1a (main text) is presentedin Table S5.

Additionally, the same CIDI dataset is also validated by using constant values of $k_a = 0.998$

and $D_{\alpha} = 1.069$ (Eggersdorfer et al., 2012b), of which results were presented in Figure S7 and

- Table S6. The R^2 value remains high at 0.978 but the magnitude of normalised mean bias
- (NMB) increased slightly from -8.3% ($k_{a,opt}$ and $D_{\alpha,opt}$) to +15.5% ($k_a = 0.998$ and $D_{\alpha} =$
- 1.069). This shows that the constant k_a and D_{α} values from Eggersdorfer et al. (2012b) can be
- used when $k_{a,opt}$ and $D_{\alpha,opt}$ data are unavailable.

289 Table S5: Validation data for the CIDI engine (Figure 1a in the main text), where $k_{a,opt}$ and $D_{\alpha,opt}$ values 290 are used.

	Meas	sured Val	ies			Estimated Values - FA Model				
Engine Mode	<i>M</i> (kg/m ³)	GMD (nm)	GSD	N (m ⁻³)	φ	$N\left(\mathbf{m}^{-3}\right)$	(yi-ŷi)²	(yi- y)²	NMB	
B75 20%	1.80E-05	90.01	1.573	4.44E+13	2.404	5.72E+13	1.6E+26	8.2E+26	21.40%	
EGR	1.46E-05	86.55	1.576	3.99E+13	2.404	5.06E+13	1.2E+26	5.7E+26	19.67%	
	1.37E-05	84.69	1.58	4.55E+13	2.404	5.00E+13	2.0E+25	8.8E+26	3.55%	
B75 0%	3.52E-06	63.07	1.555	2.12E+13	2.574	1.99E+13	1.5E+24	2.8E+25	-9.69%	
EGR	3.58E-06	65.72	1.539	2.10E+13	2.574	1.88E+13	4.9E+24	2.6E+25	-14.27%	
B50 20%	2.42E-06	58.02	1.558	1.64E+13	2.475	1.44E+13	3.8E+24	2.3E+23	-16.36%	
EGR	2.24E-06	56.97	1.562	1.78E+13	2.475	1.39E+13	1.6E+25	3.8E+24	-26.03%	
B37 20%	2.68E-07	36.66	1.564	5.77E+12	2.475	4.64E+12	1.3E+24	1.0E+26	-23.59%	
EGR	1.26E-06	47.91	1.545	1.37E+13	2.475	1.16E+13	4.4E+24	4.7E+24	-19.61%	
	5.07E-07	39.5	1.567	8.57E+12	2.475	7.26E+12	1.7E+24	5.4E+25	-19.60%	
	3.32E-07	38.26	1.601	6.38E+12	2.475	4.84E+12	2.4E+24	9.0E+25	-28.01%	
B25 20%	1.03E-07	31.38	1.801	1.93E+12	2.304	1.93E+12	2.3E+19	2.0E+26	-6.41%	
EGR	9.96E-08	30.31	1.828	1.80E+12	2.304	1.93E+12	1.7E+22	2.0E+26	0.21%	
	1.26E-07	30.56	1.827	2.28E+12	2.304	2.39E+12	1.4E+22	1.9E+26	-1.79%	
A63 80%	1.07E-06	62.8	1.798	3.63E+12	2.432	3.53E+12	1.1E+22	1.5E+26	-8.15%	
Premixed	1.17E-06	62.36	1.777	4.02E+12	2.432	4.06E+12	1.9E+21	1.4E+26	-4.43%	
						Σ	3.3E+26	3.4E+27	$\overline{\text{NMB}} = -8.32\%$	
							\mathbb{R}^2	0.903		

291

292

293 Table S6: Validation data for the CIDI engine, where constant $k_a = 0.998$ and $D_a = 1.069$ values from

294 Eggersdorfer et al. (2012b) are used.

	Meas	ured Valu	ies		Estimated Values - FA Model					
Engine Mode	<i>M</i> (kg/m ³)	GMD (nm)	GSD	$N\left(\mathbf{m}^{-3}\right)$	φ	N (m ⁻³)	(yi-ŷi)²	(yi-ȳ)²	NMB	
B75 20%	1.80E-05	90.01	1.573	4.44E+13	2.388	4.95E+13	2.5E+25	8.2E+26	11.28%	
EGR	1.46E-05	86.55	1.576	3.99E+13	2.388	4.37E+13	1.5E+25	5.7E+26	9.63%	
	1.37E-05	84.69	1.58	4.55E+13	2.388	4.32E+13	5.5E+24	8.8E+26	-5.16%	
B75 0%	3.52E-06	63.07	1.555	2.12E+13	2.388	2.33E+13	4.5E+24	2.8E+25	10.04%	
EGR	3.58E-06	65.72	1.539	2.10E+13	2.388	2.20E+13	1.0E+24	2.6E+25	4.82%	
B50 20%	2.42E-06	58.02	1.558	1.64E+13	2.388	1.94E+13	9.3E+24	2.3E+23	18.64%	
EGR	2.24E-06	56.97	1.562	1.78E+13	2.388	1.87E+13	7.4E+23	3.8E+24	4.81%	
B37 20%	2.68E-07	36.66	1.564	5.77E+12	2.388	6.39E+12	3.8E+23	1.0E+26	10.70%	
EGR	1.26E-06	47.91	1.545	1.37E+13	2.388	1.63E+13	6.7E+24	4.7E+24	18.92%	
	5.07E-07	39.5	1.567	8.57E+12	2.388	1.01E+13	2.2E+24	5.4E+25	17.27%	
	3.32E-07	38.26	1.601	6.38E+12	2.388	6.71E+12	1.1E+23	9.0E+25	5.15%	
B25 20%	1.03E-07	31.38	1.801	1.93E+12	2.388	2.35E+12	1.8E+23	2.0E+26	21.73%	
EGR	9.96E-08	30.31	1.828	1.80E+12	2.388	2.34E+12	3.0E+23	2.0E+26	30.26%	
	1.26E-07	30.56	1.827	2.28E+12	2.388	2.90E+12	3.9E+23	1.9E+26	27.59%	
A63 80%	1.07E-06	62.8	1.798	3.63E+12	2.388	4.68E+12	1.1E+24	1.5E+26	28.94%	
Premixed	1.17E-06	62.36	1.777	4.02E+12	2.388	5.38E+12	1.9E+24	1.4E+26	33.93%	
						Σ	7.4E+25	3.4E+27	$\overline{\text{NMB}} = 15.53\%$	
							\mathbb{R}^2	0.978		

Figure S7: Validation of the FA model against emissions from a CIDI engine where constant values of k_a = 0.998 and D_a = 1.069 are used. Error bars denote precision errors from repeated measurements with 1.96 σ and do not include systematic uncertainties arising from instrumentations. Detailed data tables in Table S6.

300

301 S5 – FA MODEL VALIDATION FOR THE SOOT GENERATOR

For this validation, constant values of $k_a = 0.998$ and $D_{\alpha} = 1.069$ (Eggersdorfer et al., 2012b)

- 303 were used due to the lack of data on the $k_{a,opt}$ and $D_{\alpha,opt}$ values. The validation data used in
- 304 Figure 1b (main text) is presented in Table S7.

Table S7: Validation data for the soot generator (Figure 1b in the main text), constant values of $k_a = 0.998$ and $D_a = 1.069$ (Eggersdorfer et al., 2012b) were used.

