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Dynamic Portfolio Optimization with Credit Risk

Abstract

Credit risk, which considers the risk of loss resulting from a counterparty’s failure to

meet contractual obligations, was not properly studied in the literature of dynamic

portfolio optimization problem until the 2008-2009 financial crisis. This thesis is

devoted to the dynamic portfolio optimization with credit risk. Two main topics

are studied in this thesis.

In the first topic, we consider a utility maximization problem with defaultable stocks

and looping contagion risk. We assume that the default intensity of one company

depends on the stock prices of itself and other companies, and the default of the

company induces immediate drops in the stock prices of the surviving companies.

Under such looping contagion risk framework, we prove that the value function is

the unique viscosity solution of the HJB equation. We also perform some numerical

tests to compare and analyse the statistical distributions of the terminal wealth of

log utility and power utility based on two strategies, one using the full information

of intensity process and the other a proxy constant intensity process. The numerical

tests confirm that modeling looping contagion risk properly is important, especially

in financial distressed period.

The second topic is on dynamic portfolio optimization with contingent convertible

(CoCo) bond. As a new type of hybrid product, CoCo bond has the interesting

feature that converting from debt to equity is contingent. We model the conversion

of CoCo bond by reduced-form approach and assume that the conversion intensity

is a deterministic function of the coupon rate and the issuing bank’s stock price.

Theoretically, we construct the viscosity solution representation between the value
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function and the corresponding HJB equation. Practically, we compare the perfor-

mance between investing into CoCo bond and the issuing bank’s stock. We analyse

the statistical distributions of terminal wealth of log utility and power utility based

on these two investment choices. Our simulation results show that, the CoCo bond

holders bear more loss than equity holders if conversion occurs. However, investing

into CoCo bond gets more profit (mean) while bearing less market risk (volatility)

as long as conversion does not occur.

Keywords: dynamic portfolio optimization, looping contagion risk, HJB equation,

viscosity solution, contingent convertible bond, statistical comparisons.
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1
Introduction

In the financial market, one of the most important problems for an investor is that,

endowed with a fixed initial capital and a selection of financial instruments, how to

determine the optimal trading strategy over a fixed time horizon.

Development of Portfolio Optimization Theory

The earliest portfolio optimization theory is called modern portfolio theory (MPT) or

mean-variance analysis. Economist Harry Markowitz introduced MPT in Markowitz

(1952) for which he was later awarded a Nobel Prize in Economics. MPT discusses

the discrete-time portfolio optimization problem on how a risk-averse investor con-

structs a portfolio to minimize the risk of the portfolio given an expected return. The

risk of each trading asset is measured by the variance of its return. Mathematically,

the objective of the investor is to minimize wTΣw subject to µTw = α for a given

return level α. Here w is a vector of portfolio weights, and Σ, µ are the covariance

matrix and expectation of the returns on the assets in the portfolio, respectively.
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The problem can be solved by applying the Lagrange Multiplier method. For the

simplest one-period MPT model, the investor determines the optimal weights w at

the beginning and keeps w fixed. For the multi-periods MPT model, the investor

calculates the one-period optimal weights for each single period and re-balance the

weights at the beginning of next period, based on the updated estimation of Σ and

µ. Although the modern portfolio theory has been subjected to various criticisms

due to its simple structure and assumptions, it is still widely used by investment

institutions nowadays as the fundamental methodology.

The dynamic (continuous-time) portfolio optimization theory starts from Merton

(1969). Robert C. Merton considers an investor who dynamically makes the decision

about how much to consume and allocate her wealth between a risky stock and a

risk-free bank account, such that she maximizes the expected utility of her terminal

wealth. Mathematically, Merton’s classical dynamic portfolio optimization problem

can be written as

sup
(π,c)

E
[∫ T

0

e−ρsU(cs)ds+ e−ρTU(XT )

]
,

where U(·) is the utility function, ct is the consumption at time t, ρ is a constant

discount factor and Xt is the wealth process given by the stochastic differential

equation (SDE):

dXt = ((r + (µ− r)πt)Xt − ct) dt+ σπtXtdWt,

where r is the risk-free rate, (µ, σ) are the expected return and volatility of the stock

and dWt is the increment of the Brownian motion, i.e. the stochastic term of the

SDE. Considering the special case that the utility function is of the constant relative

risk aversion (CRRA) form:

U(x) =
xγ

γ
,

where γ > 0 is a constant representing the investor’s risk aversion level, Merton de-

rives the closed-form solution of the optimal control πt, the optimal consumption ct

2



and the objective function (or called value function). The approach used by Merton

to get the explicit solution is now called the PDE approach to dynamic program-

ming, which is one of the most important approaches to solve dynamic portfolio

optimization problem. Basically, the PDE approach transforms the dynamic port-

folio optimization problem into solving a Hamilton-Jacobi-Bellman (HJB) equation

by applying the dynamic programming principle (DPP), see Pham (2009).

Since Merton (1969, 1971), research on dynamic portfolio optimization problem

has continued to extend and generalize Merton’s classical model. One of the main

extensions is to include more practical factors like stochastic volatility (Pham (2002),

Flemming and Hernandez-Hernandez (2003), Kraft (2005), Noh and Kim (2011),

Fouque et al. (2017)), stochastic interest rate (Korn and Kraft (2002), Kraft (2009))

and transaction costs (Davis and Norman (1990), Janecek and Shreve (2004), Liu

and Zheng (2016)).

Consequences of Financial Crisis

Before the 2008-2009 financial crisis, most of the models proposed in the literature

assume that the risky asset is only exposed to market risk. Only a handful of paper

discuss the dynamic portfolio optimization problem with credit risk. Hou and Jin

(2002) is the first to take credit risk into the consideration of a dynamic portfolio

optimization problem. They derive optimal finite horizon investment strategy for

an investor with power utility function, who allocates her wealth among a stock,

a defaultable bond and a risk-free bank account. Bielecki and Jang (2006) further

investigate the impact of recovery amount to the optimal strategy. The pain of 2008-

2009 financial crisis forces people to consider the importance of controlling credit

risk in the investment. Since then, many works on dynamic portfolio optimization

with credit risk have been enriched into the literature, e.g. Bo et al. (2010), Capponi

and Figueroa-Lopez (2011), Callegaro et al. (2012). Similar to Hou and Jin (2002),

they investigate the optimal control in a financial market where there are one stock,

one defaultable bond and a risk-free bank account. Therefore, the considered credit
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risk of the financial market is still a single default event. However, it is clear in the

financial crisis that the failure of one company will spread to the entire financial

market, thus having direct impacts on the performance of other related companies.

From the lesson of financial crisis, it is essential for a portfolio manager to seriously

consider the contagion risk. Jiao and Pham (2013) consider a financial market

with one stock which jumps downward at the default time of a counterparty. The

counterparty is not traded or affected by the trading stock. Bo and Capponi (2016)

consider a market consisting of a risk-free bank account, a stock index, and a set of

CDSs. The default probability of any underlying firm is determined by the default

state of all the firms in the market. Capponi and Frei (2017) introduce an equity-

credit portfolio with a market consisting of a risk-free bank account, defaultable

stocks, and CDSs referencing these stocks. The default intensities of companies are

functions of stock prices and some external factors.

Another significant consequence due to the financial crisis is the stronger regulation

applied to financial institutions. For example, the new regulation rule from Basel III

increases the common equity tier 1 capital (CET1) ratio of all the banks from 2%

(under the old regulation Basel II) to 4.5%. Under such circumstance, the contingent

convertible bond (CoCo bond) as a hybrid security, is introduced into the financial

world. The mechanism of CoCo bond is different from traditional convertible bond

in that the conversion from debt to equity is contingent, which means CoCo bond

is automatically converted into equity according to some pre-defined trigger event,

e.g. CET1 ratio < 5%. Due to its equity nature, CoCo bond is designed to improve

the issuing bank’s ability to absorb loss. Since the first CoCo bond issued by Lloyds

Banking Group in December 2009, the CoCo bond market size has been increasing

rapidly. Up to June 2018, the CoCo market size has reached e180bn.

As the conversion of CoCo bond is contingent, the credit risk an investor faces in

the current financial market is not only constrained to default event any more. The

conversion risk, which is a new type of credit risk, is attracting more and more atten-
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tion. The research of CoCo bond in the current literature is mainly on the pricing.

