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Abstract

Two-stage robust optimization problems, in which decisions are taken both in anticipation of

and in response to the observation of an unknown parameter vector from within an uncertainty

set, are notoriously challenging. In this paper, we develop convergent hierarchies of primal (con-

servative) and dual (progressive) bounds for these problems that trade off the competing goals

of tractability and optimality: While the coarsest bounds recover a tractable but suboptimal

affine decision rule approximation of the two-stage robust optimization problem, the refined

bounds lift extreme points of the uncertainty set until an exact but intractable extreme point

reformulation of the problem is obtained. Based on these bounds, we propose a primal-dual

lifting scheme for the solution of two-stage robust optimization problems that accommodates

for discrete here-and-now decisions, infeasible problem instances as well as the absence of a rela-

tively complete recourse. The incumbent solutions in each step of our algorithm afford rigorous

error bounds, and they can be interpreted as piecewise affine decision rules. We illustrate the

performance of our algorithm on illustrative examples and on an inventory management problem.

Keywords: robust optimization; two-stage problems; decision rules; error bounds.

1 Introduction

In the last two decades, robust optimization has emerged as a powerful methodology for immunizing

mathematical programs against uncertainty in the problem data. Many dynamic optimization

1



problems can be naturally formulated as two-stage robust optimization problems of the form

minimize q>x

subject to T (ξ)x+Wy(ξ) ≥ h(ξ) ∀ξ ∈ Ξ

x ∈ Rn1 , y : Ξ 7→ Rn2 ,

(P)

where q ∈ Rn1 and W ∈ Rm×n2 , while T : Ξ
A7→ Rm×n1 and h : Ξ

A7→ Rm are affine functions of

the uncertain parameter vector ξ, which is only known to reside in the nonempty and bounded

uncertainty set Ξ = {ξ ∈ Rk : Fξ ≤ g}, F ∈ Rl×k and g ∈ Rl. Problem P determines a first-stage

decision x, which does not depend on the realization of ξ, as well as a second-stage policy y(ξ),

which can adapt to the realization of ξ, that are immunized against all parameter realizations ξ ∈ Ξ.

Without loss of generality, we may assume that the objective function only involves the first-stage

decision x as we can move the second-stage cost to the constraints via an epigraph reformulation.

The two-stage robust optimization problem P has been used in diverse application domains,

ranging from network design and operations, such as network flow problems [5] and vehicle routing

[35, 54], to railway shunting and timetabling [45], energy systems [46, 47, 50, 57], the strategic

[1] and operative [4, 44] aspects of operations management as well as healthcare [42]. It is also

frequently used to determine approximately optimal solutions to more generic (but at the same time

computationally more challenging) multi-stage robust optimization problems [26]. For a detailed

review of the applications of problem P, we refer the reader to [10, 27, 60].

The two-stage robust optimization problem P is convex, but it contains infinitely many deci-

sion variables and constraints. In fact, problem P is NP-hard [36], and the instances that can be

solved in polynomial time are both rare and restrictive [2, 18, 35]. As a result, much of the existing

research has focused on developing tractable conservative approximations to problem P. Early

attempts in this direction have proposed to restrict the second-stage decision y to affine [36, 43],

segregated affine [24, 25, 32], piecewise affine [31] and algebraic as well as trigonometric polynomial

functions [19] (so-called decision rules) of the parameters ξ. Decision rules have recently been

extended to incorporate both continuous and discrete second-stage decisions, either by partition-

ing the uncertainty set Ξ into hyperrectangles [34, 56] or by resorting to a semi-infinite solution

scheme [14]. By themselves, decision rule approximations only provide a conservative bound on

the optimal value of the two-stage robust optimization problem P. To estimate the incurred sub-
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optimality, decision rules are often combined with progressive bounds that emerge from replacing

the uncertainty set Ξ in P with a finite subset of the parameter realizations. Scenario subsets that

lead to good progressive bounds can be obtained from the Lagrange multipliers associated with

the optimal solution of the decision rule problem [12, 37]. The decision rule approaches naturally

extend to robust optimization problems with more than two stages. The suboptimality of decision

rules has been investigated in [15, 18, 43]. For a survey of the decision rule literature, see [26].

Instead of relying on decision rules, the two-stage robust optimization problem P can also be

conservatively approximated by its K-adaptability problem or via its copositive reformulation. The

K-adaptability problem selects K candidate second-stage decisions here-and-now (that is, before

observing the realization of ξ) and implements the best of these decisions after the realization of

ξ is known. Different K-adaptability solution schemes have been proposed in [11, 39, 53], and

their suboptimality has been analyzed in [17]. The copositive reformulation of problem P, on

the other hand, is exact and convex, but it is typically difficult to solve. Tractable conservative

approximations to this reformulation can be obtained via semidefinite programming [38, 59].

All of the solution schemes reviewed so far have in common that they provide a conservative

approximation to the two-stage robust optimization problem P. Problem P can be solved exactly

through an iterative approximation of its worst-case second-stage cost function or its uncertainty

set. An iterative approximation of the second-stage cost function can be obtained through a variant

of Benders’ decomposition [20, 41, 55, 62]. To this end, problem P is decomposed into a convex

master problem involving the first-stage decisions and an outer (progressive) approximation of the

worst-case second-stage cost, as well as a non-convex subproblem that provides cuts for the cost

function. The Benders’ decomposition scheme has been extended to the multi-stage version of

problem P in [30]. Alternatively, the papers [6] and [61] use semi-infinite programming techniques

to iteratively approximate the uncertainty set in problem P. Here, the convex master problem

is a relaxation of problem P that involves finitely many realizations ξ ∈ Ξ, and the non-convex

subproblem identifies parameter realizations ξ ∈ Ξ to be added to the master problem. Both the

Benders’ decomposition approaches and the semi-infinite programming schemes rely on sequences

of progressive approximations to determine an optimal solution to problem P in finite time. In

contrast, the iterative solution schemes presented in [13, 49] extend the uncertainty set partitioning

approaches of [34, 56] to construct a sequence of conservative approximations to problem P. Here,
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the convex master problem determines constant or affine decision rules for each set of the partition,

and the subproblem identifies a refined partition for the master problem. Both approaches extend

to integer decisions and more than two stages. It has been shown, however, that even asymptotic

convergence to an optimal solution of problem P cannot be guaranteed in general [13].

Instead of approximating the second-stage decisions, the second-stage cost function or the un-

certainty set of the two-stage robust optimization problem P, it has been proposed in [63] to solve P

through an iterative reformulation of the problem itself. The authors use Fourier-Motzkin elimi-

nation to reduce the number of second-stage decisions in problem P at the expense of additional

constraints. This results in a hierarchy of increasingly accurate conservative approximations of P

which converge to a static robust optimization problem that is equivalent to P.

In this paper, we develop an alternative solution scheme for the two-stage robust optimiza-

tion problem P that aims to provide an attractive trade-off between the conflicting objectives of

optimality and tractability. We summarize our key contributions as follows.

1. We develop convergent hierarchies of primal (conservative) and dual (progressive) bounds to

the two-stage robust optimization problem P. Our bounds combine affine decision rules with

an extreme point enumeration to trade off the conflicting goals of tractability and optimality.

While the primal bounds apply to any bounded polyhedral uncertainty set, the dual bounds

require information about the sum of outer products of the extreme points of the uncertainty

set, which can be computed in closed form for several classes of common uncertainty sets.

2. We propose a primal-dual lifting scheme that is inspired by polyhedral combinatorics. Our

solution approach accommodates for discrete here-and-now decisions, infeasible problem in-

stances as well as the absence of a relatively complete recourse. The initial bounds are based

on affine decision rules and can thus be computed efficiently.

3. We highlight the intimate relationship between our bounds and piecewise affine decision rules

over simplicial decompositions of the uncertainty set Ξ in problem P.

We believe that the proposed approach fills a gap in the literature: Both the Benders’ decom-

position schemes and the semi-infinite programming approaches reviewed above typically consider

instances of problem P with right-hand uncertainty and a relatively complete recourse. Moreover,

while the master problems in these approaches provide tractable progressive bounds, the subprob-
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lems providing the conservative bounds constitute bi-affine or mixed-integer optimization problems

that are difficult to solve. Although the adaptive uncertainty partitioning approaches can provide

tractable conservative and progressive bounds, they do not offer a convergence guarantee. To our

best knowledge, the Fourier-Motzkin elimination scheme presented in [63] is the only approach that

satisfies all of the properties outlined above. We will show in our numerical experiments that our

algorithm is competitive with the Fourier-Motzkin elimination, and that in fact both schemes can

be combined beneficially.

The remainder of the paper is structured as follows. Section 2 presents our hierarchies of primal

and dual bounds to problem P, and Section 3 employs these bounds to develop a primal-dual lifting

scheme for the solution of problem P. We discuss the relationship between our bounds and piecewise

affine decision rules in Section 4, and we report on numerical experiments in Section 5. The

appendix shows how to compute the sum of outer products of the extreme points of an uncertainty

set, which is required for our dual bound, for several classes of common uncertainty sets.

Remark 1 (Discrete Here-and-Now Decisions). Throughout the paper we will discuss how our algo-

rithm extends to a variant of problem P that contains continuous and discrete first-stage decisions:

minimize q>c xc + q>d xd

subject to Tc(ξ)xc + Td(ξ)xd +Wy(ξ) ≥ h(ξ) ∀ξ ∈ Ξ

xc ∈ Rnc1 , xd ∈ Znd1 , y : Ξ 7→ Rn2

(Pd)

We will see that our bounds and the lifting scheme naturally extend to this more generic problem.

Notation. For a finite-dimensional set Ω, we denote by ext Ω, conv Ω and cl Ω the set of extreme

points, the convex hull and the closure of Ω, respectively. We define by {f : Rn A7→ Rm} the set of

all affine functions from Rn to Rm. The vector of ones and the identity matrix are denoted by e

and I, respectively, and their dimensions will be clear from the context. We use 〈A,B〉 = tr(A>B)

to denote the trace inner product between two symmetric matrices A and B.

2 A Duality Scheme for Two-Stage Robust Optimization

Problem P is a convex but challenging optimization problem as it involves infinitely many decision

variables and constraints. This can be partially resolved if we replace the uncertainty set Ξ in P
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with its extreme points ext Ξ:

minimize q>x

subject to T (ξ)x+Wy(ξ) ≥ h(ξ) ∀ξ ∈ ext Ξ

x ∈ Rn1 , y : ext Ξ 7→ Rn2 ,

(P ′)

In the following, we refer to this problem as the extreme point reformulation P ′.

Proposition 1 (Extreme Point Reformulation). Problems P and P ′ are equivalent in the following

sense: Any feasible solution to one problem can be transformed into a feasible solution to the other

problem that attains the same objective value.

Proof of Proposition 1. One readily verifies that for every feasible solution x ∈ Rn1 and

y : Ξ 7→ Rn2 to the robust optimization problem P, the restriction of y to ext Ξ provides a feasible

solution to the extreme point reformulation P ′ that attains the same objective value.

Let x ∈ Rn1 and y′ : ext Ξ 7→ Rn2 be a feasible solution to the extreme point reformulation P ′.

By construction, there is a function λ : Ξ× ext Ξ 7→ R+ that satisfies

∑
ξ′∈ext Ξ

λ(ξ, ξ′) = 1 and
∑

ξ′∈ext Ξ

λ(ξ, ξ′) · ξ′ = ξ ∀ξ ∈ Ξ.

Hence, (x,y) with y(ξ) :=
∑

ξ′∈ext Ξ λ(ξ, ξ′) · y′(ξ′), ξ ∈ Ξ, is feasible in problem P since

T (ξ)x+Wy(ξ) =
∑

ξ′∈ext Ξ

λ(ξ, ξ′) ·
[
T (ξ′)x+Wy′(ξ′)

]
≥

∑
ξ′∈ext Ξ

λ(ξ, ξ′) · h(ξ′) = h(ξ) ∀ξ ∈ Ξ,

where the first identity follows from the definition of (x,y) and the fact that the mapping T is

affine, the inequality follows from the feasibility of (x,y′) in the extreme point reformulation P ′,

and the second identity holds since
∑

ξ′∈ext Ξ λ(ξ, ξ′) · ξ′ = ξ. The statement now follows from the

fact that (x,y) attains the same objective value in P as (x,y′) does in P ′.

