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Abstract17

Present gaps in the representation of key soil biogeochemical processes such as the par-18

titioning of soil organic carbon (SOC) among functional components, microbial biomass19

and diversity, and the coupling of carbon and nutrient cycles present a challenge to im-20

proving the reliability of projected soil carbon dynamics. We introduce a new soil bio-21

geochemistry module linked with a well-tested terrestrial biosphere model T&C. The mod-22

ule explicitly distinguishes functional SOC components. Extracellular enzymes and mi-23

crobial pools are differentiated based on the functional roles of bacteria, saprotrophic,24

and mycorrhizal fungi. Soil macrofauna is also represented. The model resolves the cy-25

cles of nitrogen, phosphorus, and potassium. Model simulations for 20 sites compared26

favorably with global patterns of litter and soil stoichiometry, microbial and macrofau-27

nal biomass relations with soil organic carbon, soil respiration and nutrient mineraliza-28

tion rates. Long-term responses to bare fallow and nitrogen addition experiments were29

also in agreement with observations. Some discrepancies between predictions and ob-30

servations are appreciable in the response to litter manipulation. Upon successful model31

reproduction of observed general trends, we assessed patterns associated with the car-32

bon cycle that were challenging to address empirically. Despite large site-to-site variabil-33

ity, fine root, fungal, bacteria, and macrofaunal respiration account for 33%, 40%, 24%34

and 3% on average of total belowground respiration, respectively. Simulated root exu-35

dation and carbon export to mycorrhizal fungi represent on average about 13% of plant36

net primary productivity (NPP). These results offer mechanistic and general estimates37

of microbial biomass and its contribution to respiration fluxes and to soil organic mat-38

ter dynamics.39

1 Introduction40

The potential of an ecosystem to store and release carbon is inherently linked to41

soil biogeochemical processes among other factors (Raich & Nadelhoffer, 1989; Raich &42

Schlesinger, 1992; Schimel, 2013; Schmidt et al., 2011; Trumbore & Czimczik, 2008). Quan-43

tification of environmental controls on soil carbon turnover rates and a more accurate44

representation of soil biogeochemistry have been recognized as a key challenge to reduc-45

ing uncertainties in land-carbon climatic feedbacks and improving future projections of46

climate change (e.g., Friedlingstein et al., 2014; Thornton, Lamarque, Rosenbloom, &47

Mahowald, 2007; Todd-Brown et al., 2014, 2013; Zaehle & Dalmonech, 2011). Consequently,48

contemporary studies have followed two general approaches. The first is data-driven where49

spatial and temporal patterns of soil carbon are empirically inferred (Carvalhais et al.,50

2014; Hashimoto et al., 2015), such as the recent study of Crowther et al. (2016) for quan-51

tifying global soil carbon losses to warming by extrapolating observed sensitivities in field52

manipulation experiments. The alternative approach, adopted in this study, invokes mech-53

anistic models of soil biogeochemistry to enhance process understanding or make pre-54

dictions (e.g., Abramoff et al., 2018; Goll et al., 2012; Manzoni, Moyano, Kätterer, & Schimel,55

2016; Robertson et al., 2019; Tang, Riley, Koven, & Subin, 2013; Y.-P. Wang, Houlton,56

& Field, 2007; Zhu, Riley, Tang, & Koven, 2016). Traditionally models have represented57

soil organic carbon by assigning it to three pools: fast, slow, and passive (Foley, 1995;58

Krinner et al., 2005; Parton, Stewart, & Cole, 1988; Sato, Itoh, & Kohyama, 2007; Sitch59

et al., 2003). These pools are often characterized by linear kinetics and different decay60

rates in an attempt to preserve variability in decomposition for various degrees of soil61

organic protection or recalcitrance of the substrate (Freschet, Aerts, & Cornelissen, 2012;62

Talbot & Treseder, 2012). Therefore, first generation models often did not distinguish63

between substrate and microbial biomass and implicitly assumed that microbial biomass64

is not a limiting factor in the rates of SOC decomposition. Simplifying soil organic car-65

bon representation by lumping together different functional components in a few pools66

creates a discrepancy between modeled quantities and measurable SOC fractions in the67

soil and it does not allow to properly represent physical and biochemical processes (Schmidt68

et al., 2011; Six et al., 2001).69
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Following the work of Schimel and Weintraub (2003), recent model developments70

have been devoted to explicitly represent the role of microbial biomass and extracellu-71

lar enzymes in soil carbon dynamics (Abramoff et al., 2018; Allison, Wallenstein, & Brad-72

ford, 2010; Manzoni & Porporato, 2009; Orwin, Kirschbaum, St John, & Dickie, 2011;73

Wieder, Allison, et al., 2015; Wieder, Bonan, & Allison, 2013; Wieder, Grandy, Kallen-74

bach, & Bonan, 2014; Wieder, Grandy, Kallenbach, Taylor, & Bonan, 2015). Other ef-75

forts aimed at including more mechanistic representation of nutrient cycles such as ni-76

trogen (Koven et al., 2013; Xu-Ri & Prentice, 2008; Yang, Wittig, Jain, & Post, 2009;77

Zaehle & Friend, 2010) and phosphorus (Buendia, Kleidon, & Porporato, 2010; Goll et78

al., 2017; Runyan & D’Odorico, 2012; Yang, Thornton, Ricciuto, & Post, 2014), as well79

as plant-mycorrhizae interactions (Baskaran et al., 2017; Brzostek, Fisher, & Phillips,80

2014; Shi, Fisher, Brzostek, & Phillips, 2016). Adopting a more mechanistic and bet-81

ter constrained description of soil biogeochemical processes has been shown to improve82

simulations of global-scale soil-carbon patterns (Wieder et al., 2013; Wieder, Grandy,83

et al., 2015). However, most model applications have remained at the level of detailed84

sensitivity analyses with little comparison between observations and results either from85

soil biogeochemistry focused models (Li, Wang, Allison, Mayes, & Luo, 2014; G. Wang,86

Post, & Mayes, 2013) or global scale Earth System Models. Most importantly, soil bio-87

chemical processes are deeply connected to water, energy, and vegetation dynamics above88

and belowground and cannot be analyzed in isolation from a land-surface model, even89

though projections about the fate of soil organic carbon have been often discussed with-90

out a coupling with a vegetation model (e.g., Abramoff et al., 2018; Allison et al., 2010;91

Frey, Lee, Melillo, & Six, 2013; Orwin et al., 2011; Tang & Riley, 2015). Probably for92

this reason, only few contributions challenged biogeochemistry models to reproduce the93

observed response to environmental manipulations (P. Smith et al., 1997; Zaehle et al.,94

2014). Among the potential treatments, warming (Crowther et al., 2016), bare-fallow95

(Barré et al., 2010; Wadman & de Haan, 1997), litter-manipulation (Bowden, Nadelhof-96

fer, Boone, Meillo, & Garrison., 1993; Rousk & Frey, 2015), nitrogen addition (Comp-97

ton, Watrud, Porteous, & DeGrood, 2004; Magill et al., 2004) and burning treatments98

(Ojima, Schimel, Parton, & Owensby, 1994; Wan, Hui, & Luo, 2001) have been carried99

out in the past and they can be used for model confirmation. Arguably, these are the100

most important tests to evaluate the correctness of the mechanistic structure of a model101

and its capability to reproduce responses to environmental changes. A model should be102

able to reproduce the observed dynamics under control and manipulated conditions us-103

ing an identical parametrization (e.g., without specific tuning) to be considered robust104

in the simulation of unobserved conditions, as it is the case for projections in a future105

climate. Moreover, detailed data to parameterize and validate different model compo-106

nents are scarce, although few recent reviews of parameter values can potentially reduce107

this problem (Allison, 2017; G. Wang et al., 2013). How to assign different parameters108

for various ecosystems or soil microbial communities remains, however, particularly chal-109

lenging (Bradford & Fierer, 2012), as discussed later in this article.110

In this study, we introduce a new soil biogeochemistry module that has been in-111

tegrated with an existing model of land-surface hydrology and vegetation dynamics, T&C112

(e.g., Fatichi, Ivanov, & Caporali, 2012; Fatichi & Pappas, 2017; Manoli, Ivanov, & Fatichi,113

2018). Specifically, the soil biogeochemistry module is vertically lumped, it explicitly sep-114

arates different litter pools and distinguishes SOC in particulate, dissolved, and mineral115

associated fractions, similarly to the MEND model (G. Wang et al., 2013). Extracellu-116

lar enzymes and microbial pools are explicitly represented differentiating the functional117

roles of bacteria, saprotrophic fungi, and arbuscular and ecto- mycorrhizae. Microbial118

activity depends on soil temperature, soil water potential and SOC stoichiometry. The119

activity of macrofauna is also modeled. Nutrient dynamics include the cycles of nitro-120

gen, phosphorus, and potassium. Nitrogen and phosphorus are essential nutrients for plant121

functioning and productivity (Le Bauer & Treseder, 2008; Vitousek, Porder, Houlton,122

& Chadwick, 2010); more recently also potassium has been shown to limit plant produc-123

tivity of terrestrial ecosystems to a similar extent of nitrogen and phosphorus (Sardans124
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& Penuelas, 2015). The model also accounts for feedbacks between nutrient limitations125

and plant growth and for plant stoichiometric flexibility. In turn, litter input is a func-126

tion of the simulated vegetation dynamics and thus is not prescribed. Root exudation127

and export to mycorrhizae are computed based on the cost of nutrient uptake similarly128

to the rationale of the FUN2.0 model (Brzostek et al., 2014).129

In addition to the introduction of the new model and its components, this study130

has two additional goals. First, it aims at testing the model for a number of real case131

studies, highlighting strengths and limitations of this approach in the framework of Earth132

system models. Model parameters describing interactions among microbial and soil or-133

ganic carbon pools and reactions rates are likely scale, ecosystem, and case study spe-134

cific, because of the huge biodiversity in soil microbial communities (e.g., Fierer & Jack-135

son, 2006; Nannipieri et al., 2017) and potential differences of carbon protection mech-136

anisms in the soil (Six, Conant, Paul, & Paustian, 2002). However, we intentionally use137

a single parameter set for all simulations to test the suitability of such an approach for138

large-scale (potentially global) applications, where one or a limited set of parameter val-139

ues must be forcefully used, because local tuning is impractical. While recognizing that140

many parameters are highly uncertain, a formal sensitivity analysis is beyond the scope141

here. The implications for uncertainty of using a single parameter set are, however, dis-142

cussed. The new modeling tool, T&C-BG, is intended to reproduce main-differences across143

various ecosystems and climates as well as major responses to environmental perturba-144

tions. The model is tested against: (i) global patterns of biomass in belowground com-145

munities and functions, (ii) short-to mid-term response in soil respiration as inferred from146

flux-tower data; (iii) soil organic carbon responses to bare fallow and litter manipula-147

tion experiments, and (iv) ecosystem response to nitrogen addition.148

The second objective is to use the modeling framework for answering a specific sci-149

ence question: how belowground soil respiration is partitioned among different compo-150

nents of belowground living biomass? The model offers new insights into the relative mag-151

nitudes of often poorly constrained quantities such as partitioning of soil respiration com-152

ponents among fungi, bacteria, roots, and macrofauna, and estimates of root exudation153

and carbon export to mycorrhizae.154

2 Materials and Methods155

2.1 Model description156

Numerical simulations were carried using the ecosystem model T&C (Fatichi et al.,157