The CoCo bond pricing is addressed by two main modelling approaches – structural

approach and reduced-form approach. The structural approach models the capital

of the issuing bank and constructs the relation between conversion and the capital

process. The work includes Spiegeleer and Schoutens (2012), Corcuera et al. (2013),

Brigo, et al. (2015), Leung and Kwok (2015) and Jang, et al. (2018). The reduced-

form approach models the conversion by a pure jump model, e.g. Cheridito and Xu

(2015), Chung and Kwok (2016). Unfortunately, to the best of our knowledge, there

has been no existing research in the literature on dynamic portfolio optimization of

CoCo bond.

Organization of the Thesis

The thesis is organized as follows. The first ambition in this thesis is to construct a

genuine looping contagion risk model and investigate the optimal trading strategy

and corresponding terminal wealth distribution under such framework. Most of the

contagion risk work in the current literature models the interaction between defaults

of different firms by an exogenous factor, which strongly depends on the historical

calibration of factor parameters. From the experience of 2008-2009 financial crisis,

the investment based on historical calibration reacts slow to the sudden crush of the

financial market.

In Chapter 3, We build a looping contagion risk model, where the market is assumed

to have one risk-free savings account, and multiple defaultable stocks. The underly-

ing companies may default and the value of defaulted stock price becomes zero. The

default time of any stock is the first jump time of a pure jump process driven by an

intensity process that depends on all the surviving stock prices, and the surviving

stock prices jump at time of default. Unlike the exogenous factor model, our loop-

ing contagion model has the ability to adjust trading strategies automatically based

on observed stock prices in the portfolio, thus reacting immediately to the sudden

movement of the financial market. We study a terminal wealth utility maximization
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problem with general utility functions under this looping contagion framework. The

main contributions of this chapter are summarized by the following bullet points:

• For general utility functions, we prove that the value function is the unique

viscosity solution of the corresponding HJB equation. To the best of our

knowledge, this is the first attempt to study the viscosity solution properties

of the value function in the literature of utility maximization with looping

contagion risk.

• We perform numerical tests to compare the statistical distributions of termi-

nal wealth of log utility and power utility based on two trading strategies,

one uses the full information of intensity process, the other a proxy constant

intensity process. The constant intensity process is a special example of exoge-

nous factor model where the constant intensity is estimated from the historical

calibration. The numerical examples show that, statistically, the looping con-

tagion risk model and exogenous factor model have similar performance in

general market situations. However, in the case of market crush where there

are big falls of stock prices at the start of the investment, the terminal wealth

based on strategies using looping contagion risk model would have much higher

expected return and standard deviation than the one using a constant inten-

sity. Therefore, one may greatly improve the performance of investment if one

uses the looping contagion risk model in a financial crisis period.

The second ambition of this thesis is to fill in the gap of CoCo bond investment

research in the literature. In Chapter 4, we study a terminal wealth utility maxi-

mization problem with general utility functions, where the investor can dynamically

allocate her wealth between a risk-free bank account and one CoCo bond. Since

CoCo bond is a hybrid credit derivative whose conversion depends on issuing bank’s

capital ratio, we apply the virtue of looping contagion risk model to the CoCo bond

modelling. We model the conversion of CoCo bond by reduced-form approach, where
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the conversion intensity is a function of its coupon rate and the issuing bank’s stock

price. The main contributions of this chapter are summarized by the following bullet

points:

• To the best of our knowledge, we are the first in the literature tackling the

dynamic portfolio optimization problem of CoCo bond. We extend Duffie and

Singleton (1999) approach to derive the closed-form CoCo bond pricing for-

mula with continuous coupon. Then we apply the change of measure technique

and derive the dynamic of CoCo bond price under physical measure.

• We prove the pre-conversion value function is the unique viscosity solution of

the corresponding HJB equation.

• We compare the performance between investing into CoCo bond and the stock

issued by the same bank. Our numerical results show that, the CoCo bond

holders bear much more loss than equity holders when conversion occurs. How-

ever, investing into CoCo bond gets more profit (mean) while bearing less

market risk (volatility) as long as conversion does not occur.

Finally, we conclude this thesis in Chapter 5.
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2
Dynamic Portfolio Optimization

with Looping Contagion Risk

2.1 Introduction

There has been extensive research in dynamic portfolio optimization and credit risk

modelling, both in theory and applications (see Pham (2009), Brigo and Morini

(2013), and references therein). Utility maximization with credit risk is one of the

important research areas, which is to find the optimal value and optimal control

in the presence of possible defaults of underlying securities or names. The early

work includes Korn and Kraft (2003) using the firm value structural approach and

Hou and Jin (2002) using the reduced form intensity approach. Defaults are caused

by exogenous risk factors such as correlated Brownian motions, Ornstein-Uhlenbeck

or CIR intensity processes. Bo et al. (2010) consider an infinite horizon portfolio
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optimization problem with a log utility and assume that both the default risk pre-

mium and the default intensity dependent on an external factor following a diffusion

process and show the pre-default value function can be reduced to a solution of a

quasilinear parabolic PDE (partial differential equation). Capponi and Figueroa-

Lopez (2011) assume a Markov regime switching model and derive the dynamics of

the defaultable bond and prove a verification theorem with applications to log and

power utilities. Callegaro et al. (2012) consider a wealth allocation problem with

several defaultable assets whose dynamics depend on a partially observed external

factor process.

Contagion risk or endogenous risk has grown into a major topic of interest as it is

clear that the conventional dependence modelling of assets using covariance matrix

cannot capture the sudden market co-movements. The failure of one company will

have direct impacts on the performance of other related companies. For example,

during the global financial crisis of 2008-2009, the default of Lehman Brothers led to

sharp falls in stock prices of other investment banks and stock indices such as Dow

Jones US Financial Index. Since defaults are rare events, one may have to rely on

the market information of other companies or indices to infer the default probability

of one specific company. For example, one can often observe in the financial market

data that the stock price of one company has negative correlation with the CDS

(credit default swap) spread (a proxy of default probability) of another company, see

Appendix A . One commonly used contagion risk model is the interacting intensity

model (see Jarrow and Yu (2001)) in which the default intensity of one name jumps

whenever there are defaults of other names in a portfolio. Contagion risk has great

impact on pricing and hedging portfolio credit derivatives (see Gu et al. (2013)).

There is limited research in the literature on dynamic portfolio optimization with

contagion risk. Jiao and Pham (2011) consider a financial market with one stock

which jumps downward at the default time of a counterparty which is not traded

and not affected by the stock and, for power utility, solve the post-default problem
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by the convex duality method and show the process defined by the pre-default value

function satisfies a BSDE (backward stochastic differential equations). Jiao and

Pham (2013) discuss multiple defaults of a portfolio with exponential utility and

prove a verification theorem for the value function characterized by a system of

BSDEs. Bo and Capponi (2016) consider a market consisting of a risk-free bank

account, a stock index, and a set of CDSs. The default of one name may trigger a

jump in default intensities of other names in the portfolio, which in turn leads to

jumps in the market valuation of CDSs referencing the surviving names and affects

the optimal trading strategies. They solve the problem with the DPP (dynamic

programming principle) and, for power utility, find the optimal trading strategy on

the stock index is Merton’s strategy, and those on the CDSs can be determined

by a system of recursive ODEs (ordinary differential equations). Capponi and Frei

(2017) introduce an equity-credit portfolio with a market consisting of a risk-free

bank account, defaultable stocks, and CDSs referencing these stocks. The default

intensities of companies are functions of stock prices and some external factors, which

provides a genuine looping contagion default structure. For a log utility investor,

there exists an explicit optimal strategy which crucially depends on the existence of

CDSs in the portfolio, see Remark 2.7.3 for details.

In this chapter we analyse the interaction of market and credit risks and its impact

on dynamic portfolio optimization. The market is assumed to have one risk-free

savings account, and multiple defaultable stocks in which the underlying companies

may default and the value of defaulted stock price becomes zero. The default time

of any stock is the first jump time of a pure jump process driven by an intensity

process that depends on all the surviving stock prices, and the surviving stock

prices jump at time of default. This setup characterizes an investment with multiple

stocks that are closely dependent on each other, both endogenously and exogenously.