	Μ	leasured Values	5			Est	imated Valu	es - FA Mode	el
Sample	М (µg/m ³)	<i>N_{CPC}</i> (m ⁻³)	GMD (nm)	GSD	φ	$N(\mathbf{m}^{-3})$	(yi-ŷi) ²	$(yi-\overline{y})^2$	NMB
1	0.768	5.37E+10	41.62	1.338	2.388	1.88E+10	1.2E+21	9.2E+20	-65.1%
2	8.187	1.97E+10	111.92	1.479	2.388	1.55E+10	1.8E+19	1.3E+19	-21.4%
3	4.099	5.23E+09	128.78	1.801	2.388	3.21E+09	4.1E+18	3.3E+20	-38.7%
4	0.726	3.83E+10	40.73	1.350	2.388	1.84E+10	4.0E+20	2.2E+20	-51.9%
5	10.250	2.03E+10	124.62	1.346	2.388	1.81E+10	5.1E+18	9.4E+18	-11.1%
6	4.561	4.79E+09	147.08	1.271	2.388	5.91E+09	1.3E+18	3.5E+20	23.5%
7	4.561	4.79E+09	143.35	1.580	2.388	4.08E+09	5.0E+17	3.5E+20	-14.8%
8	8.331	5.76E+10	85.42	1.279	2.388	3.92E+10	3.4E+20	1.2E+21	-31.9%
9	9.799	1.85E+10	120.43	1.499	2.388	1.51E+10	1.1E+19	2.4E+19	-18.1%
10	5.825	5.69E+09	145.40	1.579	2.388	5.04E+09	4.1E+17	3.1E+20	-11.3%
11	0.380	1.69E+10	42.39	1.418	2.388	8.00E+09	7.9E+19	4.2E+19	-52.7%
12	4.228	3.67E+10	80.31	1.354	2.388	2.11E+10	2.4E+20	1.8E+20	-42.5%
13	3.994	9.15E+09	127.69	1.313	2.388	6.92E+09	5.0E+18	2.0E+20	-24.5%
						Σ	2.3E+21	4.1E+21	$\overline{\text{NMB}} = -27.72\%$
							\mathbb{R}^2	0.44	

308 S6 – FA MODEL VALIDATION FOR AIRCRAFT GAS TURBINE ENGINES

309 (GROUND & CRUISE)

310 S6.1 Data Tables for the FA Model Validation – Aircraft Emissions

311 Ground validation for the aircraft gas turbine engine in Figure 2a (main text) originates from

the SAMPLE III.2 experimental campaign and the data is presented in Table S8. For aircraft

emissions, we assume that $k_a = 1$ and $D_{\alpha} = \frac{1}{2}D_{\text{fm}}$ (Eggersdorfer et al., 2012b) due to a lack

of data on the variation of k_a and D_{α} values across F/F₀₀, while values of $k_{\text{TEM}} =$

315 1.621×10^{-5} and $D_{\text{TEM}} = 0.39$ from Dastanpour & Rogak (2014) are used.

Table S8: Validation data for the aircraft gas turbine on the ground (Figure 2a in the main text), of which the data is originated from the SAMPLE III.2 experimental campaign (Boies et al., 2015).

	Mea	sured Value	es		Estimated Values - FA Model				
F/F ₀₀ - %	$\mathrm{EI}_{\mathrm{n}}(\mathrm{kg}^{\text{-1}})$	EI _m (mg/kg)	GMD (nm)	GSD	φ	$EI_{n}\left(kg^{\text{-}1} ight)$	$(y_i \text{-} \hat{y}_i)^2$	$(\mathbf{y}_i \textbf{-} \overline{\mathbf{y}})^2$	NMB
3.32%	1.27E+15	25.1	16.09	1.76	2.854	1.79E+15	9.51E+28	6.75E+27	-24.27%
3.30%	1.22E+15	13.5	15.89	1.78	2.854	9.66E+14	5.36E+28	1.79E+28	-18.99%
3.30%	1.23E+15	13.6	15.88	1.77	2.854	9.91E+14	6.26E+28	1.55E+28	-20.38%
3.31%	1.25E+15	13.3	15.90	1.76	2.854	9.81E+14	8.63E+28	1.05E+28	-23.49%
3.30%	1.21E+15	12.9	15.96	1.76	2.854	9.60E+14	2.31E+28	1.98E+28	-12.54%
3.31%	1.20E+15	14.1	15.97	1.75	2.854	1.06E+15	1.33E+28	2.26E+28	-9.60%
3.32%	1.19E+15	14.1	15.93	1.74	2.854	1.09E+15	8.12E+28	2.66E+28	-23.96%
3.31%	1.87E+15	12.0	15.94	1.75	2.854	9.08E+14	3.10E+29	2.69E+29	-29.74%
7.62%	2.44E+15	37.2	21.16	1.73	2.854	1.32E+15	4.66E+29	1.17E+30	-28.05%
9.37%	3.11E+15	63.1	23.25	1.72	2.854	1.76E+15	6.16E+29	3.07E+30	-25.28%
11.20%	3.35E+15	108.5	25.77	1.71	2.854	2.33E+15	5.56E+29	3.98E+30	-22.28%
13.29%	3.65E+15	138.9	27.28	1.70	2.854	2.62E+15	3.96E+29	5.30E+30	-17.21%
15.50%	3.33E+15	192.3	29.23	1.69	2.854	3.05E+15	3.81E+27	3.92E+30	1.85%
17.70%	4.19E+15	262.9	33.52	1.61	2.854	3.42E+15	2.30E+27	8.07E+30	-1.14%
20.51%	4.71E+15	385.3	35.02	1.63	2.854	4.17E+15	2.02E+27	1.13E+31	0.95%
23.33%	2.20E+14	519.6	37.45	1.62	2.854	4.79E+15	3.54E+27	1.28E+30	27.03%
26.39%	2.20E+14	7.8	20.59	1.76	2.854	2.81E+14	9.03E+25	1.28E+30	4.32%
33.06%	1.87E+14	5.6	19.58	1.76	2.854	2.31E+14	3.25E+26	1.36E+30	9.63%
36.87%	1.14E+14	5.2	19.89	1.76	2.854	2.06E+14	7.62E+26	1.53E+30	24.15%
41.12%	8.85E+13	2.7	18.49	1.73	2.854	1.43E+14	7.68E+26	1.60E+30	31.30%
45.75%	6.91E+13	2.2	18.58	1.73	2.854	1.17E+14	1.53E+27	1.65E+30	56.70%
51.09%	5.34E+13	2.2	18.85	1.73	2.854	1.09E+14	9.81E+26	1.69E+30	58.66%
57.10%	4.16E+13	1.8	19.17	1.73	2.854	8.51E+13	9.15E+26	1.72E+30	72.78%
62.91%	3.36E+13	1.7	19.74	1.73	2.854	7.21E+13	6.11E+26	1.74E+30	73.51%
69.13%	1.52E+13	1.6	20.73	1.74	2.854	5.86E+13	4.71E+26	1.79E+30	142.57%
85.70%	6.19E+12	1.3	22.75	1.73	2.854	3.71E+13	1.36E+27	1.81E+30	595.22%
94.60%	1.44E+13	1.4	22.90	1.70	2.854	4.32E+13	4.01E+26	1.79E+30	139.27%
84.33%	6.32E+14	1.2	23.00	1.71	2.854	3.46E+13	4.53E+27	5.20E+29	10.65%
3.32%	1.04E+15	9.4	16.26	1.74	2.854	7.01E+14	2.76E+28	9.69E+28	-15.95%
3.38%	1.69E+15	12.6	16.44	1.75	2.854	8.78E+14	2.35E+29	1.11E+29	-28.74%
6.55%	2.86E+15	31.7	20.81	1.72	2.854	1.21E+15	2.82E+29	2.27E+30	-18.55%
9.75%	3.50E+15	66.0	24.34	1.71	2.854	1.67E+15	1.87E+28	4.63E+30	3.90%
13.25%	2.10E+14	125.0	27.50	1.69	2.854	2.34E+15	5.66E+26	1.31E+30	11.35%
20.52%	9.12E+14	327.0	34.70	1.63	2.854	3.67E+15	1.64E+28	1.94E+29	-14.06%
26.45%	2.09E+14	5.5	19.46	1.75	2.854	2.35E+14	1.91E+25	1.31E+30	2.09%
3.44%	1.27E+15	12.1	17.30	1.72	2.854	7.86E+14	9.51E+28	6.75E+27	-24.27%
26.78%	1.22E+15	5.3	19.49	1.77	2.854	2.15E+14	5.36E+28	1.79E+28	-18.99%
						Σ	3.36E+30	6.69E+31	<u>NMB</u> = 26.6%
							R ²	0.950	