2012, 2015; Fatichi & Pappas, 2017; Fatichi, Zeeman, Fuhrer, & Burlando, 2014; Manoli158

et al., 2018; Mastrotheodoros et al., 2017; Pappas, Fatichi, & Burlando, 2016; Paschalis,159

Fatichi, Katul, & Ivanov, 2015; Paschalis, Fatichi, Pappas, & Or, 2018) combined with160

new modules simulating soil biogeochemistry and plant nutrient dynamics (T&C-BG)161

described in the following and extensively in the Supp. Information: Fig. S1, Text S1162

and S2, and additional references in the Supp. Information (Ainsworth & Long, 2005;163

Batterman et al., 2013; Chapin III, Schulze, & Mooney, 1990; Curry & Schmidt, 2007;164

Daly & Porporato, 2005; Farquhar, Caemmerer, & Berry, 1980; Friend, Stevens, Knox,165

& Cannell, 1997; Hanson, Allison, Bradford, Wallenstein, & Treseder, 2008; Hassink &166

Whitmore, 1997; Jackson, Mooney, & Schulze, 1997; Jungk, 2002; Kögel-Knabner, 2002;167

Manzoni, 2017; Manzoni, Jackson, Trofymow, & Porporato, 2008; Manzoni & Porporato,168

2009; Manzoni, Schimel, & Porporato, 2012; Manzoni, Vico, Katul, Palmroth, & Por-169

porato, 2014; Moorhead & Sinsabaugh, 2006; Moyano, Manzoni, & Chenu, 2013; Phillips,170

Brzostek, & Midgley, 2013; Poorter, 1994; Poorter & Villar, 1997; Roumet et al., 2016;171

Sinsabaugh, Manzoni, Moorhead, & Richter, 2013; S. E. Smith & Read, 2008; S. E. Smith172

& Smith, 2011; Sparks & Carski, 1985; Stewart, Paustian, Conant, Plante, & Six, 2007;173

H. Thomas & Stoddart, 1980; S. C. Thomas & Martin, 2012; Yang, Post, Thornton, &174

Jain, 2013; Zhang et al., 2018). The original T&C is a mechanistic model simulating en-175
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ergy, water, and CO2 exchanges at the land surface at an hourly time step. Even though176

the model can be used for distributed simulations over a catchment, here it is applied177

at the plot-scale, e.g., as one-dimensional vertical model. Mass and energy fluxes con-178

trol the temporal dynamics of vegetation (carbon pools) that in turn affect land-atmosphere179

exchange through its biophysical structure and physiological properties. For instance,180

the Leaf Area Index (LAI) is a prognostic variable, which varies in response to environ-181

mental conditions and vegetation phenology, which is also simulated. Changes in LAI182

can affect water and carbon fluxes that in turn modify vegetation growth in a fully in-183

teractive framework. The soil column is discretized in a number of vertical layers, with184

increasing depth from near the surface to the bedrock. Heterogeneity in the soil hydraulic185

and thermal properties in the vertical direction can be accounted for. Fine root biomass186

is distributed vertically with an exponential profile up to a maximum rooting depth.187

2.1.1 Plant nutrient dynamics188

Changes in plant total nutrient content depend on changes in the carbon pools (e.g.,189

leaves, living sapwood, fine roots, carbohydrate reserves, flower and fruits, and heart-190

wood) and of the stoichiometry of the various pools. Each carbon pool has a correspond-191

ing quantity of nutrients necessary for its construction, but nutrients can be also stored192

in the plant as reserves. In fact, stoichiometric ratios of different tissues are flexible and193

respond to nutrient availability (Magill et al., 2004; Sistla & Schimel, 2012; Zaehle et al.,194

2014). The target stoichiometric ratios are prescribed in the model and define the quan-195

tity of nutrients required for a given amount of carbon in a plant with a balanced nu-196

trient status. Stoichiometric flexibility is explicitly modeled as a two-step processes. First,197

nutrient reserves can buffer uptake and demand of N, P, and K without modifying the198

corresponding concentration of structural (wood) and non-structural (leaves, fine roots,199

fruit and flowers pools) tissues. Second, tissue concentration in the non-structural com-200

partments can be modified to respond to excess or deficit of nutrients, allowing for a real201

stoichiometric flexibility (see Supp. Information). Note that this implies that in the first202

phase nutrient reserves are changing somewhere within the plant without affecting the203

nutrient concentration of non-structural pools. If nutrient reserves exceed the maximum204

nutrient reserve size, nutrient concentrations in non-structural compartments increase,205

while if the modeled nutrient reserves decrease, the nutrient concentrations in the non-206

structural compartments falls below the target value (see Supp. Information for a de-207

tailed description). The nutrient budget of the plant is thus obtained computing changes208

in nutrient reserves of nitrogen (N), phosphorus (P), and potassium (K). In certain cases,209

insufficient nutrient availability may prevent building plant tissues, leading to nutrient210

constraints on plant growth. Under normal conditions, such a modeling solution allows211

to maintain a relatively stable nutrient concentration through time in the various plant212

compartments, as it is often observed in reality. Furthermore, even under unusual con-213

ditions (e.g., a nutrient manipulation experiment) the model maintains the relative nu-214

trient concentration with respect to the target value constrained mostly between -35%215

to +60%, consistent with observed stoichiometric flexibility of non-structural tissues (Mey-216

erholt & Zaehle, 2015). The model also accounts for the fact that changes in leaf nitro-217

gen concentration affects leaf photosynthetic capacity (Bonan et al., 2011; Clark et al.,218

2011; Friend & Kiang, 2005; Oleson et al., 2013; Zaehle & Friend, 2010) and that main-219

tenance respiration in various pools is related to their nitrogen concentrations (Ruimy,220

Dedieu, & Saugier, 1996; Ryan, 1991). However, in T&C-BG these controls are damp-221

ened in comparison to what assumed by other models (see Supp. Information).222

The nutrient amount exported from plant tissues is related to the turnover rates223

of carbon pools and to the tissue stoichiometry. Nutrient resorption from leaves and fine224

roots (Cleveland et al., 2013; Reed, Townsend, Davidson, & Cleveland, 2012; Vergutz,225

Manzoni, Porporato, Novais, & Jackson, 2012) is modeled as constant fractions of the226

pool nutrient content, except when there is a nutrient surplus (see Supp. Information).227

Uptake of mineral nutrients can occur directly from fine roots and it can be passive, i.e.,228
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following the transpiration flow, or active. i.e., against concentration gradients (e.g., Haynes,229

1990; Porporato, D’Odorico, Laio, & Rodriguez-Iturbe, 2003). Additionally, mycorrhizal230

symbiosis contributes significantly to the uptake of nutrients (Hinsinger et al., 2011; Marschner231

& Dell, 1994). The actual nutrient uptake rates are computed as the maximum between232

passive uptake occurring through the transpiration stream and active uptake influenced233

by the amount and biophysical properties of fine root and ectomycorrhizal and arbus-234

cular mycorrhizal fungi (Supp. Information). Suppression functions for nutrient uptake235

are introduced to gradually decrease plant uptake when its nutrient concentration is above236

a given threshold.237

Computation of root exudation, carbon export to mycorrhiza and carbon allocated238

to the root-nodules for biological nitrogen fixation (BFN) follows the rationale of the FUN2.0239

model presented by Fisher et al. (2010) and Brzostek et al. (2014). The original FUN2.0240

model delineates a resistor network for the cost of nitrogen acquisition, corresponding241

to the amount of nitrogen needed to support net primary production and computes the242

integrated carbon costs across a series of pathways, where the amount of carbon spent243

in each pathway depends on the resistance through that pathway (Brzostek et al., 2014).244

The FUN2.0 scheme is modified for T&C-BG since foliar nutrient re-translocation and245

nutrient uptake rates are accounted for in a different way, and not only nitrogen uptake246

but also phosphorus and potassium uptake rates are considered. Furthermore, T&C-BG247

has to compute carbon exports at the daily scale, while FUN2.0 operates at the annual248

scale. Specifically, beyond root respiration, T&C-BG includes costs related to non-mycorrhizal249

active nutrient uptake, represented by root exudation, which depend on soil nutrient con-250

tent and fine root biomass; the costs for ectomycorrhizal, and arbuscular mycorrhizal ac-251

tive nutrient uptake correspond to the carbon cost of growth and maintenance of my-252

corrhizae and depend on soil nutrient availability and mycorrhizal biomass. Finally, the253

cost of biological nitrogen fixation depends on soil temperature as in the original FUN2.0254

model. A full description of the root exudation and carbon export to mycorrhiza is pre-255

sented in the Supp. Information.256

2.1.2 Litter budget257

Litter is produced as a consequence of plant tissue turnover (e.g., leaf fall, self-pruning)258

due to ageing and environmental stresses or because of disturbances and management259

actions and it is computed as an integral component of the original T&C model. The260

total plant N, P, K export is therefore a function of tissue turnover rates, stoichiome-261

try, and resorption coefficients, i.e., the nutrient translocated from senescing leaves to262

other plant tissues (see Supp. Information). The total carbon exported by the plant in263

litter form is subdivided in eight fluxes, which serve as inputs to the litter pools in ad-264

dition to the carbon exported to mycorrhizal associations. Eight distinct carbon fluxes265

are necessary because litter is subdivided between belowground and aboveground com-266

partments and among woody, metabolic, and structural components. The structural and267

woody litter is in turn chemically subdivided into non-lignin and lignin components. The268

woody litter is separated from structural litter only in the aboveground, while in the be-269

lowground compartment woody debris are assumed to contribute directly to metabolic270

and structural litter. This subdivision largely follows a modified version of the CENTURY271

model (Kirschbaum & Paul, 2002). The fraction of metabolic versus structural litter is272

computed for each pool based on the lignin to nitrogen ratio (Krinner et al., 2005; Or-273

win et al., 2011; Parton et al., 1988). Progressively more carbon is allocated to struc-274

tural litter when the lignin concentration of the tissue increases or the nitrogen concen-275

tration decreases. Nutrients are only allocated to three litter pools (aboveground, be-276

lowground and aboveground woody).277

The organic carbon decomposition rates of the eight litter pools are assumed to fol-278

low linear kinetics as in the original version of the CENTURY model and subsequent mod-279

ifications (Kirschbaum & Paul, 2002; Parton et al., 1993, 1988). This assumption relies280
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on the fact that microbial communities are typically not representing a limiting factor281

for aboveground (air-exposed) litter decomposition, and therefore decomposition rates282

can be assumed to scale linearly with the litter mass. Interactions with macrofauna are283

also neglected, even though they might be important in specific conditions (Fahey et al.,284

2013). Linear kinetics are also assumed for belowground C-litter for simplicity, consid-285

ering that this pool represents a rather small portion of the total belowground soil or-286

ganic carbon. Turn-over times and nutrient composition of belowground and aboveground287

compartments, and metabolic, structural, and woody litter can vary greatly and are there-288

fore parameterized differently (Kirschbaum & Paul, 2002). This litter pool subdivision289

maps onto observable litter fractions, because the metabolic component can be regarded290

as the hot-water extractable litter, while the structural non-lignin and lignin components291

can be regarded as the acid-soluble (hydrolyzable) and acid-insoluble (unhydrolyzable)292

fractions, respectively (Campbell et al., 2016; Robertson et al., 2019). Lignin concen-293

tration affects decomposition rates (e.g Freschet et al., 2012) and this effect is explicitly294

accounted for in the model. Note that even though eight distinct C-litter pools are sim-295

ulated only five pools are physically separated since the distinction within the structural296

and woody components is only based on the chemical composition. Each pool is thus297

characterized by a decay coefficient ki, which determines how fast a given pool is turn-298

ing over and by a carbon use efficiency CUEi, assumed temporally constant, which con-299

trols the fraction of carbon respired in the process of litter decomposition (1−CUEi)300