Compared with exogenous factor models in the literature, which strongly depend

on the historical calibration of factor parameters, the looping contagion model has

the ability to adjust trading strategies automatically based on current stock prices
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in the portfolio. We study a terminal wealth utility maximization problem with

general utility functions under this looping contagion framework.

The aforementioned papers by Bo and Capponi (2016) and Capponi and Frei (2017)

characterize the value function as a solution of the HJB (Hamilton-Jacobi-Bellman)

equation and, for power and log utility respectively, find the optimal trading strate-

gies with some implicit unknown functions. For general utilities, it is essentially

impossible one may guess a solution form of the HJB equation nor can one apply

the verification theorem. In that case, a standard approach to studying the value

function is the viscosity solution method. We prove, in addition to the verification

theorem, that the value function is the unique viscosity solution of the HJB equa-

tion. The result is important as it lays a solid theoretical foundation for numerical

schemes to find the value function, in contrast to the verification theorem that re-

quires priori the existence of a classical solution to the HJB equation, which is in

general difficult to prove. To the best of our knowledge, this is the first time the

viscosity solution properties of the value function are studied and established in the

literature of utility maximization with looping contagion risk. This is one of the

main contributions of this chapter.

We perform some numerical and robust tests to compare the statistical distributions

of terminal wealth of log utility and power utility based on two trading strategies,

one uses the full information of intensity process, the other a proxy constant in-

tensity process. These two strategies may be considered respectively the active

and passive portfolio investment. The numerical examples show that, statistically,

they have similar terminal wealth distributions, but active portfolio investment is

more volatile in general. Furthermore, we illustrate the financial insight of the loop-

ing contagion model via a similar numerical test, but with different initial stock

prices. The numerical test assumes that the constant intensity is estimated from

historical calibration window, but there are big falls of stock prices at the start of

the investment. The numerical example shows that the terminal wealth based on
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strategies using stock dependent intensity would have much higher expected return

and standard deviation than the one using a constant intensity. Therefore, one may

greatly improve the performance of investment if one uses the information of stock

dependent default intensity in a financial crisis period.

The rest of the chapter is organized as follows. In Section 2.2 we introduce the

looping contagion model and give two examples to illustrate the model setting. In

Section 2.3 we describe the portfolio optimization problem. In Section 2.4, we define

the value function and the corresponding HJB equation system. In Section 2.5, we

show by a verification theorem that, the solution of HJB equation system coincides

with the value function under regularity assumption. In Section 2.6, we show that

the value function is the unique viscosity solution of the HJB equation system by

Theorems 2.6.2 and 2.6.6. In Section 2.7, we perform numerical and robust tests

with statistical distribution analysis for log and power utility. In Section 2.8 we

prove the main theorems in this chapter. Section 2.9 concludes the chapter.

2.2 Looping Contagion Model Setting

Let (Ω,G, (Gt)t≥0,P) be a complete probability space satisfying the usual conditions

and (Gt)t≥0 a filtration to be specified below. Let the market consist of one risk-

free bank account with value process (Bt)t≥0 and interest rate r and N defaultable

stocks with price process (St)t≥0 := (S1
t , ..., S

N
t )Tt≥0, where aT is the transpose of a

vector a. Let (Ft)t≥0 be the filtration generated by N correlated Brownian motions

(Wt)t≥0 := (W 1
t , ...,W

N
t )Tt≥0, which represents the market information. Let τ :=

(τ1, ..., τN) be a vector of nonnegative random variables representing the default

time of each defaultable stock, defined by

τi := inf

{
s ≥ t :

∫ s

t

hiudu ≥ Xi
}
,
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where (hit)t≥0 is an intensity rate process and Xi is a standard exponential variable

on the probability space (Ω,G,P) and is independent of the filtration (Ft)t≥0, which

means that τi is a totally inaccessible stopping time. We make the further assump-

tion that Xi is independent of Xj for i 6= j. Under this assumption, the default of

each stock is independent.

Let (Ht)t≥0 be the filtration generated by the default indicator process (Ht)t≥0 :=

(H1
t , ..., H

N
t )Tt≥0 where each of the default process H i

t is associated with the intensity

process (hit)t≥0 and defined by H i
t := I{τi≤t}, the indicator function that equals 0

if τi > t and 1 otherwise. Denote the value of indicator process Ht by z, thus

z ∈ I := {0, 1}N . The indicator process Ht can only jump from z := (z1, ...zN)T to

its neighbor state zi := (z1, ..., 1− zi, ..., zN)T with rate (1− zi)hit for i ∈ {1, ..., N}.

We denote Nz the number of surviving stocks when Ht = z and Iz the set of surviving

stock numbers.

Finally, let (Gt)t≥0 be an enlarged filtration, defined by Gt = Ft ∨ Ht, which con-

tains both the market information and the default information. The stopping time

τi defined in above way satisfies the so-called H-hypothesis, which means any F -

square integrable martingale is also a G-square integrable martingale (see Bielecki

and Rutkowski (2003)), a property we will use later in the proofs. The market model

is driven by the following stochastic differential equations (SDEs):

dSit
Sit−

= µidt+ σidW
i
t − LTi dHt,

dBt

Bt

= rdt,

for integer i ∈ {1, ..., N} where µi is the growth rates of Si, respectively, σi is the

volatility rate. The vector Li := (Li1, ..., LiN)T represents the default impact of each

stock to the ith stock, thus Lii = 1.

All coefficients are positive constants to simplify discussions. We assume that the

defaults of stocks do not occur at the same time. At default time τi the defaultable

stock price Si falls to zero and the other stock price Sj is reduced by a percentage
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of Lji for i 6= j. We require that Lii = 1 and Lij < 1 for i 6= j. Lji < 1 ensures the

other stock price Sj does not fall to zero at default time of τi. We denote by K a

generic constant which may have different values at different places.

Assumption 2.2.1. The intensity process (hit)t≥0 of the default indicator process

(H i
t)t≥0 can be represented by hit = hi(Szt−, z), a function of surviving stock prices

Szt− := (Sit−)i∈Iz and the state of default indicator process Ht− = z. For simplicity, we

denote hi(Szt−, z) by hiz(St−). We further assume that hiz is bounded and continuous

in Szt− for ∀z ∈ I and i ∈ {1, . . . , N}.

To classify the looping contagion model setting, we give two examples which contain

only two stocks in the market, denoted by (St)t≥0 and (Pt)t≥0.

Example 2.2.1. (One-sided contagion) In this case, (St)t≥0 denotes the price

of ETF (exchange-traded-fund) on DJ US Financial Index and (Pt)t≥0 denotes the

price of a US investment bank. We may treat the ETF as default-free and its stock

price reflects the whole US banking industry and thus has impact on the performance

of the individual bank. Then the model is given by

dSt
St−

= µSdt+ σSdW S
t − LSdHt,

dPt
Pt−

= µPdt+ σPdW P
t − dHt,

where µS and µP are the growth rates of S and P , respectively, σS and σP are the

volatility rates, and LS < 1 is the percentage loss of the stock S upon the default of

stock P . At default time τ the defaultable stock price P falls to zero and the stock

price S is reduced by a percentage of LS. The intensity process (ht)t≥0 of the default

indicator process (Ht)t≥0 can be represented by ht = h(St−, Pt−).

Example 2.2.2. (Looping contagion) In this case, both (St)t≥0 and (Pt)t≥0 de-

note the prices of single stocks. Then the model is given by

dSt
St−

= µSdt+ σSdW S
t − dHS

t − LSdHP
t ,

dPt
Pt−

= µPdt+ σPdW P
t − LPdHS

t − dHP
t .
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At default time of S (resp. P ), the stock price S (resp. P ) falls to zero and the stock

price P (resp. S) is reduced by a percentage of LP (resp. LS). The intensity process

hS(0,0)(t) (resp. hP(0,0)(t)) of the default indicator process (HS
t )t≥0 (resp. (HP

t )t≥0) can

be represented by hS(0,0)(t) = hS(0,0)(St−, Pt−) (resp. hP(0,0)(t) = hP(0,0)(St−, Pt−)). After

the default of S (resp. P ), the intensity process hP(1,0)(t) (resp. hS(0,1)(t)) of the default

indicator process (HP
t )t≥0 (resp. (HS

t )t≥0) can be represented by hP(1,0)(t) = hP(1,0)(Pt−)

(resp. hS(0,1)(t) = hS(0,1)(St−)).

