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A Graphical Measure of Aggregate Flexibility
for Energy-Constrained Distributed Resources
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Abstract—We consider the problem of dispatching a fleet of
heterogeneous energy storage units to provide grid support.
Under the restriction that recharging is not possible during the
time frame of interest, we develop an aggregate measure of
fleet flexibility with an intuitive graphical interpretation. This
analytical expression summarises the full set of demand traces
that the fleet can satisfy, and can be used for immediate and
straightforward determination of the feasibility of any service
request. This representation therefore facilitates a wide range of
capability assessments, such as flexibility comparisons between
fleets or the determination of a fleet’s ability to deliver ancillary
services. Examples are shown of applications to fleet flexibility
comparisons, signal feasibility assessment and the optimisation
of ancillary service provision.

Index Terms—Distributed resources, energy storage systems,
optimal control, aggregation, ancillary service

NOMENCLATURE

n Total number of devices
Di ith device
N Set of all devices
ei(t) Energy of the ith device at time t
ui(t) Power output of the ith device at time t
u(t) Vector of power outputs at time t, across all

devices
p̄i Maximum power rating of the ith device
p̄ Vector of maximum power ratings, across all

devices
P Diagonal matrix of maximum power ratings,

across all devices
Up̄ Product set of power constraints, with vector of

maximum powers p̄
xi(t), zi(t) Time-to-go of the ith device at time t
x(t), z(t) Vector of time-to-go values at time t, across all

devices
X State-space
X(t) Vector of distinct time-to-go values at time t
Nj jth subset of devices
xNj (t) Equal time-to-go value of all members of Nj , at

time t
Ūj Vector of maximum power outputs, across the

jth subset of devices
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P r(t) Reference at time t
P r

[t0,t)
Reference signal truncated to the interval [t0, t)

Fp̄,x Feasible set from state x, with vector of maxi-
mum powers p̄

EP r (p) E-p transform of reference P r(·), evaluated at
power level p

R(t) Worst-case reference at time t
Ωp̄,x(p) Capacity curve from state x, with vector of

maximum powers p̄, evaluated at power level p

I. INTRODUCTION

A. Background

We consider the problem of operating a fleet of storage
devices, i.e. a collection of these which are dispatched in
a coordinated manner, in order to provide system support
in supply-shortfall conditions. Recent years have seen the
proliferation of multiple forms of storage onto electricity grids
and, crucially, many of these resources are energy-constrained,
for example due to physical capacity limits or operational
limits set by users. These storage technologies can provide a
range of valuable services to the system, with one advantage
being their ability to shift consumption in time, thereby
compensating for fluctuations in the output of intermittent
generation. This offers significant potential as a means to
replace conventional generation as electricity networks are
decarbonised, according to the World Energy Council [1]. In-
creasingly, system operators are offering frameworks for con-
venient delivery of grid-support services; to date these include
the California Independent System Operator (CAISO) [2] and
the Pennsylvania-New Jersey-Maryland Interconnection RTO
(PJM) [3] in the US. The latter offers the control framework
within which we base our research: a system-wide regulation
signal, representing the mismatch between electricity supply
and demand, is broadcast and service participants endeavour
to track this signal. Thus distributed resources are controlled
centrally via their aggregate response. For the purposes of
description we assume that an aggregator, defined as the
entity responsible for the provision of system services through
dispatch of the fleet, is contracted by the network operator as
follows. The amount of power requested is updated at regular
intervals, and the aggregator must make a decision as to which
of its resources to deploy to meet the request. This aggregation
of small participants into composite entities occurs in many
ancillary service markets with minimum size requirements.
Example fleets include uninterruptible power supplies with
storage headroom and electric vehicle (EV) batteries returned
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to the manufacturer for recycling; grid support offers a con-
venient end-of-life deployment for the latter once they have
deteriorated beyond usability in the EV. Note that if significant
loss of load were at stake the network operator might instead
take on the role of central dispatcher.

We focus on the decision making of the aggregator, and
consider how to best dispatch devices in the presence of uncer-
tain demand. Previous literature has addressed the coordinated
dispatch of a fleet of distributed devices in comparable prob-
lem frameworks. Prior approaches can be broadly clustered
into three categories: optimal control, mean-field control [4]–
[6] and transactive energy [7]–[10]. Our approach lies in the
first category and we directly optimise power flows between
storage and the grid via explicit feedback policies. In contrast
to mean field approaches, this allows us to achieve guaranteed
optimal behaviour, as opposed to in expectation.

Within applications of optimal control to the dispatch of
distributed devices, a common approach has been the com-
position of an optimisation problem of standard form for
the entire network and across the full time horizon. The
dispatch of each device at each time instant is then assigned
as a decision variable in the optimisation problem. Objectives
chosen have included minimisation of charging costs [11] or
more generalised operational costs [11]–[16], or flattening of
load profiles [17]. Varying based upon the problem framework,
solution techniques applied to these problems have included
linear solvers [12], mixed-integer linear solvers [13], combined
mixed-integer linear/nonlinear solvers [11], robust optimisa-
tion [14], [15], particle swarm algorithms [16] and genetic
algorithms [17].

We are interested in achieving optimality in a simpler
way, negating the need to perform the large computations
of this prior work. Moreover, we are interested in applying
our techniques to settings with a complete lack of knowledge
about future request signals, including probability distributions
or forecasts. In these cases one would be unable to compose
an optimisation problem covering all future time instants.
For example, [18] composed a simpler optimisation problem
and presented a decentralised solution, but still required a
foreknown demand profile.

Specifically, we consider approaches where the optimal
dispatch problem is divided into two coupled sub-problems.
A real-time control algorithm dispatches the fleet of devices
according to a common control signal, without knowledge of
the future (i.e. a greedy algorithm). This control algorithm is
paired with a matching scheduling problem that determines
the capability of the fleet to meet future requests. It uses an
aggregate representation of the flexibility limits of the device
fleet to ensure that only feasible responses are scheduled. An
example of this approach, applied to mean field control of
thermostatically controlled loads, can be found in [4] and [19],
for the control and scheduling problems respectively.