(Supp. Information).301

Total litter respiration and subsurface litter respiration are computed directly from302

the litter decomposition rate, while the fraction of decomposed litter that is not respired303

represents the carbon input to the particulate organic carbon (POC) pool.304

While there are eight carbon litter pools in T&C-BG, only three litter pools are305

explicitly tracked for each nutrient (N, P, and K) since the ratio of structural to metabolic306

carbon/nutrient concentration is prescribed (Kirschbaum & Paul, 2002; Parton et al.,307

1988) (Supp. Information). The inputs of nitrogen, phosphorus, and potassium to the308

SOM pool are computed using organic carbon decomposition fluxes and the carbon to309

nutrient ratio of each pool. During litter decomposition a fraction of nitrogen, phospho-310

rus, and potassium is assumed to leach and directly contribute to the dissolved organic311

pool or to dissolved minerals in the case of potassium, since we assume that C, N and312

P are leached in organic form, while K is leached in inorganic form (Sardans & Penue-313

las, 2015). As a consequence of leaching, organic matter in soils contains a relatively small314

amount of K. This is reflected in the selection of the leaching coefficients (Supp. Infor-315

mation).316

2.1.3 SOC budget317

The soil compartments are conceptualized as vertically-lumped with an active zone318

depth of 25 cm. The C-substrate in the soil is subdivided into particulate organic car-319

bon (POC), mineral-associated organic carbon (MOC) and dissolved organic carbon (DOC),320

largely following the SOC partition proposed by G. Wang et al. (2013) for the MEND321

model. The POC fraction is, in turn, separated according to its chemical composition322

into POC-lignin and POC-cellulose/hemicellulose. This subdivision accounts for the fact323

that POC-lignin is decomposed by oxidative enzymes (ligninases) produced only by fungi,324

while POC-cellulose/hemicellulose is decomposed with hydrolytic enzymes (cellulases)325

produced by both bacteria and fungi (G. Wang et al., 2013; G. Wang, Post, Mayes, Frerichs,326

& Jagadamma, 2012), leading to different decomposition rates. Physically, POC corre-327

sponds to the soil organic carbon associated with particle size ≥ 53 µm, while MOC refers328

to the fraction with particle size < 53 µm (e.g., Aoyama, Angers, & N’Dayegamiye, 1999;329

G. Wang et al., 2013). MOC typically represents the physiochemically protected SOC330

and its turnover rate can be orders of magnitudes slower than for POC (Conant et al.,331

2011); DOC is instead immediately available to microbes provided the appropriate en-332
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vironmental conditions are met. Such representation, however, does not account explic-333

itly for soil aggregates that can provide physical protection to organic matter (Abramoff334

et al., 2018).335

SOC decomposition rates do not depend only on the size of the soil carbon pools336

but also on the quantity of the extracellular enzymes, which in turn depends on the size337

and activity of the microbial pools (Schimel & Weintraub, 2003). Modeling enzyme ki-338

netics and microbial pools requires assumptions on the kinetics and knowledge of spe-339

cific parameters to simulate SOC decomposition, microbial life cycles, and enzyme pro-340

duction, including environmental conditions such as soil temperature and moisture (Man-341

zoni et al., 2016; Schimel, Becerra, & Blankinship, 2017; G. Wang & Post, 2012; G. Wang342

et al., 2013, 2012). T&C-BG models microorganisms and enzymes explicitly (Lawrence,343

Neff, & Schimel, 2009; G. Wang et al., 2013) and accounts for four categories of micro-344

bial organisms: (i) bacteria, (ii) saprotrophic fungi, (iii) arbuscular mycorrhizae, and (iv)345

ectomycorrhizae. Arbuscular mycorrhizae (AM), and ectomycorrhizae (EM) can co-exist346

in some ecosystems, but commonly only one of the two types is present (Brundrett, 2009;347

Finlay, 2008; Shi et al., 2016), which reduces the number of SOC pools.348

Mycorrhizae conversely to bacteria and saprotrophic fungi are unable to feed on349

DOC and receive their carbon only from the host plant (Baskaran et al., 2017; Finlay,350

2008; Johnson, Angelard, Sanders, & Kiers, 2013; Koide, Sharda, Herr, & Malcolm, 2008).351

However, ectomycorrhizae, differently from arbuscular mycorrhizae, are capable of pro-352

ducing extracellular enzymes, which catalyze SOC degradation and produce DOC, later353

used by saprotrophic microbes (Lindahl & Tunlid, 2015; Read, Leake, & Perez-Moreno,354

2004; Talbot et al., 2013). Extracellular enzymes used for the degradation of POC and355

MOC produced by bacteria and fungi are separated, for a total of four extracellular en-356

zyme pools. The DOC derived from the depolymerization of SOC due to extracellular357

enzyme produced by bacteria and fungi is also accounted for separately in two DOC pools.358

This separation reflects the fact that enzyme production, SOC depolymerization, and359

DOC acquisition are typically occurring in very localized areas or niches of microbial ac-360

tivity, constrained by the diffusion of resources (Allison, 2005; Tecon & Or, 2017). Such361

an assumption is also necessary in the model, since the alternative of a unique DOC pool362

where bacteria and fungi feed over the same substrate did not provide realistic results.363

A carbon pool corresponding to soil macrofauna is also explicitly modeled in T&C-364

BG because macrofauna can consume a non-negligible portion of soil carbon for its metabolism365

(Chertov et al., 2017; Lubbers et al., 2013; Moore et al., 2004; Osler & Sommerkorn, 2007;366

Ruiz, Or, & Schymanski, 2015). Soil macrofauna can include different groups, e.g., acari,367

collembola, enchytraeids, nematoda and earthworms (Fierer, Strickland, Liptzin, Brad-368

ford, & Cleveland, 2009) but the overall parameterization of macrofauna in T&C-BG is369

tailored to endogeic earthworms, because earthworms are representing the largest mass370

fraction of soil macrofauna. Soil macrofauna is modeled to feed exclusively on POC, be-371

cause of its higher carbon density when compared to DOC and easier accessibility when372

compared to MOC. Furthermore, soil macrofuana is assumed to interact only with be-373

lowground soil carbon and thus does not affect litter decomposition (it is implicitly in-374

cluded in the first order litter decay parametrization).375

The carbon fluxes Fx among the SOC fractions are computed as in the MEND model376

(G. Wang et al., 2013), using Michaelis-Menten kinetics representing SOC decomposi-377

tion as the product of extracellular enzymes and substrate mass (POC or MOC) per unit378

ground area, while microbial carbon assimilation is proportional to microbial biomass379

and DOC. Both growth and maintenance respiration of microbes are considered (Lawrence380

et al., 2009; Schimel & Weintraub, 2003; G. Wang et al., 2013). The scheme to quan-381

tify growth respiration rates, maintenance respiration rates, enzyme production rates,382

and microbial mortality rates assumes that maintenance respiration depends on both DOC383

and microbial biomass, which was found to be theoretically more consistent than other384
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alternatives (G. Wang & Post, 2012). Mortality coefficients are assumed equal to the res-385

piration maintenance coefficients (Supp. Information).386

The production of the four extracellular enzymes is assumed to be proportional to387

the maintenance respiration and therefore to the size of the microbial biomass pools, while388

the extracellular enzyme turnover rates are proportional to the size of the enzyme pools389

themselves. The proportional investment in enzymes is assumed to be the same for ec-390

tomycorrhizal and saprotrophic fungi. Differently from G. Wang et al. (2013), we use391

scaling factors for the enzyme production rate to introduce a non-linear dependence be-392

tween the microbial biomass and SOC decomposition rates (productivity and respira-393

tion of microbes), which has been observed (Sinsabaugh et al., 2014; Zak et al., 1994).394

Microbial productivity and respiration scale less than linearly with microbial biomass,395

which suggests the occurrence of larger specific decomposition rates with low biomass396

or equivalently a saturating effect of microbial activity for large biomass values.397

The parameters used to describe SOM biogeochemical reactions are also a func-398

tion of environmental conditions such as temperature, soil water potential, pH, clay and399

silt content, and are corrected using specific empirical relations (Supp. Information). Im-400

portantly, the fraction of decomposed POC that becomes MOC is assumed to be affected401

by the availability of reactive surface represented by the clay and silt fractions and on402

the degree to which this protective capacity is already occupied by organic matter (Six403

et al., 2002; Stewart, Paustian, et al., 2007; Stewart, Plante, Paustian, Conant, & Six,404

2007). Reactive surfaces can become progressively saturated up to the point that there405

is no space to store additional MOC, and the soil becomes carbon saturated with regards406

to the MOC fraction (Supp. Information).407

The macrofauna assimilation rate of POC is modeled with a linear kinetic, with408

a kinetic coefficient dependent on soil temperature, effective saturation, clay content, pH,409

and substrate palatability (Curry, 1998; Ruiz et al., 2015; Whalen, Paustian, & Parmelee,410

1999). The total respiration cost of macrofauna is the sum of maintenance and growth411

respiration. Maintenance respiration is computed using a linear kinetic with a temper-412

ature dependence (Whalen et al., 1999) and considering the saturation-dependent level413

of activity of the macrofauna, i.e., differentiating between resting and active macrofauna414

(Ruiz et al., 2015). Finally, the macrofauna mortality rate is proportional to the size of415

the macrofaunal biomass pool (Whalen et al., 1999).416

2.1.4 Soil nitrogen, phosphorus and potassium budgets417

Soil organic nitrogen dynamics are assumed to follow the carbon fluxes according418

to the specific carbon to nitrogen ratio C:N of a given donor pool (Kirschbaum & Paul,419

2002). The C:N of microbial biomass has been empirically observed to have a low vari-420

ability and to impose an important stoichiometric constraint (Cleveland & Liptzin, 2007;421

Manzoni, Trofymow, Jackson, & Porporato, 2010; McGroddy, Daufresne, & Hedin, 2004;422

Mooshammer, Wanek, Zechmeister-Boltenstern, & Richter., 2014; Mouginot et al., 2014;423

Xu, Thornton, & Post, 2013). For this reason, target values are prescribed in T&C-BG424

and nitrogen mineralization or immobilization is modeled to occur whenever the resource425

C:N is respectively lower or higher than the microbial C:N demand, i.e., biomass C:N426

divided by microbial CUE. The temporal dynamics of the soil organic matter nitrogen427

pool, dissolved organic nitrogen, and nitrogen in the macrofuana and microbial biomass428

pools are explicitly simulated. The temporal dynamics of the inorganic nitrogen pools429

corresponding to ammonium NH+
4 and nitrate NO−

3 are also simulated. They depend430

on net immobilization/mineralization fluxes, nitrogen uptake and leaching, ammonia volatiliza-431

tion, and nitrification and denitrification fluxes, which are simulated with empirical func-432

tions of the amount of ammonium and nitrate and environmental conditions (Dickinson433

et al., 2002). Flux of N from near-surface rocks is not considered, even though it has re-434
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cently regarded as a significant source of N in mountains and at high-latitudes (Houl-435

ton, Morford, & Dahlgren, 2018).436

Soil organic phosphorus dynamics are modeled similarly to nitrogen dynamics, with437

organic phosphorus following the carbon fluxes according to the C:P ratio of each donor438

pool. As for C:N, the C:P of microbial biomass has been empirically observed to be a439

relatively constrained quantity in soils (Cleveland & Liptzin, 2007; McGroddy et al., 2004;440

