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Abstract A unified theory captures both brittle and ductile fracture. The fracture toughness is
proportional to the applied stress squared and the length of the crack. For purely brittle solids
this criterion is equivalent to Griffith’s theory. In other cases it provides a theoretical basis for
the Irwin-Orowan formula. For purely ductile solids the theory makes direct contact with the
Bilby-Cottrell-Swinden model. The toughness is highest in ductile materials because the shielding
dislocations in the plastic zone provide additional resistance to crack growth. This resistance is
the force opposing dislocation motion, and the Peach-Koehler force overcomes it. A dislocation-
free zone separates the plastic zone from and the tip of the crack. The dislocation-free zone is
finite because molecular forces responsible for the cohesion of the surfaces near the crack tip are
not negligible. At the point of crack growth the length of the dislocation-free zone is constant
and the shielding dislocations advance in concert. As in Griffith’s theory the crack is in unstable
equilibrium. The theory shows that a dimensionless variable controls the elastoplastic behaviour.
A relationship for the size of the dislocation-free zone is derived in terms of the macroscopic and
microscopic parameters that govern the fracture.

Keywords Mechanical properties; fracture toughness; cracks; Griffith’s theory; Bilby-Cottrell-
Swinden model; dislocation-free zone

1 Introduction

A brittle solid such as glass and Si at low temperatures is fragile and when a sharp crack grows, it
suddenly cleaves. When we rejoin the macroscopic parts of the broken solid, it nearly completely
regains its initial shape [1]. In Griffith’s theory fracture is assumed to be fully reversible and
quasi-static. It describes perfectly brittle solids. However, these solids do not exist because even
in very brittle materials there are dislocations. In general, dislocations collect in a plastic zone
ahead of the crack and shield the tip of the crack. The fracture toughness of these materials is
orders of magnitude higher than that predicted by Griffith’s theory. For instance, strong ductile
materials such as precipitation-hardened alloys, have high fracture toughnesses. In an attempt to
account for these higher toughnesses, Irwin and Orowan [1, 2] suggested an extension to Griffith’s
theory. In this extension an empirical term accounts for the work associated with the plastic zone.
This paper presents a continuum theory for the fracture toughness of crystalline materials. We
will use the small-scale yielding approximation, where the applied stress is much smaller than the
yield stress. In this approximation the size of the plastic zone is much smaller than the length of
the crack.

We assume that an elastic enclave separates the crack tip from the plastic zone. Thomson [3]
and Weertman [4] were the first to introduce this elastic region. We also assume that the slip plane
is coplanar with the crack and that the external loading is either by plane shear (mode II) or by
anti-plane shear (mode III). In this case the elastic enclave is called a dislocation-free zone (DFZ)
[5–9]. Ohr [10] showed direct observations of the DFZ and also reviewed the DFZ models. These
models showed that as the size of the DFZ increases, the shielding by the plastic zone diminishes.
Taking the limit as the DFZ is maximum, the models tend to the elastic crack, e.g. [11, 12]. This
limit describes the completely brittle solids. In contrast, taking the limit as the DFZ goes to zero,
the models tend to the Dugdale-Bilby-Cottrell-Swinden model [13, 14]. This limit describes the
completely ductile solids. When the size of the DFZ varies between these two limiting cases the
behaviour of the solid changes from purely brittle to purely ductile.
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These studies did not calculate the stress field everywhere in the medium. We derive this
stress field in terms of mathematical functions. We also calculate the J-integrals. Then, we find a
relationship for the length of the DFZ in terms of the elastic constants, the yield stress, the total
Burgers vector in the plastic zone, the applied shear stress and the crack length. Majumdar and
Burns [8] derived the ratio between the DFZ length and the extension of the plastic zone. But
they did not obtain the DFZ length because they needed an additional relationship or physical
argument. In the present model the path-independence of the J-integrals provides this additional
relationship.