Note that the proof of Proposition 1 does not rely on the characteristics of the first-stage decision

x. Hence, the statement immediately extends to the generalized two-stage robust optimization

problem Pd from Remark 1 that contains both continuous and discrete here-and-now decisions.
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The extreme point reformulation P ′ is finite-dimensional, but it remains computationally bur-

densome since the number of decision variables and constraints scales with the number of extreme

points of Ξ. By the dual upper bound theorem [51, § 26.3], this number satisfies

|ext Ξ| ≤

(
l − dk/2e
bk/2c

)
+

(
l − 1− d(k − 1)/2e
b(k − 1)/2c

)
,

and the bound is attained by dual cyclic polytopes. This superpolynomial growth is to be expected

as problem P is NP-hard [36, Theorem 3.4]. We note that for a fixed number k of uncertain problem

parameters, the dual upper bound theorem implies that |ext Ξ| ∈ O(lbk/2c). Moreover, the expected

number of vertices of uniformly sampled polyhedra is much lower than this upper bound [22].

We emphasize that the statement of Proposition 1 does not hold if problem P exhibits random

recourse, that is, if W in P depends on ξ. This has also been observed in [6].

Example 1 (Random Recourse). Consider the following instance of P with random recourse:

minimize 0

subject to ξ · y(ξ) ≥ 1 ∀ξ ∈ [−1, 1]

y : [−1, 1] 7→ R

This problem is infeasible since any second-stage decision y violates the constraint 0 · y(0) ≥ 1, but

its extreme point formulation is solved by any y satisfying y(−1) ≤ −1 and y(1) ≥ 1.

The next two subsections develop families of primal and dual bounds on the optimal value of

the two-stage robust optimization problem P that combine the extreme point reformulation P ′

with affine decision rules.

2.1 Hierarchy of Primal Bounds

A popular conservative approximation to the two-stage robust optimization problem P replaces

the second-stage decision y : Ξ 7→ Rn2 with an affine decision rule y : Ξ
A7→ Rn2 . The resulting

problem has finitely many decision variables (the intercept and the slopes of y) but infinitely many

constraints. Classical robust optimization techniques then employ linear programming duality to

reformulate this semi-infinite problem as a linear program that scales polynomially in the size

(n1, n2,m, k, l) of the input data [36]. The affine decision rule approximation performs surprisingly
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well on practical problems [43], and it is even optimal in some problem classes [2, 18, 35]. In general,

however, affine decision rules are suboptimal even in seemingly benign problems [31, Example 4.5].

In the following we present a family of conservative approximations to P that includes the

highly tractable but usually suboptimal affine decision rules and the optimal but typically in-

tractable extreme point reformulation P ′ as special cases. We parameterize our approximation by

the scenario set ΞS ⊆ ext Ξ, which gives rise to a complementary affine set ΞA ⊆ Ξ defined by

ΞA = conv ([ext Ξ] \ ΞS):

minimize q>x

subject to T (ξ)x+WyS(ξ) ≥ h(ξ) ∀ξ ∈ ΞS

T (ξ)x+WyA(ξ) ≥ h(ξ) ∀ξ ∈ ΞA

x ∈ Rn1 , yS : ΞS 7→ Rn2 , yA : ΞA
A7→ Rn2

(P(ΞS))

Problem P(ΞS) optimizes over individual second-stage decisions yS : ΞS 7→ Rn2 for all realizations

ξ in the scenario set ΞS and over an affine decision rule yA : ΞA
A7→ Rn2 for the affine set ΞA.

The scenario set ΞS is a finite subset of the extreme points of Ξ, whereas the affine set ΞA is a

polyhedral subset of Ξ. Robust optimization techniques allow us to reformulate problem P(ΞS) as

a linear program that scales polynomially in the parameters (n1, n2,m, |ΞS |, k, `), where ` denotes

the number of inequalities required to describe ΞA (see page 9 below). The choices ΞS = ∅ (and

thus ΞA = Ξ) and ΞS = ext Ξ (and thus ΞA = ∅) recover the affine decision rule approximation and

the extreme point reformulation P ′, respectively. The requirement that ΞA = conv ([ext Ξ] \ΞS) is

illustrated in Figure 1, and it ensures that

conv (ΞS∪ΞA) = conv (ΞS∪conv ([ext Ξ]\ΞS)) = conv (ΞS∪([ext Ξ]\ΞS)) = conv (ext Ξ) = Ξ.

In the following, we use P(ΞS) both to refer to the bounding problem and to its optimal objective

value. We now show that P(ΞS) bounds problem P from above.

Proposition 2 (Primal Bound). Problem P(ΞS) satisfies the following two properties.

(i) Any feasible solution to P(ΞS) can be transformed into a feasible solution to P(Ξ′S), ΞS ⊆ Ξ′S,

that attains the same objective value.

(ii) Any feasible solution to P(ext Ξ) can be transformed into a feasible solution to P that attains
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Figure 1. Different decompositions of a three-dimensional hypercube into scenario sets
ΞS (hollow circles) and implied affine sets ΞA (shaded regions). In all cases, the convex
hull of ΞS and ΞA recovers the original hypercube.

the same objective value, and vice versa.

Proof of Proposition 2. As for the first statement, let (x,yS ,yA) be a feasible solution to

P(ΞS). In that case, (x,y′S ,y
′
A) with y′S(ξ) := yS(ξ) for ξ ∈ ΞS ; := yA(ξ) for ξ ∈ Ξ′S \ ΞS and

y′A(ξ) := yA(ξ), ξ ∈ Ξ′A, is a feasible solution to P(Ξ′S) that attains the same objective value.

The second statement directly follows from Proposition 1.

The second property states that P(ext Ξ) is equivalent to problem P. The first property implies

that P(ΞS) provides a conservative approximation to P(Ξ′S) if ΞS ⊆ Ξ′S , and in particular—by

virtue of the second statement—to problem P. We remark that the second statement also holds

true for ΞS 6= ext Ξ if the implied affine set ΞA is a simplex [16, Theorem 1].

The proof of Proposition 2 does not exploit any properties of the first-stage decision x, and hence

the result immediately extends to the mixed-integer two-stage robust optimization problem Pd.

The size of problem P(ΞS) depends on the number of scenarios |ΞS | and the number of in-

equalities ` required to describe ΞA, both of which depend on the choice of the uncertainty set Ξ.

If Ξ is the 1-norm ball in Rk, Ξ = {ξ ∈ Rk : ‖ξ‖1 ≤ 1}, for example, then ΞS contains at most

|ext Ξ| = 2k scenarios, and any set ΞA can be described efficiently by (subsets of) the projection of

Ξ′ = {(ξ,χ) ∈ Rk × Rk : e>χ ≤ 1, χ ≥ ±ξ} onto its first k components. If the uncertainty set is

the ∞-norm ball in Rk, Ξ = {ξ ∈ Rk : ‖ξ‖∞ ≤ 1}, on the other hand, then ΞS can contain up to

|ext Ξ| = 2k scenarios, and the sets ΞA form the class of 0/1 polytopes which can have exponentially

many facets [64]. The hope is that in practice, instances of P(ΞS) with compact descriptions of ΞA

and ΞS produce tight bounds on the optimal value of problem P. Section 3 presents an iterative

procedure that aims to determine such instances, and Section 5 investigates the performance of

this procedure in an inventory management problem.
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2.2 Hierarchy of Dual Bounds

The paper [37] proposes a progressive bound for the two-stage robust optimization problem P

that replaces the uncertainty set Ξ with a subset of its extreme points ext Ξ. This bound has

found widespread use in both two-stage [6, 61] and multi-stage [13, 14, 49] robust optimization.

In this section we derive a family of dual bounds that tighten the bound of [37]. Our bounds

can be interpreted as an application of the primal approximation from the previous section to a

dual extreme point formulation of P. To this end, we consider the linear programming dual of the

extreme point reformulation P ′:

maximize
∑

ξ∈ext Ξ

h(ξ)>λ(ξ)

subject to
∑

ξ∈ext Ξ

T (ξ)>λ(ξ) = q

W>λ(ξ) = 0 ∀ξ ∈ ext Ξ

λ : ext Ξ 7→ Rm+

(1)

Contrary to the primal extreme point reformulation P ′, problem (1) is a maximization problem.

Therefore, a conservative approximation to problem (1) will amount to a progressive approximation

to problem P ′, and hence to problem P. In order to conservatively approximate problem (1), we

proceed along the lines of the previous section: We partition the extreme points ext Ξ into a

scenario set ΞS , for which we select individual decisions λS : ΞS 7→ Rm+ , and an implied affine

set ΞA = conv ([ext Ξ] \ ΞS), for which the decisions λA : ΞA
A7→ Rm+ are restricted to an affine

function of ξ. Contrary to the primal bounding problem P(ΞS), however, the uncertain problem

parameters ξ enter the dual extreme point reformulation (1) quadratically, and they thus require

some additional care. One can then derive the following family of dual bounds to problem P:

maximize
〈
H>Λ,ΣA

〉
+
∑
ξ∈ΞS

h(ξ)>λS(ξ)

subject to
〈
T>i Λ,ΣA

〉
+
∑
ξ∈ΞS

Ti(ξ)>λS(ξ) = qi ∀i = 1, . . . , n1

W>λS(ξ) = 0 ∀ξ ∈ ΞS

W>λA(ξ) = 0 ∀ξ ∈ ΞA

λS : ΞS 7→ Rm+ , λA : ΞA
A7→ Rm+

(P(ΞS))
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In this problem, we use the notational shorthandsH = (h0,HJ), Ti = (ti,0,Ti,J) and Λ = (λ0,ΛJ),

where h0, ti,0,λ0 ∈ Rm denote the intercepts and HJ ,Ti,J ,ΛJ ∈ Rm×k the slopes (Jacobians) of

the affine functions h(ξ), Ti(ξ) = (T1,i(ξ), . . . , Tm,i(ξ))> and λA(ξ), and the moment matrix

ΣA =
∑

ξ∈ext ΞA

(
1
ξ

)(
1
ξ

)>
=


|ext ΞA|

∑
ξ∈ext ΞA

ξ>∑
ξ∈ext ΞA

ξ
∑

ξ∈ext ΞA

ξξ>


records the sum of the extreme point scenarios in ΞA, as well as their outer products. Standard ro-

bust optimization techniques allow us to reformulate problem P(ΞS) as a linear program that scales

polynomially in the parameters (n1, n2,m, |ΞS |, k, `), where ` denotes the number of inequalities in

the description of ΞA (see page 14 below). The choice ΞS = ∅ (and thus ΞA = Ξ) corresponds to a

highly tractable but usually suboptimal dual affine decision rule formulation, whereas ΞS = ext Ξ

(and thus ΞA = ∅) recovers the optimal but typically intractable dual extreme point reformula-

tion (1). We use P(ΞS) both to refer to the bounding problem and to its optimal objective value.

We now formalize our reasoning that P(ΞS) bounds problem P from below.

Proposition 3 (Dual Bound). Problem P(ΞS) satisfies the following two properties.

(i) Any feasible solution to P(ΞS) can be transformed into a feasible solution to P(Ξ′S), ΞS ⊆ Ξ′S,

that attains the same objective value.

(ii) P(ext Ξ) is infeasible if P is unbounded and vice versa. If both problems are feasible, then

their optimal values coincide.

Proof of Proposition 3. By weak linear programming duality, the dual extreme point reformu-

lation (1) bounds the extreme point reformulation P ′—and hence, by virtue of Proposition 1, the

two-stage robust optimization problem P—from below. In particular, (1) is infeasible if P is un-

bounded and vice versa. Moreover, strong linear programming duality implies that both problems

attain the same optimal value if they are both feasible. The second statement of the proposition

now follows from the fact that the dual extreme point reformulation (1) is equivalent to P(ext Ξ).