Mooshammer et al., 2014; Mouginot et al., 2014; Xu et al., 2013), and target values are441

prescribed in T&C-BG. Phosphorus mineralization or immobilization is simulated to oc-442

cur whenever the C:P of microbial biomass departs from the target values similarly to443

nitrogen. The temporal dynamics of the soil organic matter phosphorus pool, dissolved444

organic phosphorus, and the phosphorus composing microbial biomass pools are explic-445

itly simulated. The temporal dynamics of the inorganic phosphorus pools are simulated446

following the approach of the CENTURY model (Parton et al., 1988), where the min-447

eral phosphorus represents an undifferentiated sum of PO3−
4 , HPO2−

4 and H2PO
−
4 . Other448

mineral pools represent the amount of phosphorus in the primary minerals, secondary449

minerals, and occluded phosphorus (Buendia et al., 2010; Parton et al., 1988; Yang et450

al., 2014; Zhu et al., 2016). The primary mineral source of phosphorus is fed by the tec-451

tonic uplift that adds new parent material, while secondary and occluded P minerals are452

formed through physical and chemical weathering (e.g. Buendia et al., 2010). All these453

exchanges are regulated through simple linear kinetics (Supp. Information).454

Due to its high solubility, a large part of potassium is leached during litter decom-455

position and the amount of potassium remaining in the organic material is relatively small456

when compared to the other analyzed nutrients (Sardans & Penuelas, 2015). For this rea-457

son and because microbial stoichiometry of potassium is substantially unknown, we do458

not model potassium content in microbial biomass or macrofuana and only one generic459

pool of potassium, corresponding to potassium still trapped in the soil organic matter460

is simulated. Four pools of inorganic potassium in the soil are considered: (i) potassium461

in the mineral solution, (ii) exchangeable potassium, (iii) non-exchangeable potassium,462

and (iv) potassium in the primary minerals (Sparks, 1987; Sparks & Huang, 1985). Plant463

uptake and leaching occur only from the mineral solution pool. Potassium in the solu-464

tion is in direct contact with the exchangeable phase via adsorption/desorption reactions465

(Selim, Mansell, & Zelazny, 1976). Furthermore, the flux between non-exchangeable (com-466

plex secondary minerals) and exchangeable K, is also governed by linear reactions. Potas-467

sium in primary minerals is converted to mineral solution through physical and chem-468

ical weathering. Concurrently, the potassium in primary minerals is fed by the tectonic469

uplift that contributes new parent material and thus primary soil potassium (Supp. In-470

formation).471

2.1.5 Nutrient leaching, deposition, biological nitrogen fixation and sup-472

ply of primary minerals473

Leaching of nutrients is computed at the bottom of the soil column and it is not474

tracked further. Leaching is assumed to be proportional to the water leakage rate in mm day−1
475

at the soil bottom divided by the total soil water volume in the column in mm times the476

amount of nutrients in the soil solution (e.g., gN m−2) (Porporato et al., 2003). This477

is an approximation, since we are not solving for any nutrient transport process in the478

soil column and we consider leaching only at the column bottom, even though most of479

the dissolved nutrients are physically located in the upper part of the soil column in the480

biogeochemically active zone. However, such an approximation is likely to mostly affect481

short-temporal dynamics of nutrient leaching (in the order of days) rather than the in-482

tegrated leaching in the long-term, where an equilibrium between leaching from the bio-483

geochemically active zone and leaching at the soil bottom is expected. See Supp. Infor-484

mation for further details.485
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Different databases are combined in T&C-BG to provide geographical maps of to-486

tal (dry and wet) deposition for nitrogen and phosphorus and wet deposition for potas-487

sium, which are used as additional inputs to the soil (Supp. Information). Specifically,488

present-day nitrogen deposition is obtained from Vet et al. (2014), who provide a global489

one-degree resolution map of wet plus dry deposition of reduced and oxidized nitrogen490

forms. The pre-industrial nitrogen input is obtained from a global gridded estimate of491

atmospheric deposition in 1860 (Dentener, 2006; Galloway et al., 2004). Total atmospheric492

phosphorus deposition maps for current and preindustrial times are obtained from Ma-493

howald et al. (2008). Finally, wet potassium deposition is available for about 480 sta-494

tions around the world for the period 2005-2007 (Vet et al., 2014). A nearest neighbor495

interpolation among these values is carried out to obtain an estimate of local potassium496

deposition as input for T&C-BG.497

Symbioses between certain plant species and nitrogen-fixing bacteria represent the498

major natural source of nitrogen input in some ecosystems (Cleveland et al., 1999; Menge,499

Levin, & Hedin, 2009). The amount of biologically nitrogen fixed by plants is computed500

using the same carbon cost of biological nitrogen fixation (BNF) utilized to compute car-501

bon allocation to root nodules (Brzostek et al., 2014) and only when specific plants per-502

forming BNF are occurring in a given vegetated patch (Supp. Information).503

2.2 Numerical Experiments504

2.2.1 Case studies505

Hourly meteorological inputs, soil properties and depth, and biome parameteriza-506

tions were taken from 20 sites corresponding to locations where observations were avail-507

able to force the model (Table 1) and to analyze the consistency of the results. These508

sites are representative of all major biomes and cover a wide climatic range, thus allow-509

ing quantification of global-scale correlation among key biogeochemical variables. As usual510

in T&C applications (Fatichi et al., 2016; Fatichi & Pappas, 2017; Mastrotheodoros et511

al., 2017), biomes were not parameterized with generic plant functional types, but for512

each site a parameter set able to provide satisfactory results in terms of vegetation pro-513

ductivity, leaf area index, soil moisture, energy and water fluxes, and local phenology was514

identified acting on the most sensitive parameters. The capability of the original T&C515

model to reproduce the observed energy and water fluxes and vegetation phenology as516

well as response to environmental manipulations against observations have been pub-517

lished before for a large number of location worldwide and the 20 selected sites are a sub-518

set of those (e.g., Fatichi & Ivanov, 2014; Fatichi et al., 2015; Fatichi & Leuzinger, 2013;519

Fatichi et al., 2016; Fatichi & Pappas, 2017; Manoli et al., 2018; Mastrotheodoros et al.,520

2017; Pappas et al., 2016). A single parameter set for the soil biogeochemistry module521

was selected based on literature parameters and preliminary model tests and is fully doc-522

umented in the Supp. Information.523

2.2.2 Model spin-up and comparison with ecosystem carbon flux obser-524

vations525

Given the lack of detailed knowledge of hourly-scale past climate and changes in526

land-uses and management practices, for 18 of the 20 locations we use average climatic527

conditions and average litter inputs to spin-up carbon and nutrient pools running only528

the soil-biogeochemistry module for 1000 years. Then we further spin-up this initial state529

simulating once the period for which hourly observations are available with the full T&C-530

BG. In all simulations, atmospheric CO2 concentrations were assumed to follow the ob-531

served historical trend (Keeling, Piper, Bollenbacher, & Walker, 2009) and nutrient de-532

position were set to pre-industrial values until 1940 and to current values afterwards for533

nitrogen and phosphorus (Galloway et al., 2004; Mahowald et al., 2008; Vet et al., 2014).534

The corresponding conditions in terms of vegetation and soil carbon and nutrient pools535
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are used as initial conditions for a final simulation from which we compute all quanti-536

ties reported in the result section as representative of the different locations. The sites537

are considered to be un-managed with the exception of three grasslands (Chamau, Stubai538

and TasFACE), where periodic grass cuts are prescribed. In reality, cut grass is removed539

and the fields are fertilized, however in the model the mowed grass material is left in the540

field to decompose to avoid removing mass of elements and therefore prescribing fertil-541

izer additions, which are mostly unknown. Only background mortality is assumed for542

forested sites, assuming no catastrophic events occur.543

For two locations only, the University of Michigan Biological Station (UMBS) and544

Harvard Forest, transient simulations from 1860 to the periods with hourly observations545

(1999-2014 and 1991-2010, respectively) were carried out to capture forest dynamics af-546

ter disturbance. Hourly meteorological variables from 1860 to the beginning of the ob-547

servations were generated stochastically by means of a weather generator (Fatichi, Ivanov,548

& Caporali, 2011). We imposed disturbances similar to those reported for these ecosys-549

tems, specifically, the forest was assumed to be clear-cut in 1923 in the UMBS (Curtis550

et al., 2002, 2005; Gough et al., 2007; Schmid, Su, Vogel, & Curtis, 2003), and 60% felled551

down due to wind thrown in 1938 in Harvard (Curtis et al., 2002; Urbanski et al., 2007).552

Regrowth from seeds (75%) and re-sprouting roots (25%) were assumed for both forests.553

For these two locations, soil-biogeochemistry C, N, P, K pools before 1860 were obtained554

from a 1000 year spin-up with average climatic conditions and constant litter inputs as555

for the others locations but litter inputs were computed with pre-industrial CO2 levels.556

Simulations for the observational period in the two transient spin-up cases of the UMBS557

and Harvard Forest were compared with flux-tower observations of ecosystem respira-558

tion and Net Ecosystem Exchange (NEE). Including disturbances at the actual date of559

occurrence allows a meaningful comparison between observations and simulations, while560

for all the other locations NEE is expected to be close to zero because of the equilibrium561

conditions obtained at the end of the spin-up.562

2.2.3 Bare-fallow and litter manipulation experiments563

For all the 20 locations, a theoretical bare fallow experiment is simulated. The im-564

plementation of the bare fallow involved cessation of all litter inputs, root-C exports and565

nutrient uptakes, allowing the soil carbon and nutrient pools to evolve for 100 years with566

no inputs, excepts for atmospheric deposition and slow supply of primary minerals through567

tectonic uplift. Changes in soil organic carbon were then normalized with the initial value568

and compared with the long-term bare fallow experiments reported by Barré et al. (2010).569

Additionally, for the location of Harvard forest, the major litter manipulation treatments570

of the DIRT experimental plots (Bowden et al., 1993; Nadelhoffer et al., 2004; Rousk &571

Frey, 2015) are modeled to evaluate changes in carbon storage, respiration, and relative572

dominance of fungi and bacteria. Specifically, we compare the control scenario (CTR)573

with normal annual aboveground litter inputs, with a double litter (2X, twice the above-574

ground litter inputs of the control plots) and no aboveground litter (0X, annual above-575

ground litter inputs excluded) experiments. Simulations refer to the lumped soil-biogeochemistry576

active zone of T&C-BG (first 25 cm of soil), while observations were carried out sepa-577

rately in the mineral and organic layer of the soil (Rousk & Frey, 2015). Therefore, ob-578

servations for both mineral and organic soils are reported in the result section for com-579

parison. Simulations are averaged over a period of three years after 16 years of imposed580

treatment, while observations represent snapshot differences observed after 23 years of581

treatment. This discrepancy depends on meteorological variables that were available only582

for 19 years to run the model.583

2.2.4 Nitrogen fertilization584

A numerical nitrogen addition experiment was carried out for Little Prospect Hill585

(LPH), MA, USA, still comprised within the Harvard forest long-term ecological research586
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area, where a nitrogen addition experiment (Frey et al., 2014; Magill et al., 2004; Tonitto,587