2.3 Description of Portfolio Optimization Prob-

lem

An investor dynamically allocates proportions (π1, . . . , πN , 1−
∑N

i=1 π
i) of the total

wealth into the stocks and the bank account. The admissible control set A is the set

of control processes π that are progressively measurable with respect to the filtration

(Gt) and πt ∈ A for all t ∈ [0, T ]. The set A is defined by

A :=

{
π ∈ O and 1−

N∑
i=1

Lijπ
i ≥ εA for ∀j ∈ {1, ..., N}

}
,

where O is a bounded set in RN and εA is a positive constant. The dynamics of the

wealth process (Xt)t≥0 is given by

dXt

Xt−
=
(
r + πTt Dtθ

)
dt+ πTt DtσdWt − πTt−DtLdHt, (2.1)

where

Dt :=


1−H1

t . . . 0
...

...
...

0 . . . 1−HN
t

 , θ :=


µ1 − r

...

µN − r

 ,
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σ :=


σ1 . . . 0
...

...
...

0 . . . σN

 , L :=


L11 . . . L1N

...
...

...

LN1 . . . LNN

 .

The matrix-valued process (Dt)t≥0 is adapted to the filtration (Ht)t≥0 and plays the

role of removing the defaulted stocks. Even though the admissible control set is still

A after default time τi, π
i
t = 0 and is not a variable but a constant. The requirement

1 −
∑N

i=1 Lijπ
i ≥ εA for ∀j ∈ {1, ..., N} ensures that when jth stock defaults, the

maximum percentage loss of the wealth does not exceed 1− εA, in other words, if x

is the pre-default wealth, then the post-default wealth is at least εAx.

Remark 2.3.1. For a given control process π ∈ A, equation (2.1) admits a unique

strong solution that satisfies

sup
t∈[0,T ]

E [Xα
t ] ≤ Kxα (2.2)

for any α > 0. This can be easily verified as Xα
t = xαNtMt, where

Nt := exp

(
α

∫ t

0

(
r + πTuDuθ

)
du+

1

2
(α2 − α)

∫ t

0

πTuDuΣDuπudu

+ α
N∑
j=1

∫ t

0

ln

(
1−

N∑
i=1

Lijπ
i
u−

)
dHj

u

)
,

Mt := exp

(∫ t

0

απTuDuσdWu −
1

2
α2

∫ t

0

πTuDuΣDuπudu

)
,

Σ :=


(σ1)2 ρ12σ1σ2 . . . ρ1Nσ1σN

...
...

...
...

ρN1σ1σN ρN2σ2σN . . . (σN)2

 ,

πu := (π1
u, . . . , π

N
u )T .

Note that ρij is the correlation between Brownian motion W i and W j. Since A

is a bounded set and 1 −
∑N

i=1 Lijπ
i ≥ εA for ∀j ∈ {1, ..., N}, we have |Nt| < K,

independent of t, and Mt is an exponential martingale, thus E [Mt] = 1, which gives
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(2.2).

Our objective is to maximize the expected utility of the terminal wealth, that is,

sup
π∈A

E[U(Xπ
T )],

where U is a utility function defined on [0,∞) and satisfies the following assumption.

Assumption 2.3.2. The utility function U is continuous, non-decreasing, concave,

and satisfies U(0) > −∞ and |U(x)| ≤ K (1 + xγ) for all x ∈ [0,∞), where K > 0

and 0 < γ < 1 are constants.

Remark 2.3.3. Power utility U(x) = (1/γ)xγ, 0 < γ < 1, satisfies Assumption

2.3.2, but not log utility. The value function of log utility can be solved directly due

to the wealth process exponential structure, see Capponi and Frei (2017). We solve

the log utility optimal controls through HJB equation in Section 2.7, and show that

the solution is equivalent to that reported in Capponi and Frei (2017).

2.4 Value Function and Hamilton-Jacobi-Bellman

Equation

Depending on the default scenarios, the value function is defined by

vz(t, x, s) = sup
π∈A

E [U(Xπ
T )|Xt = x, St = s,Ht = z]

for (t, x, s) ∈ [0, T ]× (0,∞)Nz+1 and z ∈ I. Note that if h is independent of s, then

the value function vz is a function of t, x only.

Remark 2.4.1. Combining Assumption 2.3.2 and Remark 2.3.1, we have

|vz(t, x, s)| ≤ K(1 + xγ).
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For the one-sided contagion model defined in Example 2.2.1, the problem can be

naturally split into pre-default case and post-default case. The latter is a standard

utility maximization problem as stock P disappears and the post-default value func-

tion v1 is a function of time t and wealth x only, see Pham (2009). We have the

following continuity result for the pre-default value function v0.

Theorem 2.4.2. For the one-sided contagion model (Example 2.2.1), assume fur-

ther that h is non-increasing in p, monotone in s and Lipschitz continuous in s, p,

and U satisfies |U(x1)− U(x2)| ≤ K |x1 − x2|γ for all x1, x2 ∈ [0,∞). Then the

pre-default value function v0 is continuous in (t, x, s, p) ∈ [0, T ]× [0,∞)× (0,∞)2.

Remark 2.4.3. We assume h is non-increasing in p as intuitively the default prob-

ability of one company is non-increasing with its own stock price. We also assume

that h is monotone in s as we consider S and P are strongly correlated in the sense

that the default probability of stock P is either positively or negatively affected by

the stock S. The continuity of pre-default value function for the one-sided contagion

model relies on the special structure that there is only one default process in the

place. For general looping contagion models, the continuity of the value function is

difficult to obtain as the order of multiple jumps is random.

Applying the DPP, one can show that the value function satisfies the following HJB

equation:

− sup
π∈A
Lπwz(t, x, s) = 0 (2.3)

for (t, x, s) ∈ [0, T ) × (0,∞)Nz+1 and z ∈ I with terminal condition wz(T, x, s) =

U(x), where Lπ is the infinitesimal generator of processes S, H and X with control

18



π, given by

Lπwz(t, x, s) =
∂wz
∂t

+ (r + θTπ)x
∂wz
∂x

+
∑
i∈Iz

µisi
∂wz
∂si

+
1

2
πTΣπx2∂

2wz
∂x2

+
1

2

∑
i∈Iz

σ2
i s

2
i

∂2wz
∂s2

i

+
∑

i,j∈Iz ,i<j

ρijσiσjsisj
∂2wz
∂si∂sj

+
∑
i∈Iz

ρTi σπσixsi
∂2wz
∂x∂si

+
∑
i∈Iz

hiz(s)

(
wzi

(
t, x

(
1−

N∑
j=1

Ljiπ
j

)
, si

)
− wz

)
, (2.4)

where si := (s1(1− L1i), . . . , sj(1− Lji), . . . , sN(1− LNi))T for j ∈ Izi and ρi :=

(ρi1, . . . , ρij, . . . , ρiN)T for j ∈ Iz. Note that the dimension of si is Nzi which is equal

to Nz − 1 as we have removed the ith defaulted stock.

2.5 Verification Theorem

We next give a verification theorem for the value function.

Theorem 2.5.1. Assume that the function tuple w := (wz)z∈I where wz ∈ C
(
[0, T ]×

(0,∞)Nz+1
)
∩C1,2,...,2

(
[0, T )×(0,∞)Nz+1

)
for any z ∈ I solves (2.3) with the terminal

condition wz(T, x, s) = U(x), that wz satisfies a growth condition |wz(t, x, s)| ≤

K (1 + xγ) for 0 < γ < 1, that the maximum of the Hamiltonian∗ in (2.3) is achieved

at π̂(t, x, s, z) in A, and that SDE (2.1) admits a unique strong solution X π̂
t with

control π̂. Then wz coincides with the value function vz and π̂ is the optimal control

process.

Proof. For ∀π ∈ A, define a new process

w
(
u,X t,x,s,z,π

u , St,su ,Hu

)
:=
∑
z̄∈I

wz̄
(
u,X t,x,s,z,π

u , St,su
)
I{Hu=z̄}

∗The Hamiltonian refers to Lπwz.
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where X t,x,s,z,π
u denotes the wealth process starting with Xt = x, St = s,Ht = z

associated with control process π, and St,su denotes the prices of surviving stocks at

time u starting with St = s.