As for the first statement, fix a feasible solution (λS ,λA) for the problem P(ΞS). We claim

that the solution (λ′S ,λ
′
A) defined through λ′S(ξ) := λS(ξ) for ξ ∈ ΞS ; := λA(ξ) for ξ ∈ Ξ′S \ ΞS

and λ′A(ξ) := λA(ξ), ξ ∈ Ξ′A, is feasible in P(Ξ′S) and attains the same objective value as (λS ,λA)
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does in P(ΞS). Indeed, the objective function value of (λ′S ,λ
′
A) in P(Ξ′S) evaluates to

〈
H>Λ,Σ′A

〉
+
∑
ξ∈Ξ′S

h(ξ)>λ′S(ξ) =
〈
H>Λ,Σ′A

〉
+

∑
ξ∈Ξ′S\ΞS

h(ξ)>λ′S(ξ) +
∑
ξ∈ΞS

h(ξ)>λ′S(ξ)

=
〈
H>Λ,Σ′A

〉
+

∑
ξ∈ext ΞA:
ξ/∈ext Ξ′A

h(ξ)>λA(ξ) +
∑
ξ∈ΞS

h(ξ)>λS(ξ)

=
〈
H>Λ,Σ′A

〉
+
〈
H>Λ,ΣA −Σ′A

〉
+
∑
ξ∈ΞS

h(ξ)>λS(ξ)

=
〈
H>Λ,ΣA

〉
+
∑
ξ∈ΞS

h(ξ)>λS(ξ),

where Λ = (λ0,ΛJ) and ΛJ ∈ Rm×k and λ0 ∈ Rm denote the slopes and the intercept of λA,

respectively, while ΣA and Σ′A are the moment matrices corresponding to the affine sets ΞA and

Ξ′A. Here, the second identity follows from the definition of λ′S and the fact that

ext ΞA = ext (conv ([ext Ξ] \ ΞS)) = (ext Ξ) \ ΞS

and hence,

(ext ΞA) \ (ext Ξ′A) = ([ext Ξ] \ ΞS) \ ([ext Ξ] \ Ξ′S) = Ξ′S \ ΞS .

The third identity holds because h(ξ) = HJξ+h0 and λA(ξ) = ΛJξ+λ0, and the last identity fol-

lows from the linearity of the inner product operator. An analogous argument shows that (λ′S ,λ
′
A)

satisfies the first constraint in P(Ξ′S), and one readily verifies that the remaining constraints are

satisfied as well. Thus, the first statement follows.

The second property states that the (extended real-valued) optimal values of P(ext Ξ) and the

two-stage robust optimization problem P coincide if at least one of the problems is feasible. It is

possible, however, that both problems are infeasible: This is the case, for example, if T (ξ) = 0 and

W = 0 but q 6= 0 and h(ξ) 6≤ 0 for some ξ ∈ Ξ. Our incremental lifting scheme in Section 3 avoids

this pathological case by solely operating on feasible instances of the bounding problems. For such

instances, the second statement guarantees that the optimal values of P(ext Ξ) and P coincide.

The first statement implies that P(ΞS) provides a progressive approximation to P(Ξ′S) if ΞS ⊆ Ξ′S ,

and in particular—by virtue of the second statement—to problem P.
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Remark 2 (Discrete Here-and-Now Decisions). Perhaps surprisingly, we can derive a convergent

hierarchy of dual bounds to the mixed-integer two-stage robust optimization problem Pd as well. To

this end, consider the following extreme point reformulation P ′d of problem Pd, where we separately

optimize over the discrete and continuous here-and-now decisions:

minimize q>d xd +


minimize q>c xc

subject to Tc(ξ)xc +Wy(ξ) ≥ [h(ξ)− Td(ξ)xd] ∀ξ ∈ ext Ξ

xc ∈ Rnc1 , y : ext Ξ 7→ Rn2


subject to xd ∈ Znd1

For any fixed discrete here-and-now decision xd ∈ Znd1, we can replace the embedded minimization

problem over the continuous here-and-now decision xc ∈ Rnc1 with its linear programming dual:

minimize



maximize q>d xd +
∑

ξ∈ext Ξ

[h(ξ)− Td(ξ)xd]> λ(ξ)

subject to
∑

ξ∈ext Ξ

Tc(ξ)>λ(ξ) = qc

W>λ(ξ) = 0 ∀ξ ∈ ext Ξ

λ : ext Ξ 7→ Rm+


subject to xd ∈ Znd1

Similar arguments as before show that the inner maximization problem can be bounded from below:

minimize



maximize q>d xd +
〈[
H −

nd1∑
i=1

Td,i xd,i

]>
Λ,ΣA

〉
+
∑
ξ∈ΞS

[h(ξ)− Td(ξ)xd]> λS(ξ)

subject to
〈
T>c,iΛ,ΣA

〉
+
∑
ξ∈ΞS

Tc,i(ξ)>λS(ξ) = qi ∀i = 1, . . . , n1c

W>λS(ξ) = 0 ∀ξ ∈ ΞS

W>λA(ξ) = 0 ∀ξ ∈ ΞA

λS : ΞS 7→ Rm+ , λA : ΞA
A7→ Rm+ ,


subject to xd ∈ Znd1

Here, Tc,i = (tc,i,0,Tc,i,J), Td,i = (td,i,0,Td,i,J) with tc,i,0, td,i,0 ∈ Rm denote the intercepts and

Tc,i,J ,Td,i,J ∈ Rm×k the slopes of the affine functions Tc,i(ξ) = (Tc,1,i(ξ), . . . , Tc,m,i(ξ))> and
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Td,i(ξ) = (Td,1,i(ξ), . . . , Td,m,i(ξ))>. For any fixed discrete here-and-now decision xd ∈ Znd1, the

embedded maximization problem is a robust optimization problem that is linear in the decision vari-

ables λS and λA. Using robust optimization techniques to reformulate this semi-infinite problem

as a linear program and subsequently invoking strong linear programming duality results in an em-

bedded minimization problem that attains the same optimal value. The resulting min-min problem

collapses to a single-stage mixed-integer linear program that can be solved with standard software.

As in the previous section, the size of problem P(ΞS) depends on the number of scenarios |ΞS |

and the number of inequalities ` required to describe ΞA, both of which depend on the choice of

the uncertainty set Ξ. In addition, the dual approximation P(ΞS) contains the moment matrix

ΣA which appears difficult to compute as it involves sums of the (outer products of the) extreme

points in the affine set ΞA. For several class of commonly used uncertainty sets, we show in the

appendix how ΣA can be derived analytically when ΞA = Ξ. In the next section we present a

solution scheme for the two-stage robust optimization problem P which computes the dual affine

decision rule bound P(∅) and subsequently removes individual vertices of ext ΞA. Thus, if the

initial moment matrix ΣA for ΞA = Ξ can be computed efficiently, then the subsequent updates

of ΞA merely require the subtraction of individual extreme points. On the other hand, it remains

unclear whether the moment matrices ΣA corresponding to generic polyhedral uncertainty sets can

be calculated efficiently, that is, without explicitly enumerating them.

We note that our dual bound P(ΞS) is closely related to the lower bound proposed in [37].

Remark 3 (Relation to the Sampling Bound of [37]). The progressive bound of [37] can be

interpreted as a relaxation of the extreme point reformulation P ′ that only considers the scenarios

ξ ∈ ΞS in a single, fixed scenario set ΞS ⊆ ext Ξ:

minimize q>x

subject to T (ξ)x+Wy(ξ) ≥ h(ξ) ∀ξ ∈ ΞS

x ∈ Rn1 , y : ΞS 7→ Rn2

(SB)

The dual associated with this problem corresponds to an instance of our dual bound P(ΞS) where

we fix λA(ξ) = 0, ξ ∈ ΞA, and only optimize over λS. Thus, our bound P(ΞS) is at least as tight

as the bound of [37].

We close this section with a summary of the findings of Propositions 2 and 3:
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Theorem 1 (Duality). The primal and dual bounds P(ΞS) and P(ΞS) satisfy:

(i) Weak Duality. P(ΞS) ≤ P ≤ P(ΞS) for all ΞS ⊆ ext Ξ.

(ii) Strong Duality. P(ΞS) = P = P(ΞS) for ΞS = ext Ξ if P is feasible.

3 Primal-Dual Lifting Scheme

Our solution scheme for problem P starts with a feasibility phase, which determines a feasible

solution (or recognizes that no such solution exists), and then proceeds with an optimality phase,

which computes an optimal solution (or identifies that the problem is unbounded). The algorithm

starts with the efficiently computable affine decision rule bounds P(∅) and P(∅) and iteratively

transfers extreme points ξ? ∈ ext ΞA of the affine set to the scenario set ΞS .

Our algorithm can be summarized as follows.

1. Initialization. Set ΞA = Ξ and ΞS = ∅.

2. Feasibility Phase. Consider the feasibility problem

minimize v

subject to T (ξ)x+Wy(ξ) ≥ h(ξ)− ve ∀ξ ∈ Ξ

x ∈ Rn1 , y : Ξ 7→ Rn2 , v ∈ R+.

(i) Solve P(ΞS) and P(ΞS) associated with this problem. If the optimal value of P(ΞS) is

zero, go to Step 3: the current solution to P(ΞS) is feasible in P. If the optimal value

of P(ΞS) is strictly positive, terminate: problem P is infeasible.

(ii) Select any ξ? ∈ Ξ?A (defined below), update ΞS ← ΞS∪{ξ?} as well as ΞA ← conv ([ext ΞA]\

{ξ?}), and go to back to Step 2(i).

3. Optimality Phase. Consider the optimality problem

minimize q>x

subject to T (ξ)x+Wy(ξ) ≥ h(ξ) ∀ξ ∈ Ξ

x ∈ Rn1 , y : Ξ 7→ Rn2 .
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(i) Solve P(ΞS) and P(ΞS) associated with this problem. If P(ΞS) is unbounded, terminate:

problem P is unbounded. Otherwise, if the optimal values of P(ΞS) and P(ΞS) coincide,

terminate: the current solution to P(ΞS) is optimal in P.

(ii) Select any ξ? ∈ Ξ?A (defined below), update ΞS ← ΞS∪{ξ?} as well as ΞA ← conv ([ext ΞA]\

{ξ?}), and go to back to Step 3(i).

The feasibility phase operates on a feasibility variant of problem P that minimizes the maximum

constraint violation. Both bounding problems P(ΞS) and P(ΞS) associated with this feasibility

problem are always feasible since Ξ is bounded. Thus, Propositions 2 and 3 guarantee the validity

of the conservative and progressive bounds, and the update step 2(ii) ensures that both bounds

converge monotonically. After finitely many iterations, either the conservative bound evaluates to

zero (indicating that a feasible solution has been found), or the progressive bound becomes strictly

positive (indicating that the problem is infeasible).

If a feasible solution has been found, the algorithm proceeds with the optimality phase and

computes conservative and progressive bounds on the problem P itself. Since a feasible solution

has already been determined, these bounds are valid and converge monotonically. After finitely

many iterations, either the bounds coincide (indicating that an optimal solution has been found),

or the conservative bound evaluates to −∞ (indicating that the problem is unbounded).

The update steps 2(ii) and 3(ii) move one extreme point of the polyhedron ΞA to the scenario

set ΞS . Ideally, we would transfer the extreme point that leads to the greatest improvement

of the conservative and progressive bounds. To this end, we define the binding scenario set as

Ξ?A = {ξ ∈ ext ΞA : T (ξ)x + Wy(ξ) 6> h(ξ) − ve} in the feasibility phase and as Ξ?A = {ξ ∈

ext ΞA : T (ξ)x + Wy(ξ) 6> h(ξ)} in the optimality phase. We now show that we can restrict

ourselves to these binding scenarios in the update steps.

Observation 1 (Binding Scenarios). For any scenario set ΞS ⊆ ext Ξ, the binding scenario set Ξ?A

satisfies the following two properties.

(i) If ξ? /∈ Ξ?A, then the update ΞS ← ΞS∪{ξ?} and ΞA ← conv ([ext ΞA]\{ξ?}) does not improve

the objective value of the conservative approximation P(ΞS).

(ii) If Ξ?A = ∅, then P(ΞS) = P(ΞS).
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Proof of Observation 1. We prove both statements for the optimality problem in Step 3 of our

primal-dual lifting scheme; similar arguments apply to the feasibility problem in Step 2.

As for the first statement, let (x,yA,yS) be an optimal solution to the conservative approxi-

mation P(ΞS) in Step 3(i), and assume that yA(ξ) = YAξ + yA for all ξ ∈ ΞA. Fix a non-binding

scenario ξ? ∈ ext ΞA \Ξ?A, and assume to the contrary that P(Ξ′S) < P(ΞS) for the bounding prob-

lem P(Ξ′S), Ξ′S = ΞS ∪{ξ?}, that results from lifting the scenario ξ?. Let (x′,y′A,y
′
S) be an optimal

solution to the lifted problem P(Ξ′S), and assume that y′A(ξ) = Y ′Aξ+ y′A for all ξ ∈ Ξ′A. Consider

the convex combinations x̂ = λx + (1 − λ)x′, ŷA(ξ) = [λYA + (1 − λ)Y ′A] ξ + [λyA + (1 − λ)y′A],

ξ ∈ ΞA, and ŷS(ξ) = λyS(ξ) + (1−λ)y′S(ξ), ξ ∈ ΞS . We show that for λ ↑ 1, (x̂, ŷA, ŷS) is feasible

in the conservative approximation P(ΞS). Since q>x̂ < q>x, this would contradict the optimality

of (x,yA,yS) in P(ΞS).

