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Abstract 10 

Black carbon (BC) particle number (PN) emissions from various sources contribute to the 11 

deterioration of air quality, adverse health effects, and anthropogenic climate change. This paper 12 

critically reviews different fractal aggregate theories to develop a new methodology that relates 13 

BC PN and mass concentrations (or emissions factors). The new methodology, named as the 14 

fractal aggregate (FA) model is validated with measurements from three different BC emission 15 

sources: an internal combustion engine, a soot generator, and two aircraft gas turbine engines at 16 

ground and cruise conditions. Validation results of the FA model show that R2 values range from 17 

0.44 to 0.95, while the Normalised Mean Bias is between -27.7% and +26.6%. The model 18 

estimates for aircraft gas turbines represent a significant improvement compared to previous 19 

methodologies used to estimate aviation BC PN emissions, which relied on simplified 20 

assumptions. Uncertainty and sensitivity analyses show that the FA model estimates have an 21 

asymmetrical uncertainty bound (−54%, +103%) at a 95% confidence interval for aircraft gas 22 

turbine engines and are most sensitive to uncertainties in the geometric standard deviation of the 23 

BC particle size distribution. Given the improved performance in estimating BC PN emissions 24 

from various sources, we recommend the implementation of the FA model in future health and 25 

climate assessments, where the impacts of PN are significant.  26 

Keywords: Black carbon; Particle number; Particle Mass; Fractal aggregates; Combustion 27 

emissions. 28 
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Nomenclature 30 

BC  Black Carbon 31 

C   Mass-mobility prefactor 32 

Cov  Coefficient on the degree of primary particle overlapping in a BC aggregate 33 

CIDI  Compression-Ignition natural gas Direct-Injection engine 34 

CPC  Condensation Particle Counter 35 

CPMA  Centrifugal Particle Mass Analyzer 36 

dm  Mobility diameter (m, unless stated otherwise) 37 

dpp   Primary particle diameter (m, unless stated otherwise) 38 

Dα  Projected area exponent 39 

Dfm  Mass mobility exponent 40 

DTEM  Transmission Electron Microscopy exponent 41 

DAC  Double Annular Combustor 42 

DLCA  Diffusion Limited Cluster Aggregation 43 

DMA  Differential Mobility Analyzer 44 

EIm  Mass Emissions Index (g kg-1) 45 

EIn  Number Emissions Index (kg-1) 46 

F00  Maximum rated thrust at sea level static conditions (N) 47 

F/F00  Aircraft engine thrust setting as a percentage of F00 48 

FA   Fractal Aggregates 49 

GDI  Gasoline Direct Injection engine 50 

GMD  Geometric Mean Diameter (m, unless stated otherwise) 51 

GSD  Geometric Standard Deviation 52 

HPDI  High Pressure Direct Injection 53 

ICAO  International Civil Aviation Organization  54 

IPSD  Integrated Particle Size Distribution Method 55 

k   Density-mobility prefactor 56 

ka  Scaling prefactor 57 

kfm   Mass-mobility prefactor 58 

kTEM   Transmission Electron Microscopy prefactor 59 

Kn  Knudsen Number 60 

LII  Laser Induced Incandescence  61 

m  Mass of one black carbon aggregate (kg) 62 

M Total mass (or concentration) of black carbon aggregates in a particle size 63 

distribution (kg or kg m-3) 64 

npp   Number of primary particles in a black carbon aggregate 65 

N Total number (or concentration) of black carbon aggregates in a particle size 66 

distribution (1, or m-3) 67 

NMB  Normalised Mean Bias 68 

nvPM  non-volatile Particulate Matter 69 

PM  Particulate Matter 70 

PMP  Particle Measurement Programme 71 

PN  Particle Number 72 

PSAP  Particle Soot Absorption Photometer 73 

PSD  Particle Size Distribution 74 

R2  Coefficient of determination 75 
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RLCA  Reaction-Limited Cluster Aggregation 76 

SAC  Single Annular Combustor 77 

SI  Supporting Information 78 

SMPS  Scanning Mobility Particle Sizer 79 

TEM  Transmission Electron Microscopy 80 

UNECE United Nations Economic Commission for Europe 81 

𝜌0   Material density of black carbon (= 1770 kg m-3) 82 

𝜌eff   Effective density of black carbon (kg m-3) 83 

 84 

1 Introduction 85 

Black carbon (BC) particles are carbonaceous aerosols that have a high thermal stability, strong 86 

light-absorbing properties and are generally resistant to chemical transformation (Goldberg, 87 

1985; Petzold et al., 2013). These carbonaceous aerosols are aggregates that consist of smaller 88 

spherical primary particles  and exhibit ‘fractal-like’ properties due to their self-similar structure 89 

over a finite length scale (Sorensen, 2011). BC aggregates are mainly formed in flames due to 90 

the incomplete combustion of biomass and fossil fuels, and these emissions contribute to 91 

anthropogenic climate change, the deterioration of air quality and adverse human health (Bond et 92 

al., 2013; Penner et al., 1999). 93 

The transport sector is a major source of BC emissions. Combustion engines emit a mixture of 94 

particulate matter (PM) often called ‘soot’ including solid particles (such as BC and metallic 95 

compounds) and organic (volatile) particles (Abegglen et al., 2015; Petzold et al., 2013; UNECE, 96 

2010). BC typically accounts for around 75% of the total solid particle mass (Kittelson, 1998), 97 

while the fraction of organic content to total carbon emitted in engine exhausts generally range 98 

from 5% to 85% and decreases as engine power increases (Anderson et al., 2011; Delhaye et al., 99 

2017; Graves et al., 2015; Wey et al., 2006).  100 

At a macroscopic level, BC is commonly quantified in terms of its mass and number 101 

concentration. For emission sources, the mass and number emission rates are most commonly 102 

quantified in terms of the emitted BC per distance travelled (g/km, or km-1), per unit energy (g 103 

(kWh)-1, or kWh-1), per unit time (g s-1, or s-1), or as an emissions index per mass of fuel burned 104 

(EIm in g kg-1, or EIn in kg-1). Measurements show that BC number and mass concentrations in 105 

the exhaust of internal combustion engines ranges from 1012 to 1014 m-3, and 0.1 to 30 mg m-3 106 

respectively for different engines and operating conditions (Abdul-Khalek et al., 1998; Brian 107 

Graves et al., 2015).  108 
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To address the emissions of solid particle number (PN) from motorised vehicles, the results of 109 

the particle measurement programme (PMP), a working group established by the United Nations 110 

Economic Commission for Europe (UNECE) was integrated into the Euro 5/V and 6/VI 111 

emissions standards, which limit the solid PN emissions from light and heavy-duty vehicles to 112 

6×1011 km-1 and 8×1011 kWh-1 respectively (Giechaskiel et al., 2014; Martini et al., 2009). Prior 113 

to the PMP, measurements of solid particle mass concentrations were more commonly available 114 

than PN concentrations because pre-Euro 5/V emission standards only specified a limit on the 115 

mass emissions (Burtscher, 2005).  116 

However, due to the increasing evidence that existing mass-based metrics are inadequate in 117 

characterising the negative health effects of air pollution, particle number and surface area 118 

concentration are being proposed as additional metrics for air quality assessments (Janssen et al., 119 

2011; Peters et al., 2011). Recent health studies have shown that condensed compounds of semi-120 

volatile chemicals of high toxicity could adsorb on the surfaces of ultrafine particles (Schmid & 121 

Stoeger, 2016; Steiner et al., 2016). Given that ultrafine particles have a higher probability of 122 

being deposited to the respiratory epithelium, translocated towards the circulatory system and 123 

accumulate in various organs (Kreyling et al., 2006), a prolonged exposure to these elevated 124 

concentrations of BC can subsequently increase the risk of cardiopulmonary disease and 125 

premature mortality (Laden et al., 2006; Pope III & Dockery, 2006). 126 

For aircraft emissions at cruise altitudes, BC particles can have a longer atmospheric lifetime (≈ 127 

4 to 30 days) (Bond et al., 2013; Williams et al., 2002) relative to ground level sources (≈ 4 to 7 128 

days) (Samset et al., 2014; Wang, 2004) because of the absence of an efficient wet scavenging 129 

removal process in the stratosphere (Barrett et al., 2010a). These aerosols also interact with the 130 

formation, lifetime and albedo of cirrus clouds (Boucher, 2011). Studies using global cloud-131 

aerosol climate models have shown that the indirect climate forcing of aircraft BC (≈ 0.01 W m-2 132 

to 0.09 W m-2) may outweigh its direct forcing (≈ 0.0034 W m-2 to 0.02 W m-2), though these 133 

estimates are highly sensitive to assumptions regarding the number and size of BC particles 134 