A number of previous proposals to control single storage
devices can be interpreted through the lens of a greedy control
strategy plus a separate scheduling component. [20]–[22] all
implemented a greedy buffer policy in which the device
charges as quickly as possible under conditions of excess
supply and discharges as quickly as possible under excess

demand, but chose different reference levels for defining this
mismatch. In [20], thermal plant was dispatched so that it was
forecast to maintain the storage unit at a predefined set level,
and buffering was done in real-time to counter forecast errors.
In [21] the buffer comparison level was instead the forecast
net demand plus either a fixed offset or an offset based upon
the forecast storage level. Cruise et al. [22] were concerned
with arbitrage applications, where the authors showed that the
choice to maximally charge or discharge should be based upon
the notional value per unit of energy stored as follows: charge
if this is above the buy price, discharge if this is below the
sell price, otherwise do nothing.

Results with strict optimality proofs can be obtained by
restricting the operational regime to discharging only. This cor-
responds to an assumption that the ability to satisfy the power
request takes precedence over other objectives, allowing one
to study properties of the system in a general sense, without
considering price dynamics in detail. A natural objective for
the aggregator within this setting is to postpone the time to
failure, i.e. the time at which the aggregator is first unable to
meet the requested power supply. In general, this approach is
applicable whenever an event occurs which threatens security
of supply, because it would give the network operator the
most time in which to attempt recovery of normal operating
conditions. A straightforward example of such an event would
be the loss of a generator or transformer, or an islanding fault.
Other relevant events might occur within nominally ordinary
conditions, for example an unexpected shortfall in wind output
or peak in demand. In these cases, purely surviving until the
natural termination of the event would be sufficient to recover
normal operation. In [23], the authors showed that, for a
single energy storage device, the naive greedy discharge policy
maximises inclusion in the set of future request signals that the
device is able to meet. This policy therefore maximises time
to failure. The corresponding scheduling problem is trivial for
a single device, because the feasibility of a specific output
signal is immediately determined from the power and energy
limits of the device.

In [24], we proposed a greedy control policy that is optimal
in this same sense for a fleet of arbitrary size. A feedback
policy (which we will here refer to as the optimal policy)
was presented and shown to maximise the time to failure,
instantaneous maximum power and flexibility of a system
supplied by energy-constrained distributed resources. The flex-
ibility maximisation, in particular, was performed in a set-
theoretic sense; which is to say that the set of future feasible
scenarios is always as large as possible, regardless of the
current fleet output. This can be interpreted to mean that,
with no information about future signals, implementation of
the policy is guaranteed to result in the latest failure time of
the system. Moreover, by forming a general integrator model
of storage, we are able to apply our analysis across a wide
range of device types that have previously been considered
within the paradigm of demand response [25]. These include
EVs [26], [27], home storage devices [28], [29] and diesel
generators [30], [31]. It should be noted that a comparable
policy to that which we propose, applied to a continuum of
devices, is also relevant in price-determined settings [32] and
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enables the coordination of devices within areas of flat prices.

B. Contribution of this paper

We argue that the policy of [24] solves, in an optimal
sense, the control problem for a fleet of energy-constrained
distributed resources. While this policy can be used to de-
termine fleet capability in a procedural way, i.e. by running
the algorithm, this paper proposes an analytical method for
undertaking the same assessment We present a transform that
returns an aggregate representation of the fleet; this therefore
enables longer-timescale planning and so can be used to solve
the associated scheduling problem. Moreover, this transform
can also be applied to a received request for immediate fea-
sibility determination, which leads to greater insight into fleet
capabilities. The contributions of this paper can be summarised
as follows:
• We present a functional means to determine request feasi-

bility, thereby improving upon the procedural application
of the optimal policy of [24].

• We explore the range of capability assessments that
the transform enables: specification of maximum system
service provision; immediate feasibility determination for
a received request and flexibility comparison between
different fleets.

• We discuss how this transform has multiple useful prop-
erties that enable intuitive fleet characterisation.

• We show how this transform can be implemented graph-
ically, thereby enabling feasibility determination by eye.

• We show how a graphical comparison can be made to the
homogeneous fleet of the same total ratings.

• We derive additional analytical results relating to feasi-
bility of requests, which lead to a greater understanding
of the problem in general.

In deriving the transform, we utilise the result of [24] that
there is a one-to-one mapping between feasible signals and
those that will be met by the optimal policy. Use of the
developed framework can be seen in Figure 1.

Form E-p 
transform

Delivery 
require-

ment

Form capacity 
curve

Feasible

Infeasible

Is feasibility 
condition 

met?

Yes

No

Fleet 
param-

eters

Fig. 1: Use of the presented framework to determine the feasibility of a given
delivery requirement.

C. Motivating example

The technique that we present is able to compare fleets
of devices utilised for system services, when often such a
comparison appears far from trivial. To this end, the contri-
bution of this paper is perhaps best motivated by means of
an example. Consider the microgrid of Figure 2, onto which
the system operator plans to connect a storage setup with one

of the following three device configurations (energy, power):
A, consisting of (108 kWh, 4 kW) and (36 kWh, 18 kW); B,
consisting of (104 kWh, 13 kW) and C, consisting of (90 kWh,
8 kW) and (54 kWh, 14 kW). Note that configurations A and
C have the same total energy and power but distributed dif-
ferently between devices. Configuration B has smaller values
of each but is comprised of a single device. Hence, prior to
the analysis that we present, it is unclear which configuration
would be the best choice.

Fig. 2: An example microgrid, onto which the network operator plans to
connect storage at the location highlighted by the red box.

D. Organisation of the paper

The remainder of this paper is organised as follows. Sec-
tion II covers the mathematical formulation of the problem.
This is followed by a presentation of analytical results in
Section III, and the application of these results to numerical
examples in Section IV. Section V then discusses the implica-
tions of these results. Finally, Section VI concludes the report
and discusses relevant future work.

II. MATHEMATICAL FORMULATION

A. Problem description

We denote by n the number of energy-constrained storage
units available to the aggregator, and define the set of all
devices as N .