As wz̄ is smooth in (t, x, s) for ∀z̄ ∈ I, we can apply Ito’s formula to w and get for

any time u ∈ [t, T ]

w(u,X t,x,s,zπ
u , St,su ,Hu) = wz(t, x, s) +

∫ u

t

∑
z̄∈I

Lπwz̄(ū, Xπ
ū , Sū)I{Hū=z̄} dū+Mu−Mt,

where Lπwz̄ is defined in (2.4), and M is a local martingale defined by

Mu :=
∑
z̄∈I

(∑
i∈Iz̄

∫ u

t

σiS
i
ū

∂wz̄
∂si

I{Hū=z̄}dW
i
ū +

∫ u

t

πTū σX
π
ū

∂wz̄
∂x

I{Hū=z̄}dWū

)

+
∑
z̄∈I

(∑
i∈Iz̄

∫ u

t

(
wz̄i

(
ū, Xū−

(
1−

N∑
j=1

Ljiπ
j
ū

)
, Siū−

)
− wz̄(ū, Xū−, Sū−)

)
(
dH i

ū − hiz̄(Sū−)I{Hū=z̄}dū
))

.

Since wz̄ satisfies the HJB equation (2.3), we have Lπwz̄ ≤ 0. Define stopping times

τ̃n := inf

{
u ≥ t :

∣∣X t,x,s,z,π
u − x

∣∣+
∑
i∈Iz

∣∣Siu − si∣∣ ≥ n

}
∧ (T − 1/n),

then Mu∧τ̃n is a martingale due to the boundedness of control set A and values and

derivatives of wz̄. Letting u = T and taking expectation on both sides, we have

E
[
w
(
τ̃n, X

π
τ̃n , Sτ̃n ,Hτ̃n

)]
≤ wz(t, x, s)

with equality if π = π̂. Next we show that

lim
n→∞

E
[
wz̄
(
τ̃n, X

π
τ̃n , Sτ̃n

)
I{Hτ̃n=z̄}

]
= E

[
wz̄ (T,Xπ

T , ST ) I{HT=z̄}
]

= E
[
U (Xπ

T ) I{HT=z̄}
]
,

(2.5)
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for ∀z̄ ∈ I. Since |wz̄(t, x, s)| ≤ K(1 + xγ), also noting (2.2), we have

E
[∣∣wz̄ (τ̃n, Xπ

τ̃n , Sτ̃n
)
I{Hτ̃n=z̄}

∣∣α] ≤ K
(
1 + E

[(
Xπ
τ̃n

)αγ]) ≤ K(1 + xαγ) <∞

for any α > 1. Since wz̄
(
τ̃n, X

π
τ̃n
, Sτ̃n

)
I{Hτ̃n=z̄} is uniformly integrable, we can take

the limit under the expectation to get (2.5). This shows that E[U(Xπ
T )] ≤ wz(t, x, s)

with equality if π = π̂. Furthermore, SDE (2.1) admits a unique strong solution

by the assumption, therefore, wz coincides with the value function vz and π̂ is the

optimal control process.

Remark 2.5.2. For log utility U(x) = lnx, the assumption U(0) > −∞ is not sat-

isfied. However, one may postulate that the value function has a form wz(t, x, s) =

lnx + fz(t, s), where f is a solution of a linear PDE, see (2.8). If we assume

fz ∈ C
(
[0, T ]× (0,∞)Nz+1

)
∩ C1,2,...,2

(
[0, T )× (0,∞)Nz+1

)
and is bounded, then

one can show that wz is indeed the value function with the same proof as that of

Theorem 2.5.1 except one change: instead of using |wz(t, x, s)| ≤ K (1 + xγ), which

does not hold for log utility, one uses |wz(t, x, s)| ≤ K (1 + | lnx|). Since

lnXu = lnx+

∫ u

t

(
r + πTūDūθ −

1

2
πTūDūΣDūπū

)
dū+

∫ u

t

πTūDūσdWū

+
N∑
j=1

∫ u

t

ln

(
1−

N∑
i=1

Lijπ
i
ū−

)
dHj

ū

for u ∈ [t, T ], we have E
[
|lnXu|2

]
≤ K(1 + (lnx)2), which provides the required

uniform integrability property in the proof.

2.6 Viscosity Solution Representation

The verification theorem assumes the existence of a classical solution of the HJB

equation (2.3), which may not be true for the value function vz. Next we show

that the value functions {vz}z∈I is the unique viscosity solution to the PDE system
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characterized by (2.3) based on the following definition.

To facilitate discussions of viscosity solution, we define F function by

Fz
(
t, x, s, w,∇(t,x,s)wz,∇2

(x,s)wz
)

= − sup
π∈A
Lπwz(t, x, s),

where ∇(t,x,s)wz ∈ RNz+2 is the gradient vector of wz with respect to (t, x, s), and

∇2
(x,s)wz ∈ R(Nz+1)×(Nz+1) is the Hessian matrix of wz with respect to (x, s). wz and

its derivatives are evaluated at (t, x, s). The HJB equation (2.3) is the same as

Fz
(
t, x, s, v,∇(t,x,s)vz,∇2

(x,s)vz
)

= 0

for ∀z ∈ I.

Definition 2.6.1. (i) w := (wz)z∈I is a viscosity subsolution of the PDE system

(2.3) on [0, T )× (0,∞)N+1 if

Fz̄
(
t̄, x̄, s̄, ϕ,∇(t,x,s)ϕz̄,∇2

(x,s)ϕz̄
)
≤ 0

for all z̄ ∈ I, (t̄, x̄, s̄) ∈ [0, T ) × (0,∞)Nz̄+1 and test functions ϕ := (ϕz)z∈I ∈

C1,2,...,2
(
[0, T )× (0,∞)Nz+1

)
such that (wz̄)

∗(t̄, x̄, s̄) = ϕz̄(t̄, x̄, s̄) and (wz)
∗ ≤ ϕz for

∀z ∈ I on [0, T )× (0,∞)Nz+1, where (wz)
∗ is the upper-semicontinuous envelope of

wz, defined by (wz)
∗(t̄, x̄, s̄) = lim sup(t,x,s)→(t̄,x̄,s̄) wz(t, x, s).

(ii) w := (wz)z∈{0,1}N is a viscosity supersolution of the PDE system (B.1) on [0, T )×

(0,∞)N+1 if

Fz̄
(
t̄, x̄, s̄, ϕ,∇(t,x,s)ϕz̄,∇2

(x,s)ϕz̄
)
≥ 0

for all z̄ ∈ I, (t̄, x̄, s̄) ∈ [0, T ) × (0,∞)Nz̄+1 and test functions ϕ := (ϕz)z∈I ∈

C1,2,...,2
(
[0, T )× (0,∞)Nz+1

)
such that (wz̄)∗(t̄, x̄, s̄) = ϕz̄(t̄, x̄, s̄) and (wz)∗ ≥ ϕz for

∀z ∈ I on [0, T )× (0,∞)Nz+1, , where (wz)∗ is the lower-semicontinuous envelope of

wz, defined by (wz)∗(t̄, x̄, s̄) = lim inf(t,x,s)→(t̄,x̄,s̄) wz(t, x, s).
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(iii) We say that w is a viscosity solution of the PDE system (2.3) on [0, T ) ×

(0,∞)N+1 if it is both a viscosity subsolution and supersolution of (2.3).

Based on the above definition, we have the following viscosity solution property for

the value function. As the proofs of the following theorems are lengthy, we show

these proofs in Section 2.8.

Theorem 2.6.2. For z ∈ I, the value function vz is a viscosity solution of the PDE

system (2.3) on [0, T ) × (0,∞)N+1, satisfying the growth condition |vz(t, x, s)| ≤

K(1 + xγ) for some constant 0 < γ < 1.

To prove the uniqueness of the viscosity solution, we need to introduce a structure

condition on the model.