We first note that for all ξ ∈ ΞS , we have

T (ξ) x̂+WŷS(ξ) ≥ h(ξ) ⇐⇒ T (ξ)
[
λx+ (1− λ)x′

]
+W

[
λyS(ξ) + (1− λ)y′S(ξ)

]
≥ h(ξ)

⇐⇒ λ [T (ξ)x+WyS(ξ)] + (1− λ)
[
T (ξ)x′ +Wy′S(ξ)

]
≥ h(ξ),

and the last inequality holds since T (ξ)x+WyS(ξ) ≥ h(ξ) and T (ξ)x′ +Wy′S(ξ) ≥ h(ξ) for all

ξ ∈ ΞS by construction. Similarly, we observe that for all ξ ∈ ΞA, we have

T (ξ) x̂+WŷA(ξ) ≥ h(ξ)

⇐⇒ T (ξ)
[
λx+ (1− λ)x′

]
+W

[
λ(YAξ + yA) + (1− λ)(Y ′Aξ + y′A)

]
≥ h(ξ)

⇐⇒ λ [T (ξ)x+W (YAξ + yA)] + (1− λ)
[
T (ξ)x′ +W (Y ′Aξ + y′A)

]
≥ h(ξ).

The last inequality holds for all ξ ∈ ext Ξ′A since T (ξ)x+WyA(ξ) ≥ h(ξ) and T (ξ)x′+Wy′A(ξ) ≥

h(ξ) for all ξ ∈ ext Ξ′A by construction. We furthermore observe that T (ξ?) x̂+WŷA(ξ?) ≥ h(ξ?)

for all λ sufficiently close to 1 since T (ξ?)x +W (YAξ
? + yA) > h(ξ?) by assumption. We thus

conclude that T (ξ) x̂+WŷA(ξ) ≥ h(ξ) for all ξ ∈ ext ΞA as long as λ sufficiently close to 1. The

linearity of T , ŷA and h then implies that T (ξ) x̂+WŷA(ξ) ≥ h(ξ) for all ξ ∈ ΞA as desired.

In view of the second statement, we note that if Ξ?A = ∅, then we can remove from the conser-

vative approximation P(ΞS) all constraints involving the realizations ξ ∈ ΞA without changing the
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optimal value of the problem. The dual of this reduced problem can be interpreted as an instance of

the progressive approximation P(ΞS) where λA(ξ) = 0 for all ξ ∈ ΞA. Strong linear programming

duality holds since P(ΞS) is feasible by construction. The statement then follows since the dual of

the reduced problem is a restriction of the progressive approximation P(ΞS) that attains the same

optimal value as the conservative approximation P(ΞS).

The first property of Observation 1 implies that the update steps 2(ii) and 3(ii) only need to

consider the scenarios ξ? of the binding scenario set Ξ?A. The second property guarantees that the

binding scenario set is never empty: If Ξ?A was empty in Step 2(ii), then P(ΞS) = P(ΞS) in Step

2(i), which implies that the algorithm would have either proceeded with Step 3 (if both bounds are

zero) or terminated (if both bounds are positive). A similar reasoning applies if Ξ?A was empty in

Step 3(ii). We note that the crucial role of binding scenarios has previously been recognized in the

context of uncertainty set partitioning approaches, see [13], [49] and [52].

Observation 1 does not specify which scenario ξ? ∈ Ξ?A to lift. A natural approach to determine

candidate scenarios ξ? ∈ Ξ?A to lift is to fix the optimal solution to the current bounding problem

P(ΞS) and determine one binding scenario for each constraint by minimizing the constraint’s slack

over all ξ ∈ ΞA. This requires the solution of a linear program for each constraint. Any of the

binding scenarios thus identified is a candidate for the lifting in Steps 2(ii) and 3(ii) of the algorithm.

We describe a more elaborate selection heuristic in our numerical example in Section 5.2.

The updates of the affine set ΞA in Steps 2(ii) and 3(ii) guarantee that ΞA = conv ([ext Ξ] \ΞS)

throughout the algorithm. The update steps are intimately related to the ‘Forbidden Vertices Prob-

lem’ [3], which optimizes a linear function over all but a few designated vertices of a polyhedron.

The update steps can be implemented without enumerating all vertices of ΞA. To this end, we de-

termine the neighbouring extreme points of ξ? in ΞA, N(ξ?), for example through simplex pivoting

steps [28]. We then determine the halfspaces defining convN(ξ?) via facet enumeration [51], and

we add those halfspaces of convN(ξ?) to the description of ΞA that do not contain the extreme

point ξ? to be removed. Figure 2 illustrates our update procedure.

We are now ready to prove the correctness of our iterative solution scheme.

Theorem 2 (Finite Convergence). The algorithm terminates in finite time, and it either determines

an optimal solution to P or it correctly identifies infeasibility or unboundedness of the problem.
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⇠? ⇠? ⇠?

Figure 2. Illustration of the update step in R3. On the left, the circular vertex ξ? to
be removed from the distorted diamond has the four square vertices as neighbours. The
middle polyhedron illustrates convN(ξ?), the convex hull of these neighbours. Out of
the four halfspaces defining this convex hull, the two upper do not contain ξ? and are
thus added to the updated description of ΞA on the right.

Proof of Theorem 2. We first show that the algorithm terminates after at most |ext Ξ| executions

of the solution steps 2(i) and 3(i). Indeed, assume to the contrary that the algorithm would execute

Steps 2(i) and 3(i) more than |ext Ξ| times. During each execution of the update steps 2(ii) and

3(ii), one extreme point of the affine set ΞA is transferred to the scenario set ΞS . Thus, after

|ext Ξ| executions of the update steps, the bounding problems in the solution steps 2(i) and 3(i)

become P(ext Ξ) and P(ext Ξ). Since the feasibility and optimality bounding problems are feasible

by construction, we must have P(ext Ξ) = P(ext Ξ). In that case, however, either P(ext Ξ) > 0 in

Step 2(i) or one of the two termination criteria in Step 3(i) is met.

If the algorithm terminates because P(ΞS) > 0 in Step 2(i), then there is no solution (x,y, v)

to the progressive bound P(ΞS) such that x and y satisfy T (ξ)x +Wy(ξ) ≥ h(ξ) for all ξ ∈ Ξ.

Proposition 3 then implies that there is no solution (x,y) to problem P that satisfies T (ξ)x +

Wy(ξ) ≥ h(ξ) for all ξ ∈ Ξ, that is, problem P is indeed infeasible.

Assume now that the algorithm terminates because P(ΞS) unbounded in Step 3(i). By Proposi-

tion 2, any feasible solution to P(ΞS) can be transformed into a feasible solution to P that achieves

the same objective value. We thus conclude that problem P is unbounded as well.

Finally, assume that the algorithm terminates because P(ΞS) = P(ΞS) in Step 3(i). Since the

bounding problems are feasible by construction, Propositions 2 and 3 imply that

P(ΞS) ≥ P(ext Ξ) = P = P(ext Ξ) ≥ P(ΞS),
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where we denote by P the optimal value of problem P. Since P(ΞS) = P(ΞS), however, we know

that the optimal values of all these problems coincide. Proposition 2 then allows us to transform

any optimal solution to P(ΞS) into an optimal solution to problem P.

The runtime of the algorithm is determined by (i) the number of iterations (i.e., the number of

times that Steps 2 and 3 are executed), (ii) the size of the bounding problems P(ΞS) and P(ΞS)

in each iteration, (iii) the complexity of selecting the scenario ξ? ∈ Ξ?A to be removed, (iv) the

complexity of the update ΞA ← conv ([ext ΞA] \ {ξ?}) and (v) the computation of the moment

matrices ΣA. The algorithm performs up to |ext Ξ| iterations in the worst case, and an upper

bound for this number is provided in Section 2. The complexity of the bounding problems, as

well as the selection of ξ? ∈ Ξ?A, primarily depends on the description of the intermediate sets ΞA,

which has been discussed in Section 2.1. For our lifting method, the time required for the update

ΞA ← conv ([ext ΞA] \ {ξ?}) is determined by:

(i) The size of N(ξ?): This quantity depends on the degeneracy of ξ? in ΞA. If k+σ constraints

of ΞA are binding at ξ?, then ξ? has at most

(
k + σ
k − 1

)
(`−k−σ) neighbours, where ` denotes

the number of constraints that describe ΞA. In the worst case, each vertex of ΞA is a neighbour

of ξ?, which is the case if ΞA is 2-neighbourly. The primal upper bound theorem implies that

convN(ξ?) can consist of up to

(
|N(ξ?)| − dk/2e

bk/2c

)
+

(
|N(ξ?)| − 1− d(k − 1)/2e

b(k − 1)/2c

)
halfspaces,

and this bound is attained by primal cyclic polytopes [51].

(ii) The complexity of computing the convex hull convN(ξ?): This convex hull can be computed

in time O(|N(ξ?)|bk/2c).

It can be shown that even when a single scenario ξ? is lifted, our description of ΞA = conv ([ext ΞA]\

{ξ?} can grow exponentially [3, Proposition 5]. While there are lifted formulations of ΞA that only

grow quadratically if a single scenario is lifted [3, Proposition 6], it is known that optimizing a

linear function over ΞA after a flexible (i.e., not a priori fixed) number of scenarios has been lifted

is NP-hard [3, Theorem 11] for generic polyhedral uncertainty sets. On the other hand, for special

classes of uncertainty sets, such as uncertainty sets with 0-1 vertices, the same problem is solvable

in polynomial time if a suitable lifted formulation of ΞA is used [3, §3]. The initial moment matrix

ΣA, finally, can often be computed efficiently, see the appendix, and updating ΣA only requires to

subtract the (outer product of the) scenario ξ? ∈ Ξ?A that is removed in each iteration.
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We close this section by outlining possible extensions of our iterative solution scheme.

Remark 4 (Discrete Here-and-Now Decisions). Theorem 2 does not exploit any specific properties

of the here-and-now decisions x, and our primal-dual lifting scheme therefore immediately carries

over to the mixed-integer two-stage robust optimization problem Pd. Observation 1, on the other

hand, crucially relies on the convexity in x, and one can construct counterexamples where lifting a

non-binding scenario results in an improved bound. Thus, in the presence of discrete here-and-now

decisions we can no longer restrict ourselves to lifting scenarios ξ? ∈ Ξ?A.

Remark 5 (Other Extensions). The algorithm can be altered in several ways. For example, the

progressive and conservative bounding problems in Steps 2(i) and 3(i) could involve multiple affine

sets ΞA,1, . . . ,ΞA,s, or they could assign piecewise affine decision rules to the realizations ξ ∈ ΞA.

If convergence to an optimal solution is not required, then the affine set ΞA could be replaced with

outer approximations of conv ([ext Ξ] \ ΞS) without affecting the validity of the bounds. This is

advantageous if these outer approximations have compact descriptions, as is the case for Löwner-

John ellipsoids [40], for example. One could also transfer multiple extreme points to ΞS in Steps

2(ii) and 3(ii), and it might be advantageous to transfer extreme points back to ΞA. Finally, one

could envision lifting different extreme points for the primal and the dual bounds.

4 Relation to Piecewise Affine Decision Rules

While a feasible solution (x,yA,yS) to the conservative approximation P(ΞS) provides an imple-

mentable first-stage decision, it only provides implementable recourse decisions for the parameter

realizations ξ ∈ ΞA ∪ ΞS . This is of no concern for most applications, where only the first-stage

decision will be implemented. In some situations, however, an implementable recourse decision

y(ξ) for the two-stage robust optimization problem P might be required here-and-now for every

ξ ∈ Ξ. This is frequently the case in real-time control applications, where there is not enough time

to solve optimization problems to determine the recourse actions, as well as in embedded systems

that lack the processing power or energy supply to solve optimization problems. In this section,

we therefore elaborate how the second-stage decision (yA,yS) of a feasible solution (x,yA,yS) to

P(ΞS) can be transformed into a decision rule y : Ξ 7→ Rn2 that prescribes implementable recourse
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decisions to P for all ξ ∈ Ξ. Along the way, we will discover some insightful connections between

our lifting scheme and the piecewise affine decision rules studied in [24, 25, 31, 32] and others.