= {D1, D2, ..., Dn}. We do not impose any
restrictions on homogeneity of devices and allow each device
to have a unique discharging efficiency. For convenience we
incorporate this into the model implicitly by considering the
extractable energy of each device, ei(t). We choose the power
delivered by each device to be the control input ui(t), and
assume that this is measured externally so that efficiency is
once again accounted for. This leads to integrator dynamics
on the energy of each device,

ėi(t) = −ui(t), (1)

subject to the assumed physical constraint ei(t) ≥ 0. We
neglect network effects, in particular due to the high likelihood
that storage devices are situated near to electricity-consuming
devices, so that their deployment is unlikely to be constrained
by network congestion or losses. We also assume the absence
of cross-charging between devices, which corresponds to a
regime of energy scarcity. We therefore restrict our devices to
discharging operation only, so that the power of each device
is constrained as ui(t) ∈ [0, p̄i], in which p̄i denotes the
maximum discharge rate of device Di, and with the convention
that discharging rates are positive. Note, once again, that there
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is no homogeneity imposed on energy or power constraints
across the ensemble of devices. We define the time-to-go of
device Di to be the remaining time for which it can run at its
maximum power, i.e.

xi(t)
.
=
ei(t)

p̄i
, (2)

and represent the state of each device by its time-to-go. We
then form state, input and maximum power vectors as

x(t)
.
=
[
x1(t) . . . xn(t)

]T
, (3)

u(t)
.
=
[
u1(t) . . . un(t)

]T
, (4)

p̄
.
=
[
p̄1 . . . p̄n

]T
(5)

respectively, so that we can write our dynamics in matrix form
as ẋ(t) = −P−1u(t), in which P

.
= diag(p̄). We define the

state space as X .
= [0,+∞)n, and form the product set of our

constraints on all the inputs,

Up̄
.
= [0, p̄1]× [0, p̄2]× ...× [0, p̄n], (6)

allowing us to write our input constraints as u(t) ∈ Up̄.
Now, as in [24], we partition the devices considered at a

chosen time instant into collections of descending equal state
value, without loss of generality leading to

x1 = ... = xs1 > ... > xsq−1+1 = ... = xsq , (7)

in which q is the number of unique xi-values. Note that
we have dropped the explicit dependence on t as we are
considering a single time instant. We then denote the subsets
formed as Ni

.
= {Dj : xj = xsi}, i = 1, 2, ..., q, and similarly

denote by xNi
.
= xsi , i = 1, 2, ..., q the (single) time-to-

go value of the devices in each subset. We finally form a
condensed state vector of distinct values only as

X
.
=
[
xN1

. . . xNq
]T
, (8)

and denote the maximum power vectors corresponding to each
subset as

Ūi
.
=
[
p̄si−1+1 ... p̄si

]T
, i = 1, ..., q, (9)

with the convention that s0 = 0.
We denote by P r : [0,+∞) 7→ [0,+∞) a power reference

signal received by the aggregator, and in addition denote a
truncation of such a signal as

P r
[t0,t)

.
=

{
P r(τ), if τ ∈ [t0, t)
0, otherwise. (10)

We utilise equivalent notation for the truncation of any other
signal also. For a reference to be feasible, there must exist a
control signal able to satisfy it for all time without violating
any constraints. These are both the power constraints on the
control signal itself and the energy constraints that apply to
the resulting state trajectory. We therefore define the set of
feasible reference signals as follows:

Definition II.1. The set of feasible power reference signals,
for a system with maximum power vector p̄ and initial state
x = x(0), is defined as

Fp̄,x
.
=
{
P r(·) : ∃u(·), z(·) : ∀t ≥ 0, 1Tu(t) = P r(t),

u(t) ∈ Up̄, ż(t) = −P−1u(t), z(0) = x, z(t) ≥ 0
}
.

We interpret the inclusion of a given feasible set by another
as an increase in flexibility.

B. Optimal Feedback Policy
Due to its maximisation of the feasible set, we will continu-

ally refer to the optimal policy of [24]. We therefore reproduce
it here as follows, in which it should be noted that explicit time
dependencies have been dropped as we are again considering
instantaneous values. Without loss of generality, form subsets
of devices with equal value in descending order, of which
there will be q, so that xN1 > xN2 > ... > xNq . The
explicit feedback law is then calculated as a fraction ri of
the maximum power Ūi according to:

ri =


1, if

∑
j≤i 1T Ūj ≤ P r

0, if
∑

j<i 1T Ūj ≥ P r

P r−
∑
j<i 1T Ūj

1T Ūi
, otherwise,

(11a)

u∗(x, P r)
.
=
[
r1Ū

T
1 . . . rqŪ

T
q

]T
. (11b)

In words, this policy allocates devices in descending order
of time-to-go, at maximum power (with up to one subset of
devices run at a fraction of maximum power to exactly meet
the reference). This then depletes as few devices as possible,
thereby maximising the number of available devices and so
giving the fleet the best chance to meet an unknown future
reference.

Denoting by z∗(·) the state trajectory under the application
of (11), the closed-loop dynamics are

ż∗(t) = −P−1u∗
(
z∗(t), P r(t)

)
. (12)

III. RESULTS ON FEASIBILITY

In this section we present theoretical results which hold in
general. These results are of greater importance to our argu-
ments than their derivations and so, for clarity of argument,
their proofs have been omitted from the main body of this
paper and can be found in the Appendix.

A. Interesting system properties
The existence of a feasible set which includes all others

(maintained via implementation of the optimal policy (11) -
see [24] for more details) allows us to derive additional useful
properties of the system considered. Moreover, the optimality
of the presented policy allows us to utilise it as a proxy for
this largest feasible set. We undertake such derivations here,
implicitly utilising this policy in each case. The proofs of
Lemmas III.1 and III.2 can be found in the Appendix.

Lemma III.1. Piecewise constant reference signals are per-
mutable whilst maintaining feasibility.

One can interpret this result to mean that the ability of a
system to satisfy a given reference signal is independent of
the variation of that signal in time; rather it is dependent on
the total time spent at each power level.