Next, cruise validation for the aircraft gas turbine engine in Figure 2b (main text) originates

- from the NASA ACCESS experimental campaign and the data is presented in Table S9. Two
- 321 observed GSD values in red (on the table above) have been highlighted due to the potential of
- an anomaly or measurement error.

Table S9: Validation data for the aircraft gas turbine at cruise conditions (Figure 2b in the main text), of which the data is originated from the NASA ACCESS experimental campaign (Moore et al., 2017).

	Measure	ed Values				Estimated Values - FA Model			
Fuel Type	$EI_{n}\left(kg^{\cdot1} ight)$	EI _m (mg/kg)	GMD (nm)	GSD (nm)	φ	$EI_{n}\left(kg^{-1} ight)$	$(y_i - \hat{y}_i)^2$	$(y_i - \overline{y})^2$	NMB
Conventional	7.64E+14	80.97	35.3	1.72	2.76	6.85E+14	6.32E+27	1.30E+29	-10.40%
Conventional	5.00E+14	39.58	29.7	1.64	2.76	6.70E+14	2.88E+28	9.30E+27	33.95%
Conventional	4.50E+14	32.26	25.5	1.86	2.76	4.76E+14	6.89E+26	2.15E+27	5.83%
Conventional	6.30E+14	52.44	32.5	1.71	2.76	5.76E+14	2.93E+27	5.13E+28	-8.60%
Conventional	3.18E+14	16.71	27	1.63	2.76	3.80E+14	3.88E+27	7.32E+27	19.59%
Conventional	2.82E+14	13.08	23.5	1.73	2.76	3.44E+14	3.86E+27	1.48E+28	22.04%
Fuel Blend	5.41E+14	37.78	28.7	1.75	2.76	5.33E+14	5.67E+25	1.89E+28	-1.39%
Fuel Blend	2.62E+14	17.13	27.8	1.71	2.76	2.94E+14	1.01E+27	2.00E+28	12.11%
Fuel Blend	4.15E+14	9.09	20.9	2.03	2.76	1.48E+14	7.16E+28	1.30E+26	-64.46%
Fuel Blend	3.94E+14	20.13	28	1.68	2.76	3.65E+14	8.50E+26	9.18E+25	-7.40%
Fuel Blend	1.78E+14	6.68	26.3	1.68	2.76	1.45E+14	1.10E+27	5.09E+28	-18.66%
Fuel Blend	1.09E+14	4.12	23.4	1.58	2.76	1.59E+14	2.49E+27	8.68E+28	45.81%
						Σ	1.24E+29	3.92E+29	NMB = 2.37%
							\mathbb{R}^2	0.684	

³²⁵

326

327 S6.2 FA Model Validation using *k*_{TEM} & *D*_{TEM} Coefficients from Boies et al. (2015)

Figure S8 shows the parity plots for the FA model validation when the coefficients $k_{\text{TEM}} =$

329 0.0125 and $D_{\text{TEM}} = 0.8$ from Boies et al. (2015) are used.

- 330 For ground conditions (Figure S8a), estimated EI_n values are in good agreement with
- measured EI_n from the SAMPLE III.2 ($R^2 = 0.963$, NMB = +38.9%) experimental campaign.
- For cruise conditions (Figure S8b), an overall R^2 and NMB values of 0.647 and +6.3% are

333 observed when fitted with the NASA ACCESS data.

However, as mentioned in Section 4.2 in the main text, the R^2 of these validation results are

around 2.4% lower, while NMB values are around 32% higher relative to the scenario where

336 k_{TEM} and D_{TEM} coefficients from Dastanpour & Rogak (2014) are used. Therefore, the

- coefficients from Dastanpour & Rogak (2014) ($k_{\text{TEM}} = 1.621 \times 10^{-5}$ & $D_{\text{TEM}} = 0.39$) are used in
- the final FA model in place of the coefficients from Boies et al. (2015) ($k_{\text{TEM}} = 0.0125$ &
- 339 $D_{\text{TEM}} = 0.8$).

340Measured $El_n [kg^{-1}]$ Measured $El_n [kg^{-1}]$ 341Figure S8: Validation of the FA model for (a) ground conditions using data from Boies et al. (2015), and342(b) cruise conditions using data from Moore et al. (2017). k_{TEM} and D_{TEM} prefactor-exponent coefficients343specified by Boies et al. (2015), $k_{TEM} = 0.0125$ & $D_{TEM} = 0.8$ are used. Horizontal error bars denote344random errors from repeated measurements with 1.96 σ , and do not include systematic uncertainties from345instrumentations.

347 S6.3 FA Model Validation using Constant $k_a = 0.998$ & $D_a = 1.069$ Values from 348 (Eggersdorfer et al., 2012b)

349 When values of $k_a = 0.998$ and $D_{\alpha} = 1.069$ from Eggersdorfer et al. (2012b) is used to

- validate the FA model against aircraft emissions at ground (Figure S9a) and cruise (Figure
- S9b), we obtain an average negative R^2 value and NMB values exceed 100%. An explanation
- to this phenomenon is provided in Section 4.2 in the main text.

Figure S9: Validation of the FA model for aircraft emissions using constant values of $k_a = 0.998$ and $D_{\alpha} = 1.069$ from Eggersdorfer et al. (2012b) at (a) ground conditions using data from Boies et al. (2015), and

- 356 (b) cruise conditions using data from Moore et al. (2017). Horizontal error bars denote random errors
- **357** from repeated measurements with 1.96σ, and do not include systematic uncertainties from

358 instrumentations.

359 S7 – EXISTING METHODOLOGIES TO ESTIMATE AIRCRAFT BC EIn

360 S7.1 Description of Existing Methodologies to Estimate Aircraft BC EIn

1) <u>EI_n/EI_m Ratio with Altitudinal Variation (Döpelheuer, 2002)</u>

Figure S10: Variation in Aircraft BC EI_m & EI_n vs. altitude (Döpelheuer, 2002; Hendricks et al., 2004).
366

Note that the EI(N) in Figure S10 denotes BC number-to-mass ratio (number of BC particles emitted per gram of BC), which ranges from 4.8×10^{15} g⁻¹(BC) on the surface to around 1.6×10^{16} g⁻¹(BC) at cruise altitude. A linear interpolation for EI(N) is performed with a 2 km altitude interval prior to applying this methodology to estimate the aircraft BC EI_n.