(Brasseur et al., 2016; Lee et al., 2010; Stettler et al., 2013a; Zhou & Penner, 2014). Under ice 135 

super-saturated conditions however, BC PN emissions from an aircraft strongly influence 136 

different contrail properties and their subsequent climate impact (Burkhardt et al., 2018; 137 

Jeßberger et al., 2013; Kärcher & Yu, 2009).  138 
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Although the BC EIn is an essential input parameter for contrail models (Caiazzo et al., 2017; 139 

Schumann, 2012), existing models rely on simplified assumptions leading to large uncertainty 140 

bounds of up to one order of magnitude (Anderson et al., 2011). For example, Petzold et al. 141 

(1999) and Caiazzo et al. (2017) estimated EIn by dividing the total BC mass emission with a 142 

constant BC particle mass; Döpelheuer (2002) developed an EIn/EIm ratio with a dependence on 143 

flight altitude; and finally Barrett et al. (2010b) estimated EIn by assuming a log-normal 144 

distribution with a fixed geometric mean diameter (GMD) and geometric standard deviation 145 

(GSD) value. Numerous studies have subsequently shown that the properties and size 146 

distribution of BC emitted from aircraft engines are highly dependent on engine thrust settings 147 

(Abegglen et al., 2015; Boies et al., 2015; Delhaye et al., 2017; Durdina et al., 2014; Johnson et 148 

al., 2015; Lobo et al., 2015a; Peck et al., 2013), where the GMD of aircraft emitted BC typically 149 

range from 10 nm to 50 nm, while the GSD varies from 1.4 to 1.9 (Durdina et al., 2014; Lobo et 150 

al., 2015b). 151 

A new non-volatile particulate matter (nvPM) measurement procedure is currently being 152 

developed by the International Civil Aviation Organization (ICAO), however it will only be 153 

applied to new aircraft engines with a rated thrust above 26.7 kN after January 2020 (ICAO, 154 

2016). Given that there is currently no proposal to retroactively measure BC emission 155 

characteristics from existing certified turbofan engines and the limitations of existing aircraft EIn 156 

models, a reliable and improved method by which to estimate aircraft BC EIn is needed. 157 

This paper therefore aims to: (i) develop a new model to estimate BC PN emissions from mass 158 

measurements or estimates using the theory of fractal aggregates; (ii) validate the new model 159 

using measurements of BC from three different emission sources (an internal combustion engine, 160 

a soot generator, and two aircraft gas turbine engines); and (iii) quantify the uncertainty bound 161 

and conduct a sensitivity analysis for the new model.  162 

Section 2 outlines the theory used in the development of the new methodology to relate BC PN 163 

and mass emissions. Section 3 describes the materials and methods used to validate the new 164 

model. Section 4 presents the validation results and Section 5 conducts an uncertainty and 165 

sensitivity analysis for this new model. Finally, Section 6 concludes and summarises the key 166 

findings from this paper. Details and data omitted from the main text are included in the 167 

Supporting Information (SI) as referenced. 168 
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2 Theoretical development  169 

This section reviews the different fractal aggregate theories that describe aggregate properties 170 

including mass, diameter and morphology. We then develop a new model to relate the total mass 171 

and number of a population of polydisperse aggregates, which accounts for the particle size 172 

distribution (PSD) and aggregate morphology. The model is subsequently applied to estimate BC 173 

PN concentration (or emissions factor) from mass concentration (or emissions factor) for various 174 

emission sources in Section 4.  175 

2.1 Existing theories to estimate BC aggregate mass 176 

Four equations are commonly used to estimate the mass of one BC aggregate (m) with varying 177 

assumptions. Firstly, m can be fundamentally represented as the summation of individual 178 

primary particle masses (Boies et al., 2015; Eggersdorfer et al., 2012b), 179 

 𝑚 = 𝑛pp𝜌0(
𝜋

6
)𝑑pp

3
 , (1) 

where npp is the number of primary particles in an aggregate, dpp is the BC primary particle 180 

diameter, and 𝜌0 is the BC material density. 𝜌0 is reported to be in a range of between 1820 kg 181 

m-3 and 2050 kg m-3 (Dobbins et al., 1994), while a more recent study on diesel soot 182 

agglomerates estimated 𝜌0 to be around 1770 ± 70 kg m-3 (Park et al., 2004). In Eq. 1, pairs of 183 

primary particles in an aggregate are assumed to have a non-overlapping single point of contact. 184 

However, several studies have shown some degree of overlapping between pairs of primary 185 

particles (Bourrous et al., 2018; Brasil et al., 1999; Moran et al., 2018; Wentzel et al., 2003), and 186 

the partial overlapping between primary particles can be defined with an overlapping coefficient, 187 

 Cov =
(𝑟i+𝑟𝑗)−𝑑ij

(𝑟i+𝑟j)
, (2) 

where ri and rj are the radiuses of primary particles i and j, and dij is the length between the 188 

centres of both primary particles. Cov values are estimated from transmission electron 189 

microscopy (TEM) observations or numerical simulations, and typically range from 0.05 to 0.25 190 

for aggregates with monodisperse and polydisperse primary particles (Bourrous et al., 2018; 191 

Brasil et al., 1999; Moran et al., 2018; Wentzel et al., 2003). For aggregates with monodisperse 192 

and overlapping primary particles, Moran et al. (2018) shows that m decreases as a cubic 193 

function of Cov, 194 
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 𝑚 = 𝑛pp𝜌0 (
𝜋

6
) 𝑑pp

3 [𝑛𝑝𝑝 − (𝑛𝑝𝑝 − 1) (
1

2
) (3 − 𝐶𝑜𝑣)𝐶𝑜𝑣

2] (3) 

More commonly, measurements of m and aggregate mobility diameter (dm) are often linked by a 195 

power-law relationship (Abegglen et al., 2015; Dastanpour et al., 2017; Johnson et al., 2015),  196 

 𝑚 = 𝐶𝑑m
𝐷fm , (4) 

where C is the mass-mobility prefactor with units of kg m−𝐷fm. Dfm is the mass-mobility 197 

exponent, used to describe the morphology of BC aggregates (DeCarlo et al., 2004) and has a 198 

theoretical interval from 1.0 for long-chains to 3.0 for spherical aggregates (Durdina et al., 199 

2014). BC aggregates emitted by various sources typically have a Dfm in the range of 1.8 to 2.8 200 

(Abegglen et al., 2015; Dastanpour et al., 2017; Graves et al., 2015; Johnson et al., 2015).  201 

Finally, the dpp can also be included in a power-law relating m to dm and dpp (Eggersdorfer et al., 202 

2012b; Park, Kittelson, & McMurry, 2004), 203 

 𝑚 = 𝑘fm(
𝑑m

𝑑pp
)𝐷fm, (5) 

where kfm is also named as the mass-mobility prefactor with metric units of mass (kg). Note, the 204 

prefactors C and kfm have different units and are therefore not equivalent.  205 

The power-law mass-mobility relationships of Eq. 4 and 5 can be used to quantify the effective 206 

density of a BC aggregate (𝜌eff) (McMurry et al., 2002), 207 

 𝑚 = 𝜌eff(
𝜋

6
)𝑑m

3
. (6) 

𝜌eff is the density of the fractal aggregate when its volume is taken to be that of its mobility-208 

equivalent sphere. While the value of 𝜌0 is constant for all conditions, 𝜌eff typically decreases as 209 

dm increases (Abegglen et al., 2015; Johnson et al., 2015) due to BC aggregates having more 210 

open space as dm increases (Graves et al., 2015).  211 

With experimental measurements of m, Eq. 4 can be equated with Eq. 4 or 5 to estimate 𝜌eff for a 212 

given dm,  213 

 𝜌eff =
𝑚

(
𝜋

6
)𝑑m

3 = 𝑘𝑑𝑚
(𝐷𝑓𝑚−3)