When in molybdenum a crack grows the DFZ length is unaltered and the dislocations in the
plastic zone move ahead of the crack as a group [10]. We assume that at the point of crack
growth the DFZ length is constant. Using this assumption and the path independence of the
J-integral, we derive a fracture criterion. The fracture criterion provides a theoretical basis for
the relationship between the macroscopic parameters characterizing the fracture and the state of
stress and deformation very near the crack tip. In the purely brittle limit the fracture criterion is
equivalent to Griffith’s equation. Otherwise, it proves the Irwin-Orowan formula and shows that
the plastic zone moves ahead of the crack.

The outline of the paper is as follows. In the next section we describe the geometry of the
model. Then, we calculate the stress field and the J-integrals. A dimensionless variable, which we
call λ, becomes evident. This variable controls the mechanical properties of solids. It comprises
the elastic constants, the yield stress, the total Burges vector in the plastic zone, the applied shear
stress, and the crack length. We predict the DFZ length in terms of λ. We derive the fracture
criterion. Finally, we discuss the implications of the model.

2 Geometry

We consider an infinite, homogeneous, isotropic linear elastic medium where a stationary crack of
length c extends in the plane y = 0 from x = −c to x = 0 and is infinitely extended along the
z-axis. For mode II loading a constant shear stress σxy = σ is applied at y = ±∞. For mode III
loading a constant shear stress σyz = σ is applied at y = ±∞. The crack tip has an inverse square
root singularity and intensifies the applied stress. The intensity of this singularity is ka = σ

√
c,

which is called the applied stress intensity factor. In the stress intensity factor π is omitted without
compromising the accuracy of the model [15]. Ahead of the crack, there is a DFZ between x = 0
and x = d ≥ 0. We assume a plastic zone between x = d and x = a ≥ d , and infinitely extended
along the z-axis. In the plastic zone work hardening is neglected and the shear stress σxy (mode
II), σyz (mode III), is assumed to be constant and equal to the yield stress, σ1. For small-scale
yielding we assume σ � σ1. The system is shown in Figure 1.

x

y

crack plastic zone

d a

DFZ

Figure 1: Geometry comprising a long stationary crack along the negative x-axis, a dislocation-free
zone (DFZ) and a plastic zone. For a mode II crack the medium is subjected to a uniform applied
shear stress σxy = σ, and the elastic field is one of plane strain. For a mode III crack the uniform
applied shear stress is σyz = σ, and the elastic field is one of antiplane strain. The geometry is
invariant normal to the page.

3 Results

The plastic zone and the crack are modelled using a continuous distribution of dislocations with
infinitesimal Burgers vector, e.g. [16, 17]. For a mode II crack the glide edge dislocations have
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Burgers vectors along the negative x-axis and lines parallel to the z-axis, consistent with the
FS/RH convention. In the plastic zone the xy-component of the stress tensor equals σ1. Similarly,
for a mode III crack the screw dislocations have Burgers vectors along the negative z-axis and lines
parallel to the z-axis, consistent with the FS/RH convention. In the plastic zone the yz-component
of the stress tensor equals σ1. The tractions at any point on the faces of these cracks must be
zero. For crack much larger than the plastic zone we can extend the domain of the crack in the
negative (semi-infinite) axis without compromising the accuracy of the model. At any point x in
the crack or plastic zone the Burgers vector density b(x) must satisfy the following singular integral
equation:

A

∫
L

dx′
b(x′)

x− x′
= σ1 (H(x− d)−H(x− a)) , (1)

where L extends from x′ = −∞ to x′ = 0 and from x′ = d to x′ = a. The variable x ∈ L, and the
integral is a Cauchy principal value integral because a straight dislocation does not exert a stress
upon itself. Let µ and ν be the shear modulus and Poisson’s ratio. The constant A equals:

A =


µ

2π(1− ν)
mode II;

µ

2π
mode III.