372

363

362

373 2) <u>Assumed Particle Diameter (Barrett et al., 2010)</u>

374
375
$$M = \frac{\pi}{6} \rho_{\rm NV} D_{\rm NV}^3 N_{\rm NV} \exp\left(\frac{9}{2} (\ln \sigma_{\rm NV})^2\right)$$

376where:
$$M = EI_m$$
 for non-volatile PM (g/kg)377 $N = EI_n$ for non-volatile PM (kg⁻¹)378Geometric Mean Diameter (GMD) for non-volatile PM, $N_{NV} = 38$ nm379Geometric Standard Deviation (GSD) for non-volatile PM, $\sigma_{NV} = 1.6$ 380Effective Density of non-volatile PM, $\rho_{NV} = 1000$ kg/m³381

382 Rearranging for *N*:

383
$$N_{\rm NV} = \frac{M}{1.415\rho_{\rm NV}D^3}$$

The nominal geometric mean diameter (D_{NV} in this equation) is fixed at 38nm as specified by the authors prior to applying this methodology to estimate the aircraft BC EI_n.

388 S7.2 Validation of Previous Aircraft BC EI_n Methodologies

Figure S11 shows the ground and cruise validation results for previous BC EI_n estimation methodologies. The average R² is 79% lower, and the magnitude of NMB is 90% larger than the FA model presented in Figure 2 (main text). For all data points, the estimated EI_n outputs from Dopelheuer (2002) and Barrett et al. (2010) differ by a constant value. This is due to the assumption of previous methodologies where the BC aggregate property and morphology are fixed and does not capture the variation in the GMD, GSD and $D_{\rm fm}$ versus F/F₀₀.

Figure S11: Validation of aircraft BC EIn for (a) ground and (b) cruise conditions using previous
 estimation methodologies developed by Dopelheuer (2002) (data points in magenta) and Barrett et al.
 (2010) (data points in blue). Horizontal error bars denote random errors from repeated measurements
 with 1.96σ, and do not include systematic uncertainties from instrumentations.

400

395

401 S8 – METHODOLOGY TO ESTIMATE THE KNUDSEN NUMBER (Kn) FOR A 402 GIVEN ENGINE OPERATING CONDITION

403 According to Hinds (1999), the particle mean free path (λ) is the average distance travelled

404 by a molecule between successive collisions:

$$\lambda = \frac{\bar{c}}{n_z},\tag{S6}$$

405 where \bar{c} is the mean molecular velocity, or the average distance travelled by the molecule per

- second. The term n_z is the average number of collisions an air molecule undergoes in one
- 407 second, which can be expressed as:

$$n_z = \sqrt{2}n\pi d_m^2 \bar{c},\tag{S7}$$

408 where d_m is the diameter of a gas molecule ($d_m = 3.7 \times 10^{-10} m$), and *n* is the number of air 409 molecules per unit volume. Therefore, Eq. S6 and Eq. S7 can be combined:

$$\lambda = \frac{\bar{c}}{\sqrt{2}n\pi d_m^2 \bar{c}} \tag{S8}$$

$$\lambda = \frac{1}{\sqrt{2}n\pi d_m^2} \tag{S9}$$

410 For a given gas, λ depends only on *n* or gas density:

$$\lambda \propto \frac{1}{n}$$
 & $n \propto p$ (S10)

- 411 As the number of air molecules per unit volume (n) increases, pressure (p) increases.
- 412 Therefore, the particle mean free path of at a given pressure (P_1) can be estimated using
- 413 standard atmospheric conditions (P_0 , λ_0) as a reference:

$$\frac{\lambda_1}{\lambda_0} = \frac{P_0}{P_1} \tag{S11}$$

$$\lambda_1 = \lambda_0 \frac{P_0}{P_1} \tag{S12}$$

- 414 At standard atmospheric pressure, $P_0 = 1$ atm, the mean free path, $\lambda_0 = 0.066 \ \mu m$. For
- 415 aircraft engines, the combustion inlet pressure (P_3) is used as the pressure or the closest
- 416 region where BC particles are formed. The formulas required to calculate P_3 can be found in
- 417 Cumpsty (2003) and Stettler et al. (2013a). Similarly, the gross indicated mean effective
- 418 pressure (GIMEP) is used for the CIDI internal combustion engine (Graves et al., 2015),
- 419 while BC is assumed to form under one atmospheric pressure for the soot generator.

The Knudsen Number (Kn) is a dimensionless number equal to the ratio of the mean free pathto the particle radius:

$$Kn = \frac{2\lambda}{d}$$
(S13)

422 According to Sorensen (2011), the continuum regime starts when $Kn \le 1$, while the

423 transition regime is when 0.1 < Kn < 10. Finally, the free-molecular regime is when $Kn \ge$

424 1. To use Eq. S13 to estimate the Kn, the mean free path (λ) can be estimated using Eq. S12,

425 while particle diameter (d) can be estimated using the GMD.

- The Knudsen number (Kn) for each data point is estimated for the CIDI internal combustion
 engine (Table S10), soot generator (Table S11) and the two aircraft BC emissions dataset at
 ground (Table S12) and cruise conditions (Table S13).
- 429 For BC aggregates produced from the soot generator, 77% of the data points form in the free-
- 430 molecular regime (Kn > 1) as P_1 is at one atmosphere and the Kn primarily depends on the
- 431 BC GMD. A larger GMD contributes to a lower Kn because the Kn and GMD are inversely

- 432 proportional (Eq. S13). For the CIDI and aircraft gas turbine engine on the ground, BC
- 433 aggregates are increasingly formed in the continuum and transition regime (Kn < 1) at higher
- 434 engine operating conditions. 92% of the BC aggregates are formed in the free-molecular
- 435 regime (Kn > 1) when the gas turbine engine is operating at cruise conditions, which
- 436 explanations to this phenomenon is provided in Section 4.2 in the main text.

Engine Mode	GIMEP (atm)	GMD (nm)	λ1 (μm)	Kn
	16.28	90.01	0.004	0.090
B75 20% EGR	16.28	86.55	0.004	0.094
	16.28	84.69	0.004	0.096
B75 0% EGR	10.86	63.07	0.006	0.209
B75 0% EGK	10.86	65.72	0.006	0.213
DE0 20% ECD	8.14	58.02	0.008	0.442
B50 20% EGR	8.14	56.97	0.008	0.338
	8.14	36.66	0.008	0.411
B37 20% FGR	8.14	47.91	0.008	0.424
B37 20% EGK	5.43	39.5	0.012	0.775
	5.43	38.26	0.012	0.802
	5.43	31.38	0.012	0.795
B25 20% EGR	13.6784	30.31	0.005	0.154
	13.6784	30.56	0.005	0.155
A63 80%	16.28	62.8	0.004	0.129
Premixed	16.28	62.36	0.004	0.123

437 Table S10: Knudsen number calculations for each data point in the CIDI dataset.

439

440 Table S11: Knudsen number calculations for each data point from the soot generator.

Sample	P1 (atm)	GMD (nm)	λ1 (μm)	Kn
1	1	41.62	0.066	3.171
2	1	111.92	0.066	1.179
3	1	128.78	0.066	1.025
4	1	40.73	0.066	3.241
5	1	124.62	0.066	1.059
6	1	147.08	0.066	0.897
7	1	143.35	0.066	0.921
8	1	85.42	0.066	1.545
9	1	120.43	0.066	1.096
10	1	145.40	0.066	0.908
11	1	42.39	0.066	3.114
12	1	80.31	0.066	1.644
13	1	127.69	0.066	1.034