Goodale, Weiss, Frey, & Ollinger, 2014) and long-term observations (15 years) of nitro-588

gen fertilization on pine and hardowood sites were carried out. Since the pine forest showed589

decreasing productivity in response to N-addition due to soil-acidity (not implemented590

in the model), we only compare the response for the hardwood site as done by previous591

modeling studies (Meyerholt & Zaehle, 2015). Two levels of nitrogen addition (5 and 15592

gN m−2 year−1) were given as input in six different applications separated by 30 days593

during the growing season as in Magill et al. (2004). We test the model response in terms594

of changes in leaf-nitrogen content. Beyond the actual applied treatments, other levels595

corresponding to 1, 3, 10, 30, and 100 gN m−2 year−1 were used in numerical experiments.596

These treatments, while unrealistic, are used to evaluate the model capability to repro-597

duce the responses of forest N cycling to continuing N addition, e.g., N saturation, as598

hypothesised by Aber et al. (1998); Aber, Nadelhoffer, Steudler, and Melillo (1989) and599

synthesized by Niu et al. (2016). In order to generate some nutrient limitation rather600

than arriving to the long-term equilibrium that is obtained after the spin-up described601

before, soil organic nitrogen is reduced of 5% in comparison to the value obtained at equi-602

librium. Such a small adjustment allows introducing nitrogen limitation and simulating603

an N-addition stimulation of NPP as observed in the field.604

3 Results605

3.1 Local comparison of carbon fluxes with flux tower data606

Fully transient simulations for the UMBS site show that T&C-BG is able to cap-607

ture the main variability of ecosystem respiration (RE) and Net Ecosystem Exchange608

(NEE) at daily and monthly scale, with a coefficient of determination (R2) equal to 0.92609

and 0.93 for NEE and RE at monthly scale and R2 of 0.67 and 0.84 at daily scale for610

NEE and RE, respectively (Fig. 1). Despite the overall good correlation, simulations tend611

to overestimate ecosystem respiration during summer months and slightly underestimate612

respiration during the autumn, which leads to carbon sink conditions (negative NEE),613

while observations have positive NEE values during October. Performance is slightly worse614

(R2 of 0.84 and 0.67 at monthly scale and 0.57 and 0.55 at daily scale for NEE and RE)615

for Harvard forest where variability of observed carbon fluxes is larger than simulated,616

and primarily the consistent negative trend in observed NEE (Keenan et al., 2013; Ur-617

banski et al., 2007), is not as evident in the simulations (Fig. S2). For both sites the av-618

erage carbon sink, which is related to the recovery from historical disturbances and par-619

tially also to CO2 fertilization, is reproduced by the model but with a lower magnitude620

(Table 2). Other carbon and nitrogen fluxes and states that can be compared at UMBS621

are the aboveground standing biomass and total SOC. Aboveground biomass is slightly622

underestimated by the model, which may be expected given the simplified description623

of the 1923 forest disturbance. SOC observations are rather uncertain (Gough, Vogel,624

Schmid, & Curtis, 2008; McFarlane et al., 2013) ranging from 5.5 to 8 kgC m−2 with sim-625

ulations that are closer to the lower estimate. Nitrogen-mineralization rates are similar626

to local observations (Table 2) and are comparable to what would be expected for the627

productivity of UMBS (ANPP = 776 g DM m−2 year−1), when compared to a re-628

view of the net N mineralization - Aboveground Net Primary Production (ANPP) re-629

lation in conifer and hardwood forests in the mid-west USA (Reich, Grigal, Aber, & Gower,630

1997). Nitrogen leaching and gaseous N-efflux are an order of magnitude smaller than631

N-mineralization. While gaseous efflux is similar in model simulations and observations,632

there is almost an order of magnitude difference in NO−
3 leaching which is overestimated633

by the model.634
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3.2 Global scale patterns of carbon cycle components635

A few studies have quantified the global-scale relation among Net Primary Produc-636

tion (NPP), litterfall, SOC, soil respiration, nutrient mineralization rates, microbial and637

macrofauna biomass (Fierer et al., 2009; Gill & Finzi, 2016; Raich & Nadelhoffer, 1989;638

Xu et al., 2013; Zak et al., 1994). Here, we compare these variables for the 20 modeled639

sites with the values published in literature. These comparisons are meant to demon-640

strate the model ability to reproduce broad-scale patterns as emergent features of the641

simulations rather than matching values at specific locations. Raich and Nadelhoffer (1989)642

found a strong correlation between soil respiration and litterfall in global forests, a cor-643

relation that is very well reproduced by the model simulations (Fig. 2a). Simulations644

across the 20 sites spanning different climates and biomes are also consistent with ob-645

served global patterns in belowground communities published by Fierer et al. (2009). The646

relation between total microbial biomass and vegetation productivity is well represented647

for both total NPP and belowground NPP (Fig. 2b,c). Soil respiration increases almost648

linearly with microbial biomass, with a tendency for microbial biomass to saturate at649

high-productivity/respiration sites (Fig. 2e). Total SOC for a given microbial biomass650

is underestimated when compared to values of Fierer et al. (2009). This can be the re-651

sult of model limitations in considering only 25 cm of lumped soil-biogeochemistry ac-652

tive zone. Observations cover the first meter of soil and if microbial biomass and SOC653

have different depth profiles (Xu et al., 2013) a mismatch has to be expected compar-654

ing different integrated depths. Macrofaunal biomass is simulated to be in the range of655

0 to 4.6 g C m−2, which is similar to the range reported by Fierer et al. (2009) and in-656

creases proportionally with microbial biomass and therefore site productivity, even though657

simulated macrofaunal biomass is a bit underestimated for a given microbial biomass (Fig.658

2f).659

Patterns of nitrogen and phosphorus mineralization in relation to Gross Primary660

Production (GPP) have been recently assessed by Gill and Finzi (2016). Simulations in661

the 20 sites are typically consistent with those values, although simulated nutrient min-662

eralization rates tend to be slightly larger than observed for intermediate values of GPP663

(Fig. 3a,b). Modeled nutrient mineralization rates are very high for two alpine grass-664

lands but they are plausible given the high productivity and relatively large nutrient con-665

tent of grass leaves and the fact that grass litter is left on the field in the simulations.666

Nitrogen Use Efficiency (NUE) and Phosphorus Use Efficiency (PUE) computed as the667

ratio of GPP to nutrient uptake rates have the same magnitude of the values published668

by Gill and Finzi (2016) even though simulated NUE is generally smaller. Simulated val-669

ues are rather scattered and do not follow the pattern of increase in PUE and decrease670

in NUE with GPP from high-latitude boreal ecosystems to low-latitude tropical forests671

(Fig. 3c,d). However, deserts and semi-arid locations were not analyzed by Gill and Finzi672

(2016), and therefore the comparison is forcefully limited.673

3.3 SOC pools and nutrients674

Since the model simulates various functional SOC pools, it is possible to evaluate675

their relative magnitude (Fig. 4). With the selected parameterizion, the mineral asso-676

ciated carbon (MOC) pool is the largest fraction of SOC and spans between 58 and 79%677

of SOC, depending on the ecosystem, with a mean MOC:POC of 2.8. This is supported678

by a few observations collected in grasslands and agro-ecosystems (Cambardella & El-679

liott, 1992; Sherrod, Peterson, Westfall, & Ahuja, 2005) and by the recent observations680

of MOC and POC fractions in a selected subsample of the LUCAS dataset of European681

soils (Robertson et al., 2019). The plausibility of the simulated values is confirmed by682

the comparison of the MOC concentration with observations reported in Six et al. (2002)683

(Fig. 5b). Mineral associated carbon tends to decrease with decreasing silt plus clay frac-684

tion in both simulations and observations, because the physical surfaces in the soil starts685

to saturate earlier with MOC for coarser soil textures (see Supp. Material). POC-Cellulose686
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is on average smaller than POC-Lignin (11% versus 16% of SOC) since it is consumed687

faster, but POC-Lignin has a much larger variability across ecosystems, which is related688

to the composition of the litter with grasslands having a much smaller fraction of POC-689

Lignin when compared to forests or shrubs. Microbial biomass is simulated to be on the690

range 1.0-3.1% of SOC (Fig. 4b) consistent with observations published in several ar-691

ticles (G. Wang et al., 2013; Xu et al., 2017, 2014, 2013). However, the microbial nitro-692

gen and phosphorus fraction of SOM tend to be underestimated at low values of NPP693

(Fig. S3). DOC is typically a very small fraction, less than 2% of SOC (Fig. 4c), as sup-694

ported from observations (G. Wang et al., 2013). DOC mass is in the same order of mag-695

nitude as microbial biomass (Fig. 4d), and generally smaller for high-productivity sites696

(15% of microbial biomass) and larger for low-productivity sites (80%-100% of micro-697

bial biomass). Enzyme C-pools are not shown but their sum is on the order of 0.1−0.4698

g C m−2 and account for less than 0.005% of SOC (no empirical evidence is available699

to test this prediction). The average simulated mass ratios between fungi and bacteria700

is 7.0 (Fig. 4e). The magnitude is supported by a collection of observations of fungal to701

bacterial phospholipid fatty acid (PFLA) ratios that once converted to C biomass ra-702

tios provide an average of 6.0 (Waring, Averill, & Hawkes, 2013). However, the simu-703

lated variability is smaller than observations and mostly due to the modeled variability704

in mycorrhizal biomass. A few additional observations support the fact that fungi have705

larger biomass than bacteria (Joergensen & Wichern, 2008; Six, Frey, Thiet, & Batten,706

2006), e.g., at least 4-5 times larger (Ananyeva, Castaldi, Stolnikova, Kudeyarov, & Valen-707

tini, 2015). Bacteria have a faster metabolism (productivity and respiration rates) and708

therefore their biomass is typically smaller. The emergent ratio between saprotrophic709

and mycorrhizal fungi from the simulation is 1.5. This is a poorly known and largely un-710

constrained quantity, and few indications for boreal ecosystems tend to support a ratio711

around or less than 1 (B̊åath, Nilsson, Göransson, & Wallander, 2004; Clemmensen et712

al., 2013).713

SOM nutrient content ranges in terms of C:N and C:P on a mass-basis are 9-15 and714

60-79, respectively (Fig. 5a), well within the range of global observations (Cleveland &715

Liptzin, 2007; Mooshammer et al., 2014), even though the simulated variability across716

biomes may be smaller than what typically observed (Xu et al., 2013). This is proba-717

bly the result of having a constrained range of nutrient contents in plant tissues across718

ecosystems (e.g., N:P does not vary) and fixed microbial C:N and C:P ratios. C:N, C:P,719

and C:K values of leaf-fall and reproductive-fall litter are indeed well within the range720

of observed variability (Holland et al., 2014), but the 20 analyzed locations span a much721

lower range than observations (Fig. S4). The C:N and C:P ratios are also well within722

the observed range of woody and leaf litter chemistry composition (data summarized in723

Manzoni et al. (2017)), and not surprisingly of soil microbial biomass (Fig. 5a). How-724

ever, in such a case the C:N and C:P ratios are prescribed for each microbial commu-725

nity and the limited differences among sites are only dictated by variability in the pro-726

portion among bacteria, saprotrophic, and mycorrhizal fungi. While observations show727

higher variability for all these quantities, the magnitude of the decrease in C:N and C:P728

from litter, soil organic matter, to soil microbial biomass is correctly captured by the model.729