(2)

H(x) denotes the Heaviside step function.
The length of the plastic zone is p ≡ a−d. Throughout the plastic zone σ1 is finite and, hence,

the Burgers vector density must not diverge at x = d and x = a. Let η = d/a. It implies that a
solution of Equation (1) exists only when the following condition is satisfied:

E
(√

1− η
)

=
π

2

σ

σ1

√
c

2a
. (3)

E (m ) is the complete elliptic integral of the second kind, where m is the parameter. The properties
of the elliptic integrals may be found in [18]. Majumdar and Burns [8] first derived Equation (3).
This equation does not define d or a. But it is an implicit relationship for the ratio d/a in terms
of the variable (σ/σ1)

√
c/(2a). 1 ≤ E

(√
1− η

)
≤ π/2. Taking the limit η → 1, p = 0 and the

plastic zone vanishes. Taking the limit η → 0, p = π2σ2c/(8σ2
1) and the length of the plastic zone

is the maximum.
To find the solution of Equation (1) we introduce the complex function j(z) = ı̇

√
[a(z − a)] / [z(z − d)],

where z = x+ ı̇y. Then, the Burgers vecotr density is as follows:

b(x) =
2σ1
Aπ2

j(x+ ı̇0) ηΠ

(
(1− η)x

x− d

∣∣∣∣√1− η
)
. (4)

Π (n|m) is the complete elliptic integral of the third kind, where m is the parameter, n is the
characteristic. It is plotted in Figure 2. For d ≤ x ≤ a the density was first calculated in [8].

We may use the density b(x) (4) to calculate the total Burgers vector in the plastic zone ∆u:

∆u =

∫ a

x

dx′ b(x′) =
2aσ1
Aπ2

{[
E
(√

1− η
)]2
− η

[
K
(√

1− η
)]2}

. (5)

K (m) is the complete elliptic integral of the first kind, where m is the parameter. This equation
is also the crack tip sliding displacement. It was first calculated in [8].

3.1 The stress field

The dislocations with density b(x) (4) generate the stress field in the medium. The stress field is
of interest because it governs the fracture of the solid. This stress tensor σαβ(x) is:

σαβ(x) = A

∫
L

dx′ b(x′)ζαβ (x− x′, y) , (6)
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Figure 2: The Burgers vector density b(x), normalised to σ1/(Aπ), plotted for d = a/3.

where x = (x, y). For a mode II crack the functions ζαβ(x) are determined by the stress field of
glide edge dislocations:

ζxx (x) = −y(3x2 + y2)

(x2 + y2)2
, (7a)

ζyy (x) =
y(x2 − y2)

(x2 + y2)2
, (7b)

ζzz (x) = ν (ζxx (x) + ζyy (x)) , (7c)

ζxy (x) = ζyx (x) =
x(x2 − y2)

(x2 + y2)2
, (7d)

ζxz (x) = ζzx (x) = 0, (7e)

ζyz (x) = ζzy (x) = 0. (7f)

For a mode III crack the functions ζαβ(x) are determined by the stress field of screw dislocations:

ζxz (x) = ζzx (x) = − y

x2 + y2
, (8a)

ζyz (x) = ζzy (x) =
x

x2 + y2
, (8b)

ζxy (x) = ζyx (x) = 0, (8c)

ζxx (x) = ζyy (x) = ζzz (x) = 0. (8d)

To calculate the stress field (6) we may use the contour integration in the complex plane [19].
The function which generates this stress field ψ(z) = ψ1(x) + ı̇ ψ2(x) is:

ψ(z) = η

√
a(z − a)

z(z − d)
Π

(
(1− η)z

z − d

∣∣∣∣√1− η
)
. (9)

It is interesting to note that this generator is the analytic continuation of the density b(x) (4) in
the complex plane. It covenient to introduce a second function χ(z) = χ1(x) + ı̇ χ2(x):

χ(z) = ı̇y
dψ

dz
(z) =

ı̇y

2

√
a

z(z − a)(z − d)

[
d

z
K
(√

1− η
)
− E

(√
1− η

)]
. (10)

For a mode II crack we obtain the following expression for the components of the stress tensor:

σxx =
2σ1
π

(χ2 + 2ψ2) , (11a)

σyy = −2σ1
π
χ2, (11b)

σxy = σyx =
2σ1
π

(χ1 + ψ1) . (11c)
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In these equations the dependence on the position x is omitted for simplicity. For a mode III crack
the non-zero components of the stress tensor are:

σxz = σzx =
2σ1
π
ψ2, (12a)

σyz = σzy =
2σ1
π
ψ1. (12b)

In these stress fields the region near the crack tip has a 1/
√

2z singularity. The intensity of this
singularity is:

k =
2σ1
π

√
2dK

(√
1− η

)
. (13)

For a mode II and a mode III crack this equation is the local stress intensity factor. It was first
calculated in [8] using a different method. In this work the local stress intensity factor is calculated
from the sum of the stress intensity factor of the elastic crack plus the stress intensity factor at
the crack tip due to the plastic zone only.