 . (7) 
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The density-mobility prefactor k has the same units as C (kg m−𝐷fm) and is related to the mass-214 

mobility prefactors C (𝑘 =
6𝐶

𝜋
, Eq. 4) and kfm (𝑘 =

6𝑘fm

𝜋𝑑pp
𝐷fm

, Eq. 5). Experimentally, the average 215 

m and 𝜌eff as a function of dm are commonly determined using a differential mobility analyser 216 

(DMA), aerosol particle mass (APM) or centrifugal particle mass analyzer (CPMA) and 217 

condensation particle counter (CPC) set up (Johnson et al., 2013). 𝜌eff is also commonly used to 218 

estimate total mass of BC aggregates (M) from the total number of BC aggregates in a PSD (N), 219 

as will be described in Section 3.1.  220 

2.2 Number of primary particles in an aggregate 221 

The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean 222 

free path to the particle radius. Sorensen (2011) showed that BC aggregates are formed via the 223 

diffusion limited cluster aggregation (DLCA) process in the free molecular flow regime where 224 

the mean free path is greater than the particle radius (Kn ≥ 1). An example of a condition which 225 

sees Kn ≥ 1 includes low-density gas flows, where the continuum assumption becomes invalid 226 

due to the minimal interaction between molecules (Hinds, 1999).  227 

In the free molecular and transition regimes, npp can be related to dm and dpp (Boies et al., 2015; 228 

Eggersdorfer et al., 2012a), 229 

 𝑛pp = 𝑘a(
𝑑m

𝑑pp
)2𝐷α , (8) 

where ka and Dα are the scaling prefactor and projected area exponent, respectively. The values 230 

of ka and Dα are calibrated from experimental measurements or numerical simulations 231 

(Dastanpour et al., 2016). By equating Eq. 1 with Eq. 4, or Eq. 1 with Eq. 5, it can be shown that 232 

2𝐷𝛼 = 𝐷fm (Eggersdorfer et al., 2012b), while ka can also be derived from empirical values of C 233 

and kfm,   234 

 𝑘a =
6𝐶

𝜌0𝜋
𝑑pp

(𝐷fm−3)
 (from Eq. 1 & 4)     or     𝑘a =

𝑘𝑓𝑚

𝜌0𝜋𝑑𝑝𝑝
3 (from Eq. 1 & 5) (9) 

where an average primary particle diameter dpp is taken from TEM observations. For aggregates 235 

formed via DLCA, Eggersdorfer & Pratsinis (2012) showed that ka is inversely proportional to 236 

the GSD of primary particle diameters. Therefore, ka can be used to infer the polydispersity of 237 

primary particle sizes in an aggregate. We also evaluated the validity of 2𝐷𝛼 = 𝐷fm by 238 
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comparing the datasets of Boies et al. (2015) and Johnson et al. (2015), with an average 239 

difference of 25% between 2𝐷α and 𝐷fm (shown in SI.2). This discrepancy could be due to the 240 

different calibration methods used to obtain values of 𝐷fm (estimated using mass-mobility data) 241 

and 𝐷α (estimated using TEM and mass-mobility data).  242 

With constant values of ka = 0.998 and Dα = 1.069, Eggersdorfer et al. (2012b) showed that Eq. 8 243 

is valid for aggregates formed of polydisperse primary particles, irrespective of the sintering 244 

mechanism or the state of sintering. Using experimental data from a compression-ignition 245 

natural-gas direct-injection (CIDI) engine, Dastanpour et al. (2016) evaluated the validity of the 246 

constant ka and Dα values (Eggersdorfer et al., 2012b) by comparing it with fitted ka and Dα 247 

values for specific operating conditions. With the constant and fitted values of ka and Dα, dpp is 248 

estimated using Eq. 8 and compared with analysis of TEM images. The results of Dastanpour et 249 

al. (2016) suggest that errors of dpp can be reduced by 30% when fitted ka and Dα values are used 250 

instead of the constant ka and Dα values from Eggersdorfer et al. (2012b). Further assessments 251 

regarding the assumptions of ka = 0.998 and Dα = 1.069 will be discussed in Section 4. 252 

2.3 Relationship between primary particle and aggregate mobility diameter 253 

For both diesel internal combustion engines and aircraft gas turbines, dpp ranges from 13 to 26 254 

nm over different engine operating conditions (Graves et al., 2015; Liati et al., 2014). Studies 255 

have indicated that dpp is correlated with the aggregate diameter: Boies et al. (2015) showed that 256 

dpp is related to dm, whilst Dastanpour & Rogak (2014) related dpp to the projected area 257 

equivalent diameter (da). Given that dm is approximately equal to da in the free molecular and 258 

transition regime (Dastanpour et al., 2016; Eggersdorfer et al., 2012b; Rogak et al., 1993), this 259 

relationship can be generalised as,  260 

 𝑑pp = 𝑘TEM𝑑m
𝐷TEM  , (10) 

where dpp is the arithmetic mean of the primary particle diameters within an aggregate, while 261 

kTEM and DTEM are fitted parameters. The observed correlation between dpp and dm or da is likely 262 

due to the “external mixing hypothesis” (Rogak & Olfert, 2019), where primary particles and 263 

aggregates form and coalesce in heterogeneous regions in the combustion chamber with different 264 

local equivalence ratios and temperatures. The BC aggregates formed in the different regions of 265 

the combustion chamber are then externally mixed to form the ensemble of aggregates measured 266 
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in the exhaust. Therefore, the relative variations of the primary particle diameters within 267 

individual aggregates (or the GSD of primary particles) are typically much smaller than the 268 

ensemble of aggregates (Dastanpour & Rogak, 2014; Dastanpour et al., 2016; Rogak & Olfert, 269 

2019), which also mean that the difference between different averages used for the dpp (i.e. 270 

average mass, arithmetic mean or median) is likely to be small (Rogak, 2019).  271 

Table 1 shows the typical kTEM and DTEM coefficient values for various BC emission sources 272 

(Boies et al., 2015; Dastanpour & Rogak, 2014). We note that the difference between averages 273 

used for the dpp may affect these kTEM and DTEM coefficients, but that difference is likely to be 274 

within the 95% confidence interval stated in Dastanpour & Rogak (2014), and in the SI.9.1 275 

(Rogak, 2019).  276 

Table 1: 𝒌𝐓𝐄𝐌 and 𝑫𝐓𝐄𝐌 coefficient values for Eq. 10 for various BC emission sources. The coefficient values 277 
of 𝒌𝐓𝐄𝐌 and 𝑫𝐓𝐄𝐌 are valid for 𝒅𝐦and 𝒅𝐩𝐩 in metres. 278 

Emission Source 

Coefficients, 𝒅𝐩𝐩[𝐦] = 𝒌𝐓𝐄𝐌 × 𝒅𝐦
𝑫𝐓𝐄𝐌 

Ref. 

𝒌𝐓𝐄𝐌 𝑫𝐓𝐄𝐌 

Gasoline Direct Injection engine (GDI) 2.616 × 10−6 0.30 

[1] 

High Pressure Direct Injection (HPDI) 2.644 × 10−6 0.29 

Inverted burner 2.465 × 10−6 0.29 

Aircraft gas turbine engine 1.621 × 10−5 0.39 

Aircraft gas turbine engine 0.0125 0.8 [2] 

[1] Dastanpour & Rogak (2014)   [2] Boies et al. (2015)  279 

2.4 Relating mass and number of polydisperse fractal aggregates 280 

Table 2 provides a summary of the equations that are available to relate different fractal 281 

aggregate properties. For the equations that were fitted with a power-law relationship, five 282 

distinct prefactor-exponent coefficient pairs are identified and compiled. The equations listed in 283 

Table 2 will be assessed and selected to develop a new model to relate BC PN emissions and 284 

mass. 285 

 286 

 287 
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Table 2: Summary of equations used to relate different fractal aggregate properties. Specific references are 288 
denoted by square brackets. 289 

Eqn. 
Coefficient 

Pairs 
Formula Remarks Reference 

B
C

 A
g

g
re

g
a

te
 M

a
ss

 (
m

) 

1 - 𝑚 = 𝑛pp𝜌0(
𝜋

6
)𝑑pp

3
 

m is calculated by multiplying the material 

density of BC (𝜌0) with the volume of each 

primary particles.  

Single point of contact is assumed between 

pairs of primary particles.  

[2], [9] 

 

3 - 

𝑚

= 𝑛pp𝜌0 (
𝜋

6
) 𝑑pp

3 [𝑛𝑝𝑝

− (𝑛𝑝𝑝 − 1) (
1

2
) (3

− 𝐶𝑜𝑣)𝐶𝑜𝑣
2] 

Similar to Eq. 1, but partial overlapping 

between primary particles is accounted by 

Cov. 