We define the graph of a decision rule y : Ξ 7→ Rn2 as

gr y =

{(
ξ
y(ξ)

)
: ξ ∈ Ξ

}
.

By construction, gry is uniquely specified through y and vice versa. We also define the recourse

set of a second-stage decision (yA,yS) in problem P(ΞS) as

rec (yA,yS) = conv

({(
ξ

yA(ξ)

)
: ξ ∈ ΞA

}
∪

{(
ξ

yS(ξ)

)
: ξ ∈ ΞS

})
.

To economize on notation, we omit the dependence of rec (yA,yS) on ΞA and ΞS . Intuitively

speaking, rec (yA,yS) constitutes the convex hull of the graphs gryA and gryS , restricted to their

respective domains ΞA and ΞS . We now show that rec (yA,yS) contains those recourse decisions y

to the two-stage problem P that correspond to the second-stage decision (yA,yS) in P(ΞS).

Proposition 4. If (x,yA,yS) is feasible in P(ΞS), then for any decision rule y : Ξ 7→ Rn2 satisfying

gry ⊆ rec (yA,yS), (x,y) is feasible in P and attains the same objective value as (x,yA,yS)

in P(ΞS).

Proof of Proposition 4. It is clear that (x,y) attains the same objective value in P as (x,yA,yS)

does in P(ΞS). We now show that (x,y) is feasible in P. One readily verifies that

ext rec (yA,yS) =

{(
ξ′

yA(ξ′)

)
: ξ′ ∈ ext ΞA

}
∪

{(
ξ′

yS(ξ′)

)
: ξ′ ∈ ΞS

}
,

and since gry ⊆ rec (yA,yS), by construction, for every ξ ∈ Ξ there is a function λ : ext Ξ 7→ R+

that satisfies
∑

ξ′∈ext Ξ λ(ξ′) = 1 and

(
ξ
y(ξ)

)
=

∑
ξ′∈ext ΞA

λ(ξ′)

(
ξ′

yA(ξ′)

)
+

∑
ξ′∈ΞS

λ(ξ′)

(
ξ′

yS(ξ′)

)
. (2)
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Figure 3. For ΞA = conv {ξ1, . . . , ξ4} and ΞS = {ξ5} in the shaded plane, the recourse
set rec (yA, yS) is shown as the light-shaded pyramid. Its darker shaded bottom represents
yA(ΞA) = {yA(ξ) : ξ ∈ ΞA}.

We thus obtain that

T (ξ)x+Wy(ξ)

= T

 ∑
ξ′∈ext ΞA

λ(ξ′) ξ′ +
∑

ξ′∈ΞS

λ(ξ′) ξ′

 x+Wy

 ∑
ξ′∈ext ΞA

λ(ξ′) ξ′ +
∑

ξ′∈ΞS

λ(ξ′) ξ′


=

∑
ξ′∈ext ΞA

λ(ξ′)T (ξ′)x+
∑

ξ′∈ΞS

λ(ξ′)T (ξ′)x+W

 ∑
ξ′∈ext ΞA

λ(ξ′)yA(ξ′) +
∑

ξ′∈ΞS

λ(ξ′)yS(ξ′)


=

∑
ξ′∈ext ΞA

λ(ξ′)
[
T (ξ′)x+WyA(ξ′)

]
+

∑
ξ′∈ΞS

λ(ξ′)
[
T (ξ′)x+WyS(ξ′)

]

≥
∑

ξ′∈ext ΞA

λ(ξ′)h(ξ′) +
∑

ξ′∈ΞS

λ(ξ′)h(ξ′) = h

 ∑
ξ′∈ext ΞA

λ(ξ′) ξ′ +
∑

ξ′∈ΞS

λ(ξ′) ξ′

 = h(ξ),

where the first, the second and the last identity are due to (2) and the fact that T and h are affine,

and the inequality holds because of the feasibility of (x,yA,yS) in P(ΞS).

Figure 3 illustrates the recourse set of a one-dimensional recourse decision. Interestingly, the

reverse implication of Proposition 4 does not hold in general. In fact, the next example shows that

there can be feasible solutions (x,y) to problem P for which gry 6⊆ rec (yA,yS) for every feasible

solution (x,yA,yS) to every conservative approximation P(ΞS) of P.
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Example 2. Consider the two-stage robust optimization problem

minimize x

subject to x ≥ y(ξ)

y(ξ) ≥ ξ, y(ξ) ≥ −ξ

 ∀ξ ∈ [−1, 1].
(3)

For every scenario set ΞS ⊆ {−1, 1}, the unique optimal solution (x, yA, yS) to P(ΞS) satisfies

x = 1 and rec (yA, yS) = [−1, 1] × {1}. Problem (3) is optimized, however, by x = 1 and every

decision rule y : [−1, 1] 7→ R+ satisfying y(ξ) ∈ [|ξ|, 1].

The question naturally arises which decision rule from within rec (yA,yS) we should select. A

subclass of decision rules that are of special interest are piecewise affine decision rules y : Ξ 7→ Rn2

for which there is a partition of Ξ into finitely many polyhedra Ξ1, . . . ,ΞL such that y is affine

on each Ξ`, ` = 1, . . . , L. It turns out that piecewise affine decision rules are intimately related

to simplicial decompositions of Ξ, which are subdivisions of Ξ into finitely many k-dimensional

simplices that only intersect at their boundaries and whose union recovers Ξ.

Proposition 5. Consider a scenario set ΞS ⊆ ext Ξ as well as the second-stage decisions yA :

ΞA 7→ Rn2 and yS : ΞS 7→ Rn2. Then:

(i) For every piecewise affine decision rule y : Ξ 7→ Rn2 with gry ∈ rec (yA,yS), there is a

simplicial decomposition {Ξ`}` of Ξ such that y is affine on every simplex Ξ`.

(ii) For every simplicial decomposition {Ξ`}` of Ξ, there is a decision rule y : Ξ 7→ Rn2 with

gry ∈ rec (yA,yS) such that y affine on every simplex Ξ`.

Proof of Proposition 5. As for the first statement, there is a partition {Ξ̂`}` of Ξ into polyhedra

such that y is affine over each Ξ̂`. Fix a simplicial decomposition {Ξ`,`′}`′ for each polyhedron Ξ̂`.

Then y is also affine over the simplicial decomposition {Ξ`,`′}`,`′ of Ξ.

In view of the second statement, fix any simplicial decomposition {Ξ`}` of Ξ, as well as

y(ξ′) ∈

{
y ∈ Rn2 :

(
ξ′

y

)
∈ rec (yA,yS)

}
for ξ′ ∈

⋃
`

ext Ξ`, (4)

where
⋃
` ext Ξ` constitutes the set of all corner points of the simplices Ξ` in the simplicial de-

composition. For each simplex Ξ`, we set y(ξ) =
∑

ξ′∈ext Ξ`
λ(ξ; ξ′) · y(ξ′) for all remaining points

24



ξ ∈ Ξ` \ (ext Ξ`), where λ : Ξ` × ext Ξ` 7→ R+ is the unique weighting function that satisfies

∑
ξ′∈ext Ξ`

λ(ξ; ξ′) = 1 and
∑

ξ′∈ext Ξ`

λ(ξ; ξ′) · ξ′ = ξ ∀ξ ∈ Ξ`,

that is, λ(ξ; ·) are the barycentric coordinates of ξ in Ξ`. The statement now follows if

(
ξ
y(ξ)

)
∈ rec (yA,yS) ∀ξ ∈ Ξ`.

Due to (4), this holds for ξ ∈ ext Ξ`. Moreover, for ξ ∈ Ξ` \ (ext Ξ`) we have

(
ξ
y(ξ)

)
=

∑
ξ′∈ext Ξ`

λ(ξ; ξ′) ·

(
ξ′

y(ξ′)

)
∈ rec (yA,yS),

where the membership follows from (4) and the convexity of rec (yA,yS). Since the simplex Ξ` was

chosen arbitrarily, we thus conclude that gry ⊆ rec (yA,yS).

Propositions 4 and 5 allow us to complete any feasible solution (x,yA,yS) in problem P(ΞS) to

a feasible solution (x,y) in problem P that attains the same objective value and that is piecewise

affine over any fixed simplicial decomposition {Ξ`}` of Ξ. To construct a piecewise affine decision

rule with a compact description, we propose to combine the affine decision rule yA over ΞA with a

piecewise affine decision rule over Ξ\ΞA that is affine on every simplex of a simplicial decomposition

of cl (Ξ \ ΞA). Note that cl (Ξ \ ΞA) = conv
(
ΞS ∪

⋃
{N(ξ) : ξ ∈ ΞS}

)
, where N(ξ) denotes the

neighbouring extreme points of ξ. A simplicial decomposition of cl (Ξ \ ΞA) can be found with

standard triangulation schemes [23].

5 Numerical Experiments

We now analyze the computational performance of our primal-dual lifting scheme from Section 3 in

the context of two illustrative examples (Section 5.1) as well as an inventory management problem

(Section 5.2). In our experiments, we will assess the scalability of our algorithm in terms of the

problem size (measured by the number of decision variables and constraints) and the number of

uncertain problem parameters. We will also investigate to which degree the different components
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Technique Convergence Recourse Uncertainty Sets Subproblems

Primal-Dual lifting of finite generic specific classes convex hulls & LPs
uncertainty set

FME & SB elimination of finite generic† generic polyhedra elimination & LPs
second-stage decisions

Zeng & Zhao column-and-constraint finite rel. compl. generic polyhedra MILPs
generation

ADR & SB (piecewise) none generic† generic polyhedra LPs
affine decision rules

SB-Heuristic scenario sampling none rel. compl. generic polyhedra MILPs

† with the exception of [12] which requires relatively complete recourse.

Table 1. Comparison of our method (‘Primal-Dual’) with the Fourier-Motzkin elimi-
nation approach proposed by Zhen et al. [63] (‘FME & SB’), the column-and-constraint
generation scheme due to Zeng and Zhao [61] (‘Zeng & Zhao’), the piecewise linear de-
cision rules [9, 31, 43] combined with the progressive bounds provided by Hadjiyiannis
et al. [37] or Bertsimas and de Ruiter [12] (‘ADR & SB’), as well as a sampling-based
heuristic (‘SB-Heuristic’).

of our algorithm add to the algorithm’s runtime, and we will explore how the conservative bounds

from Section 2.1 and the progressive bounds from Section 2.2 contribute to the optimality gap.

A secondary objective of this section is to compare our algorithm with some of the state-

of-the-art solution approaches for two-stage robust optimization problems. To this end, we will

compare our solution scheme with the conservative bounds offered by linear and piecewise linear

decision rules [9, 31, 43], the progressive bounds provided by Hadjiyiannis et al. [37] and Bertsimas

and de Ruiter [12], the solution of the (exact) extreme point reformulation P ′, the column-and-

constraint generation scheme due to Zeng and Zhao [61] as well as the Fourier-Motzkin elimination

approach proposed by Zhen et al. [63]. We also compare our algorithm against a sampling-based

heuristic derived from the progressive bounds of Hadjiyiannis et al. [37], which we describe further

below. Table 1 compares the guarantees offered by these approaches, as well as their underlying

assumptions. While the pitfalls of drawing conclusions from a small test set are well-known, we

hope to generate some insights into the intricate relationship between the characteristics of problem

P and the suitability of the different solution schemes.

All optimization problems in this section were solved in single-threaded mode with the Gurobi

7.5 optimization package (see http://www.gurobi.com) on a 2.9GHz computer with 8GB RAM.

Our C++ implementation of the primal-dual lifting scheme uses the LRS package for vertex and
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Figure 4. Illustration of the piecewise affine decision rules y1(ξ) corresponding to the
optimal primal solutions (x,yA,yS) in every iteration of our lifting scheme. From left to
right, the optimal objective values of P(∅) are 6, 6, 5, 4.86 and 4.

facet enumeration (see http://cgm.cs.mcgill.ca/∼avis/C/lrs.html).