Assumption 2.6.3. The following inequality holds:

Jz(π) ≤ K

ε

(
|x1 − x2|2 +

∑
i∈Iz

|s1i − s2i|2
)
, ∀π ∈ A, z ∈ I,

where

Jz(π) :=
1

2
πTΣπ

(
x2

1Q1,1 − x2
2Q
′
1,1

)
+

1

2

∑
i∈Iz

σ2
i

(
s2

1iQki,ki − s2
2iQ
′
ki,ki

)
+

∑
i,j∈Iz ,i<j

ρijσiσj

(
s1is1jQki,kj − s2is2jQ

′
ki,kj

)
+
∑
i∈Iz

ρTi σπσi
(
x1s1iQ1,ki − x2s2iQ

′
1,ki

)
and matrices Q and Q′ satisfyQ 0

0 −Q′

 ≤ 3

ε

 INz+1 −INz+1

−INz+1 INz+1

 .

Remark 2.6.4. The dimension of matrices Q and Q′ in Theorem 2.6.6 is Nz+1. We

use ki to represent the right index of matrices which corresponds to si where i ∈ Iz.
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The introduction of ki is to resolve the gap between s index and matrix index. We

use a simple example to illustrate the definition of ki. For example, Iz := {3, 4, 6}.

In this case, there are three surviving stocks in the market, namely s3, s4, s6. The

dimension of matrices Q and Q′ is 4 (including 3 surviving stocks and the wealth

process x). Then k3 = 2, k4 = 3, k6 = 4.

Remark 2.6.5. For the simplest case where there are only two defaultable stocks

in the market, e.g. Example 2.2.1 and Example 2.2.2, Assumption 2.6.3 holds for

∀ρ ∈ (−1, 1), as Jz(π) can be written as

Jz(π) =
1

2
ξT

Q 0

0 −Q′

 ξ +
1

2
(1− ρ2)(σP )2ζT

Q 0

0 −Q′

 ζ,

where

ξ =
(
mTπx1, σ

Ss1, ρσ
Pp1,m

Tπx2, σ
Ss2, ρσ

Pp2

)T
ζ =

(
πPx1, 0, p1, π

Px2, 0, p2

)T
and m = (σS, ρσP )T , n = (ρσS, σP )T and π := (πS, πP )T . Using the matrix inequal-

ity and simple algebraic calculation, one can show that

Jz(π) ≤ 3

2ε

(
(mTπ)2|x1 − x2|2 + (σS)2|s1 − s2|2

+ ρ2(σP )2|p1 − p2|2
)

+
3

2ε
(1− ρ2)(σP )2

(
(πP )2|x1 − x2|2 + |p1 − p2|2

)
.

By the boundedness of control set A, Assumption 2.6.3 holds for all ρ ∈ (−1, 1).

The next result states the uniqueness of the viscosity solution.

Theorem 2.6.6. Let Assumption 2.6.3 hold. Assume the value function vz, z ∈ Iz,

satisfies the terminal condition vz(T−, x, s) = U(x) and the boundary conditions

(vz)
∗(t, x, s) = (vz)∗(t, x, s) for (x, s) on the boundary of [0,∞)Nz+1. Then vz is the

unique viscosity solution of the PDE system (2.3) on [0, T )× (0,∞)Nz+1.
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Remark 2.6.7. The condition (vz)
∗(t, x, s) = (vz)∗(t, x, s) for (x, s) on the boundary

is equivalent to the existence of the limit of the value function vz at boundary

points. This condition is needed as the domain of (x, s) variables is (0,∞)Nz+1, not

(−∞,∞)Nz+1, in which case one may impose some polynomial growth conditions

on vz, see Pham (2009), Remark 4.4.8, for further discussions on this point.

Remark 2.6.8. Taking the one-sided contagion model defined in Example 2.2.1 as

the simplest case, we show in Appendix B how to construct a modification of the

true value function such that Theorem 2.6.6 can be applied.

2.7 Numerical Tests

In this section, we perform some statistical and robust tests for log and power

utilities. We assume that there are two defaultable stocks and one risk-free bank

account in the market (Example 2.2.2).

2.7.1 Optimal strategies for log utility

For U(x) = ln x, the post-default case z = (1, 1) is investing into the risk-free bank

account, thus πS = πP = 0 and v(1,1)(t, x) = ln x+ r(T − t). We conjecture that the

pre-default value function v(0,0)(t, x, s, p) takes the form

v(0,0)(t, x, s, p) = lnx+ f(0,0)(t, s, p), (2.6)

and the value function v(1,0)(t, x, p), v(0,1)(t, x, s) respectively take the forms

v(1,0)(t, x, p) = lnx+ f(1,0)(t, p), v(0,1)(t, x, s) = lnx+ f(0,1)(t, s). (2.7)
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Substituting (2.6) and (2.7) into (2.3), we get a linear PDE for f(0,0) depending on

the value of f(1,0) and f(0,1):

∂f(0,0)

∂t
+ bT (s, p)Df(0,0) +

1

2
Tr
(
σσT (s, p)D2f(0,0)

)
−
(
hS(0,0)(s, p) + hP(0,0)(s, p)

)
f(0,0)(t, s, p) + r

+ hS(0,0)(s, p)f(1,0)(t, p(1− LP )) + hP(0,0)(s, p)f(0,1)(t, s(1− LS))

+ sup
π∈A

G(0,0)(s, p, π) = 0 (2.8)

with the terminal condition f(0,0)(T, s, p) = 0, where G(0,0) is defined by

G(0,0)(s, p, π) := −1

2
πTΣπ + θTπ + hS(0,0)(s, p) ln(1− πS − LPπP )

+ hP(0,0)(s, p) ln(1− LSπS − πP ),

and the other notations are given by

b(s, p) :=

µSs
µPp

 , σ(s, p) :=

 σSs 0

ρσPp
√

1− ρ2σPp

 ,

Df(0,0) :=

∂f(0,0)

∂s

∂f(0,0)

∂p

 , D2f(0,0) :=

∂2f(0,0)

∂s2
∂2f(0,0)

∂s∂p

∂2f(0,0)

∂s∂p

∂2f(0,0)

∂p2

 .

By the same argument, we get a linear PDE for f(1,0):

∂f(1,0)

∂t
+ µPp

∂f(1,0)

∂p
+

1

2
(σP )2p2∂

2f(1,0)

∂p2
− hP(1,0)(p)f(1,0)(t, p)

+ r + hP(1,0)(p)r(T − t) + sup
π∈A

G(1,0)(p, π) = 0

with the terminal condition f(1,0)(T, p) = 0, where G(1,0) is defined by

G(1,0)(p, π) := −1

2
(σP )2(πP )2 + (µP − r)πP + hP(1,0)(p) ln(1− πP ).

The PDE associated with f(0,1) can be obtained similarly.
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Assume the control constraint set A is given by

A :=
{
π | aS ≤ πS ≤ bS and aP ≤ πP ≤ bP

}
,

where aS, bS, aP , bP ∈ R are chosen such that 1−LTπ ≥ εA for ∀π ∈ A. We need to

solve a constrained optimization problem:

max
π∈A

G(0,0)(s, p, π).

Since A is compact and G(0,0) is continuous, there exists an optimal solution which

satisfies the Kuhn-Tucker optimality conditionµ
S − r − (σS)2πS − ρσSσPπP −

hS
(0,0)

(s,p)

1−πS−LP πP −
LShP

(0,0)
(s,p)

1−LSπS−πP + µ1 − µ2 = 0

µP − r − (σP )2πP − ρσSσPπS −
LP hS

(0,0)
(s,p)

1−πS−LP πP −
hP

(0,0)
(s,p)

1−LSπS−πP + µ3 − µ4 = 0

(2.9)

and the complementary slackness condition

µ1(πS − aS) = 0, µ2(bS − πS) = 0, µ3(πP − aP ) = 0, µ4(bP − πP ) = 0, (2.10)

where µi ≥ 0, i = 1, . . . , 4, are Lagrange multipliers. Since πS can only take value

either in the interior of interval [aS, bS] or one of two endpoints, the same applies to

πP , we have nine possible combinations.

If both πS and πP are interior points, then µi = 0 for i = 1, . . . , 4 from (2.10).

Assuming that there exists a unique solution
(

(πS)∗(0,0), (π
P )∗(0,0)

)
of (2.9) such that

(πS)∗(0,0) ∈ (aS, bS) and (πP )∗(0,0) ∈ (aP , bP ), then
(

(πS)∗(0,0), (π
P )∗(0,0)

)
is the optimal

control. We can discuss other cases one by one. For example, if (πS)∗(0,0) = aS

and (πP )∗(0,0) ∈ (aP , bP ), then µ2 = µ3 = µ4 = 0 from (2.10) and (πP )∗(0,0) and µ1

are solutions of equation (2.9). If solutions do not satisfy (πP )∗(0,0) ∈ (aP , bP ) and

µ1 ≥ 0, then this case is impossible.