Lemma III.2. Given two feasible piecewise constant reference
signals which are permuted versions of one another, the final
state under both references is the same when the optimal policy
is used.
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B. E-p transform

The ability to utilise the policy (11) as a proxy for the feasi-
ble set also enables the derivation of a graphical representation
of this set. In this section we present a transform, followed by
a discussion of its uses to a grid operator or aggregator. The
proofs of Lemma III.5 and Theorem III.8 can be found in the
Appendix.

Definition III.3. Given a power reference P r : [0,+∞) 7→
[0,+∞), we define its E-p transform as the following function:

EP r (p)
.
=

∫ ∞
0

max
{
P r(t)− p, 0

}
dt, (13)

interpretable as the energy supplied above any given power
rating, p.

The following properties of this transform are of particular
relevance to our analysis:

Property III.4. The E-p transform intersects the E− and
p−axes at

∫∞
0
P r(t)dt (total energy supplied) and sup

t
P r(t)

(maximum power supplied) respectively.

Lemma III.5. The E-p transform is convex and monotone.

We additionally define the worst-case reference signal, and
form its E-p transform as follows:

Definition III.6. The worst-case reference signal, R(·), that
can be fulfilled by a given system runs all devices at full power
until they deplete; which will take place in order of ascending
time-to-go. This signal can be calculated as follows:

R(t)
.
=

n∑
i=1

p̄i[H(t)−H(t− xi)], (14)

in which H(·) denotes the Heaviside step function.

Definition III.7. We define the capacity of a system, Ωp̄,x(p),
to be the E-p transform of the worst-case reference signal that
can be met by the system,

Ωp̄,x(p)
.
= ER(p), (15)

in which R(·) is defined as in (14).

We now consider comparing the E-p transform of an arbitrary
reference to the capacity as follows.

Theorem III.8. A reference signal P r(·) is feasible if, and
only if, its E-p transform is dominated by the capacity of the
system, i.e. EP r (p) ≤ Ωp̄,x(p) ∀p ⇐⇒ P r(·) ∈ Fp̄,x.

This result justifies our use of the terminology worst-case
reference signal for R(·) and capacity for its E-p transform.
Definitions III.6 and III.7 allow us to transform the complex
object that is the set of feasible reference signals into a simple
one-dimensional curve: that corresponding to the capacity of
the system. This then enables a wide range of fleet capability
assessments to be undertaken. For a given fleet, one could
ascertain, for example, the longest ramp input of set gradient
or highest-gradient ramp of a fixed duration that could be
satisfied. Likewise, this could apply to pulse inputs, as we

will demonstrate in Section IV, or system services such as
primary or secondary response.

If, in addition to the capacity curve, we form the E-p
transform of a received reference signal, Theorem III.8 then
allows for immediate and straightforward determination of the
reference feasibility; simply by testing whether the capacity
curve dominates the reference curve. This operation might
provide valuable insight to a grid operator or aggregator when
contemplating the feasibility of a request profile. Moreover,
since the state fully defines the capacity of the system, the grid
operator or aggregator would be able to make such deductions
based solely upon the current state of their system.

We are also able to use Theorem III.8 to compare different
device fleets as follows:

Corollary III.9. The feasible set of system-state pair (p̄a, xa)
includes that of (p̄b, xb) if, and only if, the capacity curve of
(p̄a, xa) dominates that of (p̄b, xb), i.e.

Ωp̄a,xa(p) ≥ Ωp̄b,xb(p) ∀p ⇐⇒ Fp̄a,xa ⊇ Fp̄b,xb . (16)

An alternative use of the E-p transform would therefore be the
comparison among fleets exemplified by the motivating exam-
ple of the Introduction. We also point out here that, as a result
of the convexity and monotonicity of the transform, forming
a capacity curve based upon lower bounds to the charge level
of each device would allow any of these assessments to be
implemented in a robust manner. Coupled with Lemma III.5,
Corollary III.9 also allows us to deduce the following:

Property III.10. Given total energy and total power ratings
Emax and pmax respectively, the most flexible distribution of
devices has a capacity curve that is a straight line between
(0, Emax) and (pmax, 0). This is equivalent to a single device
of the same ratings.

Property III.11. The deviation of a system’s capacity curve
from the maximum-flexibility curve of the same total ratings
represents a flexibility gap resulting from its heterogeneous
nature.

IV. NUMERICAL RESULTS

A. Comparison between fleets

We here present the capacities of the three device configu-
rations discussed as a motivating example in the Introduction.
The three capacity curves can be seen in Figure 3, in which it
can be seen that C is the unambiguous best choice as its E-p
curve dominates the others. Clearly, the more even distribution
of C as compared to A offers more flexibility. When comparing
A and B, if the network operator expects high-power, short-
duration or low-power, long-duration request signals then A
is preferred. If, however, signals with intermediate values of
power and energy are expected, then B is preferred instead.

B. Feasibility of a received request

1) Alternative policy choices: As in [24], we now compare
indicative behaviour under the optimal policy to the imple-
mentation of two greedy heuristic alternatives. Note that [23]
discusses sub-optimal policies such as these in more detail.
The comparative policies chosen are as follows:
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Fig. 3: Capacity curves for the motivating example of Section I-C

i) Lowest Power First. Order the devices by maximum
power, without loss of generality leading to p̄1 ≤ p̄2 ≤
... ≤ p̄n, and allocate devices in order from D1 to Dn as

ui = 1[xi > 0] ·min
{
p̄i, P

r −
∑
j<i

uj
}
, (17)

in which 1[·] denotes the indicator function. Note that the
choice of allocation between devices of equal maximum
powers is made arbitrarily.

ii) Proportion of Power. In this case, no ordering is required
and each device is run according to

ui = 1[xi > 0] ·min

{
p̄i,

p̄iP
r∑

i : xi>0 p̄i

}
. (18)

2) Simulation results: We compose a scenario in which
there are 10,000 devices with initial time-to-go and maxi-
mum power values generated from uniform distributions, as
xi ∼ U(0, 10) h and p̄i ∼ U(0, 1.5) kW respectively. In an
attempt to model a realistic dispatch, we choose a stepwise
reference signal that is updated hourly, and draw each value
P r[k] from the normal distribution P r[k] ∼ N(2, 0.8) MW.
In this way all devices will be depleted by the end of a single
day according to the optimal policy, and we set our simulation
horizon to 1 day. We point out here that distributions are used
solely for setting parameter values and therefore that this is a
deterministic setup. The results of this case study can be seen
in Figure 4, and can be interpreted as follows. The optimal
policy provides the highest feasible reference up to its time
to failure, as it postpones emptying devices until absolutely
necessary, resulting in the latest time to failure. If this scenario
represents some failure mode requiring less than 12.8 h for
resolution, any of the three policies are capable of maintaining
full functionality. If, however, resolution requires between 13.2
and 16.3 h, the policy that we present is the only one out of the
three that is capable of avoiding lost load. Beyond 16.3 h we
are able to say that there exists no policy capable of avoiding
lost load.