Cov estimated from TEM observations or 

numerical simulation and typically ranges 

from 0.05 to 0.25.  

m decreases as a cubic function of Cov 

[3], [4], 

[14], [16] 

4 (C, Dfm) 𝑚 = 𝐶𝑑m
𝐷fm 

C and Dfm are empirically calibrated from 

measurements of m & dm. 

dpp data not required for calibration. 

C ranges from 10-5 to 15. 

Dfm ranges from 1.8 to 2.8. 

[1], [6], 

[11], [12] 

5 (kfm, Dfm) 𝑚 = 𝑘fm(
𝑑m

𝑑pp

)𝐷fm 
kfm and Dfm are empirically calibrated from 

measurements of m, dm & dpp. 
[8], [9], 

[15] 

6 

& 

7 

(k, Dfm) 

𝑚 = 𝜌eff(
𝜋

6
)𝑑m

3 

                ↓ 

𝜌eff = 𝑘𝑑𝑚
(𝐷𝑓𝑚−3)

 

k is a derived quantity, estimated from C 

(Eq. 4) or kfm (Eq. 5). 

k is inversely proportional to Dfm. 

k ranges from 10-2 to 35. 

[1], [6], 

[11], [12], 

[13] 

N
o

. 
o

f 
p

ri
m

a
ry

 p
a

rt
ic

le
s 

 

in
 a

n
 a

g
g

re
g
a

te
 (

n
p

p
) 

8  

&  

9 

(ka, Dα) 𝑛pp = 𝑘a(
𝑑m

𝑑pp

)2𝐷α 

ka and Dα can be empirically calibrated 

from measurements of npp, dm & dpp. 

ka can be derived using data from the 

prefactor. C (Eq. 4) or kfm (Eq. 5), and the 

average dpp of BC aggregates. 

Theoretically, Dfm = 2Dα. 

ka and Dα decreases as GSD of dpp 

increases. 

ka and Dα for DLCA ranges from 0.6 to 1.1, 

and 0.8 to 1.1 respectively. 

[2], [8], 

[9], [10] 

P
ri

m
a

ry
 P

a
rt

ic
le

 

D
ia

m
et

er
 (

d
p

p
) 

10 
(kTEM, 

DTEM) 
𝑑pp = 𝑘TEM𝑑m

𝐷TEM  

kTEM and DTEM can be empirically calibrated 

from measurements of dm and dpp. 

kTEM ranges from 10-6 to 10-2. 

DTEM ranges from 0.3 to 1.0. [2], [5], 

[6], [7] 

[1] Abegglen at al. (2015)  [7] Dastanpour & Rogak (2014)  [12] Johnson et al. (2015) 290 

[2] Boies et al. (2015)  [8] Eggersdorfer et al. (2012a)  [13] McMurry et al. (2002) 291 

[3] Bourrous et al. (2018)  [9] Eggersdorfer et al. (2012b)  [14] Moran et al. (2018) 292 

[4] Brasil et al. (1999)  [10] Eggersdorfer & Pratsinis (2012)  [15] Park et al. (2004) 293 

[5] Dastanpour et al. (2016) [11] Graves et al. (2015)     [16] Wentzel et al. (2003) 294 

[6] Dastanpour et al. (2017) 295 
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Eq. 1 and Eq. 3 fundamentally relate the mass of agglomerates (single point contact) and 296 

aggregates (sintered and overlapping) to the sum of the mass of BC primary particles 297 

respectively, without reliance on a prefactor-exponent coefficient pair. First, we use Eq. 1 as the 298 

foundation for the new BC PN-mass model. Then in Section 2.5 we show the model accounting 299 

for overlapping of primary particles derived from Eq. 3.  300 

By substituting the npp and dpp expressions from Eq. 8 and Eq. 10 into Eq. 1, m can be estimated 301 

as a function of dm, 302 

 𝑚 = 𝑘a𝑑m
𝜑𝜌0(

𝜋

6
)(𝑘TEM)(3−2𝐷α), (11) 

 where 𝜑 = 3𝐷TEM + (1 − 𝐷TEM)2𝐷𝛼.  

The total mass of aggregates (M) in a PSD can then be calculated using the integrated product of 303 

the aggregate mass and number weighted distribution, 𝑛(𝑑m) =
d𝑁

dlog𝑑m
, with 304 

∫ 𝑛(𝑑m) dlog𝑑m = 𝑁
∞

0
 is the total number of aggregates, 305 

 𝑀 = ∫ 𝑚(𝑑m)𝑛(𝑑m) 𝑑log𝑑m
∞

0
 , (12) 

The relationship linking each BC aggregate mass to its mobility diameter, m(dm) from Eq. 11 is 306 

substituted into Eq. 12,  307 

 𝑀 = 𝑁𝑘𝑎𝜌0(
𝜋

6
)(𝑘𝑇𝐸𝑀)3−2𝐷𝛼 ∫ 𝑑m

𝜑 𝑑log𝑑m
∞

0
 . (13) 

If the PSD is assumed to be a mono-modal lognormal distribution defined by GMD and GSD, 308 

the remaining integral in Eq. 13 is equal to the φth moment of a log-normal distribution, 309 

 𝑀 = 𝑁𝑘𝑎𝜌0(
𝜋

6
)(𝑘𝑇𝐸𝑀)3−2𝐷𝛼GMD𝜑exp (

𝜑2 ln(GSD)2

2
) . (14) 

Eq. 14 can then be rearranged to give N, 310 

 𝑁 =
𝑀

𝑘a𝜌0(
𝜋

6
)(𝑘TEM)3−2𝐷𝛼GMD𝜑exp (

𝜑2 ln(GSD)2

2
)
, (15) 

 where 𝜑 = 3𝐷TEM + (1 − 𝐷TEM)2𝐷𝛼.  
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The variables M and N can be used interchangeably with the concentration of BC mass (kg m-3) 311 

and number (m-3), emission indices BC EIm (g kg-1) and EIn (kg-1), or their respective emissions 312 

factors. Eq. 15, named as the Fractal Aggregates (FA) model represents a relationship between 313 

number and mass of fractal aggregates, and also accounting for the BC PSD and morphology. 314 

The derivation of the FA model can be found in SI.1.1 315 

2.5 Accounting for Primary Particle Overlapping in the FA Model 316 

When primary particle overlapping is included to estimate m using Eq. 3 in place of Eq. 1, the 317 

FA model becomes:  318 

This equation reverts to Eq. 15 when Cov = 0. The extended derivation of the FA model (Eq. 16) 319 

is shown in SI.1.2. Although this form of the FA model is more complete, we note that there is 320 

limited quantification of Cov for different BC emission sources. Previous studies have 321 

predominantly used numerical simulations to estimate Cov for different nanoparticles (Brasil et 322 

al., 1999; Moran et al., 2018). Bourrous et al. (2018) and Wentzel et al. (2003) used TEM images 323 

to quantify the Cov for different nanoparticles as being in the range of 0.02 to 0.24, however, 324 

there remains limited information on the variation of Cov on combustion conditions. 325 

We note that the ratio between N estimated with the effects of overlapping (Eq. 16) is up to 7% 326 

higher than when overlapping is neglected (Eq. 15) for an upper bound of Cov = 0.24 for BC 327 

aggregates (Bourrous et al., 2018). This comparison is shown in the SI.1.3. It is also likely that 328 

the effects of Cov and primary particle overlapping are implicitly captured by the simplified FA 329 

model (Eq. 15) via inputs of ka and Dα (or Dfm), given the observations of Oh & Sorensen (1997) 330 

where it is shown that these parameters tend to increase with Cov. 331 

For these reasons, the simplified version of the FA model (Eq. 15) is selected for ease of 332 

application. Nevertheless, we have outlined the full derivation of the FA model in Eq. 16 for 333 

potential use in future applications when more data on the changes in Cov for different BC 334 

emissions source and engine settings become available. In Section 5, we revisit the sensitivity of 335 

the FA model to Cov in relation to uncertainties introduced by other parameters.  336 