3.4 Microbial activity, root-C export, and soil respiration partition730

Microbial productivity and respiration have been shown to scale linearly with mi-731

crobial biomass (Sinsabaugh, Shah, Findlay, Kuehn, & Moorhead, 2015). This is expected732

also from T&C-BG model construction and is indeed confirmed across ecosystems (Fig.733

S5). The slope of these relations in a log-log plot has been postulated to be less than 1,734

specifically slopes of 0.7-0.8 have been shown for production versus biomass, and slopes735

of 0.5 for respiration versus biomass (Sinsabaugh et al., 2015), suggesting a less efficient736

use of resources at higher biomass. Slopes computed from simulations are 0.93 and 0.94737

for bacteria and fungi respectively, and for production versus biomass and respiration738

versus biomass. While the same slope for production and respiration is expected from739
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model construction, the similarity between bacteria and fungi emerges from simulations.740

Results suggest that while there is a lower efficiency at higher biomass rates, introduced741

in the model through the variable allocation to extracellular enzymes, this is probably742

not sufficient to capture the observed lower-than-one slopes, even though uncertainties743

in observations are also very large (Sinsabaugh et al., 2015).744

Other simulated global patterns are shown to describe the model behavior and plau-745

sible magnitude of quantities that are typically difficult to measure (Fig. 6). SOC tends746

to increase with carbon input of litter, especially for carbon inputs lower than 500 g C m−2 year−1.747

However, there is a very large variability of SOC at high carbon inputs, which highlights748

how standing carbon pool is a complex integrated variable only loosely correlated with749

C-inputs. SOC increases slower at high litter inputs, as is also the case in the relation750

between SOC and abovground NPP (a proxy of litterfall) across ecosystems (Zak et al.,751

1994). Note, however, that we do not simulate any peatland soil, where very high car-752

bon stocks may be expected also for small inputs. Microbial respiration for unit of mi-753

crobial biomass, typically named Microbial Metabolic Quotient, MMQ (Xu et al., 2017),754

tends to be larger with low microbial pools, since microbes are assumed to be more ef-755

ficient in allocating carbon to enzyme as their biomass decreases (Fig. 6b). Simulated756

differences in MMQ for high and low microbial biomasses are less than 50%, smaller than757

reported by previous studies (Averill, Waring, & Hawkes, 2016; Zak et al., 1994). How-758

ever a recent global analysis of MMQs shows a less clear pattern of increasing MMQ with759

decreasing microbial biomass (Xu et al., 2017). The simulated average microbial metabolic760

quotient is 0.32 mgC gC−1 hour−1, a value five times smaller than published by Xu761

et al. (2017), but our estimate is reasonable because both microbial biomass and total762

respiration are well captured (Fig. 2). The discrepancy can be originated by observa-763

tions, which are typically derived from short-term laboratory studies of soil samples col-764

lected from superficial layers and disturbed prior to incubation, whereas simulated val-765

ues represent long-term integrated MMQ at ecosystem scale.766

Root carbon exudation computed from simulations appears to be a relatively small767

fraction of NPP (0.6-4.9%), typically less than 2% (Fig. 6c). Carbon export to mycor-768

rhiza instead is a more considerable component that averages around 11.3% of NPP, with769

larger values (around 20-25%) for low productivity drier sites and decrease to 4-7% for770

wetter sites (Fig. 6d), with the latter values supported by field estimates (Brzostek, Greco,771

Drake, & Finzi, 2013; McCarthy et al., 2010). Even though mycorrhizal biomass is smaller772

in low-productivity regions, the simulated plant cost for its maintenance decreases less773

than proportionally to the decrease in NPP, because nutrient availability decreases strongly774

in these dry ecosystems, which leads to the behavior observed in Fig. 6d. Mycorrhizal775

biomass observations in arid and semi-arid sites are absent or rare, and therefore the con-776

fidence in such a result is minimal (shaded area) since it is difficult to test if this model777

result is realistic or driven by the imposed model structure and unique parameterization778

adopted for all sites.779

Simulations also allow to shed light on the relative contributions to respiration, par-780

titioning it among fine-roots, bacteria, fungi and macrofauna. There is a noticeable site-781

to-site variability with fine root, fungal, bacteria and macrofaunal respiration account-782

ing on average for 33% (18-54), 40% (29-49), 24% (14-30) and 3% (0-9) of total below-783

ground respiration, with absolute ranges given in parenthesis (Fig. 7). Fungal respira-784

tion can be further subdivided in mycorrhizal fungi respiration, which is on average 5%785

(2-12) and saprotrophic fungi respiration, which is on average 35% (21-46). A mycor-786

rhizal fungi respiration contribution of 2-12% to total soil respiration is well supported787

by few available observations (Fenn, Malhi, & Morecroft, 2010; Moyano, Kutsch, & Reb-788

mann, 2008; Nottingham, Turner, Winter, van der Heijden, & Tanner, 2010; Tomè et al.,789

2016). Based on these simulations, the ratio between soil heterotrophic respiration and790

total soil respiration is 0.67±0.08, which is very close to the 0.63±0.16 ratio reported in791

the updated global soil respiration database for the 2007-2014 period (Bond-Lamberty,792
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Bailey, Chen, Gough, & Vargas, 2018). Macrofaunal contribution increases with NPP,793

not surprisingly since macrofauna (mostly earthworm) activity is largely suppressed or794

eliminated because of soil moisture limitations in semi-arid sites. The fine root contri-795

bution is quite variable but tends to decrease at large NPP, where fine-root biomass rep-796

resents a smaller fraction of living plant tissues, when compared to sites with lower NPP.797

Such a decrease in root respiration contribution is accompanied by an increasing con-798

tribution of bacteria, which is less variable across sites than the other components. Fun-799

gal respiration, which includes saprotrophic and mycorrhizal contributions, is the largest800

component of soil respiration, even though the ratio of fungal to bacterial respiration is801

much smaller than their biomass ratio (Fig. 4). This is the result of a faster bacterial802

metabolism, as observed in empirical studies (Sinsabaugh et al., 2015; Waring et al., 2013),803

and reflected in the model parameterization (Supp. Information).804

3.5 Bare fallow experiment805

Changes in relative SOC with time after cessation of litter inputs were in good agree-806

ment with the range of variability found in the seven experiments located in humid cli-807

mates reported by Barré et al. (2010)(Fig. 8a). In this virtual experiment, we consid-808

ered only locations with precipitation above 700 mmyear−1 consistent with the climate809

of the experimental sites. Simulating drier conditions lead instead to slower SOC decay,810

especially after 50-60 years (Fig. S6). Model simulations can be used to look at the be-811

havior of the different soil organic matter pools with time after input cessation (Fig. 8b812

to g). Bacteria and saptrotrophic fungi tend to lose relatively quickly 50% of the their813

biomass but they persist in most locations after 100 years with saprotrophic fungi hav-814

ing slightly higher remaining fractions. Mycorrhizal fungi, not surprisingly, survive only815

few years after all litter and C-export inputs are stopped because they are not supported816

anymore by the host plant and they cannot feed on DOC. The predicted faster decrease817

of microbial biomass compared to total SOC is supported by observations from three long-818

term experiments including a bare fallow (G.-H. Wang et al., 2009; Witter & Kanal, 1998;819

Yu et al., 2013). In fact, in these experiments microbial biomass C in the topsoil scales820

as total SOC to the power 1.6 (R2 = 0.88). Relative respiration follows temporal dy-821

namics similar to the biomass of bacteria and saprotrophic fungi, with respiration rep-822

resenting only 50% of the initial one after 3-8 years and generally less than 20% after823

50 years. SOM C:N and C:P ratios decrease through-time showing a relative accumu-824

lation of nutrients with respect to carbon but the spread among locations is significant825

with C:N and C:P ranging from 0.6 to 0.8 of their initial values after 100 years. In the826

simulations, there is a negative correlation between the initial amount of SOC and the827

remaining SOC after 100 years of experiments, which supports the idea that removing828

litter input where input is limited has a lower effect on SOC and that it is more diffi-829

cult to lose carbon from already carbon-poor soil when compared to carbon rich soils (Fig.830

8h).831

3.6 Litter manipulation experiment832

Simulations corresponding to the litter manipulation experiment DIRT are com-833

pared with observations (Fig. 9). In order to avoid comparing absolute numbers, which834

would be difficult and uncertain at the ecosystem scale, we normalized the observed val-835

ues to the simulated control scenario (no treatment) so that modeled and observed con-836

trol scenario values forcefully overlap in the Figure 9. This allows to only compare the837

relative magnitude of the treatment effects in the simulations and observations. Treat-838

ment effects for observations were reported for both organic and mineral soil layers that839

are not distinguished in the model. Simulations are therefore expected to lay between840

these values or close when the model results are realistic. The responses to litter dou-841

bling (2x) in terms of increases in soil organic carbon, C:N, soil respiration and relatively842

stable ammonium in soil are captured by the model given potential uncertainties in the843
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observations (Fig. 9). However, the response to litter exclusion (Ox) is weaker in the model844

than in reality for SOC but well represented for the other quantities. Simulated sapro-845

trophic fungi and bacteria productivity increases with litter addition and decreases with846

litter exclusion, with the simulated ratio fungi to bacteria increasing slightly with de-847

creasing litter quality (Ox), and decreasing otherwise (2x). This trend is not observed848

in reality where fungal productivity decreases in the 2x − CTR − Ox transition but bac-849

terial productivity does not (Rousk & Frey, 2015), suggesting that mechanisms more com-850

plex than those implemented in the model may be at play.851

3.7 N-addition experiment852

Results of the numerical nitrogen addition experiment for Little Prospect Hill (LPH)853

are compared with observations of foliage N concentration and relative change in NPP854

for the hardwood biome (Fig. 10) and against expectations of response patterns of for-855

est N cycling to continuing N addition (Aber et al., 1998, 1989; Niu et al., 2016). Fo-856

liage N concentration and NPP increase with N addition but at relatively slow rates, par-857

tially due to the stoichiometric buffer offered by nutrient storage in the model and to the858

smooth response of photosynthesis and respiration to increased N-concentrations. Even859

with 15 gN m−2 yr−1 of nitrogen addition, NPP increases by 19% and the relative N con-860

centration is 1.60 times larger than under control conditions. Most important, NPP and861

foliage N concentration remain realistic also for extremely high fertilization rates (30,862

100 gN m−2 yr−1) (Fig. 10). Net N mineralization, which is computed as the difference863

between N-mineralization and immobilization rates, increases with N-addition, except864

for very high values of N-addition, at which simulated N chemical immobilization fol-865

lowing N-applications more than compensates for the increase in mineralization rates.866