5.1 Illustrative Examples

We adapt two examples from the literature to illustrate the structure of the piecewise affine decision

rules of our lifting approach (Section 5.1.1), and we show how the affine decision rules λA in the

dual problem P(ΞS) can contribute to the tightness of the lower bounds (Section 5.1.2).

5.1.1 Worst-Case Value of a Sum-of-Max Function

We consider the following adaptation of the example (TOY2) from [33]:

minimize τ

subject to τ ≥ e>y(ξ)

y1(ξ) ≥ max{x, x+ ξ1 + ξ2}

y2(ξ) ≥ max{x, x+ ξ1 − ξ2}

y3(ξ) ≥ max{x, x− ξ1 + ξ2}

y4(ξ) ≥ max{x, x− ξ1 − ξ2}


∀ξ ∈ Ξ

τ, x ∈ R+, y : Ξ 7→ R4

In this problem, we set the uncertainty set to Ξ = {ξ ∈ [−2, 2]2 : ‖ξ‖1 ≤ 3}. The problem is

optimized by the here-and-now decisions (τ?, x?) = (4, 0).

The uncertainty set Ξ satisfies |ext Ξ| = 8. If we lift one of the binding scenarios ξ? ∈ Ξ?A

randomly in each iteration, then our lifting scheme converges after 5 iterations. Figure 4 visualizes
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the piecewise affine decision rules y1(ξ) corresponding to the optimal primal solutions (x,yA,yS) in

every iteration of our lifting scheme. The initial dual bound P(∅) has an optimal objective value of

3.33, and the dual bound attains the optimal objective value 4 of the two-stage robust optimization

problem after lifting any single extreme point ξ ∈ ext ΞA.

5.1.2 Worst-Case Makespan of a Temporal Network

We now employ the two-stage robust optimization problem P to estimate the worst-case makespan

of a temporal network (e.g., a project, a digital circuit or a production process). To this end, we

define a temporal network as a directed, acyclic graph G = (V,E) whose nodes V = {1, . . . , n}

represent the tasks and whose arcs E ⊂ V ×V denote the temporal precedences between the tasks.

We assume that the duration di(ξ) of each task i ∈ V depends on the uncertain problem parameters

ξ ∈ Ξ. Moreover, we assume that the start times of the tasks i ∈ V0 ⊆ V have to be chosen here-

and-now, that is, before the realizations of the uncertain parameters ξ are observed. This could be

required to synchronize the network with other projects, circuits or production processes.

The problem is a variant of model (1) in [58], and it can be formulated as

minimize τ

subject to τ ≥ yn(ξ) + dn(ξ)

yj(ξ) ≥ yi(ξ) + di(ξ) ∀(i, j) ∈ E

yi(ξ) = xi ∀i ∈ V0

 ∀ξ ∈ Ξ

τ ∈ R+, xi ∈ R+, i ∈ V0, y : Ξ 7→ Rn+.

In this formulation, the wait-and-see decisions yi(ξ) capture the start times of the tasks i ∈ V ,

the epigraphical here-and-now decision τ records the worst-case makespan of the network, and the

here-and-now decisions xi correspond to the static start times of the restricted tasks i ∈ V0. The

presence of the restricted tasks i ∈ V0 implies that the problem has no relatively complete recourse.

We apply our primal-dual lifting scheme to the temporal network in Figure 5. We also present

a variant of our dual bound P(ΞS) where we fix all affine decisions to λA(ξ) = 0 for all ξ ∈ ΞA.

This variant, which we refer to as ‘sampling bound’, can be interpreted as an extension of the

sampling bound in [37] that iteratively grows the scenario set ΞS (see Remark 3). The results of

both methods are shown in Figure 6. Our approach converges to the optimal objective value of the
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Figure 5. Temporal network with 21 tasks and 26 precedences. The durations di(ξ) are
displayed above the tasks i ∈ V , and the uncertainty set is Ξ = {ξ ∈ R9 : ‖ξ − e/2‖1 ≤
1/2}. The start times of the tasks 1, 8 and 15 have to be selected here-and-now.
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Figure 6. Results of our primal-dual lifting scheme (top two blue lines) and the sampling
bound (bottom orange line) applied to the temporal network in Figure 5.

two-stage robust optimization problem P after 6 out of |ext Ξ| = 18 possible iterations. The less

flexible sampling bound requires 9 iterations to converge in this example.

5.2 Case Study: Inventory Management

We consider an inventory management problem with n products whose demands Di(ξ), i = 1, . . . , n,

are governed by the uncertain risk factors ξ ∈ Rk. The demand for product i can be served through

a standard order xi (with unit cost cx), which has to be placed before the demand is known, or

through an express order yi (with unit cost cy > cx), which can be submitted after the demand

has been observed. Any excess inventory hi(ξ) and any backlogged demand bi(ξ) in the second

period incurs unit costs of ch and cb, respectively, and the express orders across all products must not

exceed B units. The objective is to determine an ordering policy that minimizes the worst-case sum
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of the ordering, inventory holding and backlogging costs over all anticipated demand realizations.

The problem can be formulated as the following instance of problem P:

minimize τ

subject to τ ≥ e> [cx · x+ cy · y(ξ) + ch · h(ξ) + cb · b(ξ)]

h(ξ) ≥ x+ y(ξ)−D(ξ)

b(ξ) ≥D(ξ)− x− y(ξ)

e>y(ξ) ≤ B


∀ξ ∈ Ξ

x ∈ Rn+, y,h, b : Ξ 7→ Rn+

(5)

Here, the epigraphical variable τ records the worst-case costs over all demand realizations. Note

that we model the second-stage decisions y, h and b as functions of the (typically unobservable)

risk factors, as opposed to functions of the (eventually observable) product demands D(ξ). This

simplification is justified since by construction, no optimal solution to problem (5) will take different

second-stage decisions for different realizations of the risk factors ξ that give rise to the same product

demands D(ξ). Thus, we can always convert the optimal second-stage decisions in problem (5) to

equivalent implementable decisions that only depend on the product demands D(ξ).

We assume that the n products are grouped into b
√
nc different product categories such that

each category contains between b
√
nc and d

√
ne+ 1 products. The product demands are governed

by a factor model of the form

Di(ξ) = φ>i ξ + ϕi, i = 1, . . . , n, with ξ ∈ Ξ = [−1, 1]k.

For each product i = 1, . . . , n, we choose the factor loading vector φi ∈ Rk uniformly at random

from [−1, 1]k and subsequently scale it so that {φ>i ξ + ϕi : ξ ∈ Ξ} = [0, 2] for a suitably chosen

scalar ϕi ∈ R. Moreover, we ensure that the factor loading vectors φi, φj associated with two

products i, j of the same category have the same signs (but typically not the same values) for each

component, that is, sgn(φil) = sgn(φjl) for all l = 1, . . . , k. This expresses the assumption that

the demands for products of the same category are positively correlated. We fix cx = 0 and select

cy uniformly at random from [0, 2]. Thus, we interpret the standard orders as sunk costs, and we

aim to minimize the amount of express deliveries, which carry a per-unit premium of cy over the

standard orders. We select the inventory holding and backlogging costs uniformly at random from
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Figure 7. Inventory Management: Comparison of our solution scheme and the
affine decision rule approximation combined with the sampling bound of [37] for small
(left), medium (middle) and large (right) instances. The dashed (bold) line represents
the median, the dark red (dark gray) region the range spanned by the first and third
quartile, and the light red (light gray) region the range spanned by the 10% and 90%
quantile of the relative distances of the upper and lower bounds of our solution scheme
(the affine decision rules combined with the sampling bound).

[3, 5], and we set the upper bound on the express deliveries to B = n. We found this parameter

choice to be particularly challenging for affine decision rules, which can otherwise be close to optimal

in inventory management problems [9].

To select the binding scenario ξ? ∈ Ξ?A to lift in each iteration of our primal-dual lifting scheme,

we fix the optimal solution to the bounding problem P(ΞS) and determine one binding scenario

for each constraint by minimizing the constraint’s slack over all ξ ∈ ΞA. For each such scenario ξ?,

we solve the lifted lower bound problem P(Ξ′S), Ξ′S = ΞS ∪ {ξ?}, under the additional restriction

that λA(ξ) = 0 for all ξ ∈ Ξ′A. This restriction ensures that the lifted lower bound problem can

be solved without actually calculating Ξ′A. If the lifted lower bound problem P(Ξ′S) improves upon

P(ΞS) for any of the binding scenarios, then the binding scenario corresponding to the largest

improvement is lifted. Otherwise, for each of the identified binding scenarios, we solve the lifted

upper bound problem P(Ξ′S), Ξ′S = ΞS∪{ξ?}, and we lift the first scenario that improves the upper

bound. If no such scenario is found, then we lift one of the identified binding scenarios randomly.

We first investigate the scalability of our primal-dual lifting scheme as the number of products

and the number of uncertain parameters vary. The results are presented in Figure 7 and the first

part of Table 2. Each instance class is identified by the label ‘n-k’, where n denotes the number of

products and k refers to the number of uncertain parameters, respectively. The figure reports the

optimality gaps of (i) the upper and lower bounds of our solution scheme and (ii) the affine decision

rule approximation combined with the sampling bound of [37], both relative to the optimal solution
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Primal-Dual FME & SB Zeng & Zhao ADR & SB SB-Heuristic

Instance 10 min 1 hour 6 hours 10 min 1 hour 6 hours 10 min 1 hour 6 hours

10-10 2.6% 0.4% 0% 25.8% 25.8% 25.8% 0% 0% 0% 72.8% 16.3%

15-10 15.6% 9.1% 1.0% 37.6% 37.2% 37.2% 31.9% 0.1% 0% 79.3% 13.0%
15-15 44.5% 28.2% 21.6% 41.3% 40.1% 40.1% 108.4% 4.6% 0% 78.9% 15.3%

20-10 29.9% 13.7% 6.1% 45.6% 44.9% 43.8% - 52.3% 21.3% 82.3% 12.0%†

20-15 55.2% 39.6% 25.6% 51.7% 50.6% 48.8% - - 74.2% 90.4% 44.7%†

20-20 58.0% 55.9% 54.4% 52.5% 50.7% 50.7% - - 132.4% 73.6% 63.0%†

40-10 40.1% 26.2% 11.1% 56.8% 55.7% 55.7% - - - 85.6% 85.6%†

40-15 57.1% 53.3% 42.7% 64.9% 62.4% 62.4% - - - 90.1% 90.1%†

40-20 63.4% 61.8% 59.6% 70.6% 68.1% 67.4% - - - 80.0% 80.0%†

60-10 41.7% 33.3% 21.3% 67.9% 65.8% 65.8% - - - 94.0% 94.0%†

60-15 63.6% 57.9% 51.5% 69.5% 65.3% 65.3% - - - 84.1% 84.1%†

60-20 72.4% 67.1% 66.5% 74.5% 72.5% 72.5% - - - 86.5% 86.5%†

Table 2. Inventory Management: Overall optimality gaps of our method, the
Fourier-Motzkin elimination proposed by Zhen et al. [63], the column-and-constraint
generation of Zeng and Zhao [61], the affine decision rule approximation as well as the
sampling-based heuristic for various time limits and instance classes. Missing elements
indicate that no feasible solution has been obtained. ‘†’ indicates that the MILP for the
worst-case cost estimation has not been solved within six hours. We do not show the
runtimes for the affine decision rule approximation as the results were obtained within 1
minute for all instances.

of the inventory management problem. When the optimal solution has not been determined by

either method, we use the mean value of (i) the smaller of the two upper bounds and (ii) the

larger of the two lower bounds instead. The table reports the corresponding overall gaps, which we

define as the sums of the optimality gaps of the respective upper and lower bounds. All values are

averages over 25 randomly generated instances.

We observe that the affine decision rule approximation combined with the sampling bound

of [37] incurs a large optimality gap in all problem instances. We suspect that in this case study,

the sampling bound is consistently close to optimal, and that the optimality gap is caused by the

affine decision rule approximation. Our primal-dual lifting scheme can close the gap of the affine

decision rule approximation for small instances and significantly reduce the gap for larger instances.

While the performance of our algorithm deteriorates with both the number of products and the

number of uncertain parameters, the latter has a more pronounced impact on the efficacy of our

algorithm. Nevertheless, our method closes between 99% (15-10) and 23% (60-20) of the optimality

gap incurred by the affine decision rule approximation and the sampling bound.