441

443 Table S12: Knudsen number calculations for each data point for the aircraft gas turbine engine (ground).

F/F ₀₀ (%)	P ₁ (atm)	GMD (nm)	λ ₁ (μm)	Kn	F/F00 (%)	P ₃ (atm)	GMD (nm)	λ ₁ (μm)	Kn
3.3%	1.885	16.088	0.035	4.352	41.1%	11.980	18.486	0.006	0.596
3.3%	1.882	15.894	0.035	4.413	45.8%	13.216	18.581	0.005	0.538
3.3%	1.881	15.875	0.035	4.421	51.1%	14.642	18.848	0.005	0.478
3.3%	1.884	15.903	0.035	4.405	57.1%	16.245	19.169	0.004	0.424
3.3%	1.882	15.958	0.035	4.395	62.9%	17.797	19.739	0.004	0.376
3.3%	1.884	15.972	0.035	4.386	69.1%	19.459	20.726	0.003	0.327
3.3%	1.885	15.928	0.035	4.396	85.7%	23.882	22.748	0.003	0.243
3.3%	1.883	15.941	0.035	4.399	94.6%	26.258	22.897	0.003	0.220
7.6%	3.034	21.155	0.022	2.057	84.3%	23.517	23.000	0.003	0.244
9.4%	3.502	23.248	0.019	1.621	3.3%	1.885	16.259	0.035	4.306
11.2%	3.991	25.772	0.017	1.283	3.4%	1.903	16.443	0.035	4.219
13.3%	4.549	27.285	0.015	1.064	6.6%	2.749	20.813	0.024	2.307
15.5%	5.140	29.231	0.013	0.879	9.8%	3.604	24.343	0.018	1.505
17.7%	5.725	33.523	0.012	0.688	13.3%	4.538	27.502	0.015	1.058
20.5%	6.476	35.019	0.010	0.582	20.5%	6.479	34.703	0.010	0.587
23.3%	7.228	37.448	0.009	0.488	26.4%	8.061	19.464	0.008	0.841
26.4%	8.045	20.586	0.008	0.797	3.4%	1.918	17.299	0.034	3.978
33.1%	9.827	19.575	0.007	0.686	26.8%	8.152	19.489	0.008	0.831
36.9%	10.844	19.888	0.006	0.612					

444

445 Table S13: Knudsen number calculations for each data point for the aircraft gas turbine engine (cruise).

F/F ₀₀ (%)	Mach No.	P ₁ (Pa)	GMD (nm)	λ ₁ (μm)	Kn
41.7%	0.840	391157	35.3	0.017	0.969
31.3%	0.725	270863	29.7	0.025	1.663
25.8%	0.600	206179	25.5	0.032	2.544
41.7%	0.840	391157	32.5	0.017	1.052
31.3%	0.725	270863	27.0	0.025	1.829
25.8%	0.600	206179	23.5	0.032	2.760
41.7%	0.840	391157	28.7	0.017	1.191
31.3%	0.725	270863	27.8	0.025	1.776
25.8%	0.600	206179	20.9	0.032	3.104
41.7%	0.840	391157	28.0	0.017	1.221
31.3%	0.725	270863	26.3	0.025	1.878
25.8%	0.600	206179	23.4	0.032	2.772

446

447 S9 – UNCERTAINTY AND SENSITIVITY ANALYSIS

448 S9.1 Uncertainty Quantification for Different Measuring Instruments and Input 449 Parameters of the FA Model

- 450 For all the uncertainty and sensitivity analysis conducted in this study:
- 451 \blacktriangleright All uncertainties are reported with a 95% confidence interval (1.96 σ).
- 452 Systematic uncertainties are denoted as $\frac{B_X}{|x|}$
- 453 \blacktriangleright Precision uncertainties are denoted as $\frac{P_x}{|x|}$
- 454 \succ Total uncertainties (Systematic + Precision) are denoted as $\frac{T_x}{|x|}$

455	> The systematic and/or precision uncertainties for each parameter that are included in
456	this analysis depends on data availability.
457	Uncertainties in penetration efficiencies & thermophoresis losses are not included,
458	similar to Olfert et al. (2017).
459	
460	The following list are systematic uncertainties from different aerosol measuring instruments
461	that were obtained from the literature:
462	\blacktriangleright Uncertainty in DMA measurements = 3% (Kinney et al., 1991)
463	\blacktriangleright Uncertainty in CPC measurements = 2.8% (Owen et al., 2012)
464	\blacktriangleright Uncertainty in CPMA measurements = 4% (Olfert et al., 2017)
465	\blacktriangleright Uncertainty in LII measurements = 25% (Boies et al., 2015)
466	
467	If multiple instruments are required to measure a parameter, the root-sum-square (RSS)
468	method is used to combine the systematic uncertainties arising from different measuring
469	instruments to estimate the total uncertainty of the measured N, M, GMD and GSD:
470	1) Total Uncertainty in Measured N
471	$N = \sum_{i=1}^{n} n_i$
472	where n_i is measured with an SMPS (DMA-CPC), or directly from a CPC.
472	where n_i is measured with an SIMPS (DIMA-CPC), of directly from a CPC.
473	Only uncertainties from the CPC is used. Uncertainties introduced by the
474	DMA (on measurements of d_m) are excluded because the number of particles
475	will still be counted even if d_m measurements are inaccurate, provided that the
476	entire particle size distribution is scanned.
477	$\frac{T_N}{ N } = 2.8\%$
478	2) Systematic/Total Uncertainty in Measured M
479	i. If M is estimated with the IPSD method (DMA-CPMA-CPC), M_{IPSD} :
480	Using the RSS Method, systematic uncertainties for each variable in Eq. S4
481	$(M_{\rm IPSD} = \sum_{i=1}^{j} n_i (\rho_{\rm eff})_i (\frac{\pi}{6} d_{\rm m}^{3})_i))$ are propagated to estimate the uncertainties
482	for $M_{\rm IPSD}$ where:
483	> n_i is measured with a CPC, $\frac{B_n}{ n } = 2.8\%$

484	> Effective density, $\rho_{eff} = \frac{m}{\frac{\pi}{6}d_m^3}$ is estimated with a DMA to obtain d_m
485	$(\frac{B_{d_m}}{ d_m } = 3\%)$, and a CPMA to measure $m(\frac{B_m}{ m } = 4\%)$. Hence, based on the
486	RSS method: $\frac{B_{\rho_{eff}}}{ \rho_{eff} } = \sqrt{0.04^2 + (3 \times 0.03)^2} = 9.8\%$
487	Therefore, the systematic uncertainty of <i>M</i> (DMA-CPMA-CPC) is:
488	$\frac{B_{M_{IPSD}}}{ M_{IPSD} } = \sqrt{0.098^2 + (3 \times 0.03^2) + 0.028^2} = 11.4\%$
489	ii. If M is measured with a laser-induced incandescence (LII), M_{LII} , the
490	uncertainty value quoted in the SI of Boies et al. (2015) is:
491	$\frac{T_{M_{\rm LII}}}{ M_{\rm LII} } = 25\%$
492	3) <u>Total Uncertainty in D_{fm}</u>
493	Using average standard deviation values from Abegglen et al. (2015), $\frac{T_{D_{\text{fm}}}}{ D_{\text{fm}} } = 7.88\%$
494	$ D_{\rm fm} = 10070$
495	4) <u>Total Uncertainty in BC ρ</u> 0
496	BC $\rho_0 = 1770 \pm 70 \text{ kg/m}^3$ (Park et al., 2004). Hence, $\frac{T_{\rho_0}}{ \rho_0 } = \frac{70}{1770} \times 1.96 = 7.75\%$
497	$ \rho_0 $ 1770
498	5) Systematic Uncertainty in the Measured GMD
499	The GMD of a BC particle size distribution is calculated using Eq. $S1(GMD =$
500	$\exp\left(\frac{\sum n_i \ln(d_i)}{N}\right)$), where:
501	• $\frac{B_n}{ n }$ and $\frac{B_N}{ N } = 2.8\%$,
502	• $\frac{B_{d_m}}{ d_m } = 3\%.$
503	Using the RSS Method: $\frac{B_{\text{GMD}}}{ \text{GMD} } = \sqrt{0.028^2 + 0.028^2 + 0.03^2} = 4.97\%$
504	However, the RSS method does not account for additional uncertainties resulting from
505	the inversion method, bipolar diffusion charging and the DMA transfer function.
506	Hence, we have increased the uncertainties of the GMD to the maximum tolerable
507	uncertainty of \pm 10% according to the calibration standards specified by the European
508	Center for Aerosol Calibration (ECAC) and the World Calibration Center for Aerosol
509	Physics (WCCAP) (Wiedensohler et al., 2018).
510	Therefore, $\frac{B_{\text{GMD}}}{ \text{GMD} } = 10\%$

515

6) Systematic Uncertainty in Measured GSD

- 512 Similar to the uncertainties in the measured GMD, an uncertainty of \pm 10% is
- 513 specified for the measured GSD, which is in accordance to the calibration standards of
- the ECAC and WCCAP (Wiedensohler et al., 2018).