𝑁 =
𝑀

𝜌0 (
𝜋
6

) [𝑘a(𝑘TEM)3−2𝐷𝛼GMD𝜑 exp (
𝜑2 ln(GSD)2

2
) (1 − 1.5𝐶𝑜𝑣

2 + 0.5𝐶𝑜𝑣
3 ) + 𝑘𝑇𝐸𝑀

3 (
1
2

)(1.5𝐶𝑜𝑣
2 − 0.5𝐶𝑜𝑣

3 )GMD𝛾 exp (
𝛾2 ln(GSD)2

2
)]

 

 where 𝜑 = 3𝐷TEM + (1 − 𝐷TEM)2𝐷𝛼     &     𝛾 = 3𝐷TEM. (16) 
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In summary, the FA model is capable of estimating: (i) the BC PN emissions from various 337 

emission sources when inputs of mass (M or EIm), PSD (GMD and GSD), and morphology (ka, 338 

Dα, kTEM and DTEM) are available; (ii) the BC M (or emissions factor) for various sources with 339 

inputs of N (or emissions factor), PSD and morphology; (iii) the GMD and GSD of the BC 340 

aggregates if morphology, number and mass measurements are present; or (iv) the morphology 341 

(ka and Dα) if the PSD, number and mass data are available. For this paper, we will focus on 342 

application (i) where the FA model is used to estimate BC PN emissions from mass and PSD. 343 

Figure 1 shows a flow chart outlining the input parameters and procedure required to apply the 344 

FA model for this particular application. 345 

 346 

Figure 1: Flow chart outlining the parameters and procedure required to implement the FA model in 347 
estimating BC PN emissions from inputs of mass, PSD and morphology.  348 

3 Materials and methods 349 

The datasets and estimated input variables used to validate the FA model are summarised in 350 

Table 3. For further methodological details, the reader is referred to SI.3. Specific datasets are 351 
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described in Sections 3.1 (CIDI engine), 3.2 (soot generator) and 3.3 (aircraft gas turbine engines 352 

at ground and cruise conditions).  353 

All measurements included in this study are derived from experiments that included a volatile 354 

particle remover (thermodenuder or catalytic stripper). We therefore assume that the aggregates 355 

and primary particles consist purely of BC with a constant 𝜌0 value of 1770 kg m-3 (Park et al., 356 

2004). The uncertainty in 𝜌0 is discussed in Section 5. For the aircraft gas turbine dataset, 357 

Crayford et al. (2012) found negligible mass concentrations of organic carbon downstream of the 358 

catalytic stripper. Furthermore, other studies have shown high volatile particle removal 359 

efficiencies in other applications; for example, Giechaskiel et al. (2010) showed that the mass-360 

based removal efficiency of volatile and semi-volatile particles is > 99% for nucleation mode 361 

particles and an efficiency of 50 to 90% for particles in the accumulation mode. 362 

We also note that correction factors on particle losses along the sampling lines were not applied 363 

in all four datasets due to large uncertainties. Hence, all the data used to validate the FA model 364 

represents measurements at the instrument sampling point instead of the point of emission. 365 

3.1 CIDI engine data 366 

BC emissions and aggregate morphology data from a six-cylinder CIDI engine were obtained 367 

from Graves et al. (2015), the dataset from which consists of 16 data points corresponding to six 368 

different engine operating conditions. Exhaust gas was sampled and diluted at a ratio of 11:1 369 

before passing through a thermodenuder to remove volatile materials. A scanning mobility 370 

particle sizer (SMPS) measured the PSD of the non-volatile PM (assumed to be primarily BC), 371 

from which data was subsequently used to calculate the PSD (GMD and GSD) and the measured 372 

BC PN concentration (N). Due to the lack of a separate CPC, data from the SMPS is used as a 373 

reference for the measured N. The total BC mass concentration (M) was estimated using the 374 

integrated particle size distribution (IPSD) method (Liu et al., 2009).  375 

Particle line loss correction factors were only applied to account for diffusional losses in the 376 

thermodenuder, while DMA measurements were not corrected for diffusion and multiple 377 

charging effect (Graves, 2019). Given that the DMA and thermodenuder are located upstream of 378 

the CPC and CPMA, we note that the effects for the corrections applied (or lack of) are 379 

consistent in the measured PSD, and therefore the calculated M and N. 380 

 381 
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Table 3: Summary of the four datasets used to validate the FA model. The sources of certain input variables 382 
that are required by the FA model are also listed. Specific references are denoted by square brackets. 383 

§ Emissions 

Source 

Data Points Measured 

Quantity 

Empirically 

fitted & 

Estimated 

Parameters 

Volatile 

Particle 

Remover 

Particle Line 

Loss Corrections 

Ref. 

3.1 CIDI 

Engine: 

Six-cylinder 

Cummins 

ISX 

16 data points 

measured 

from 6 engine 

operating 

conditions. 

N (SMPS) 

GMD 

GSD 

ρeff 

Fitted [2]: 

ka,opt  

Dα,opt 

 

Estimated: 

M [6] 

ρ0 [8] 

kTEM [4] 

DTEM [4] 

 

TN Corrected for 

diffusional 

deposition losses 

along 

thermodenuder. 

No corrections 

applied to DMA 

measurements and 

particle losses 

along the sampling 

line.   

[2], 

[4], 

[6], 

[8] 

3.2 Soot 

Generator 

13 data points 

measured 

from 

laboratory 

experiments  

 

N (CPC) 

GMD 

GSD 

M 

Estimated: 

ρ0 [8] 

kTEM [4] 

DTEM [4] 

ka=0.998 [5] 

Dα=1.069 [5] 

 

CS No corrections 

applied to account 

for particle losses 

in the sampling 

line.  

Diffusion and 

multiple charge 

correction applied 

to PSD measured 

by SMPS.  

[4], 

[8] 

3.3 Aircraft Gas 

Turbine @ 

ground level: 

CFM56-

5B4-2P  

SAMPLE 

III.2 - Ground 

Measurements 

 

37 data points 

measured 

from 24 

different 

F/F00 

 

EIn (DMS) 

GMD 

GSD 

EIm 

 

 

Assumptions 

[5]: 

ka = 1 

Dfm = 2Dα 

 

Estimated: 

ρ0 [8] 

kTEM [4] 

DTEM [4] 

Dfm [9] 

 

CS No corrections 

applied due to 

large uncertainties 

in the line loss 

correction factors. 

Internal particle 

charge correction 

and aggregate 

model applied to 

DMS 

measurements.    

[1], 

[4], 

[5], 

[8] 

Aircraft Gas 

Turbine @ 

cruise 

altitudes: 

CFM-56-2-

C1  

NASA 

ACCESS – 

Cruise 

Measurements 

 

12 data points 

measured 

from 3 

different 

F/F00 

EIn (CPC) 

GMD 

GSD 

EIm 

 

 

Assumptions 

[5]: 

ka = 1 

Dfm = 2Dα 

 

Estimated: 

ρ0 [8] 

kTEM [4] 

DTEM [4] 

Dfm [9] 

 

TN Particle losses in 

the probe inlet and 

sampling lines 

have been 

estimated but not 

applied due to 

large uncertainties. 

[4], 

[5], 

[7], 

[8] 

[1] Boies et al. (2015)  [4] Dastanpour & Rogak (2014)       [7] Moore et al. (2017)  384 

[2] Dastanpour et al. (2016) [5] Eggersdorfer et al. (2012b)  [8] Park et al. (2004)  385 

[3] Dastanpour et al. (2017) [6] Graves et al. (2015)       [9] Table 4, main text 386 

Volatile Particle Remover: TN = Thermodenuder; CS = Catalytic stripper 387 
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Using the same CIDI engine, Dastanpour et al. (2016) optimised the ka and Dα values for each 388 

engine operating mode, which will be referred to as ka,opt and Dα,opt. The performance of the FA 389 

model will be compared by using (i) ka,opt and Dα,opt values from Dastanpour et al. (2016) (listed 390 

in the SI.3.1), and (ii) the constant ka = 0.998 and Dα = 1.069 values (Eggersdorfer et al., 2012b) 391 

in Section 4.1. 𝑘TEM and DTEM coefficients of 2.644 × 10−6 and 0.39 (Table 1) are used for all 392 

engine modes in the FA model.  393 

3.2 Soot generator data 394 

A laboratory-based experiment was conducted to measure the concentration and characteristics 395 

of BC aggregates produced by a soot generator, where BC aggregates are produced by mixing 396 

propane (C3H8), nitrogen (N2), and air in a co-flow inverse diffusion flame (Stettler et al., 397 