Remark 2.7.1. Applying Kuhn-Tucker optimality condition to G(1,0)(p, π), we get
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the explicit optimal control for z = (1, 0) such that

(πS)∗(1,0) = 0, (πP )∗(1,0) =
µP − r + (σP )2 −

√
(µP − r − (σP )2)2 + 4(σP )2hP(1,0)(p)

2(σP )2
,

if (πP )∗(1,0) ∈ (aP , bP ). Assuming that the Merton optimal control πPM := µP−r
(σP )2 <

1− εA, then by Taylor expansion we have

(πP )∗(1,0) = πPM −
hP(1,0)(p)

(σP )2 − (µP − r)
+ o

(
hP(1,0)(p)

)
.

Thus the optimal control (πP )∗(1,0) is approximately equal to the Merton optimal

control with an extra modification term related to the default intensity. The result

for z = (0, 1) can be obtained similarly.

Remark 2.7.2. For the one-sided contagion model given in Example 2.2.1, we can

apply the same Kuhn-Tucker method and assuming that c0 := σS − ρσPLS 6= 0, we

get the optimal control π∗ as

(πS)∗ = c1 + c2(πP )∗ and (πP )∗ =
c3 + c4 − sgn(c0)

√
∆(s, p)

c5

, (2.11)

where sgn(x) is the sign function which equals 1 if x > 0 and −1 if x < 0, and ci,

i = 1, . . . , 5, are some constants given by

c1 := (µS − r − LS(µP − r))/(σSc0),

c2 := (LS(σP )2 − ρσSσP )/(σSc0),

c3 :=
(
µS − r − c1(σS)2

)
(c2L

S + 1),

c4 :=
(
c2(σS)2 + ρσSσP

)
(1− c1L

S),

c5 := 2
(
c2(σS)2 + ρσSσP

)
(c2L

S + 1),
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and ∆(s, p) is given by

∆(s, p) = (c3 − c4)2 + 2LSc5h(s, p).

The explicit optimal control relies on the special structure such that there is only

one jump in the model setting. Since the optimal controls (πS)∗ and (πP )∗ have

closed-form expressions (2.11), one can apply Taylor expansion as in Remark 2.7.1

and get

(πS)∗ = (πS)∗M −
LSh(s, p)

cS
+ o (h(s, p)) , (πP )∗ = (πP )∗M −

h(s, p)

cP
+ o (h(s, p)) ,

(2.12)

where (πS)∗M and (πP )∗M are the Merton’s optimal controls given by

(πS)∗M :=
1

1− ρ2

µS − r
(σS)2

− ρ

1− ρ2

µP − r
σSσP

, (πP )∗M :=
1

1− ρ2

µP − r
(σP )2

− ρ

1− ρ2

µS − r
σSσP

,

and cS > 0, cP > 0 are constant. Note that we assume cS > 0, cP > 0 which are

necessary conditions for
(
(πS)∗M , (π

P )∗M
)
∈ A. By (2.12) one can easily find the

sensitivity information of the optimal controls to the changes of these parameters in

the one-sided contagion model.

Remark 2.7.3. Capponi and Frei (2017) derive explicit optimal trading strategies

for log utility investors when there are N stocks and N CDSs for these stocks.

Applying Ito’s formula to log wealth process and taking expectation, they get

E[lnXT ] = ln x+

∫ T

0

E[αt]dt, (2.13)

where αt := r + f(x̄) +
∑

n∈Iz hngn(yn) and x̄ is a vector of dimension Nz such that

each component is a linear combination of Nz controls π into stocks and Nz controls

ψ into CDSs, and yn, n ∈ Iz, are similarly defined. To maximize αt over controls

π and ψ, Capponi and Frei (2017) use a clever trick of maximizing f(x̄) and gn(yn)

separately and derive a linear equation system with 2Nz equations and 2Nz variables
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in π and ψ. The explicit optimal controls come from solving the equation system,

see equation (B.3) in the E-companion paper of Capponi and Frei (2017).

The success of finding the explicit optimal control in Capponi and Frei (2017) cru-

cially relies on the existence of equal number of CDSs in the model. When there

is no CDS in the portfolio as in our case, maximizing f(x̄) and gn(yn) separately

would result in an incompatible system of 2Nz equations with Nz variables. It is

therefore impossible to get the closed-form optimal control for log utility investors

in our looping contagion model by applying Capponi and Frei’s technique. In fact,

applying Ito’s formula to log wealth process and taking expectation in our model,

we get

E[lnXT ] = ln x+

∫ T

0

E[α̃t]dt,

where α̃t := r + πTt Dtθ − 1
2
πTt DtΣDtπt +

∑
j∈Iz h

j
z(s) ln

(
1−

∑
i∈Iz Lijπ

i
t−
)
. Taking

derivatives of α̃t with respect to π would lead to an equation system similar to that

in (2.9).

Although the explicit solution of equation system (2.9) is hard to obtain, we may

assume by the virtue of Remark 2.7.2 that the optimal control is approximately the

sum of Merton’s classical optimal control and a correction function:

(πS)∗(0,0) = (πS)∗M + gS
(
hS(0,0)(s, p), h

P
(0,0)(s, p)

)
+ o

(
hS(0,0)(s, p)

)
+ o

(
hP(0,0)(s, p)

)
,

(πP )∗(0,0) = (πP )∗M + gP
(
hS(0,0)(s, p), h

P
(0,0)(s, p)

)
+ o

(
hS(0,0)(s, p)

)
+ o

(
hP(0,0)(s, p)

)
,

where gS and gP are two correction functions. Setting the following benchmark

parameter values

r = 0.05, µS = 0.1, µP = 0.15, σS = 0.3, σP = 0.4, ρ = 0.0, LS = 0.2, LP = 0.3

and the control set parameters aS = −0.75, bS = 0.75, aP = −0.75, bP = 0.75, we

analyze the Merton add-on functions gS and gP by numerical study. Note that
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(
(πS)∗(0,0), (π

P )∗(0,0)

)
can be obtained by numerically solving equation system (2.9).

Figure 2.1: Merton add-on functions gS and gP w.r.t. intensity values

Figure 2.1 shows the gS and gP functions with respect to hS(0,0)(s, p) and hP(0,0)(s, p).

The Merton optimal controls in above case are (0.56, 0.62). The first observation

from Figure 2.1 is that the add-on functions gS and gP are always non-positive. It

makes sense as intuitively investors hold less (or short sell more) of the risky assets

when there is default risk in the place. The second observation is that the absolute

value of gS (resp. gP ) increases with both hS(0,0)(s, p) and hP(0,0)(s, p). However,

it seems that gS (resp. gP ) is more sensitive to the change of hS(0,0)(s, p) (resp.

hP(0,0)(s, p)).

2.7.2 Performance comparison of state-dependent and con-

stant intensities

We now do some statistical analysis. The data used are the same as the benchmark

case and:

T = 1, S0 = 100, P0 = 100, x0 = 100.

Assume the intensity function h is given by
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h(x, y) = min
{

max
{
h0 (k1x+ k2y)−α , hm

}
, hM

}
(2.14)

with minimum intensity hm = 0.05, maximum intensity hM = 1.0, and parame-

ter α = 1. The default intensity functions with respect to each stock and default

state are given by

hS(0,0)(s, p) = h(s, p), hP(0,0)(s, p) = h(p, s), hS(0,1)(s) = h(s, 0), hP(1,0)(p) = h(p, 0).

Note that h0 controls the initial intensity and weights k1, k2 control the sensitivity of

intensity h to stock prices s and p. We set h0 = 10.0 such that the initial intensity is

0.1 and k1 = 0.7, k2 = 0.3 which means the default intensity of one stock is slightly

more sensitive to its own stock price. Moreover, the intensity of one stock jumps

up when the other stock defaults, which captures the virtue of interacting default

intensity model, see Bo and Capponi (2013).