3.2 The J-integrals

Eshelby [20, 21] derived the force on elastic singularities and inhomogeneities in terms of a line
integral of the stress energy-momentum tensor enclosing the singularity. Rice [22] discovered the
integral independently and called it the J-integral. The J-integral is minus the ratio between
the infinitesimal variation of the total energy, which equals the sum of the elastic energy of the
medium and the potential energy of the external mechanism connected with it, and the infinitesimal
variation of the position of the singularity. Because the medium has either plane or antiplane strain
condition, the J-integral has only two components, namely Jx and Jy. We calculate these forces
as follows.

Let uα be the displacement associated with the stress field σαβ . Using Equation (11), the
non-zero derivative of the displacement uα,β are:

ux,x =
σ1
µπ

(χ2 + 2(1− ν)ψ2) , (14a)

ux,y =
σ1
µπ

(χ1 + (3− 2ν)ψ1) , (14b)

uy,x =
σ1
µπ

(χ1 + (2ν − 1)ψ1) , (14c)

uy,y = − σ1
µπ

(χ2 + 2ν ψ2) . (14d)

Using Equation (12), the non-zero derivatives of the displacement are:

uz,x =
2σ1
µπ

ψ2, (15a)

uz,y =
2σ1
µπ

ψ1. (15b)

For a linear elastic medium the stress energy-momentum tensor is:

Pαβ =
1

2
σγκuγ,κδαβ − σγβuγ,α, (16)

where δαβ is the Kronecker delta. We use the suffix notation for convenience. Using Equations
(11) and (14), the components of the stress energy-momentum tensor in the x− y plane are:

Pxx = −Pyy =
4(1− ν)σ2

1

µπ2

(
ψ2
1 − ψ2

2 + χ1ψ1 − χ2ψ2

)
, (17a)

Pxy = −4(1− ν)σ2
1

µπ2
(χ1ψ2 + ψ1ψ2 + χ2ψ1) , (17b)

Pyx = −4(1− ν)σ2
1

µπ2
(χ1ψ2 + 3ψ1ψ2 + χ2ψ1) , (17c)
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Using Equations (12) and (15), the components of the stress energy-momentum tensor are:

Pxx = −Pyy =
2σ2

1

µπ2

(
ψ2
1 − ψ2

2

)
, (18a)

Pxy = Pyx = − 4σ2
1

µπ2
ψ1ψ2. (18b)

x

y

crack plastic zone

d a
S2

S3

S1

Figure 3: The contours S1, S2, and S3 include the crack-tip and the plastic zone, i.e. the singu-
larities of the medium.

Let S be a contour in the x− y plane. The J-integral is as follows:

Ji(S) =

∮
S

ds Piknk, (19)

where the Latin indices i and k refer to the cartesian coordinates x and y, and ni is the outward
unit normal to the contour S. For a mode II crack the stress energy-momentum tensor is given in
Equation (17). For a mode III crack the stress energy-momentum tensor is given in Equation (18).
We consider three contours, S1, S2, and S3, illustrated in Figure 3. S1 encloses the singularity at
the crack tip and the plastic zone. S2 encloses only the crack tip. S3 encloses only the plastic zone.

To calculate the J-integral (20) we may use the complex contour integration [19, 23]. For a
mode II and a mode III crack the y component of the J-integral is always zero. The x component
of the J-integral is:

Jx(S1) =
k2a
4A

, (20a)

Jx(S2) =
k2

4A
, (20b)

Jx(S3) = σ1∆u. (20c)

There are no other forces in the system. Using the condition (3) we have:

Jx(S1) = Jx(S2) + Jx(S3). (21)

The J-integral depends only on the singularity within the contours as expected, and hence it
can be deformed as I have indicated. The relationship (21) provides a theoretical basis for the
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relation between the applied stress intensity factor and the fracture mechanism operating at the
microscale. We will see below that this equation determines the variable η. But η must also satisfy
the condition (3). Because Equations (3) and (21) are independent, the theory predicts the DFZ
length d in terms of the macroscopic and microscopic parameters which govern the fracture.