2013b). 398 

In total, this experiment generated 13 data points that are used to validate the FA model. The BC 399 

concentration and size distribution are controlled by changing the residence time and dilution 400 

ratio in the ageing chamber and ejector diluter. A catalytic stripper is then connected downstream 401 

to remove volatile particles before parallel measurements of N (CPC, used as reference for 402 

measured N), M (Micro-Aethalometer AE51), and the PSD (SMPS) are taken. Diffusion and 403 

multiple charge correction have been applied for PSD measurements taken by the SMPS. Further 404 

details on this experiment can be found in SI.3.2. 405 

The assumed 𝑘TEM and DTEM coefficients are 2.465 × 10−6 and 0.29 respectively (Table 1), 406 

while constant values of ka = 0.998 and Dα = 1.069 (Eggersdorfer et al., 2012b) were used due to 407 

the lack of data on the ka,opt and Dα,opt values. Like the CIDI engine, the validation results will be 408 

presented in the form of parity plots in Section 4.2.  409 

3.3 Aircraft gas turbine engine data 410 

Aircraft BC emissions and aggregate morphology data are compiled from two experimental 411 

campaigns at ground and cruise conditions.  412 

Ground-level BC measurements for a CFM56-5B4-2P double annular combustor (DAC) engine, 413 

consisting of 37 data points measured from 24 different engine thrust settings are taken from the 414 

SAMPLE III.2 campaign (Boies et al., 2015). All instruments were located downstream of a 415 

catalytic stripper to eliminate the presence of volatile materials. Measurements include PSD and 416 
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EIn by DMS500 nanoparticle size spectrometer (Cambustion), and EIm by laser induced 417 

incandescence (LII). An internal particle charge correction and an aggregate model has been 418 

accounted in the measurements made by the DMS. Although the EIn is also measured by a 419 

separate CPC (TSI Model 3772, 10 nm D50), we used the DMS measured EIn as a reference 420 

because it has a lower cut-off point of 5 nm relative to 10 nm for the CPC. Line loss correction 421 

factors for similar experiments can exceed a factor of 5 for particles with dm < 10 nm (Durdina et 422 

al., 2014). However, given significant uncertainties in these correction factors, neither the PSD, 423 

EIn or EIm were corrected for sampling losses and so the validation presented in this study is 424 

representative of the instrument measurement point, rather than the engine exit plane. 425 

Cruise-level BC measurements from a DC-8 aircraft equipped with a CFM56-2-C1 single 426 

annular combustor (SAC) engine are from the NASA ACCESS campaign (Moore et al., 2017). 427 

This dataset includes measurements of EIn by a CPC (used as reference for the measured EIn), 428 

GMD and GSD by an SMPS located downstream of a thermodenuder, while EIm is measured 429 

with a particle soot absorption photometer (PSAP). Particle losses in the probe inlet and 430 

sampling lines have been estimated (accounting for diffusional, inertial and sedimentation losses) 431 

but these correction factors were not applied to the measured BC EIn, EIm and the PSD due to 432 

large uncertainties (Moore et al., 2017).  433 

Two different kTEM and DTEM values for aircraft gas turbine engines from Dastanpour & Rogak 434 

(2014) and Boies et al. (2015) are listed in Table 1. The sensitivity of the FA model to these 435 

values is evaluated for ground and cruise-level measurements.  436 

For both ground and cruise conditions, we assume that 𝑘𝑎 = 1 and 𝐷𝛼 =
1

2
𝐷fm (Eggersdorfer et 437 

al., 2012b) due to a lack of data on the variation of ka and Dα values across aircraft engine thrust 438 

settings (F/F00). These assumptions are supported by Boies et al. (2015) and Liati et al. (2014). 439 

Further information can be found in SI.2. By specifying the assumptions of 𝑘𝑎 = 1 and 𝐷𝛼 =440 

1

2
𝐷fm for aircraft BC emissions, Eq. 8 becomes,  441 

 𝑛pp = (
𝑑m

𝑑pp
)𝐷fm, (17) 

which was also specified in existing literature (Rogak et al., 1993; Sorensen, 2011). Dfm 442 

measurements are not provided by Boies et al. (2015) and Moore et al. (2017), however they can 443 

be estimated based on other literature. Table 4 lists the Dfm values for both SAC and DAC 444 
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aircraft gas turbine engines at different operating conditions. Dfm values for SAC engines are 445 

interpolated from Durdina et al. (2014) and Abegglen et al. (2015). The increasing Dfm values 446 

with F/F00 indicate that BC aggregates are increasingly spherical at higher F/F00. Since the range 447 

of Dfm for a DAC engine is relatively limited (2.73 to 3) across different F/F00, a nominal Dfm 448 

value of 2.76 is used (Johnson et al., 2015). For cruise conditions, we assume a fixed Dfm value 449 

of 2.76 for both SAC and DAC engines. This is justified as the turbine and compressor inlet 450 

temperature ratio (T4/T2), which approximates the non-dimensional engine thrust setting, at 451 

cruise and take-off conditions are within 5% (Cumpsty, 2003).  452 

The performance of the FA model is also compared with previous methodologies from 453 

Döpelheuer (2002) and Barrett et al. (2010b) by validating it with the same ground- and cruise-454 

level datasets. 455 

Table 4: Specification of Dfm input values for different aircraft engine operating conditions. 456 

Combustor 

Type 

Operating 

Condition 

Specification of Dfm Inputs - Turbofan Engine Reference 

SAC Ground 

Dfm = 2.37 , 0.03 ≤ 
𝐹

𝐹00
 < 0.15 

[1] 

Dfm = 2.50 , 0.15 ≤ 
𝐹

𝐹00
 < 0.30 

Dfm = 2.57 , 0.30 ≤ 
𝐹

𝐹00
 < 0.50 

Dfm = 2.64 , 0.50 ≤ 
𝐹

𝐹00
 < 0.70 

Dfm = 2.76 , 0.70 ≤ 
𝐹

𝐹00
 < 1.00 [2] 

DAC Ground Dfm = 2.76 , 0.03 ≤ 
𝐹

𝐹00
 < 1.00 [3] 

SAC & DAC Cruise Dfm = 2.76 , 0.03 ≤ 
𝐹

𝐹00
 < 1.00 Justification in text 

[1] Durdina et al. (2014)  [2] Abegglen et al. (2015)  [3] Johnson et al. (2015)  457 

 458 

4 Validation of the FA Model  459 

This section presents the validation of the FA model with different soot emission sources: an 460 

internal combustion engine in Section 4.1, a soot generator in Section 4.2, and two aircraft gas 461 

turbine engines operating at ground and cruise conditions in Section 4.3.  462 
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4.1 CIDI engine 463 

The parity plot in Figure 2a shows the validation results with emissions data from the CIDI 464 

internal combustion engine, where ka,opt and Dα,opt values for each engine modes are used. The 465 

estimated N from the measured mass is in good agreement with the measured N for the CIDI 466 

engine (R2 = 0.939) and the average NMB values show that N is underestimated by 8.3%. All the 467 

data points agree to within ±30% of the measured N.  468 

 469 

Figure 2: Validation of the FA model against emissions from a (a) CIDI engine where ka,opt and Dα,opt values 470 
are used, and (b) a soot generator where constant values of ka = 0.998 and Dα = 1.069. Error bars denote 471 
precision errors from repeated measurements at a 95% confidence interval. Detailed data tables can be found 472 
in SI.4 and SI.5. 473 

Additionally, the CIDI engine is also validated by using constant values of ka = 0.998 and Dα = 474 

1.069 (Eggersdorfer et al., 2012b) and the results are shown in SI.4. The R2 value remains high at 475 

0.978 but the NMB exhibited a small increase where N is overestimated by 15.5% on average. 14 476 

of the 16 data points (88%) agree to within ±30% of the measured N. Therefore, we conclude 477 

that the two sets of ka and Dα values do not lead to significant discrepancies in the FA model 478 

output when used to estimate BC emissions from a CIDI engine, and can be used when more 479 

accurate ka,opt and Dα,opt data are unavailable for a given engine type, operating condition or 480 

emission source. 481 

 482 
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4.2 Soot generator  483 