Therefore,
$$\frac{B_{GSD}}{|GSD|} = 10\%$$

- 516 Next, systematic uncertainties for k_{TEM} and D_{TEM} is estimated using the 95% confidence
- 517 intervals published in the SI of Dastanpour & Rogak (2014):

518 7) Systematic Uncertainty in *k*_{TEM}

Source	LB ktem	Mean k _{TEM}	UB ktem	% Diff (LB)	% Diff (UB)
GDI	2.165E-06	2.616E-06	3.067E-06	17.24%	17.24%
HPDI	2.224E-06	2.644E-06	3.063E-06	15.87%	15.87%
Aviation gas turbine	1.087E-05	1.621E-05	2.155E-05	32.93%	32.93%
Inverted burner	1.198E-06	2.465E-06	3.736E-06	51.40%	51.57%
			Avg	29.36%	29.40%
					,

For CIDI/HPDI internal combustion engines, $\frac{B_{K_{\text{TEM}}}}{|k_{\text{TEM}}|} = 15.9\%$

> For aircraft gas turbine engines,
$$\frac{B_{k_{\text{TEM}}}}{|k_{\text{TEM}}|} = 32.9\%$$

521

520

519

522 8) Systematic Uncertainty in D_{TEM}

Source	Mean D _{TEM}	LB D _{TEM}	UB D _{TEM}	% Diff (LB)	% Diff (UB)
GDI	0.30	0.26	0.33	13.33%	10.00%
HPDI	0.29	0.26	0.32	10.34%	10.34%
Aviation gas turbine	0.39	0.32	0.46	17.95%	17.95%
Inverted burner	0.29	0.20	0.38	31.03%	31.03%
			Avg	18.17%	17.33%

0.3%

523

531

For CIDI/HPDI internal combustion engines, $\frac{B_{D_{\text{TEM}}}}{|D_{\text{TEM}}|} = 10.3\%$

524
$$\succ$$
 For aircraft gas turbine engines, $\frac{B_{D_{\text{TEM}}}}{|D_{\text{TEM}}|} = 18.0\%$

- 525 The precision uncertainties of k_a and D_{α} are estimated using numerical simulation results
- 526 from Eggersdorfer & Pratsinis (2012):
- 527 9) <u>Precision Uncertainty in k_a </u> 528 $\frac{P_{k_a}}{|k_a|} = 1.2\%$ 529
- 530 **10**) <u>Precision Uncertainty in *D_a*</u>

$$\frac{P_{D_{\alpha}}}{|D_{\alpha}|} =$$

- 532 Finally, given that the uncertainty distribution for C_{ov} is not known, we assume that C_{ov} is
- uniformly distributed according to the range given by Bourrous et al. (2018) ($0.02 \le C_{ov} \le$
- 534 0.24). Overall, the uncertainties for the different model input parameters required for the FA
- 535 model are summarised in Table S14.
- Table S14: A summary of the systematic or precision uncertainties for the different model input
 parameters required for the FA model.

•	/Bias Uncertainty (1.96σ)	Precisio	on Uncertainty (1.96σ)	Total Uncertainty (1.96σ)	
Input	Uncertainty	Input	Uncertainty	Input	Uncertainty
$M_{ m IPSD}$	$\pm 11.4\%$	ka	$\pm 1.20\%$	N _{CPC}	$\pm 2.8\%$
GMD	± 10%	D_{lpha}	$\pm 0.30\%$	$M_{ m LII}$	± 25%
GSD	± 10%			$D_{ m fm}$	$\pm 7.88\%$
k_{TEM}	± 29.4% (Avg)			ρ ₀	$\pm 7.75\%$
D_{TEM}	± 17.8% (Avg)				

538 \blacktriangleright Uncertainty range for C_{ov} ~ U[0.02, 0.24]

539 S9.2 Uncertainty Quantification for the FA Model Output

540 The uncertainty for the FA model output (estimated N or EI_n) is quantified using a numerical

541 Monte Carlo 1000-member ensemble due to the non-linear properties of the FA model with

542 higher-order components, as well as the potential presence of covariance between input

- 543 variables. Absolute values required for this Monte Carlo method were measured from the
- 544 SAMPLE III.2 campaign (using the data point at $F/F_{00} = 0.4$). Table S15 summarises the
- 545 absolute values and its associated uncertainties, and the uncertainty for each model input
- variable was described in the previous subsection, S9.1.
- 547

Table S15: Absolute values (from the SAMPLE III.2 dataset) and the associated uncertainties for each
 model input variables to be used in the Monte Carlo Method to estimate the uncertainty of the FA model
 output, the estimated EIn.

Variable	Fixed F/F ₀₀	Uncertainty Distribution	Mean (µ)	Std Dev (1.96σ)
$EI_m(LII)$			2.7 mg/kg	$25\% \times \mu$
ρ_0	_		1770 kg/m ³	70 kg/m ³
k_{a}			1	$1.2\% imes \mu$
$D_{ m fm}$	0.4	Normal Distribution	2.76	7.9% × μ
k_{TEM}		Normal Distribution	1.621x10 ⁻⁵	32.9% × μ
D_{TEM}		-	0.39	$18\% imes \mu$
GMD	_		18.49 nm	$10\% imes \mu$
GSD	_		1.73	$10\% imes \mu$
Cov	_	Uniform Distribution	[0.0	02, 0.24]

551

552 After 10000 iterations, the Monte Carlo simulation is stopped when differences in the

uncertainty estimates between model runs converge to below 1% (Coleman & Steele, 2009),

as shown in Figure S12. The procedure specified by Coleman & Steele (2009) was used to

determine the 95% probabilistic systematic coverage interval and the associated uncertainty

556 limits of the FA model outputs:

557 1) Sort the M_{MCM} number of Monte Carlo outputs ($M_{MCM} = 10000$ runs), the estimated 558 EI_n outputs from the lowest to the highest value.

559 2) For a 95% coverage interval:

560 \blacktriangleright EI_n lower bound, r_{low} = result number (0.025 M_{MCM}) = 6.655 × 10¹³

561
$$\blacktriangleright$$
 EI_n upper bound, r_{high} = result number (0.975 M_{MCM}) = 2.915 × 10¹⁴

562 3) For 95% expanded uncertainty limits:

563
$$\succ U_r^- = r(X_1, X_2, ..., X_J) - r_{\text{low}} = 7.736 \times 10^{13} (-53.8\%)$$

$$\succ U_r^+ = r_{\text{high}} - r(X_1, X_2, \dots X_I) = 1.476 \times 10^{14} \ (+102.5\%)$$

565 4) The interval that contains
$$EI_{n,true}$$
 at a 95% confidence level:

566

564

 \succ $r - U_r^- \le r_{\text{true}} \le r + U_r^+$

567
$$\succ$$
 7.736 × 10¹³ ≤ EI_{n,true} ≤ 1.476 × 10¹⁴

569 Using the Monte Carlo method, Figure S13a shows an asymmetrical distribution of the FA 570 model outputs (the estimated EI_n) with an uncertainty bound of $(-54\%, +103\%) \times \mu$ at 571 1.96 σ . This asymmetrical distribution is due to the non-linearity of the FA model and the

572 large uncertainties for most input variables (>5%) (Coleman & Steele, 2009).