3) E-p analysis: For the scenario described above, we here
demonstrate the use of the E-p transform in determining the
feasibility of the full reference over the 24 h period (known
to be infeasible) and in addition the same signal truncated
to the time to failure under the optimal policy (feasible by
construction), as can be seen in Figure 5. We also plot the

0 4 8 12 16 20 24

t (h)

0

1

2

3

4

5

6

7

P̄
r
(M

W
)

← Θ
PoP

Θ
LPF

 →

← Θ
OP

← P
r← P

r

[0,Θ
OP

)

LPF

PoP

OP

Fig. 4: The maximum available power, P̄ r(t), under the implemen-
tation of the optimal (OP), lowest power first (LPF) and proportion
of power (PoP) policies. The time to failure under each policy
is represented by a black dash-dotted line and denoted Θ. The
corresponding reference signal is shown for comparison, both in full
(the dotted black line) and truncated to the time to failure under the
optimal policy (the dashed red line).

maximum-flexibility curve for comparison, and highlight the
flexibility gap. As it can be seen, the truncation of the reference
signal corresponds to bringing its E-p transform to just below
the capacity curve, i.e. into the feasible region. In addition, the
E-p and capacity curves intersect at p = 0, which corresponds
to the use of all available energy and the resulting depletion
of all devices by the time to failure. Moreover, in this case
there would be no advantage to homogenising the fleet, as the
same truncation of the reference would be required to achieve
feasibility.
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Fig. 5: Use of the E-p transform to determine reference feasibility,
for the case study of Figure 4. Capacity curves are represented by
solid lines and transformed reference curves by dashed or dotted
lines (consistent with Figure 4). Ω denotes the capacity curve, and
the feasible region defined by this is shaded in blue. Ω∗ denotes
the maximum-flexibility capacity curve; the red shaded area between
these two curves is the flexibility gap.

C. Fleet capability assessment
We here determine the capability of a fleet to provide a

user-defined system service. We choose as an example service
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a pulse input of fixed duration, and demonstrate how the E-p
transform can be used to find the largest-magnitude feasible
pulse of 15 s duration. We choose the fleet to be 10 devices
with equal maximum discharge rating p̄i = 1.5 kW. We
generate initial state values for half the fleet uniformly, as
xi ∼ U(0, 20) s, and choose the other half to start full,
at xi = 20 s. This setup might, for example, represent
uninterruptible power supplies that are allowed to take part in
short-duration frequency regulation. A pulse signal will have
a corresponding E-p curve that is linear, of gradient equal
to the negative of the duration. The pulse magnitude is then
equal to the p-intercept of this curve. Our task is to find the
curve of this form with the largest p-intercept out of those
which lie in the feasible region. Figure 6a demonstrates this
approach across three pulses of varying magnitude, which are
then shown in Figure 6b, and it can be seen that an 11.2 kW
pulse is the largest that the fleet can feasibly meet. Note
that this example is composed at a drastically smaller device
scale than was previously explored, demonstrating how the
presented technique is applicable regardless of the scale of
the problem.

4 8 11.2

p (kW )

60

120

168

E
(p
)
(k
J
)

(a) Three example E-p curves corresponding
to pulse inputs of 15 s duration. The mag-
nitude of each pulse is equal to the curve’s
p-intercept. The blue shaded area represents
the feasible region.

0 15

t (s)

4

8

11.2
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)

(b) The three pulses of 15 s duration con-
sidered. To enable a direct comparison,
the unfilled magenta pulse lies behind the
cross-hatched red pulse, which in turn lies
behind the hatched blue pulse.

Fig. 6: Use of the E-p transform to determine the largest feasible
pulse magnitude of 15 s duration. The colour of each E-p curve in
Figure 6a matches that of the corresponding pulse signal in Figure 6b.

V. DISCUSSION

We here discuss the consequences of the above results.
Firstly, as we have shown, the feasibility of a received
or derived reference (for example that corresponding to a
particular ancillary service) can be immediately determined.
This analysis could also be extended into stochastic settings,
i.e. those with random state, maximum power or reference
values, by sampling scenario traces and rapidly checking the
feasibility of each. This could, for example, allow a network
operator to devise a day-ahead plan based upon a forecast
as follows. If the probability, found through a Monte Carlo
simulation, that the storage will be unable to meet the net
demand exceeds some user-defined limit, the network operator
could preventively take measures to reduce the high risk of
loss of load. Alternatively, robust estimates could be composed
from lower bounds on state or maximum power values, or from
upper bounds on reference values. Similarly, the transform
could be embedded in a range of algorithms, either as a
rapid binary feasibility check or as inequality constraints in
an optimisation problem. It is here where the computational
improvements of the proposed transform over straightforward
simulation might become crucial.

Ongoing work involves extending these results into sce-
narios in which infeasibility is found to occur. The one-
to-one mapping between feasible references and those that
will be met by the optimal policy enables one to identify
routes to feasibility in these cases. Moreover, the convenient
mathematical properties (convexity, monotonicity) of the E-
p transform offer significant advantage in the construction of
extended control strategies that minimise energy shortfalls.