Table 2 compares our method (‘Primal-Dual’) with the Fourier-Motzkin elimination approach

proposed by Zhen et al. [63] combined with the sampling bound of [37] (‘FME & SB’), the column-

32



and-constraint generation scheme of Zeng and Zhao [61] (‘Zeng & Zhao’), as well as the affine

decision rule approximation combined with the sampling bound of [37] (‘ADR & SB’). As a bench-

mark, we also report the results of a sampling-based heuristic (‘SB-Heuristic’) that solves the affine

decision rule problem, followed by the progressive approximation of [37] on all binding scenarios.

The here-and-now decision of the progressive approximation is feasible for the two-stage robust

optimization problem due to the relatively complete recourse. We subsequently evaluate the worst-

case cost of this decision using the subproblem of Zeng and Zhao’s approach [61], either exactly (if

it can be solved within six hours) or approximately (using the best bound obtained after six hours).

While our method is strongly affected by the number of uncertain parameters, the approach of Zeng

and Zhao is impacted primarily by the number of products. This is expected since each iteration of

their method requires the solution of a subproblem, which is a mixed-integer linear program whose

size scales with the number of products. The Fourier-Motzkin elimination, on the other hand,

is moderately affected by both the number of uncertain parameters and the number of products.

We have also solved the inventory management problem with the piecewise affine decision rules

proposed in [31]. We have not been able to obtain any noticeable improvements relative to the

results of the affine decision rules, which we attribute to the fact that it appears difficult to choose

appropriate breakpoints for the decision rules a priori. Moreover, we have attempted to replace

the sampling bound of [37] with the refined bound proposed in [12]. This has not led to significant

improvements either. This is in line with our earlier conjecture that the sampling bound of [37]

appears to be close to optimal in this problem. Finally, we have tried to solve the instances with

the extreme point reformulation P ′. For the given time limit of six hours, this reformulation could

only be solved for instances with 10 random variables.

We conclude that our primal-dual lifting scheme, the Fourier-Motzkin elimination approach and

the column-and-constraint generation scheme are complementary in the considered problem, and

each method can outperform the other two in some of the instances. It is noteworthy that the

methods can also be combined: We could, for example, combine the variable elimination steps of

the Fourier-Motzkin elimination with the parameter lifting steps of our scheme. Initial attempts

to do so have produced promising results in our numerical tests (not reported here).

Figure 8 shows the fractions of the runtime that are spent on the different steps of our primal-

dual lifting scheme. We observe that for instances with 10 and 15 random variables, most of the
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Figure 8. Inventory Management: Percentages of the overall runtime of our algo-
rithm (ordinate) that are spent on the different steps in each iteration (abscissa; normal-
ized to percentages). From bottom to top, the shaded areas represent the times spent
on solving the upper bound problems P(ΞS), solving the lower bound problems P(ΞS),
finding the neighbours of the extreme points ξ? ∈ Ξ?

A to be lifted, calculating the convex
hulls conv ([ext ΞA] \ {ξ?}) and the remaining overhead.

runtime is spent on the solution of the upper and lower bound problems P(ΞS) and P(ΞS). This is

due to the fact that our scenario selection scheme solves both of these problems for a large number

of scenarios in each iteration in order to determine the scenario ξ? ∈ Ξ?A to lift. For instances with

20 random variables, on the other hand, the calculation of the convex hull conv ([ext ΞA] \ {ξ?})

that is used to update the affine set ΞA dominates the runtime, especially in the later stages of the

algorithm. It therefore appears justified to carefully select the most promising scenario to lift in

each iteration of the algorithm. The identification of the neighbourhood N(ξ?), finally, consumes

a negligible amount of the overall time once the problem size grows.

5.3 Case Study: Inventory Management with Pre-Commitment

We now consider two variants of the inventory management problem from Section 5.2 that require

different types of pre-commitment to the express orders y(ξ) taken in the second stage. Both

pre-commitments are modeled as binary here-and-now decisions, and they thus result in two-stage

robust optimization problems with mixed-binary here-and-now decisions (see Remarks 1, 2 and 4).

In the first variant, the decision maker can choose the express order quantities y(ξ) freely in

the second stage, but she has to decide here-and-now which B = bn/4c of the n products will carry

reduced express order unit costs of cy/2 (instead of cy, as before). This variant of our inventory

34



management problem can be formulated as the following instance of the model Pd:

minimize τ

subject to
τ ≥ e> [cx · x+ o(ξ) + ch · h(ξ) + cb · b(ξ)]

h(ξ) ≥ x+ y(ξ)−D(ξ)

b(ξ) ≥D(ξ)− x− y(ξ)

o(ξ) ≥ cy
2
· y(ξ), o(ξ) ≥ cy · y(ξ)−M · z


∀ξ ∈ Ξ

e>z ≤ B

x ∈ Rn+, y,h, b,o : Ξ 7→ Rn+, z ∈ {0, 1}n

(6)

In this problem, the here-and-now decisions zi indicate whether the express order costs of product

i = 1, . . . , n are reduced to cy/2 (if zi = 1) or not (if zi = 0). At optimality, the auxiliary express

order cost variables o(ξ) will take the values oi(ξ) =
cy
2 · y(ξ) if zi = 1 and oi(ξ) = cy · y(ξ)

otherwise. Since cy ∈ [0, 2] and Di(ξ) ∈ [0, 2] for all ξ ∈ Ξ and i = 1, . . . , n, we can set M = 4.

Primal-Dual FME & SB Zeng & Zhao ADR & SB SB-Heuristic

Instance 10 min 1 hour 6 hours 10 min 1 hour 6 hours 10 min 1 hour 6 hours

10-10 0.03% 0% 0% 44% 41% 41% - 0.08% 0.08% 83% 36.7%

15-10 0.02% 0% 0% 43% 40% 40% - - - 56% 44.4%†

15-15 67% 52% 15% 60% 55% 55% - - - 84% 73.3%†

20-10 37% 22% 1.2% 72% 66% 53% - - - 77% 77%†

20-15 - 72% 66% 102% 96% 71% - - - 102% 102%†

20-20 - 61% 50% 72% 66% 51% - - - 71% 71%†

Table 3. Inventory Management with Pre-Commitment (1): The table has the
same interpretation as Table 2. We do not show the runtimes for the affine decision rule
approximation as the results were obtained within 10 minutes for all instances.

Table 3 compares our primal-dual lifting scheme with the alternative solution approaches on the

revised problem (6). Again, the extreme point reformulation P ′ could only be solved for instances

with 10 random variables within the given time limit of six hours. Apart from a general increase of

the optimality gaps, which is owed to the increased runtimes caused by the presence of the binary

variables, the results for the primal-dual lifting scheme and the Fourier-Motzkin elimination are

qualitatively similar to those of the previous section. The column-and-constraint generation scheme,

on the other hand, fails to provide useful bounds within the set time limit. A detailed inspection

of the algorithm’s progress revealed that the lack of progress is caused by the subproblems, whose

increased size (both in terms of the number of variables and the number of constraints) have made
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their (approximate) solution significantly more challenging for all but the smallest instances.

We finally consider a variant of the inventory management problem from Section 5.2 where the

decision maker has to decide here-and-now for which B = bn/2c of the n products she can submit

express orders in the second stage. This variant of our inventory management problem can be

formulated as the following instance of the model Pd:

minimize τ

subject to τ ≥ e> [cx · x+ cy · y(ξ) + ch · h(ξ) + cb · b(ξ)]

h(ξ) ≥ x+ y(ξ)−D(ξ)

b(ξ) ≥D(ξ)− x− y(ξ)

y(ξ) ≤M · z


∀ξ ∈ Ξ

e>z ≤ B

x ∈ Rn+, y,h, b : Ξ 7→ Rn+, z ∈ {0, 1}n

(7)

In this problem, there here-and-now decisions zi indicate whether express orders for product i =

1, . . . , n can be submitted (if zi = 1) or not (if zi = 0) in the second stage. Since Di(ξ) ∈ [0, 2] for

all ξ ∈ Ξ and i = 1, . . . , n, we can set M = 2.

Primal-Dual FME & SB Zeng & Zhao ADR & SB SB-Heuristic

Instance 10 min 1 hour 6 hours 10 min 1 hour 6 hours 10 min 1 hour 6 hours

10-10 27% 18% 0% 63% 63% 63% 0% 0% 0% 92% 16.9%

15-10 49% 22% 18% 61% 61% 59% 0.4% 0% 0% 79% 19.9%
15-15 76% 69% 52% 80% 80% 79% 19% 0% 0% 90% 21.8%

20-10 - 65% 56% 73% 73% 72% 86% 13% 0% 88% 31.3%
20-15 - - 71% 79% 79% 79% 85% 20% 3% 85% 36.6%
20-20 - - 71% 77% 77% 77% - 72% 7% 80% 34.4%

Table 4. Inventory Management with Pre-Commitment (2): The table has the
same interpretation as Table 2. We do not show the runtimes for the affine decision rule
approximation as the results were obtained within 10 minutes for all instances.

Table 4 compares our primal-dual lifting scheme with the alternative solution approaches on

the revised problem (7). As before, the extreme point reformulation P ′ could only be solved for

instances with 10 random variables within the given time limit of six hours, and the results for

the primal-dual lifting scheme and the Fourier-Motzkin elimination are qualitatively similar to the

previous ones. Interestingly, the column-and-constraint generation scheme performs much better

in this problem. Further investigation revealed that this is due to the subproblems, which simplify
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dramatically since (i) there are no additional second-stage decisions oi(ξ) and (ii) the binary here-

and-now decisions zi set n − B = bn/2c of the n express order decisions yi(ξ) to zero, which

essentially removes these decisions (as well as the associated constraints) from the subproblems.
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[24] X. Chen, M. Sim, P. Sun, and J. Zhang. A linear decision-based approximation approach to
stochastic programming. Operations Research, 56(2):344–357, 2008.

[25] X. Chen and Y. Zhang. Uncertain linear programs: Extended affinely adjustable robust coun-
terparts. Operations Research, 57(6):1469–1482, 2009.

[26] E. Delage and D. A. Iancu. Robust multistage decision making. INFORMS Tutorials in
Operations Research, pages 20–46, 2015.

38



[27] V. Gabrel, C. Murat, and A. Thiele. Recent advances in robust optimization: An overview.
European Journal of Operational Research, 235(3):471–483, 2014.

[28] T. Gal. Degeneracy graphs: Theory and application an updated survey. Annals of Operations
Research, 46(1):81–105, 1993.

[29] C. Gauvin, E. Delage, and M. Gendreau. A stochastic program with tractable time series and
affine decision rules for the reservoir management problem. Available on Optimization Online,
2018.

[30] A. Georghiou, A. Tsoukalas, and W. Wiesemann. Robust dual dynamic programming. Avail-
able on Optimization Online, 2016.

[31] A. Georghiou, W. Wiesemann, and D. Kuhn. Generalized decision rule approximations for
stochastic programming via liftings. Mathematical Programming, 152(1):301–338, 2015.

[32] J. Goh and M. Sim. Distributionally robust optimization and its tractable approximations.
Operations Research, 58(4):902–917, 2010.

[33] B. L. Gorissen and D. den Hertog. Robust counterparts of inequalities containing sums of
maxima of linear functions. European Journal of Operational Research, 227(1):30–43, 2013.
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A Appendix: Moment Matrices for Common Uncertainty Sets

This appendix elaborates on the calculation of the moment matrix ΣA in the dual problem P(ΞS).

We first present the moment matrices ΣA of several commonly used primitive uncertainty sets in

Section A.1. Afterwards, Section A.2 shows how a moment matrix changes if particular classes of

transformations are applied to an uncertainty set.

A.1 Primitive Uncertainty Sets

In the following, we list the moment matrices ΣA of several commonly used primitive uncertainty

sets. Since the derivations are basic but tedious, we omit them for the sake of brevity. In the

following, we denote by bxc and dxe the largest (smallest) integer less than or equal to (larger than

or equal to) x ∈ R.

A.1.1 1-Norm Ball Uncertainty Sets

For a 1-norm ball uncertainty set of the form

Ξ =
{
ξ ∈ Rk : ‖ξ‖1 ≤ 1

}
,

the set of extreme points satisfies

ext
{
ξ ∈ Rk : ‖ξ‖1 ≤ 1

}
= ext

{
ξ ∈ Rk :

k∑
i=1

|ξi| ≤ 1

}
=
{
±ei ∈ Rk : i = 1, . . . , k

}
,

and we therefore obtain the moment matrix

ΣA =

2k 0>

0 2 · I

 .