- 574 Figure S12: Convergence of the uncertainties of the FA model outputs (the estimated EI_n) relative to the 575 number of iterations for the Monte Carlo Method. After 1000 iterations, the percentage difference in
- 576 uncertainties relative to previous estimates generally fall below 1%.

Figure S13: Distribution of the FA model outputs (the estimated N or EI_n) using the Monte Carlo Method
with absolute values from (a) the SAMPLE III.2 aircraft emissions dataset (ground level) from Boies et al.
(2015), and (b) the CIDI engine dataset from Graves et al. (2015).

577

582 To check the consistency of the uncertainty bounds of the FA model outputs, the Monte Carlo

583 method is rerun with the dataset from the CIDI internal combustion engine (Graves et al.,

584 2015), where the absolute values and associated uncertainties are listed in Table S16. Overall,

the uncertainty bound of the FA model output estimated with data from the CIDI engine

586 $(-44\%, + 79\%) \times \mu$ at 1.96 σ (Figure S13b) is slightly lower than the uncertainties of an

587 aircraft gas turbine engine because of the lower uncertainty values of M_{IPSD} (± 11.4%), k_{TEM}

588 $(\pm 15.9\%)$ and D_{TEM} $(\pm 10.3\%)$.

589	Table S16: Absolute values (from the CIDI dataset of Graves et al. (2015)) and the associated
590	uncertainties for each model input variables to be used in the Monte Carlo Method to estimate the
591	uncertainty of the FA model output, the estimated N.

Variable	Fixed Engine Operating Condition	Uncertainty Distribution	Mean (µ)	Std Dev (σ)
$M_{ m IPSD}$			$1.80 \times 10^{-5} \text{ kg/m}^3$	$11.4\% \times \mu$
ρ_0			1770 kg/m ³	70
k_{a}			0.83	$1.2\% \times \mu$
D_{lpha}		Normal 1.08 Distribution 2.64×10^{-6} 0.29 90.01 nm 1.573	1.08	0.3% × μ
$k_{ ext{TEM}}$	B75, 20%		2.64×10^{-6}	6.67% × μ
D_{TEM}	EGR		0.29	7.9% × μ
GMD			90.01 nm	4.97% × μ
GSD			1.573	6.13% × μ
C _{ov}		Uniform DIstribution	[0.02, 0.1	24]

592

593

595 S9.3 Sensitivity Analysis for the FA Model

596 Figure S14 presents the results of the variance-based global sensitivity analysis on the FA

597 model. The total-effect index (S_{Ti}) identifies the total contribution of each input parameters to

the variance of the FA model output, where higher-order interactions between variables are

also accounted for (Saltelli et al., 2008). Due to the non-linear and non-additive properties of

600 the FA model, the summation of S_{Ti} for each input variable is greater than one.

601

602Figure S14: Total Effect Sensitivity Analysis for the FA model input parameters. Data tables, as well as603the specification of μ (measured with the SAMPLE III.2 dataset from Boies et al. (2015)) and σ for each604input variable can be found in Table S15.

605

606

607

END OF SUPPLEMENTARY INFORMATION

608 References

- Abegglen, M., Durdina, L., Brem, B. T., Wang, J., Rindlisbacher, T., Corbin, J. C., ... Sierau, B. (2015). Effective
 density and mass-mobility exponents of particulate matter in aircraft turbine exhaust: Dependence on engine
 thrust and particle size. *Journal of Aerosol Science*, 88, 135–147. https://doi.org/10.1016/j.jaerosci.2015.06.003
- Barrett, S. R. H., Prather, M., Penner, J., Selkirk, H., Balasubramanian, S., Döpelheuer, A., ... Hileman, J. (2010).
 Guidance on the use of AEDT gridded aircraft emissions in atmospheric models. US Federal Aviation
 Administration Office of Environment and Energy.
- Boies, A. M., Stettler, M. E. J., Swanson, J. J., Johnson, T. J., Olfert, J. S., Johnson, M., ... Thomson, K. (2015).
 Particle emission characteristics of a gas turbine with a double annular combustor. *Aerosol Science and Technology*, 49(9), 842–855.
- Bourrous, S., Ribeyre, Q., Lintis, L., Yon, J., Bau, S., Thomas, D., ... Ouf, F.-X. (2018). A semi-automatic analysis
 tool for the determination of primary particle size, overlap coefficient and specific surface area of nanoparticles
 aggregates. *Journal of Aerosol Science*, *126*, 122–132.
- Brasil, A. M., Farias, T. L., & Carvalho, M. G. (1999). A recipe for image characterization of fractal-like aggregates.
 Journal of Aerosol Science, *30*(10), 1379–1389.
- 623 Coleman, H. W., & Steele, W. G. (2009). *Experimentation, validation, and uncertainty analysis for engineers*. John
 624 Wiley & Sons.
- 625 Cumpsty, N. (2003). Jet Propulsion. A simple guide to the aerodynamic and thermodynamic design and performance
 626 of jet engines. Second Edition, *1*, 13.
- 627 Dastanpour, R., & Rogak, S. N. (2014). Observations of a correlation between primary particle and aggregate size for soot particles. *Aerosol Science and Technology*, 48(10), 1043–1049.
- Dastanpour, R., Rogak, S. N., Graves, B., Olfert, J., Eggersdorfer, M. L., & Boies, A. M. (2016). Improved sizing of soot primary particles using mass-mobility measurements. *Aerosol Science and Technology*, 50(2), 101–109.
- 631 Döpelheuer, A. (2002). No Title. Anwendungsorientierte Verfahren Zur Bestimmung von CO, HC Und Ruβ Aus
 632 Luftfahrttriebwerken.
- burdina, L., Brem, B. T., Abegglen, M., Lobo, P., Rindlisbacher, T., Thomson, K. A., ... Wang, J. (2014).
 Determination of PM mass emissions from an aircraft turbine engine using particle effective density.
 Atmospheric Environment, 99, 500–507.
- Eggersdorfer, M. L., Gröhn, A. J., Sorensen, C. M., McMurry, P. H., & Pratsinis, S. E. (2012a). Mass-mobility
 characterization of flame-made ZrO 2 aerosols: Primary particle diameter and extent of aggregation. *Journal of Colloid and Interface Science*, 387(1), 12–23.
- Eggersdorfer, M. L., Kadau, D., Herrmann, H. J., & Pratsinis, S. E. (2012b). Aggregate morphology evolution by
 sintering: number and diameter of primary particles. *Journal of Aerosol Science*, 46, 7–19.
- Eggersdorfer, M. L., & Pratsinis, S. E. (2012). The structure of agglomerates consisting of polydisperse particles.
 Aerosol Science and Technology, 46(3), 347–353.
- EU. (1999). Directive 1999/96/EC of the European Parliament and of the Council of 13 December 1999 on the
 approximation of the laws of the Member States relating to measures to be taken against the emission of
 gaseous and particulate pollutants from compression ignit. Retrieved from
 https://publications.europa.eu/en/publication-detail/-/publication/1246686e-7169-4f7b-a4c5-
- 647 41034e3269f9/language-en
- 648 Gormley, P. G., & Kennedy, M. (1948). Diffusion from a stream flowing through a cylindrical tube. In *Proceedings of* 649 *the Royal Irish Academy. Section A: Mathematical and Physical Sciences* (pp. 163–169). JSTOR.
- Graves, B., Olfert, J., Patychuk, B., Dastanpour, R., & Rogak, S. (2015). Characterization of particulate matter
 morphology and volatility from a compression-ignition natural-gas direct-injection engine. *Aerosol Science and Technology*, 49(8), 589–598.
- Hendricks, J., Kärcher, B., Döpelheuer, A., Feichter, J., Lohmann, U., & Baumgardner, D. (2004). Simulating the
 global atmospheric black carbon cycle: a revisit to the contribution of aircraft emissions. *Atmospheric Chemistry and Physics*, 4(11/12), 2521–2541.
- Hinds, W. C. (1999). Aerosol Technology: Properties. Behavior, and Measurement of Airborne Particles (2nd.
- Johnson, T. J., Olfert, J. S., Symonds, J. P. R., Johnson, M., Rindlisbacher, T., Swanson, J. J., ... Walters, D. (2015).
 Effective density and mass-mobility exponent of aircraft turbine particulate matter. *Journal of Propulsion and Power*, *31*(2), 573–582.
- Kinney, P. D., Pui, D. Y. H., Mulliolland, G. W., & Bryner, N. P. (1991). Use of the electrostatic classification
 method to size 0.1 μm SRM particles—a feasibility study. *Journal of Research of the National Institute of Standards and Technology*, 96(2), 147.
- Liati, A., Brem, B. T., Durdina, L., Vögtli, M., Arroyo Rojas Dasilva, Y., Dimopoulos Eggenschwiler, P., & Wang, J.
 (2014). Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.
 Environmental Science & Technology, 48(18), 10975–10983.
- Liu, Z. G., Vasys, V. N., Dettmann, M. E., Schauer, J. J., Kittelson, D. B., & Swanson, J. (2009). Comparison of
 strategies for the measurement of mass emissions from diesel engines emitting ultra-low levels of particulate
 matter. *Aerosol Science and Technology*, 43(11), 1142–1152.