We now briefly mention the scalability of the optimal policy
in practical implementations. One need only broadcast the
following three values: 1) the state above which devices should
become active at full speed, 2) the state above which devices
should become active at a fraction of full speed and 3) that
fraction. The complexity of the broadcast will therefore remain
unchanged as the number of devices increases. The calculation
of these three values, however, requires up to one pass through
the devices and will therefore scale as O(n). Similarly, it is
worth mentioning the scalability of the proposed transform.
This is formed via a single pass through the device fleet, hence
scales as O(n). Where necessary, in order to decrease the
computational complexity below this, it would also be possible
to cluster devices by time-to-go and approximate from below
the capacity curve for each cluster (using its smallest time-to-
go value). The aggregated capacity curve could then be used
to obtain a robust determination of feasibility.

VI. CONCLUSIONS AND FUTURE WORK

This paper has extended the results of [24], in the form
of additional analytic properties of a system in which storage
is used for grid support. We have conceived a transform that
compactly represents the capacity of the system and can be
used to characterise fleet capability; this then complements the
optimal policy when making decisions at longer timescales.
The transform can be used to calculate the maximum provision
by the fleet of a range of system services, as well as directly
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compare flexibility across different fleets. In addition the E-
p transform allows for simple and immediate determination
of the feasibility of any received request profile, through
a comparison of E-p curves. We have discussed the ways
in which these assessments could be extended to stochastic
settings. The optimal policy can of course also be used for
device scheduling across a range of applications.

This work has predominantly considered settings in which
references are feasible, only performing our analysis up until
the time to failure under the optimal policy. In future work
the authors intend to extend this into scenarios in which a
reference cannot be met for all time, in which case they
plan to investigate the policy that would result in the least
amount of lost load. Additional future extensions include the
incorporation of charging requests and cross-charging among
devices.

APPENDIX

A. Proof of Lemma III.1
Given a feasible reference signal P r(·), consider the class

of modified signals defined by:
1) An arbitrary partition of [t1, T ),

P r(·) = P r
[t1,t2) � P r

[t2,t3) � ... � P r
[tv,tv+1=T ), (A.1)

in which v is the number of parts and the � operator
denotes the concatenation of two signals.

2) An arbitrary permutation of the part indices 1, 2, ..., v.
Letting ψ denote the vector dictating the order of these
parts, the partition induced by ψ is then

P̃ r(·) .
= P r

[tψ1
,tψ1+1) � P r

[tψ2
,tψ2+1) � ... � P r

[tψv ,tψv+1).
(A.2)

P r(·) is feasible, and so let x(·) and u(·) satisfy the following
conditions for all non-negative t:

u(t) ∈ Up̄, 1Tu(t) = P r(t),

ẋ(t) = −P−1u(t), xi(t) ≥ 0, i = 1, 2, ..., n.
(A.3)

Moreover, due to the inability of devices to charge, we can
utilise the fact that x(t) ≥ 0 ∀t ⇐⇒ x(T ) ≥ 0 for an
expression equivalent to the last condition. Now, consider per-
muting the input u(·) in time, corresponding to the permutation
of the reference, to produce ũ(·), i.e.

ũ(·) .
= u[tψ1

,tψ1+1) � u[tψ2
,tψ2+1) � ... � u[tψv ,tψv+1), (A.4)

in which u[t1,t2) denotes the signal u(·) truncated to the half-
open interval [t1, t2). Consider each condition of the feasibility
of P̃ r(·) individually as follows. By construction, for all non-
negative t,

ũ(t) ∈ Up̄,
1T ũ(t) = P̃ r(t),

˙̃x(t) = −P−1ũ(t),

(A.5)

in which x̃(·) denotes the trajectory that fulfils the permuted
reference and is initialised as x̃(0) = x(0). In addition,

x̃(T ) = x̃(0)−
∫ T

0

P−1ũ(τ)dτ

= x(0)−
∫ T

0

P−1u(τ)dτ = x(T ) ≥ 0.

(A.6)

Therefore P̃ r(·) satisfies all the necessary conditions and we
are able to deduce that P r(·) ∈ Fp̄,x ⇐⇒ P̃ r(·) ∈ Fp̄,x,
in which the condition is necessary as well as sufficient as a
result of its symmetry.

B. Proof of Lemma III.2
Let the system under consideration have initial state x

and maximum power vector p̄. Then consider partitioning
a feasible piecewise constant reference signal P r(·), of
length T , into the partitions before and after time t, i.e.
P r(·) = P r

[0,t) � P r
[t,T ). Now form a new signal as P̂ r(·) .

=

P̃ r
[0,t) � P r

[t,T ), in which P̃ r
[0,t) is a permuted version of P r

[0,t).
Using the result of Lemma III.1, we know that if P r(·) is
feasible then so too must be P̂ r(·).

Denote by z and z̃ the states reached at time t under the
application of the optimal policy to meet P r(·) and P̂ r(·)
respectively. Without loss of generality, let the vector x be
ordered in decreasing time-to-go, and let the same device
ordering be used for z and z̃. Then, because ordering is
preserved under the optimal policy, z and z̃ will also be in
descending order. From the above result, we are able to say
that P r

[t,T ) ∈ Fp̄,z and P r
[t,T ) ∈ Fp̄,ẑ . As this holds for any

feasible choice of reference P r(·), we are then able to say
that Fp̄,ẑ = Fp̄,z . We use this to prove the required result
by contradiction as follows. Consider firstly the case in which
zn > z̃n, in which n indexes the device with the smallest time-
to-go value. We are able to construct the following reference
signal:

P r(t) =

{∑n
i=1 p̄i, if t ∈ [0, zn)

0, otherwise, (A.7)

for which we can trivially see that P r(·) ∈ Fp̄,z and P r(·) /∈
Fp̄,z̃ , hence the feasible sets defined by the two states must
be distinct.

Now, consider an arbitrary device index j and assume that

zi = z̃i, i = n, n− 1, ..., j + 1, (A.8a)
zj > z̃j . (A.8b)

We are able to construct the following reference signal:

P r(t) =



∑n
i=1 p̄i, if t ∈ [0, zn)∑n−1
i=1 p̄i, if t ∈ [zn, zn−1)

...∑j
i=1 p̄i, if t ∈ [zj+1, zj)

0, otherwise,

(A.9)

for which we can trivially see that P r(·) ∈ Fp̄,z and P r(·) /∈
Fp̄,z̃ , hence the feasible sets defined by the two states must
be distinct. Induction of this argument from device index n
to 1 returns the result that the feasible sets must be distinct
whenever ∃k : zk > z̃k. In addition, due to the arbitrary
allocation of z and z̃, this result must hold whenever z 6= z̃.
Hence the permutation must not alter the terminal state.