N leaching, gaseous emission and standing ammonium and nitrate pools increase almost867

linearly (less than 3 times) for N addition rates up to 5 gN m−2 year−1 but they grow868

exponentially for larger fertilization rates, being more than 80 times larger for N addi-869

tion of 30 gN m−2 yr−1. This exponential growth suggests that N-saturation is simu-870

lated at such high fertilization rates for this ecosystem. The overall response is very much871

consistent with the N-saturation hypothesis described in Niu et al. (2016), where com-872

peting mechanisms (plant N uptake, denitrification, N-leaching, microbial N demand)873

are concurrently at play for relatively low soil N available, but where losses dominate as874

soon as N availability exceeds a given threshold.875

4 Discussion876

4.1 Model structure and functionality877

Soil biogeochemical dynamic processes were represented along with the correspond-878

ing vegetation and climatic context by combining a detailed soil-biogeochemistry mod-879

ule with an existing ecosystem/land-surface model, T&C. The soil-biogeochemistry mod-880

ule explicitly represents SOC functional pools, including extracellular enzymes and sep-881

arates microbial biomass in bacteria, saprotrophic and mycorrhizal fungi. Biogeochem-882

ical processes are affected by water, energy, and vegetation dynamics above and below-883

ground, and in turn they affect vegetation structure and behavior through plant min-884

eral nutrition. Twenty locations were selected as representative of different climates and885

biomes and because they corresponded to specific manipulation experiments. This study886

is among the first to compare model predictions of detailed soil biogeochemical processes887

with a range of plot-scale observations across multiple ecosystems leading to a number888

of important considerations.889

Only a few observations are available to directly test microbial explicit models. More-890

over, while for some quantities there is abundance of data (e.g., soil C:N and C:P ratios),891

for others it is difficult to even simply assess if the order of magnitude of the predictions892

is correct (Fig. 6). Scarcity of quantitative data to evaluate mechanistic soil-biogeochemistry893
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models necessitate the use of innovative ways to check the plausibility of simulations and894

overall the model behavior. In this study, we rely on observations of global patterns in895

belowground communities, mineralization rates, scaling relations among biomass and res-896

piration, and ratios between soil organic carbon components. The latter are considered897

particularly useful to evaluate model realism because several ratios (e.g., microbial biomass898

to SOC, or DOC:SOC) are known and have a relatively constrained variability. Further-899

more, we use observations of effect size from manipulation experiments (bare fallow, lit-900

ter addition and subtraction, N-fertilization). These are compared in relative sense, since901

it is difficult to scale the observed column scale quantities into an ecosystem quantity902

in absolute terms. However, already capturing direction and magnitude of changes in-903

duced by the manipulation is an important test for the model.904

Global relations among microbial biomass, litterfall, soil respiration, NPP, SOC,905

macrofauna biomass and mineralization rates are mostly captured by T&C-BG (Fig. 2906

and 3), with a very realistic and constrained range of microbial biomass to SOC ratio907

(1.0-3.1%), DOC to SOC ratio, and fungi to bacteria biomass ratio (Fig. 4 and 5). These908

values are supported by published estimates (Anderson & Domsch, 1989; Fierer et al.,909

2009; Serna-Chavez, Fierer, & van Bodegom, 2013; G. Wang et al., 2013; Wardle, 1992;910

Waring et al., 2013; Xu et al., 2014, 2013; Zak et al., 1994). The model results are en-911

couraging considering the single parameter set used across all locations (e.g., absence of912

local tuning). It suggests that vegetation (via litter production) and climate control these913

patterns and that global-scale soil-biogeochemical dynamics can be captured despite large914

uncertainties in the parameter values. However, these uncertainties should be explored915

in the future, as soon as additional observations to estimate parameters and further test916

the model will be available. Because of the use of generic parameterizations, predictions917

are likely to downgrade significantly when reproduction of a specific quantity (e.g., SOC918

in a given location) and local dynamics are sought. Therefore, caution should be adopted919

for local model applications.920

4.2 Evaluating mechanistic soil biogeochemical models - data scarcity921

and ways forward922

For more detailed analyses and use of mechanistic models in a predictive mode, there923

is a price to pay - namely the determination of the uncertainty range of a very large num-924

ber of parameters. Modeling experience and detailed sensitivity analyses can help iden-925

tifying the most influential parameters and their effects on certain processes (Pappas,926

Fatichi, Leuzinger, Wolf, & Burlando, 2013). Hopefully, studies like this one will inspire927

and guide future publication of biogeochemical pool sizes and fluxes and microbial traits928

that correspond or are closely related to model parameters (e.g., Allison, 2017; Robert-929

son et al., 2019; Sinsabaugh et al., 2014, 2015; G. Wang et al., 2013). However, care must930

be taken in comparing ecosystem scale estimates with meta-analyses of laboratory sam-931

ples, such as in the case of differences in microbial metabolic quotient between simula-932

tions and observations (Xu et al., 2017). Some of the parameters are not even measur-933

able directly and must be inferred from the response of time variable fluxes or pools (e.g.,934

carbon allocation to extracellular enzymes). An alternative option is to use mechanis-935

tic individual-based models that consider physiological and biophysical properties of mi-936

crobes (Schimel & Weintraub, 2003) and detailed transport processes in soil pore net-937

works (Ebrahimi & Or, 2016, 2017; Long & Or, 2005) to quantify some of the microbial938

physiological parameters (e.g., uptake rate of DOC for unit of microbe) required by ecosystem-939

scale models such as T&C-BG. A larger amount of information on parameters will al-940

low in the future to characterize variability of microbial traits (Allison, 2012), at least941

broadly as it is currently done for vegetation properties (Bonan et al., 2011; Bonan, Levis,942

Kergoat, & Oleson, 2002; Pappas et al., 2016); see also discussion in Wieder, Allison, et943

al. (2015). While parameter identification and uncertainty represents a considerable short-944

coming of the presented approach, in a well-tested model a number of constraints im-945

posed by conservation of mass, stoichiometric relations, and generally the mechanistic946
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nature of the model can, arguably, prevent unrealistic and implausible outcomes for fu-947

ture environmental conditions. These predictions could be equally or more plausible than948

extrapolation of data-driven approaches, especially, because data-driven approaches are949

uncertain beyond the range of observations.950

Detailed observations of multiple carbon and nutrient fluxes and states in a sin-951

gle location will be also very important for a more rigorous test of some of the mecha-952

nistic implementations of the model. Since most of the simulated variables correspond953

to measurable quantities, data to model comparison should be more straightforward than954

it is currently in traditional soil-carbon models that use fast and slow C-pools (e.g., Krin-955

ner et al., 2005; Sitch et al., 2003). Additionally, reproducing realistic local conditions956

e.g., SOC and NEE (Fig. 1) or N-fertilization effects require a detailed knowledge not957

only of the current conditions, but also of the history of disturbances and land-use changes958

to carry out a meaningful data to model comparison. A simple discrepancy in modeled959

and observed total SOC, a frequently made evaluation in Earth System Models, has prob-960

ably little value if the model spin-up does not correspond to the local history.961

This work is among the first to compare certain modeled quantities to observations,962

such as the biomass ratio between fungi and bacteria or mycorrhiza and saprotrophic963

fungi, MOC and POC values, or the NPP fractions of root C-exudation and allocation964

to mycorrhizae. While a few references seem to support their plausibility (Brzostek et965

al., 2013; Ekblad et al., 2013; Hobbie, 2006; M. N. Högberg & Högberg, 2002; Moyano966

et al., 2008), additional checks are required in the future. Among the important quan-967

tities that are difficult to observe there is the relative contribution of fine root, fungal,968

bacteria and macrofauna to total belowground respiration, which have been found to be969

33, 40, 24, and 3% on average, of the 40% fungal respiration, 5% is attributed to my-970

corrhizal fungi and the remaining 35% to saprotrophic fungi (Fig. 7). The simulated ra-971

tio between soil heterotrophic respiration and total soil respiration (0.67±0.08) is well972

supported by recent observations (Bond-Lamberty et al., 2018). Thus, results confirm973

that autotrophic fine root respiration is a significant component of soil respiration (P. Högberg974

et al., 2001) and suggest that bacteria and fungi may contribute similarly to soil organic975

matter turnover and therefore respiration fluxes despite considerable different biomasses.976

While belowground macrofauna contribution is generally small, there are wet locations977

where it cannot be neglected (∼ 9%). The above quantities are dependent on the se-978

lected parameterization and difficult to test thoroughly; however, the mechanistic na-979

ture of the model and the overall correct representation of total respiration fluxes and980

carbon pool patterns suggest that they are realistic.981

4.3 Current model strengths and limitations982

Results in reproducing long-term bare fallow experiments are encouraging consid-983

ering that there is no calibration involved and the complexity of the model (Fig. 8). In984

this regard, an important finding is the necessity of an increased allocation to enzyme985

production as microbial biomass decreases in order to correctly reproduce the SOC de-986

cay with time. Without such a distinctive model solution, T&C-BG overestimates SOC987

in bare-fallow experiments, because microbial biomass depletes the available DOC af-988

ter few years, impairing decomposition (Fig. S6b). An increasing enzyme production rate989

per unit of microbial biomass with decreasing substrate (or other adjustments Georgiou,990

Abramoff, Harte, Riley, and Torn (2017)) emerges as a fundamental feature for micro-991

bial and enzyme explicit soil models. This solution has not been implemented in the orig-992

inal MEND model (G. Wang et al., 2013) neither in many of the microbial explicit mod-993

els, which therefore can likely fail the bare-fallow test. In an analogous way, introduc-994

ing a dependence between capability of a soil to store MOC and availability of physical995

surfaces (summarized as silt plus clay fraction) allows the model to reproduce a realis-996

tic MOC content (Fig. 5) and saturation of MOC with increasing C litter input (Stew-997

art, Plante, et al., 2007), which would not be obtained otherwise. Despite such features,998
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microbial metabolic quotient increases only slightly with decreasing NPP (Fig. 6) as sup-999

ported by recent observations (Xu et al., 2017), but in contrast to others that show a1000

much stronger increase (Zak et al., 1994). Most important, the scaling of microbial pro-1001

ductivity/respiration versus biomass is overestimated by the model (Fig. S5). This un-1002

derlines that CUEs should be more variable than what currently assumed in T&C-BG,1003

which is using constant values, and probably dependent on the microbial biomass and1004

not only on the substrate characteristics. It also emerges that the target plant tissue sto-1005

ichiometry for the different locations, which are all assumed to be related to leaf-nutrient1006

content, are less variable than in reality, as reflected in a limited range of C:N and C:P1007

ratios in litter-fall and SOM and in lack of specific patterns in NUE and PUE across pro-1008

ductivity gradients (Fig. 5, 3 and Fig. S4). For instance, the N:P ratio is currently con-1009

stant in T&C-BG across sites and biomes, while it has been shown to depend on lati-1010

tude and temperature (Reich & Oleksyn, 2004). The comparison with the litter manip-1011

ulation experiment is satisfactory (Fig. 9), but there are specific patterns, e.g., in the1012

fungal-to-bacterial productivity ratio, which are not reproduced by the model, especially1013

for litter exclusion, underlying that more complex dynamics can indeed occur.1014

The model simulated response to N-fertilization seems to be consistent with expec-1015

tations (Fig. 10) and few available observations (Magill et al., 2004; Niu et al., 2016),1016

which points to a relatively robust model structure in handling fertilization responses.1017

This is partially the result of modeling solutions that realistically buffer the consequences1018

of nutrient changes, e.g., plant nutrient storages and stoichiometric flexibility. The ob-1019

tained dampened photosynthesis/respiration response to changes in tissue nutrient con-1020

centration is also an important and realistic model result. Nonetheless, there are responses1021

such as the general trend toward a decline in abundance of microbes and mycorrhizae1022

following N-addition (Treseder, 2008; Wallenstein, McNulty, Fernandez, Boggs, & Schlesinger,1023