- Lobo, P., Hagen, D. E., Whitefield, P. D., & Raper, D. (2015). PM emissions measurements of in-service commercial aircraft engines during the Delta-Atlanta Hartsfield Study. *Atmospheric Environment*, 104, 237–245.
- Magnus, W., Oberhettinger, F., & Soni, R. (2013). Formulas and theorems for the special functions of mathematical
 physics (Vol. 52). Springer Science & Business Media.
- Moore, R. H., Thornhill, K. L., Weinzierl, B., Sauer, D., D'Ascoli, E., Kim, J., ... Beyersdorf, A. J. (2017). Biofuel
 blending reduces particle emissions from aircraft engines at cruise conditions. *Nature*, 543(7645), 411–415.
- Moran, J., Cuevas, J., Liu, F., Yon, J., & Fuentes, A. (2018). Influence of primary particle polydispersity and
 overlapping on soot morphological parameters derived from numerical TEM images. *Powder Technology*, *330*,
 67–79.
- 678 Olfert, J. S., Dickau, M., Momenimovahed, A., Saffaripour, M., Thomson, K., Smallwood, G., ... Crayford, A.
 679 (2017). Effective density and volatility of particles sampled from a helicopter gas turbine engine. *Aerosol Science and Technology*, *51*(6), 704–714.
- 681 Owen, M., Mulholland, G., & Guthrie, W. (2012). Condensation Particle Counter Proportionality Calibration from 1 particle[.] cm⁻ 3 to 104 particles[.] cm⁻ 3. *Aerosol Science and Technology*, *46*(4), 444–450.
- Park, K., Kittelson, D. B., Zachariah, M. R., & McMurry, P. H. (2004). Measurement of inherent material density of nanoparticle agglomerates. *Journal of Nanoparticle Research*, 6(2), 267–272.
- Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., ... Tarantola, S. (2008). *Global sensitivity analysis: the primer*. John Wiley & Sons.
- Sorensen, C. M. (2011). The mobility of fractal aggregates: a review. *Aerosol Science and Technology*, 45(7), 765–
 779.
- Stettler, M., & Boies, A. (2014). Aircraft non-volatile particle emissions: estimating number from mass. In 18th ETH
 Conference on Combustion Generated Nanoparticles. Zurich, Switzerland: ETH Zurich.
 https://doi.org/10.1016/j.atmosenv.2009.06.005
- 692 Stettler, M. E. J., Boies, A., Petzold, A., & Barrett, S. R. H. (2013a). Global civil aviation black carbon emissions.
 693 *Environmental Science & Technology*, 47(18), 10397–10404.
- Stettler, M. E. J., Swanson, J. J., Barrett, S. R. H., & Boies, A. M. (2013b). Updated correlation between aircraft
 smoke number and black carbon concentration. *Aerosol Science and Technology*, 47(11), 1205–1214.
- 696 Stettler, M., Teoh, R., & Schumann, U. (2017). Aircraft Black Carbon Particle Number Emissions-New Predictive
 697 Method & amp; Uncertainty Analysis. In *Cambridge Particle Meeting 2017*. Cambridge, United Kingdom:
 698 Department of Engineering, University of Cambridge. https://doi.org/10.1002/2015JD024696
- Teoh, R., Stettler, M., & Majumdar, A. (2017). Aircraft black carbon particle number emissions—a new predictive method and uncertainty analysis. In *21st ETH-Conference on Combustion Generated Naniparticles*. Zurich, Switzerland: ETH Zurich. Retrieved from http://www.nanoparticles.ch/archive/2017_Teoh_PO.pdf
- Teoh, R., Stettler, M., Majumdar, A., & Schumann, U. (2018a). A Methodology to Relate Black Carbon Particle
 Number and Mass Emissions from Various Combustion Sources. In *Cambridge Particle Meeting 2018*.
 Cambridge, United Kingdom: Department of Engineering, University of Cambridge. Retrieved from
 http://www.cambridgeparticlemeeting.org/sites/default/files/Presentations/2018/CPM_Teoh_2018_Methodolog
 y to Relate Black Carbon Particle Number and Mass Emissions.pdf
- Teoh, R., Stettler, M., Majumdar, A., & Schumann, U. (2018b). A Methodology to Relate Black Carbon Particle
 Number and Mass Emissions from Various Combustion Sources. In 22nd ETH-Conference on Combustion
 Generated Nanoparticles, June 18th 21st. Zurich, Switzerland: ETH Zurich. Retrieved from
 http://www.nanoparticles.ch/archive/2018_Teoh_PO.pdf
- Timko, M. T., Onasch, T. B., Northway, M. J., Jayne, J. T., Canagaratna, M. R., Herndon, S. C., ... Knighton, W. B.
 (2010). Gas turbine engine emissions—Part II: Chemical properties of particulate matter. *Journal of Engineering for Gas Turbines and Power*, *132*(6), 61505.
- Wey, C. C., Anderson, B. E., Hudgins, C., Wey, C., Li-Jones, X., Winstead, E., ... Whitefield, P. (2006). Aircraft particle emissions experiment (APEX).
- Wiedensohler, A., Wiesner, A., Weinhold, K., Birmili, W., Hermann, M., Merkel, M., ... Tuch, T. (2018). Mobility
 particle size spectrometers: Calibration procedures and measurement uncertainties. *Aerosol Science and Technology*, 52(2), 146–164.
- 719