The force on the entire system is Jx(S1) (20a), while Jx(S2) (20b) is the force on the crack
tip. Similar forces were calculated in [23, 24]. In these works the distribution of the dislocations
ahead of the crack was arbitrary. This distribution was not self-consistent because the net force
acting on each singularity was different from zero. In contrast, in the present model the condition
(3) ensures the static equilibrium. The J-integral Jx(S3) (20c) is the Peach-Koehler force on the
plastic zone.

3.3 The elastic-plastic behaviour

The identity (21) can be written as follows:

Jx(S2)

Jx(S1)
= 1− Jx(S3)

Jx(S1)
. (22)

Using the J-integrals (20) this relation becomes:

k

ka
=

√
1− 4Aσ1∆u

σ2c
. (23)

The right-hand side of this equation is always positive, and less than or equal to 1. The ratio k/ka
can be rewritten using the local stress intensity factor (13) and the condition (3). In this case
Equation (23) becomes:

√
η
K
(√

1− η
)

E
(√

1− η
) =

√
1− 4Aσ1∆u

σ2c
. (24)

This equation is an implicit relationship for the variable η in terms of the dimensionless variable
λ ≡ 4Aσ1∆u/(σ2c). We will show that the dimensionless variable λ controls the elastic vs plastic
nature of the fracture.

The implicit relationship (24) does not have an analytic solution for the variable η in terms of
λ. It can be calculated numerically. Let f(η) be the function on the left-hand side of Equation
(24). Then, we have f(η) =

√
1− λ. The inverse of this function equals η and is as follows:

η = f−1
(√

1− λ
)
. (25)

It is illustrated in Figure 4. For a purely brittle solid there is no plastic zone, ∆u = 0, λ = 0,
and η = 1. For a purely ductile solid ∆u = σ2c/(4Aσ1) is maximum, λ = 1, and η = 0. This is
consistent with Figure 4. For intermediate solids ∆u > 0, 0 < λ < 1 and 0 < η < 1.

The variable η (25) and the condition (3) determine the DFZ length:

d =
π2σ2

8σ2
1

c f−1
(√

1− λ
)[

E

(√
1− f−1

(√
1− λ

))]2 . (26)

It is plotted in Figure 5, where it is normalised to σ2c/(2σ2
1). For a purely brittle solid λ = 0 and

d = c σ2/(2σ2
1). For a purely ductile solid λ = 1 and d = 0. In general, 0 < λ < 1 and d is always

smaller than that in the purely brittle limit.
The length of the plastic zone p in terms of λ follows from Equations (3), (25) and (26). It

is shown in Figure 6. For a purely brittle solid λ = 0 and the length of the plastic zone is zero.
In contrast, for a purely ductile solid λ = 1 and the length of the plastic zone is maximum. In
general, 0 < λ < 1 and the length of the plastic zone has an intermediate value.

Taking the limit λ → 0, the stress generator (9) tends to (π/2)
√
a/z. The fields σαβ (11-12)

are those of the elastic crack, e.g. [11, 12]. The local stress intensity factor equals the applied
stress intensity factor. Taking the limit λ→ 1, the stress generator (9) tends to arcsin

√
a/z. The
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Figure 4: The variable η = d/a as a function of the dimensionless variable λ.
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Figure 5: The length of the dislocation-free zone d normalised to σ2c/(2σ2
1), as a function of the

dimensionless variable λ.
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Figure 6: The length of the plastic zone p = a − d normalised to σ2c/(2σ2
1), as a function of the

dimensionless variable λ.

fields σαβ (11-12) are those of the BCS model [14, 25]. The local stress intensity factor is zero and
the applied stress intensity factor is positive. When 0 < λ < 1, the plastic zone shields the crack
tip, and the stress singularity at the crack tip does not vanish, so that k < ka.