Figure 2b shows the FA model validation against emissions from a soot generator, where 484 

constant values of ka = 0.998 and Dα = 1.069 (Eggersdorfer et al., 2012b) were used. Although 9 485 

of the 13 data points (69%) agree to within ±30% of the measured N, the R2 and NMB are 0.435 486 

and -27.7% respectively. One potential source of this systematic negative bias in estimated N is a 487 

bias in the Micro-Aethalometer measurements of M; negative biases of up to 70% can result 488 

from cumulative loading of BC on the filter substrate (Good et al., 2017). Furthermore, 3 of the 4 489 

outliers have the lowest measurements of M (0.380 to 0.768 µg m-3), and therefore are most 490 

affected by measurement uncertainties (± 0.1 µg m-3) of 13% to 26% (AethLabs, 2016). These 491 

two uncertainties, as well as the use of constant ka and Dα values could be the contributors to the 492 

reduction in performance for the FA model relative to the CIDI engine.  493 

4.3 Aircraft gas turbine engines  494 

Two distinct validation tests are conducted to select a suitable coefficient pair (kTEM and DTEM) 495 

for the FA model to estimate aircraft BC emissions. Figure 3 shows the parity plots for the FA 496 

model validation using kTEM and DTEM coefficients of 1.621 × 10−5 and 0.39 respectively 497 

(Dastanpour & Rogak, 2014).  498 

For ground conditions (Figure 3a), estimated EIn are in good agreement with measured EIn (R
2 = 499 

0.950), while the NMB shows that the average EIn is overestimated by 27%. 77% of data points 500 

agree to within ±30% of the measured EIn, and 83% agree when error bars are included. The 501 

overestimation of EIn is significant at thrust settings above 50% F/F00, where the NMB increases 502 

to around 163% (data points with lower EIn values). This could be due to the assumption of 503 

DLCA (Kn ≥ 1) in the derivation of the FA model; at high thrust conditions, observations from 504 

TEM images suggest that BC primary particles are often highly sintered (Liati et al., 2014) and at 505 

high primary particle concentrations, BC aggregates are formed in the continuum and transition 506 

regime (Kn < 1). The decrease in the Kn as F/F00 increase (shown in the colour bar of Figure 3a) 507 

creates an environment for BC aggregates to form in a reaction-limited cluster aggregation 508 

(RLCA) (Bisson et al., 2016; Vander Wal et al., 2014). Therefore, the assumption of a free 509 

molecular flow regime (Kn ≥ 1) adopted in Eq. 8 and Eq. 17 could be violated at higher F/F00. 510 

Eggersdorfer et al. (2012a) suggested that the measured and estimated dm differs by around 10% 511 

to 20% when Eq. 8 and Eq. 17 are applied in the transition regime (up to Kn = 0.28). Although 512 
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this additional uncertainty could be the source of the increase in NMB values for the FA model 513 

at low Kn, it was not observed in the validation of the CIDI engine (Section 4.1), possibly due to 514 

the use of more accurate ka,opt and Dα,opt values for each engine modes, and these results indicate 515 

that the effects of Cov could be implicitly accounted for in the ka,opt and Dα,opt constants.  516 

Figure 3b presents results for the FA model validation against cruise measurements. Due to the 517 

lower ambient pressure and F/F00 required in cruise conditions, the BC aggregates are all formed 518 

in the free-molecular regime (Kn ≥ 1). The overall R2 value (R2 = 0.684) is slightly lower than 519 

with the ground-level validation. However, the overall NMB is +2.4%. 75% of data points agree 520 

to within ±30% of the measured EIn, and 100% agree when error bars are included. Cruise 521 

measurements are more challenging to perform relative to ground experiments; different factors 522 

such as the variability in plume sampling distance (Moore et al., 2017), particle bouncing 523 

(Korolev et al., 2013) and instrument detection limits (Baumgardner et al., 2017; Schumann et 524 

al., 2013) contribute to an increased uncertainty in the PSD and EIn measurements at cruise. 525 

Notably, the outlier with the largest error bar in the estimated EIn is caused by large uncertainties 526 

in the measured GMD and GSD (±13% each), relative to an average uncertainty of ±2% for all 527 

other data points.  528 

Measurements at cruise include tests using a 50:50 HEFA low-sulphur content Jet A fuel blend, 529 

which make up half of the EIn data points are also shown in figure 3b. The validation results do 530 

not show a large discrepancy between conventional (R2 = 0.783) and alternative fuel scenarios 531 

(R2 = 0.564). Hence, we conclude that the FA model can also be applied to different fuel types, if 532 

changes in the EIm, GMD and GSD are known.  533 

The FA model exhibited minor performance improvements using the kTEM and DTEM coefficients 534 

by Dastanpour & Rogak (2014) compared to when the coefficients from Boies et al. (2015) are 535 

used; average R2 values decreased from 0.817 to 0.805, while the NMB increased from 15% to 536 

23% relative to using coefficients from Dastanpour & Rogak (2014) (SI.6.2). Therefore, we 537 

recommend that the kTEM and DTEM coefficient pair from Dastanpour & Rogak (2014) is used in 538 

future studies to estimate the EIn for aircraft emissions. 539 

When ka and Dα values of 0.998 and 1.069 (Eggersdorfer et al., 2012b) are applied to aircraft 540 

datasets, however, we obtain a significantly lower R2 and higher NMB values when validated 541 

against ground (R2 = −0.03, NMB = +123%) and cruise-level (R2 = −3.03, NMB = +76%) 542 
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measurements (shown in SI.6.3). This could be due to the differences in aircraft BC aggregate 543 

morphology relative to other emission sources. Ghazi et al. (2013) identified that the assumption 544 

of Dα = 1.069 is only valid when dpp and dm have a low correlation. However, Table 1 shows that 545 

the DTEM values for aircraft gas turbine engines are the highest among all emission sources. The 546 

higher sensitivity of dpp to the changes in dm suggests that the value of Dα for aircraft BC 547 

aggregates could be higher than 1.069. 548 

Finally, both ground and cruise validation for previous BC EIn methodologies (Barrett et al., 549 

2010b; Döpelheuer, 2002) are presented in SI.7.2. For ground and cruise validations, R2 values 550 

from previous methodologies range between -0.34 and 0.70, while the NMB vary from -78% to -551 

4%. These results show that the FA model significantly improves the EIn prediction accuracy for 552 

aircraft emissions relative to previous methods in terms of R2 and NMB values. 553 

   554 

Figure 3: Validation of the FA Model for aircraft (a) ground conditions using data from Boies et al. (2015), 555 
and (b) cruise conditions using data from Moore et al. (2017). kTEM and DTEM prefactor-exponent coefficients 556 
specified by Dastanpour & Rogak (2014), kTEM = 1.621x10-5 and DTEM = 0.39 are used. Error bars denote 557 
precision errors from repeated measurements at a 95% confidence interval and do not include systematic 558 
uncertainties arising from instrumentations. Detailed data tables, equations, as well as ground validation for 559 
previous EIn methodologies not presented in this figure can be found in SI.6 and SI.7. 560 
 561 

5 Uncertainty and Sensitivity Analysis   562 

In Section 5.1, we first quantify the uncertainties for different input parameters of the FA model 563 

and how they propagate forward to uncertainty in the estimated N or EIn. Section 5.2 then 564 
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evaluates the sensitivity of the FA model output to the input parameters, highlighting the most 565 

important parameters and priorities for future research. 566 

5.1 Uncertainty Analysis 567 

Uncertainties are classified into two types: (i) Type A (or precision) uncertainty that is 568 

statistically estimated from repeated measurements, and (ii) Type B (or systematic/bias) 569 

uncertainty that is analytically estimated from other data sources (Coleman & Steele, 2009). To 570 

the best of our ability, we compiled the precision and/or systematic errors for the measured N (or 571 

EIn) and each input parameter of the FA model (M, GMD, GSD, 𝜌0, 𝑘a, 𝐷α, 𝐷fm, 𝑘TEM and 572 

𝐷TEM) depending on the data availability. The uncertainty of each model input parameter is then 573 

propagated forward to estimate the uncertainties of the FA model output (estimated N or EIn) and 574 

to conduct a sensitivity analysis.  575 

Table 5 presents the estimated uncertainties for each variable in the FA model. For the 576 

uncertainty values that are experimentally estimated: NCPC (± 2.8%), MLII (± 25%), Dfm (± 7.9%) 577 

and 𝜌0 (± 7.8%), we assume that both the systematic and precision uncertainty have been 578 

captured in the standard deviation of repeated measurements. The systematic error for MIPSD 579 

(±11.4%) is analytically estimated by propagating the measurement errors from instruments 580 