C. Proof of Lemma III.5
Consider two arbitrary power levels, p and q for which p ≥

q. These must satisfy

max
{
P r(τ)− p, 0} ≤ max

{
P r(τ)− q, 0} ∀τ, (A.10)
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and so EP r (p) ≤ EP r (q), i.e. the E-p curve is monotone.
In addition, the definition of the E-p transform leads to the
following left- and right-derivatives respectively:

dE(p)

dp

−
= −µ

({
τ : P r(τ) ≥ p

})
, (A.11a)

dE(p)

dp

+

= −µ
({
τ : P r(τ) > p

})
, (A.11b)

in which µ(·) denotes the Lebesgue measure operator. Hence

0 ≥ dE(p)

dp

∣∣∣∣
p

≥ dE(p)

dp

∣∣∣∣
q

, (A.12)

thus the gradient is negative and monotonically increasing, and
so the curve must be convex.

D. Proof of Theorem III.8
For this proof we initially form the following supporting

Lemmas:

Lemma VII.1. If a piecewise constant reference signal P r(·)
is feasible, its E-p transform is dominated by the capacity of
the system, i.e. P r(·) ∈ Fp̄,x =⇒ EP r (p) ≤ Ωp̄,x(p) ∀p.

Proof. Firstly, the result of Lemma III.1, combined with the
fact that P r(·) is both piecewise constant and feasible, allows
us to form a non-increasing equivalent to P r(·), which we
denote P̃ r(·) and take to be the reference of interest for the
remainder of this proof.

We then compose a framework as follows. Consider the
partition induced at the initial time by the optimal policy,
and let Ni, i = 1, 2, ..., l be the corresponding subsets of
devices. Making use of these subsets, then form the worst-
case reference of the system, R(·) as in (14), so that this can
be compared to P̃ r(·). We note that R(·) is bang-bang in all
components of the input (i.e. it runs them at full power from
time t = 0 up to depletion). Denoting by Ẽ(·) and E∗(·) the
energy vectors resulting from implementation of the optimal
policy to meet references P̃ r(·) and R(·) respectively, we are
therefore able to say that Ẽ(t) ≥ E∗(t) ∀t ≥ 0. Moreover,
since P̃ r(·) and R(·) are both feasible,

1T ˙̃E(t) = −P̃ r(t) ∀t ≥ 0, (A.13)

1T Ė∗(t) = −R(t) ∀t ≥ 0. (A.14)

Now, consider any power level p, and define the following:

tP
.
= inf{t ≥ 0: P̃ r(t) ≤ p}, (A.15)

tR
.
= inf{t ≥ 0: R(t) ≤ p}, (A.16)

which exist finite. We are then directly able to make the
following comparison:

EP̃ r (p) =

∫ tP

0

[−1T ˙̃E(t)− p]dt

= 1T Ẽ(0)− 1T Ẽ(tP )− ptP
≤ 1TE∗(0)− 1TE∗(tP )− ptP

=

∫ tP

0

[−1T Ė∗(t)− p]dt

≤
∫ tR

0

[R(t)− p]dt = Ωp̄,x(p),

(A.17)

where the final inequality follows from consideration of the
cases tP < tR, tP = tR and tP > tR.

Lemma VII.2. Given two reference signals P r(·) and P̃ r(·),
if

P r(t) ≥ P̃ r(t) ≥ 0 ∀t (A.18)

and P r(·) is feasible, then P̃ r(·) is also feasible.

Proof. Since P r(·) is feasible, there exists a u(·) induced
by this reference which satisfies all necessary conditions.
Consider now constructing an input ũ(·) simply as

ũ(t) =

{
P̃ r(t)
P r(t)u(t), if P r(t) > 0

0, otherwise.
(A.19)

Noting firstly that (A.18) leads to P r(t) = 0 =⇒ P̃ r(t) = 0,
we are able to see by construction that 1T ũ(t) = P̃ r(t) ∀t.
In addition the feasibility of P r(·) combined with 0 ≤ ũ(t) ≤
u(t) ∀t leads to the result that ũ(·) must meet all the other
necessary conditions for feasibility as in Definition II.1.

Lemma VII.3. If a piecewise continuous signal P r(·) is
feasible, its E-p transform is dominated by the capacity of
the system, i.e. P r(·) ∈ Fp̄,x =⇒ EP r (p) ≤ Ωp̄,x(p) ∀p.

Proof. Given P r(·), consider constructing k piecewise con-
stant signals, P̃ r,i(·), i = 1, ..., k, the sum of which approxi-
mates from below the original signal, i.e.

P r,k(t)
.
=

k∑
i=1

P̃ r,i(t) ≤ P r(t) ∀t, (A.20a)

lim
k→+∞

∥∥∥∥ k∑
i=1

P̃ r,i − P r(t)

∥∥∥∥
∞

= 0. (A.20b)

We know from the result of Lemma VII.2 that P r,k(·) is fea-
sible, and in particular that EP r,k(p) ≤ Ωp̄,x(p) ∀p, k. Letting
k → ∞, we then see that EP r (p) = limk→∞EP r,k(p) ≤
Ωp̄,x(p) ∀p.

Lemma VII.4. If the E-p transform of a reference signal
P r(·) is dominated by the capacity of the system, the signal
is feasible, i.e.

EP r (p) ≤ Ωp̄,x(p) ∀p =⇒ P r(·) ∈ Fp̄,x. (A.21)

Proof. For a reference signal to be feasible there must exist
an input that meets all power and energy constraints as in
Definition II.1; to prove the claim it is sufficient to find such
an input signal. We apply the optimal feedback (11) and
construct accordingly our chosen input, which meets all power
constraints by construction. All that remains is to show that it
does not result in negative energy stored in any device, which
we do as follows.