A.1.2 ∞-Norm Ball Uncertainty Sets

We now consider an ∞-norm ball uncertainty set of the form

Ξ =
{
ξ ∈ Rk : ‖ξ‖∞ ≤ 1

}
.
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Uncertainty sets of this type are commonly employed to describe the demand in operations man-

agement applications [8, 34] or when the uncertainty underlying the parameters ξ is described by

a factor model [35]. The set of extreme points satisfies

ext
{
ξ ∈ Rk : ‖ξ‖∞ ≤ 1

}
= ext

{
ξ ∈ Rk : max

i=1,...,k
|ξi| ≤ 1

}
= {−1, 1}k,

and we therefore obtain the moment matrix

ΣA =

2k 0>

0 2k · I

 .

A.1.3 (1 ∩∞)-Norm Ball Uncertainty Sets

We now consider an uncertainty set that emerges from the intersection of a scaled 1-norm ball and

an ∞-norm ball:

Ξ =
{
ξ ∈ Rk : ‖ξ‖1 ≤ κ, ‖ξ‖∞ ≤ 1

}
For κ ≤ 1 and κ ≥ k, the uncertainty set reduces to a scaled 1-norm ball and an ∞-norm ball,

respectively. We therefore assume that κ ∈ (1, k). Uncertainty sets of this type are commonly used

as polyhedral outer approximations of ellipsoidal uncertainty sets [29, 35].

If κ ∈ N, we obtain the moment matrix

ΣA =

2κ
(
k
κ

)
0>

0 2κ
(
k − 1

κ− 1

)
· I

 .

For fractional κ, on the other hand, the moment matrix is

ΣA =

2dκedκe
(
k
dκe
)

0>

0 2dκe
(
k − 1

bκc

)(
bκc+ (κ− bκc)2

)
· I

 .

A.1.4 Budget Uncertainty Sets

We next consider a budget uncertainty set of the form

Ξ =
{
ξ ∈ [0, 1]k : e>ξ ≤ B

}
,
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where B ∈ N0. Note that B = 0 and B ≥ k correspond to the cases Ξ = {0} and Ξ = [0, 1]k

(the latter being a translation of the ∞-norm ball, which can be calculated using the results of

Section A.1.2 and the transformations from Section A.2) and can therefore be omitted. Budget

uncertainty sets have been popularized by [21] and have since been applied widely across domains.

For B ∈ {1, . . . , k − 1}, the moment matrix is

ΣA =



B∑
i=0

(
k

i

) [
B−1∑
i=0

(
k − 1

i

)]
· e>

[
B−1∑
i=0

(
k − 1

i

)]
· e

[
B−1∑
i=0

(
k − 1

i

)
−
B−2∑
i=0

(
k − 2

i

)]
· I +

[
B−2∑
i=0

(
k − 2

i

)]
· ee>

 .

A.1.5 Central Limit Theorem-Type Uncertainty Sets

We finally consider a central limit theorem-type uncertainty set of the form

Ξ =
{
ξ ∈ [−1, 1]k : −Γ ≤

∣∣e>ξ∣∣ ≤ +Γ
}
,

where Γ ∈ (0, k) [7]. In this case, we have |ext Ξ| = η1 + η2 + η3, where

η1 =



(
k
k
2

)
+ 2

bΓ
2 c∑
i=1

(
k

k
2 + i

)
if k is even,

2

bΓ−1
2 c∑
i=0

(
k

k+1
2 + i

)
if k is odd;

η2 =


2k

(
k − 1
k+Γ−1

2

)
if k is even and Γ is odd, or vice versa,

0 otherwise;

η3 =



2

(
k

k
2 +

⌊
Γ
2

⌋) · (k
2
−
⌊

Γ

2

⌋)
if k is even and Γ is fractional,

2

(
k

k+1
2 +

⌊
Γ−1

2

⌋) · (k − 1

2
−
⌊

Γ− 1

2

⌋)
if k is odd and Γ is fractional,

0 otherwise.
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Due to the symmetry of Ξ, the sum of first moments satisfies
∑

ξ∈ext Ξ ξ = 0. The sum of second

moments, finally, satisfies
∑

ξ∈ext Ξ ξξ
> = ω · (ee>) + (δ − ω) · I, where δ = δ1 + δ2 + δ3 with

δ1 =



(
k
k
2

)
+ 2

bΓ
2 c∑
i=1

(
k

k
2 + i

)
if k is even,

2

bΓ−1
2 c∑
i=0

(
k

k+1
2 + i

)
if k is odd;

δ2 =


2(k − 1)

(
k − 1
k+Γ−1

2

)
if k is even and Γ is odd, or vice versa,

0 otherwise;

δ3 =



2

(
k

k
2 +

⌊
Γ
2

⌋)(k
2
−
⌊

Γ

2

⌋)[
k − 1

k
+

1

k
·
(

1−
[
Γ− 2

⌊
Γ

2

⌋])2
]

if k is even and

Γ is fractional,

2

(
k

k+1
2 +

⌊
Γ−1

2

⌋)(k − 1

2
−
⌊

Γ− 1

2

⌋)[
k − 1

k
+

1

k
·
(

2− Γ + 2

⌊
Γ− 1

2

⌋)2
]

if k is odd and

Γ is fractional,

0 otherwise,

as well as ω = ω1 + ω2 + ω3 with

ω1 =



2

min{ k
2
,bΓ

2 c}∑
i=max{2− k

2
,−bΓ

2 c}

(
k − 2

k
2 + i− 2

)
− 2

min{ k
2
−1,bΓ

2 c}∑
i=max{1− k

2
,−bΓ

2 c}

(
k − 2

k
2 + i− 1

)
if k is even,

2

min{ k
2
− 3

2
,bΓ−1

2 c−1}∑
i=max{ 1

2
− k

2
,−bΓ−1

2 c−2}

(
k − 2
k−1

2 + i

)
− 2

min{ k
2
− 3

2
,bΓ−1

2 c}∑
i=max{ 1

2
− k

2
,−bΓ−1

2 c−1}

(
k − 2
k−1

2 + i

)
if k is odd;

ω2 = ω21 + ω22 + ω23 if k is even and Γ is odd, or vice versa, and ω2 = 0 otherwise, where

ω21 =


2(k − 2)

(
k − 3
k+Γ−5

2

)
if k + Γ ≥ 5, k ≥ Γ + 1,

0 otherwise;

ω22 =


2(k − 2)

(
k − 3
k−Γ−5

2

)
if k ≥ Γ + 5,

0 otherwise;

ω23 =


−4 · (k − 2)

(
k − 3
k+Γ−3

2

)
if k ≥ Γ + 3,

0 otherwise;
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and finally ω3 = ω31 − ω32 + ω33 − ω34 if k is even and Γ is fractional, where

ω31 =


2

(
k − 2

k
2 +

⌊
Γ
2

⌋
− 2

)
·
(
k

2
−
⌊

Γ

2

⌋)
+ 2

(
k − 2

k
2 −

⌊
Γ
2

⌋
− 2

)
·
(
k

2
−
⌊

Γ

2

⌋
− 2

)
if

k

2
≥
⌊

Γ

2

⌋
+ 2,

0 otherwise;

ω32 = 4

(
k − 2

k
2 +

⌊
Γ
2

⌋
− 1

)
·
(
k

2
−
⌊

Γ

2

⌋
− 1

)
;

ω33 =


4

(
k − 2

k
2 −

⌊
Γ
2

⌋
− 2

)
if

k

2
≥
⌊

Γ

2

⌋
+ 2,

0 otherwise;

ω34 =


4

(
k − 2

k
2 −

⌊
Γ
2

⌋
− 1

)
if

k

2
≥
⌊

Γ

2

⌋
+ 1,

0 otherwise;

as well as ω3 = ω35 + ω36 − ω37 + ω38 − ω39 if k is odd and Γ is fractional, where

ω35 =


2

(
k − 2

k−3
2 +

⌊
Γ−1

2

⌋) · (k − 1

2
−
⌊

Γ− 1

2

⌋)
if

k − 1

2
≥
⌊

Γ− 1

2

⌋
,

0 otherwise;

ω36 =


2

(
k − 2

k−5
2 −

⌊
Γ−1

2

⌋) · (k − 5

2
−
⌊

Γ− 1

2

⌋)
if

k − 5

2
≥
⌊

Γ− 1

2

⌋
,

0 otherwise;

ω37 =


4

(
k − 2

k−1
2 +

⌊
Γ−1

2

⌋) · (k − 3

2
−
⌊

Γ− 1

2

⌋)
if

k − 3

2
≥
⌊

Γ− 1

2

⌋
,

0 otherwise;

ω38 =


4

(
k − 2

k−5
2 −

⌊
Γ−1

2

⌋) if
k − 5

2
≥
⌊

Γ− 1

2

⌋
,

0 otherwise;

ω39 =


4

(
k − 2

k−3
2 −

⌊
Γ−1

2

⌋) if
k − 3

2
≥
⌊

Γ− 1

2

⌋
,

0 otherwise.

A.2 Transformations of Primitive Uncertainty Sets

In the following, we show how a moment matrix ΣA for an uncertainty set Ξ changes if Ξ is

transformed by an injective affine map, or if Ξ is composed of the cross product of primitive

uncertainty sets Ξi with known moment matrices ΣA,i.
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A.2.1 Injective Affine Maps

It follows from Theorem 9.2.3 in [48] that extreme points are preserved under injective affine maps.

Let us assume that Ξ′ = f(Ξ) for an injective affine map f : Rk A7→ Rk′ . We then obtain that

Σ′A =


|ext Ξ|

∑
ξ∈ext Ξ

f(ξ)>∑
ξ∈ext Ξ

f(ξ)
∑

ξ∈ext Ξ

f(ξ)f(ξ)>

 .

Let us now additionally assume that f(ξ) = Fξ + f . From the previous assumption that f is

injective, we conclude that the matrix F has full column rank. We then have

∑
ξ∈ext Ξ

f(ξ) =
∑

ξ∈ext Ξ

(Fξ + f) = F

 ∑
ξ∈ext Ξ

ξ

+ f + |ext Ξ|f .

In other words, we can calculate
∑

ξ∈ext Ξ f(ξ) efficiently from the quantities |ext Ξ| and
∑

ξ∈ext Ξ ξ.

In a similar way, we obtain that

∑
ξ∈ext Ξ

f(ξ)f(ξ)> =
∑

ξ∈ext Ξ

(Fξ + f)(Fξ + f)> =

F
 ∑
ξ∈ext Ξ

ξ

f> +

F
 ∑
ξ∈ext Ξ

ξ

f>
>


+ F

 ∑
ξ∈ext Ξ

ξξ>

F> + |ext Ξ|ff>.

In other words, we can calculate
∑

ξ∈ext Ξ f(ξ)f(ξ)> efficiently from the quantities |ext Ξ|,
∑

ξ∈ext Ξ ξ

and
∑

ξ∈ext Ξ ξξ
>.

47



A.2.2 Cross Products

Assume that Ξ = Ξ1 × Ξ2 with Ξ1 ⊆ Rk1 and Ξ2 ⊆ Rk2 such that k1 + k2 = k. We then have

|ext Ξ| = |ext Ξ1| · |ext Ξ2|,

∑
ξ∈ext Ξ

ξ =


|ext Ξ2| ·

∑
ξ1∈ext Ξ1

ξ1

|ext Ξ1| ·
∑

ξ2∈ext Ξ2

ξ2

 ,

∑
ξ∈ext Ξ

ξξ> =


|ext Ξ2| ·

∑
ξ1∈ext Ξ1

ξ1ξ
>
1

 ∑
ξ1∈ext Ξ1

ξ1

 ∑
ξ2∈ext Ξ2

ξ2

>
 ∑

ξ2∈ext Ξ2

ξ2

 ∑
ξ1∈ext Ξ1

ξ1

> |ext Ξ1| ·
∑

ξ2∈ext Ξ2

ξ2ξ
>
2


.

In other words, we can calculate |ext Ξ|,
∑

ξ∈ext Ξ ξ and
∑

ξ∈ext Ξ ξξ
> efficiently from the quantities

|ext Ξi|,
∑

ξ∈ext Ξi
ξ and

∑
ξ∈ext Ξi

ξξ>, i = 1, 2.
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