Taking the limit λ → 0, Jx(S3) = 0. Jx(S2) = k2a/(4A) is the J-integral of the elastic crack,
e.g. [11, 12]. Taking the limit λ → 1, Jx(S2) = 0. Jx(S3) = 2aσ2

1/(Aπ
2) is the J-integral of the
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BCS model [11, 25, 26], and Jx(S1) = 2aσ2
1/(Aπ

2). Rice [27] derived an equation for the emission
of the dislocation from a crack tip. His work assumes a periodic relationship between the shear
stress and the atomic shear displacement on the most stressed slip plane ahead of the crack tip.
The energy barrier to complete the block-like shear replaces the above term 2aσ2

1/(Aπ
2), so that

the J-integral can be understood in terms of the atomic mechanisms for dislocation emission. In
the present model Jx(S1) = σ1∆u is the Peach-Koehler force on the microscopic plastic zone.

3.4 The toughness

We assume that the toughness τ is the critical force acting on all the singularities Jx(S1) (20a) at
the point of crack growth. The fracture criterion is as follows:

σ2c

4A
= τ. (27)

This toughness is the resistive force per unit length along the z-axis that a material exerts against
fracture. For a mode II crack Equation (27) implies that the critical stress at the point of
crack growth is σ =

√
Eτ/[(1− ν2)πc], where E is Young’s modulus. For a mode III crack

σ =
√

2µτ/(πc). This critical stress is smaller than that at the general yielding (i.e. σ1) because
the size of the plastic zone is much smaller than the crack length.

For a purely brittle solid the plastic zone is negligible, λ = 0 and Jx(S1) = Jx(S2) (20). We
identify the toughness with the work required to create two unit area surfaces τ = 2γ. In this case
the criterion (27) is Griffith’s equation. In other cases the plastic zone is not negligible, λ > 0 and
Jx(S1) = Jx(S2) + Jx(S3) (20). τ comprises the surface energy of the crack faces and the force
needed to overcome the friction force opposing dislocation motion. This force is the Peach-Koehler
force σ1∆u. The criterion (27) provides a theoretical basis for the Irwin-Orowan formula. For a
purely ductile solid ∆u is maximum. λ = 1 and Jx(S1) = Jx(S3) (20). In this case τ = σ1∆u.

4 Discussion

The dislocations in the plastic zone reduce the elastic singularity at the crack tip. The local stress
intensity factor is the strength of this singularity. Rice and Thomson [28] suggested that when
the local stress intensity factor is sufficiently high to create a repulsive force within the core of
the dislocation, the crack tip emits the dislocation. This criterion enabled them to distinguish
between intrinsically brittle and ductile solids. The present model describes brittle (i.e. ∆u = 0),
intermediate (i.e. ∆u > 0) and ductile solids (i.e. ∆u maximum). When ∆u ≈ 0, it describes the
realistic case of a brittle solid with a small number of shielding dislocations (i.e. σ1 <∞).

Chang and Ohr [5] and Ohr and Chang [6] argued that the DFZ controls the nucleation of
the dislocations at the crack tip because it affects the local stress intensity factor. Using [28] they
found a critical value of the local stress intensity factor which activates the dislocation nucleation.
Experiments show that the DFZ length is a function of the applied stress and the crack length
[10]. Figure 5 shows that the DFZ length d is a function of the elastic constants, σ1, ∆u, σ, and c.

The DFZ may originate because the stress singularity at the crack tip repels a shielding dislo-
cation. For instance, Hirsch et al. [29] support this process. They developed a model to predict the
brittle-ductile transition (BDT) of precracked crystals. They found that in bulk Si, although the
dislocation density was very low, the existing dislocations controlled the BDT. These dislocations
moved to the crack tip and generated new sources. When the source at or close to the crack tip,
nucleates a dislocation loop, the shielding dislocation moves away and shields the crack tip. In
contrast, the anti-shielding dislocation is absorbed into the crack tip and shifts the crack faces.
This mechanism leaves behind a DFZ.