2006), that are not currently simulated by the model. Therefore, additional tests to eval-1024

uate and refine the role of mycorrhizae and the nutrient cycles in the model are neces-1025

sary, including P and K dynamics, which are rather empirical and not tested in this ar-1026

ticle. These tests will allow to draw more definitive conclusions on the realism of sim-1027

ulations describing changes in nutrient availability and interactions with microbial dy-1028

namics.1029

5 Conclusions1030

A novel soil-biogeochemistry module with a mechanistic representation of soil or-1031

ganic matter decomposition and microbial activity and diversity has been combined with1032

an existing land-surface and vegetation model. Results are realistic in reproducing large1033

scale patterns in a number of relations involving microbial biomass, NPP, SOC, miner-1034

alization rates, macrofauna biomass, and SOC components as well as major response to1035

important manipulation experiments, such as bare fallow, litter addition and subtrac-1036

tion, and N-addition. However, considerable local differences (e.g., simulated NEE at UMBS1037

and Harvard forests) and incapability to reproduce specific patterns e.g., the decline in1038

microbe following N-addition or the latitudinal gradients of PUE and NUE suggest that1039

there is room for model refinement. Expectations in matching exactly local quantities,1040

as observed profile-scale SOC, should be also low, with the generic parameterization adopted1041

in this study. Many quantities or ratios among SOC components have been presented1042

for one of the first time and require benchmarks with other modeling studies and val-1043

idation with new or unpublished measurements. This reinforces the quest for quantita-1044

tive observations (e.g., g C m−2) useful to test such a type of models. Despite limited1045

data validation and parameter uncertainty, it is fundamental to show the capabilities and1046

potentials of detailed mechanistic models of soil biogeochemistry to capture patterns ob-1047

served across ecosystems and in manipulative experiments, with the ultimate scope of1048

improving projections of the future water, carbon, and element cycles. The use of such1049

a modeling approach in conducting virtual experiments, where effects of changes in en-1050
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vironmental variables on soil microbial dynamics, carbon storage, plant growth, can be1051

extensively analyzed represents a fundamental approach for a better quantification of1052

soil and ecosystem services in a changing environment.1053
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Figure 1. A comparison between the monthly observed (OBS) and simulated (SIM) (a) Net

Ecosystem Exchange (NEE) and (b) ecosystem respiration (RE) for the UMBS site.
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Figure 2. (a) Scatter plot between soil respiration and litterfall in forested ecosystems, blue

circles are simulations and black points are observations from the sites considered reliable in

Raich and Nadelhoffer (1989). Simulations are only shown for forested sites for consistency with

observations and simulated litterfall includes only leaves. Scatter plots between microbial biomass

and (b) total Net Primary Production (NPP), (c) belowground Net Primary Production, (d) soil

organic carbon (SOC), (e) soil respiration, and (f) macrofaunal biomass. Circles are the time

averaged simulated value for the 20 analyzed locations, the red squares correspond to the values

reported in Fierer et al. (2009), which are representative of different biomes globally. The Tundra

biome is excluded because there are no tundra sites among the simulated locations.
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Gill and Finzi 2016

SIM.

Figure 3. Scatter plots between Gross Primary Production (GPP) and (a) phosphorus min-

eralization (P Min.), (b) nitrogen mineralization (N Min.), (c) Phosphorus Use Efficiency (PUE),

and (d) Nitrogen Use Efficiency (NUE). Circles are the time averaged simulated values for the

20 analyzed locations, the red squares are the values reported in Gill and Finzi (2016), which

represent different biomes globally. Simulated NUE and PUE are computed as the ratio of GPP

to the corresponding nutrient uptake rates.
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Figure 4. (a) Boxplot representation of the simulated variability in soil organic carbon (SOC)

components for the 20 sites. The fractions of mineral-associated organic carbon (MOC), particu-

late organic carbon (POC) subdivided in POC-lignin (POC-Lig) and POC-cellulose/hemicellulose

(POC-Cel) and dissolved organic carbon (DOC) are shown. (b) Boxplot representation of the

simulated variability in the ratio between microbial biomass and SOC compared with observa-

tions reported by G. Wang et al. (2013) (OBS 1), Xu et al. (2013) (OBS 2), and Xu et al. (2017)

(OBS 3). (c) Boxplot representation of the simulated variability of the ratio between DOC and

SOC compared with observations reported by G. Wang et al. (2013). (d) Boxplot representation

of the simulated variability of the ratio between DOC and microbial biomass compared with

observations reported by G. Wang et al. (2013). (e) Boxplot representation of the simulated

variability of the mass ratios between fungi and bacteria compared with observations reported

by Waring et al. (2013). Boxplots include results for the 20 analyzed locations in terms of time

averaged quantities. The central mark of each box is the median, the edges are the 25th and 75th

percentiles, the whiskers extend to the most extreme data points that are not considered outliers.
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Figure 5. (a) Scatter plot between C:N mass ratio and C:P mass ratio in woody litter (tri-

angles), leaf litter (points), soil organic matter (squares), and soil microbial biomass (circles)

as simulated by T&C-BG for the 20 analyzed locations (blue) and from literature observations

(gray). Data on litter and wood decomposition are from Manzoni et al. (2017) and data on soil

and microbial biomass stoichiometry are from Cleveland and Liptzin (2007). (b) Scatter plot

between the fraction of silt plus clay in the soil and the content of mineral associated organic car-

bon (MOC) for unit of soil volume as simulated for the 20 analyzed locations (blue) and reported

from observations in Six et al. (2002) (black).
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Figure 6. Scatter plots of simulated relations between (a) soil organic carbon (SOC) and

total litter carbon input; (b) microbial metabolic quotient and microbial biomass∗, i.e., microbial

biomass excluding mycorrhiza fungi; (c) Net Primary Production (NPP) and the fraction of NPP

allocated to C exudation; and (d) Net Primary Production (NPP) and the fraction of NPP ex-

ported to mycorrhiza fungi. The shaded area corresponds to values for which the confidence in

model simulations is particularly low.
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Figure 7. Partition of simulated soil respiration among the fractions contributed by fine-roots

(circles), bacteria (dots), fungi (diamonds) and macrofauna (triangles) for each of the 20 analyzed

locations regressed versus Net Primary Production (NPP). The dashed lines represent a linear

ordinary least square fit to the points.
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Figure 8. (a) Changes in soil organic carbon (SOC) through time normalized by the initial

value of SOC in bare-fallow experiments. Dashed lines are results from the simulations for the 12

locations with more than 700 mmyear−1 of precipitation. Points correspond to results published

for seven locations in Barré et al. (2010). Simulated changes through time normalized by the

initial value during the bare-fallow experiments are also reported for (b) bacteria biomass; (c)

saprotrophic fungi biomass; (d) mycorrhizal fungi biomass; (e) soil respiration; (f) C:N mass ratio

of soil organic matter; (g) C:P mass ratio of soil organic matter. (h) Scatter plot between the

initial SOC and the fraction of simulated SOC remaining after 100 years.
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Figure 9. Simulated response to litter manipulation treatments in the Harvard forest loca-

tion. The control scenario (CTR), corresponding to normal annual aboveground litter inputs,

a double litter (2X, twice the litter inputs of the control plots), and no aboveground litter (0X,

annual aboveground litter inputs excluded) scenarios are presented. Only the treatment effects

(e.g., ratio between observed values in the different treatments) are used in the comparison. Sim-

ulated (bars) and observed (black points) are shown for: (a) soil organic carbon, (b) C:N mass

ratio of soil organic matter, (c) soil respiration, (d) ammonium NH+
4 , (e) saprotrophic fungi

productivity, (f) bacteria productivity. Observations for both mineral and organic soil layers are

reported (two points for each treatment).
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Figure 10. Simulated response to various levels of N-fertilization in the location of Little

Prospect Hill (LPH). Changes are shown for: (a) net N-mineralization, (b) foliage nitrogen

concentration, (c) Net Primary Production (NPP), (d) N leaching, (e) N - gas emissions, e.g.,

denitrification plus ammonia volatilization, (f) sum of ammonium NH+
4 and nitrate NO−

3 nitro-

gen pools. Results are normalized with respect to the control scenario corresponding to lack of

fertilization, except for foliage nitrogen concentration, where actual values are reported. Observa-

tions of changes in foliage N concetration and NPP in response to the 5 and 15 gN m−2 year−1

treatments are also reported (black points) for comparison (Meyerholt & Zaehle, 2015).
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Location Lat. Lon. Biome N. Yr. Pr Ta

Chamau (CH) 47.21 8.41 C3 Grassland 3.0 1156 9.7

Stubai (AT) 47.12 11.32 C3 Grassland 11.0 856 6.8

UMBS (MI,USA) 45.56 -84.71 Deciduous Forest 16.0 890 7.2

Manaus km34 (BR) -2.61 -60.21 Tropical Forest 8.0 2737 25.8

Konza Praire (KS, USA) 39.10 -96.60 C3/C4 Grassland 31.7 826 12.8

Hyytiala (FI) 61.85 24.30 Evergreen Forest 16.0 707 4.2

Sevilleta grassland (NM, USA) 34.36 -106,70 C4 Grassland 4.0 239 13.4

Sevillata shrubland (NM, USA) 34.33 -106,74 Shrubs and C4 Grassland 4.0 226 14.1

ORNL FACE (TN, USA) 35.90 -84.33 Deciduous Forest 11.0 1221 14.8

Duke Forest (NC, USA) 35.96 -79.10 Evergreen Forest (Mostly) 12.0 1081 14.8

Harvard Forest (MA, USA) 42.54 -72.17 Deciduous Forest 19.2 1179 7.9

Morgan Monroe State Forest (IN, USA) 39.32 -86,41 Deciduous Forest 8.0 1068 12.3

Short Grass Steppe (CO, USA) 40.81 -104.75 C3/C4 Grassland 24.0 304 8.4

Willow Creek (WI, USA) 40.81 -90.08 Deciduous Forest 16.0 689 5.4

Vaira ranch (CA, USA) 38.41 -120.95 C3 Grassland 13.2 553 15.7

Kendall (AZ, USA) 31.74 -109.94 C3/C4 Grassland 9.6 280 17.4

Hainich (DE) 51.08 10,45 Deciduous Forest 8.0 806 8.3

Little Prospect Hill - LPH (MA, USA) 42.54 -72.54 Mixed Forest 8.0 1303 7.8

Jornada Basin (NM, USA) 32,51 -106.78 C3/C4 Grassland and Shrubs 21.0 249 18.1

TasFACE (AUS) -42.70 147.26 C3/C4 Grassland 8.2 388 11.7

Table 1. Site characteristics for the 20 locations used in the analysis, latitude, longitude,

length of the time series of meteorological drivers in years (N. Yr), biome description, mean pre-

cipitation (Pr) [mmyr−1] and mean air temperature (Ta) [◦C] are reported.

Variable OBSERVED SIMULATED

NEE UMBS [g C m−2 year−1] -184 -122

NEE Harvard [g C m−2 year−1] -292 -189

UMBS – –

AGWB 1998 [g C m−2] 6470 5460

AGWB 2006 [g C m−2] 7745 5900

SOC [g C m−2] 5500 - 8040 5034

N Min. [g N m−2 year−1] 4.26 5.81

NO−
3 Leaching [g N m−2 year−1] 0.001 0.011

N Gas-efflux [g N m−2 year−1] 0.002 0.0054

Table 2. Observed and simulated quantities at UMBS and Harvard forests, where NEE is

the Net Ecosystem Exchange, AGWB is the aboveground standing wood biomass, SOC is the

total soil organic carbon, and Min. stays for net-mineralization. Observations are derived from

flux-tower measured NEE and published values for the other quantities (Gough et al., 2008; Mc-

Farlane et al., 2013; Nave et al., 2011, 2009).
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