(DMA-CPMA-CPC) with the Root-Sum-Square method. Although a similar propagation of error 581 

method estimates the uncertainties of GMD and GSD to be ± 4.97% and ± 6.13% respectively, 582 

we have increased their respective uncertainties to the maximum tolerable uncertainty of ± 10%, 583 

which is in accordance to the calibration standards specified by the European Center for Aerosol 584 

Calibration (ECAC) and the World Calibration Center for Aerosol Physics (WCCAP). This is 585 

because we are unable to quantify the additional uncertainties resulting from the inversion 586 

method, bipolar diffusion charging and the DMA transfer function (Wiedensohler et al., 2018). 587 

Systematic errors for kTEM (± 29.4%) and DTEM (± 17.8%) are estimated using the 95% 588 

confidence intervals that were published in Table S1 of Dastanpour & Rogak (2014), while 589 

numerical simulation results from Eggersdorfer & Pratsinis (2012) are used to estimate the 590 

precision uncertainties for ka (± 1.2%) and Dα (± 0.3%). Detailed calculations regarding the 591 

uncertainty quantification for each variable are presented in SI.9.  592 

Given the non-linear nature of the FA model and the potential presence of covariance between 593 

uncertainty variables (𝜎𝐴𝐵 ≠ 0), the numerical Monte Carlo Method is selected instead of the 594 
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analytical Taylor Series Method to quantify the total uncertainty of the FA model output, the 595 

estimated N or EIn (Coleman & Steele, 2009). We note that 10,000 Monte Carlo runs were 596 

performed for the standard deviation of the error distribution to converge to below 1% (Coleman 597 

& Steele, 2009). Since the distribution of experimental errors is typically assumed to be normal 598 

(Peters, 2001), a normal distribution is specified for the model input parameters specified in 599 

Table 5. Conversely, we assume that Cov is uniformly distributed within the range of 0.02 and 600 

0.24 as reported in Bourrous et al. (2018) due to the lack of knowledge regarding its uncertainty 601 

distribution.  602 

Table 5: Systematic and/or precision uncertainties for each variable in the FA model. 603 

Variables in the 

FA Model 

Uncertainty Estimation Methodology 

(Measuring Instruments) 

Systematic 

Uncertainty 

(95% C.I.) 

Precision 

Uncertainty 

(95% C.I.) 

References 

Measured N / EIn Experimental (CPC) Σ ≈ ± 2.8% [8] 

M / EIm 

Experimental (LII) Σ ≈ ± 25% [2], [6] 

Analytical (IPSD: DMA–CPMA–CPC) ± 11.4% - [5], [7], [8] 

GMD ECAC & WCCAP calibration standards ± 10% - [10] 

GSD ECAC & WCCAP calibration standards ± 10% - [10] 

kTEM 

Experimental (TEM) – Aircraft ± 32.9% - [3] 

Experimental (TEM) – CIDI/HPDI ± 15.9% - [3] 

DTEM 

Experimental (TEM) – Aircraft  ± 18.0% - [3] 

Experimental (TEM) – CIDI/HPDI ± 10.3% - [3] 

ka Numerical simulation - ± 1.20% [4] 

Dα Numerical simulation - ± 0.30% [4] 

Dfm Experimental Σ ≈ ± 7.88% [1] 

ρ0 Experimental Σ ≈ ± 7.75% [9] 

[1] Abegglen et al. (2016)   [5] Kinney et al. (1991)  [8] Owen et al. (2012)  604 

[2] Boies et al. (2015)   [6] Lobo et al. (2015a)  [9] Park et al. (2004)  605 

[3] Dastanpour & Rogak (2014)   [7] Olfert et al. (2017)    [10] Wiedensohler et al. (2018) 606 

[4] Eggersdorfer & Pratsinis (2012)  607 
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Firstly, for aircraft emissions using data from the SAMPLE III.2 campaign (Boies et al., 2015), 608 

the errors of the FA model outputs are asymmetrically distributed with an uncertainty bound of 609 

(−54%, +103%) at a 95% confidence interval. Secondly, using measured data from the CIDI 610 

engine (Graves et al., 2015), the 95% confidence interval is (−44%, +79%). This is smaller 611 

than the uncertainty bound for the aircraft gas turbine engine because of the lower uncertainty 612 

values in the input parameters: MIPSD (± 11.4%), kTEM (± 15.9%) and DTEM (± 10.3%). Detailed 613 

calculations and results are presented in SI.9.2. We note that the uncertainty bounds are 614 

asymmetric because of the non-linearity of the FA model and the large uncertainties for most 615 

input variables (>5%) (Coleman & Steele, 2009). Overall, the quantified uncertainty bounds of 616 

the FA model outputs present an advance in understanding relative to previous methodologies 617 

used to estimate aircraft BC PN emissions (Barrett et al., 2010b; Döpelheuer, 2002), where an 618 

uncertainty analysis was not conducted. 619 

5.2 Sensitivity Analysis 620 

A variance-based global sensitivity analysis is conducted using the Sobol’ method (Saltelli et al., 621 

2008) to rank and identify input parameters that contribute to the highest variance in the FA 622 

model output. Detailed results of the sensitivity analysis are presented in SI.9.3.  623 

The results indicate that the GSD contributes to the largest sensitivity in the FA model output 624 

(estimated N or EIn), followed by DTEM, GMD and the measured MLII. A ± 10% change in GSD 625 

will result in variations in estimated N or EIn of - 37% to + 53%. Therefore, these results suggest 626 

that measurements of M, DTEM, GMD and GSD should be prioritised to reduce the uncertainty 627 

bounds of the FA model output. New and standardised measurement procedures recommended 628 

by the PMP and ICAO’s forthcoming aircraft nvPM standard (ICAO, 2016) could also facilitate 629 

reductions in the uncertainties of these individual parameters and subsequently the uncertainty 630 

bounds of the FA model output. Conversely, we note that input parameters of ka, Cov and BC ρ0 631 

contribute to the lowest sensitivity to the estimated N or EIn. This suggests that the assumptions 632 

of (i) 𝑘𝑎 = 1 for aircraft emissions across all engine type and thrust settings, (ii) a single point of 633 

contact between pairs of primary particles (Cov = 0), and (iii) a constant material density of BC 634 

aggregates would not significantly affect the outputs of the simplified FA model (Eq. 15). 635 
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6 Conclusions 636 

BC PN emissions lead to adverse health and environmental effects and must be 637 

measured/modelled more accurately to reduce its associated uncertainties. This paper critically 638 

reviews the theory of fractal aggregates and develops a methodology capable of estimating BC 639 

PN emissions from mass. The new methodology, named as the FA model (Eq. 15), overcomes 640 

the limitations inherent in previous methodologies used to estimate BC PN emissions where 641 

simplifying assumptions were made (e.g. constant PSD and morphology).  642 

We have validated the FA model with three different BC emission sources: a CIDI engine (R2 =643 

0.94, NMB = −8.3%), a soot generator (R2 = 0.44, NMB = −27.7%), as well as aircraft gas 644 

turbine engines at ground (R2 = 0.95, NMB = +26.6%) and cruise conditions (R2 = 0.68, 645 

NMB = +2.4%). For aircraft PN emissions, these results show a significant improvement 646 

relative to previous aircraft EIn estimation methodologies (Average R2 = 0.10, NMB = −36%) 647 

when validated with the same aircraft datasets at ground and cruise. 648 

Uncertainty analysis conducted using the numerical Monte Carlo method estimates N or EIn to 649 

have an asymmetrical uncertainty bound of  (−54%, +103%) at a 95% confidence interval for 650 

aircraft gas turbine engines, and (−44%, +79%) for a CIDI engine. A variance-based global 651 

sensitivity analysis identified that uncertainties in the GSD contribute to the largest sensitivity in 652 

the FA model outputs, while having a low sensitivity to input parameters of ka, Cov and ρ0.  653 

We have demonstrated potential applications of the FA model, in particular to estimate BC PN 654 

emissions from various combustion sources using inputs of mass, PSD and morphology. Given 655 

that BC mass measurements and models are more commonly available than PN, BC PN can now 656 

be estimated for a range of studies, including health impact and aviation contrail analyses. 657 

Further applications of the FA model include estimating BC: (i) mass from number, PSD and 658 

morphology; (ii) PSD from mass, number and morphology inputs; and (iii) morphology from 659 

mass, number and PSD estimates.  660 
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