It is usually assumed that when the local stress intensity factor reaches a critical value, the
crack grows [5, 6, 8, 9, 12, 24]. For purely brittle solids this criterion corresponds to Griffith’s
theory because the local stress intensity factor equals the applied stress intensity factor. However,
when the dislocations in the plastic zone shield the crack tip the criterion lacks in a theoretical
basis. For σ � σ1 we prove that the toughness τ (27) is always proportional to the square of the
applied stress intensity factor whether there is plastic zone or not. The Griffith’s equation and the
Irwin-Orowan formula are particular cases of this criterion.
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Rice [30] showed that in any continuum elastic-plastic medium if the stress field saturates to
a finite value at large strain, then there is no elastic singularity at the crack tip. Also, there is
no energy surplus to create the new surfaces of the crack. The plastic zone absorbs all the energy
supplied by the external loading machine. For instance, when ∆u is maximum the criterion (27)
satisfies Rice’s theorem. A consequence of this theorem is that a boundary condition must account
for the separation process within the fracture zone. When a crack grows it creates new free surfaces.
The surface tension in a solid is a resistance force against the opening surfaces at the crack tip.
The toughness includes this resistance so that τ > σ1∆u.

In the BCS model the local stress intensity factor is always zero. Thomson [12] argued that for a
cleavage crack this solution is inconsistent because the local stress intensity factor must reflect the
strengths of the bonds at the crack tip. We provide a theoretical basis for Thomsons’s argument
as follows. At the point of crack growth ∆u ≥ 0 reaches a critical value, which corresponds to a
critical size of the plastic zone. λ < 1 because τ > σ1∆u. Figure 5 shows that the DFZ length is
always finite (i.e. d > 0) and, hence, the local stress intensity factor is positive.

To describe the cohesion forces at the crack tip, Barenblatt [31] assumed that in an elastic
medium the faces of the crack join smoothly near the crack tip. When the surfaces are very close,
the molecular attraction between them is not negligible. Because the stress must be finite at the
edges of the crack, he derived Griffith’s theory [32]. The DFZ includes the small region where the
molecular forces dominate.

When σ2c/(4A) < τ , the crack is in stable equilibrium. We assume that during crack growth
d is constant. The experimental observation in molybdenum [10] supports this assumption. When
σ2c/(4A) ≥ τ the crack grows and the equilibrium is unstable. The plastic zone moves ahead of
the crack. The Peach-Koehler force enables this motion. It follows that the high toughness of the
materials originates from the friction force we must overcome to move the shielding dislocations
as a group ahead of the crack.

5 Conclusions

A unified theory was developed to capture both brittle and ductile fracture for mode II or III
loadings. It shows that the dimensionless variable λ = 4Aσ1∆u/(σ2c) controls the elastoplastic
behaviour of solids, where A is a geometrical factor which depends on the elastic constants and the
mode of loading; σ1 is the yield stress; ∆u is the total Burgers vector in the plastic zone; σ is the
applied shear stress; and c is the crack length. The fracture toughness τ is the critical force acting
on all singularities in the medium at the point of crack growth, and it equals τ = σ2c/(4A). For
purely brittle solids λ = 0 and the fracture criterion equals Griffith’s theory. Otherwise, λ > 0 and
the fracture criterion provides a theoretical basis for the Irwin-Orowan formula. When λ ≈ 0, the
size of the plastic zone is negligible and the solid is quite brittle. BCC metals at low temperatures
often satisfy this limit. For purely ductile solids λ = 1 and the plastic zone is maximum. This
limit equals the Bilby-Cottrell-Swinden model for σ � σ1. The Peach-Koehler force overcomes the
friction resistance opposing dislocation motion and the plastic zone moves ahead of the crack. The
toughness of ductile solids is higher than that of brittle solids because the plastic zone absorbs the
energy provided by the external loading. There is a dislocation-free zone between the plastic zone
and the tip of the crack. The theory derives a relationship for the length of the dislocation-free
zone d in terms of λ. For quasi-brittle solids d ≈ σ2c/(2σ2

1) is maximum. In general, d > 0 because
the cohesive forces between the bonds at the crack tip are not negligible. When the crack grows d
is constant. The extension of the crack is unstable.
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