Consider the partition induced by the optimal policy at a
state x = x(t). Let N1(x),N2(x), ...,Nq(x)(x), in which q(x)
is the number of unique values in x, be the corresponding
subsets ordered by decreasing time-to-go. Additionally denote
the maximum power vectors corresponding to each subset as
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Ū1(x), Ū2(x), ..., Ūq(x)(x). Now, consider the power level s
defined according to the final state as follows:

s
.
=

q(x(∞))−1∑
i=1

1T Ūi(x(∞)). (A.22)

This power level corresponds to a summation across all devices
except members of the subset with (equal) smallest time-to-
go value at the final time. We choose this level because the
last subset of devices would be the first to be pushed negative
under the optimal policy; if this subset has non-negative time-
to-go then all devices must have non-negative time-to-go.

Now, we know that the subsets of devices are monotonically
expanding in time. Hence the final subsets are well-defined and
in addition are composed of subsets formed at any previous
time instant. Thus we know that the power level s corresponds
to a summation across one or more subsets at any time along
the considered solution. We define

l : x(t) 7→ k, such that
k∑

i=1

1T Ūi(x(t)) = s. (A.23)

Consider now the worst-case reference from an arbitrary
starting state x. We are able to write this and the corresponding
capacity explicitly as a function of the condensed state vector
X as follows:

R(t,X) =

q(x)∑
j=1

[
H(t)−H(t− xNj )

]
1T Ūj(x), (A.24a)

Ω(p,X) =

∫ ∞
0

max{R(t,X)− p, 0}dt, (A.24b)

in which H(·) denotes the Heaviside step function. This
expression is only valid for x non-negative, however we extend
it to arbitrary x as follows. We invert the correspondence of
the worst-case reference to give time as a function of power:

t(p,X) =



∞, if p = 0
xN1

, if 0 < p ≤ 1T Ū1(x)

xN2 , if 1T Ū1(x) < p ≤
∑2

i=1 1T Ūi(x)
...
xNq(x) , if

∑q(x)−1
i=1 1T Ūi(x) < p ≤ pmax

0, otherwise,
(A.25)

in which pmax
.
=
∑q(x)

i=1 1T Ūi(x) =
∑n

j=1 p̄j , and we then
redefine the capacity as an integration along the p-axis:

Ω(p,X)
.
=

∫ pmax

p

t(p′, X)dp′. (A.26)

Given this generalised definition of the capacity, consider
taking partial derivatives with respect to each distinct state,
evaluated at the power level s (recall that this is independent
of the current state). This leads to

∂Ω

∂xNi

∣∣∣∣
s

=

{
1T Ūi(x), if i > l(x)
0, otherwise. (A.27)

Now, denoting by m(x) the highest group index of devices
running at positive power, we know that the dynamics corre-
sponding to the optimal policy (11) are

ẋNi =

−1, if i < m(x)
−ri, if i = m(x)
0, if i > m(x),

(A.28a)

in which

ri =
P r −

∑i−1
j=1 1T Ūj(x)

1T Ūi(x)
. (A.28b)

We are then able to consider the 6 possible cases that arise
for the following product for each subset Ni and at the power
level s:

ẋNi ·
∂Ω

∂xNi

∣∣∣∣
s

, (A.29)

as seen in Table I.

i ≤ l(x) i > l(x)

i < m(x) 0 −1T Ūi(x)

i = m(x) 0 −ri1
T Ūi(x)

i > m(x) 0 0

TABLE I: The 6 possible cases for the expression of (A.29).

As it can be seen from the table, there are only 2 cases in which
the expression of (A.29) is non-zero: when l(x) < i ≤ m(x).
These can be converted back to power conditions as follows:

ẋNi ·
∂Ω

∂xNi

∣∣∣∣
s

=


−1T Ūi(x), if s <

∑i
j=1 1T Ūj(x) ≤ P r∑i−1

j=1 1T Ūj(x)− P r, if s < P r <
∑i

j=1 1T Ūj(x)

0, otherwise.
(A.30)

Utilising this expression, we can then use the chain rule to
form the partial derivative with respect to time of the capacity,
evaluated at power level s and state x, by summing across
subsets. This operation is valid because each subset of devices
can in effect be aggregated into a single virtual device, and
leads to

∂Ω

∂t

∣∣∣∣
s,x

=

q(x)∑
i=1

ẋNi ·
∂Ω

∂xNi

∣∣∣∣
s

(†)
= −

q(x)∑
i=l(x)+1

max

{
0,min

{
P r −

i−1∑
j=1

1T Ūj(x), 1T Ūi(x)

}}

=

l(x)∑
i=1

max

{
0,min

{
P r −

i−1∑
j=1

1T Ūj(x), 1T Ūi(x)

}}

−
q(x)∑
i=1

max

{
0,min

{
P r −

i−1∑
j=1

1T Ūj(x), 1T Ūi(x)

}}
(‡)
= min

{
P r, s

}
− P r = −max

{
P r − s, 0

}
,

(A.31)
in which the equality (†) results from the removal of the
cases for which l(x) ≥ i leading to a product of 0, and
the equality (‡) results from the following arguments. The
negative summation can be interpreted as the negative of the
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aggregate power across all devices, which must equal P r as a
result of the construction of the input according to the optimal
policy. The positive summation is the same series curtailed at
the index corresponding to the level s; if P r > s then all
devices up to this level will be run at full power and their
aggregate will equal s, otherwise the aggregate will once again
be the total power P r. Integration of (A.31) gives

Ω
(
s, x(∞)

)
= Ω

(
s, x(0)

)
−
∫ ∞

0

max
{
P r(t)− s, 0

}
dt,

(A.32)
which coupled with the condition (A.21) leads directly to
Ω
(
s, x(∞)

)
≥ 0. Moreover,

Ω
(
s, x(∞)

)
= xNq(x(∞))

(∞) · 1T Ūq(x(∞))

(
x(∞)

)
, (A.33)

therefore xNq(x(∞))
(∞) ≥ 0. As the time-to-go values cannot

increase over time the reference must therefore be feasible.

Theorem III.8 then follows directly from Lemmas VII.3 and
VII.4.
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