Figure 2.2: Sample paths of stock price, default intensity, and wealth (looping contagion)

Figure 2.2 shows sample paths of stock prices, default intensities, and optimal wealth

with two different trading strategies. The left panel shows stock price paths of S and

P . In this scenario, only stock S defaults. At time of default, stock price S drops

to zero and stock price P jumps down then continues. The middle panel shows the

default intensity processes hSz (St, Pt) and hPz (St, Pt), which are functions of stock

prices St, Pt. The intensity of stock S becomes zero after default, while the default

intensity hP(0,0)(St, Pt) jumps up to hP(1,0)(Pt). The right panel shows the sample

wealth paths when optimal control strategies used are based on S, P -dependent
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intensities and constant intensities (value equal to 0.1). Both the wealth paths with

S, P -dependent intensities and constant intensities jump up when default occurs

and then two wealth paths move in the same pattern. Compared with the constant

intensities, the S, P -dependent wealth path jumps more. This is not surprising as

at time of default, strategies with intensity h(St, Pt) short sells more stocks S and

P than strategies with constant intensity, which means gain is more, see Figure 2.3.

Of course, this is due to the fact that at time of default the default intensities of S

and P are both above 0.1. The opposite phenomenon happens when the intensity

hP (St, Pt) at time of default is larger than constant intensity 0.1.

Figure 2.3: Optimal controls and terminal wealth distribution (looping contagion)

Figure 2.3 shows optimal controls πS and πP associated with the stock paths in

Figure 2.2 and the statistical distributions of the wealth at time T . The left panel

and mid panel are proportions of wealth invested in stocks S and P , respectively.

It is clear that as default intensity increases, investments in stocks S and P both

decrease and investment in savings account B increases, which is intuitively ex-

pected as if the default probability of one stock increases, then one would reduce

the holdings of both stocks S and P to reduce the risk of loss in case the default

of system indeed occurs. In this scenario, both the optimal investment strategies to

stock S and P are short-selling, which is a combination effect of parameters chosen

and default in the place. We simulate 10000 paths of both stock prices S and P ,

using S, P -dependent default intensity h(St, Pt). Among all these paths, about 1/5

(precisely 1752 paths) contain defaults of either S or P . The terminal wealth is

generated by two strategies: one is optimal strategy based on the full information

33



of h(St, Pt), the other is optimal strategy based on constant intensity 0.1. The right

panel shows the histograms of terminal wealth of these two strategies. It is clear

that their distributions are similar but with some slight differences at tail parts, that

is, probability of over-performance is higher and probability of under-performance

is lower with S, P -dependent intensities. These histograms seem to indicate, for log

utility, the overall performance of S, P -dependent optimal strategies and constant

strategies are similar, while the S, P -dependent optimal strategies perform better in

extreme scenarios.

mean std dev 2.3% quantile 97.7% quantile
All samples + h(S, P ) 107.78 22.60 84.08 171.82
All samples + constant h 107.59 19.27 78.60 157.80
Default + h(S, P ) 134.81 36.04 83.80 225.20
Default + constant h 134.68 21.50 95.29 178.04
No-default + h(S, P ) 102.17 12.82 84.11 134.68
No-default + constant h 101.96 12.99 78.13 130.48

Table 2.1: Sample means, standard deviations, and quantile values (looping contagion)

Table 2.1 contains sample means, sample standard deviations, and quantile values at

low end (2.3%) and high end (97.7%) for both S, P -dependent intensity and constant

intensity 0.1. It is clear that the overall sample mean with S, P -dependent optimal

strategies is (slightly) higher than constant intensity optimal strategies, which is

expected as the former is the genuine optimal control, however, the sample stan-

dard deviation with S, P -dependent optimal strategies is also higher, which implies

the S, P -dependent optimal strategies can be volatile and risky, while the constant

optimal strategies are more conservative. However, if we check the quantiles of the

distribution (which is a different risk measure), we find that the S, P -dependent

optimal strategies overall generate both higher 2.3% quantile (less loss) and higher

97.7% quantile (more gain), which implies the S, P -dependent optimal strategies

outperform the constant strategies in the extreme scenarios. Note that the outper-

formance in upper quantile comes from more short selling (anticipating the default

when stock price is very low).
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Remark 2.7.4. By far the conclusion drawn relies on the benchmark parameter

values, in which case the optimal controls for both stocks are short selling in most

scenarios. We repeat the same comparison tests on two other parameter sets (if not

specified, the parameter value is the same as benchmark case).

• Parameter set 1. σS = 0.2, σP = 0.3, LS = 0.1, LP = 0.2, ρ = 0.4, h0 =

5.0, hm = 0.01.

• Parameter set 2. r = 0.01, µS = 0.15, µP = 0.2, LS = 0.05, LP = 0.1, ρ =

0.7, h0 = 5.0, hm = 0.01.

mean std dev 2.3% quantile 97.7% quantile
All samples + h(S, P ) 106.79 12.52 73.02 133.62
All samples + constant h 106.71 11.21 75.90 128.36
Default + h(S, P ) 96.66 23.41 67.86 136.54
Default + constant h 99.04 23.89 68.48 136.76
No-default + h(S, P ) 107.78 10.37 92.16 132.88
No-default + constant h 107.46 8.72 91.44 125.64

Table 2.2: Sample means, standard deviations, and quantile values of Parameter set 1

Table 2.2 contains the statistics of parameter set 1 for both S, P -dependent intensity

and constant intensity 0.05. In most scenarios, the strategies of parameter set 1 is

short selling stock S and longing stock P . As the initial default intensity in this case

is 0.05, there are 887 paths containing default among the 10000 simulated paths.

mean std dev 2.3% quantile 97.7% quantile
All samples + h(S, P ) 111.27 33.75 56.86 195.32
All samples + constant h 110.65 29.87 54.83 177.62
Default + h(S, P ) 64.88 12.10 50.69 97.75
Default + constant h 66.44 16.80 40.16 103.75
No-default + h(S, P ) 115.72 31.75 72.29 198.58
No-default + constant h 114.90 27.30 69.26 179.72

Table 2.3: Sample means, standard deviations, and quantile values of Parameter set 2
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Table 2.3 contains the statistics of parameter set 2 for both S, P -dependent intensity

and constant intensity 0.05. In most scenarios, the strategies of parameter set 2 are

longing both stocks S, P . There are 876 paths containing default among the 10000

simulated paths.

From Table 2.1, 2.2, 2.3, the overall performance with S, P -dependent optimal

strategies is very similar to that with constant intensity optimal strategies. The

overall sample mean with S, P -dependent optimal strategies is (slightly) higher than

constant intensity optimal strategies, and the sample standard deviation with S, P -

dependent optimal strategies is also higher, which implies the difference in the tail

distribution and that S, P -dependent optimal strategies can be more volatile.

2.7.3 Robust tests of model parameters

Assume intensity function h is given by (2.14) and stock prices S and P are generated

based on that. It may be difficult to calibrate parameters accurately even one knows

the exact form of the intensity function. We do some robust tests for parameters

k1, k2, α, hm, hM , h0, that is, we compare the optimal performances of two investors,

one uses benchmark parameter values and the other incorrect estimated values. We

change one parameter only in each test while keep all other parameters fixed at

benchmark values.

mean std dev 2.3% quantile 97.7% quantile
BM 107.78 22.60 84.08 171.82
k case1 107.69 (-0.09%) 22.85 (1.10%) 83.00 (-1.29%) 173.82 (1.16%)
k case2 107.69 (-0.09%) 23.15 (2.44%) 80.95 (-3.73%) 174.67(1.66%)
α = 0.8 111.59 (3.53%) 53.15 (135.20%) 53.18 (-36.75%) 262.58 (52.82%)
α = 1.2 105.17 (-2.42%) 9.43 (-58.26%) 84.52 (0.53%) 122.93 (-28.45%)
h case1 107.77 (-0.01%) 22.60 (0.01%) 84.08 (0.00%) 171.82 (0.00%)
h case2 107.76 (-0.02%) 22.62 (0.07%) 83.91 (-0.20%) 171.82 (0.00%)
h0 = 5 105.36 (-2.25%) 9.52 (-57.86%) 85.24 (1.39%) 124.36 (-27.62%)
h0 = 15 109.76 (1.84%) 37.64 (66.55%) 70.59 (-16.04%) 221.49 (28.91%)

Table 2.4: Robust test of intensity parameters (looping contagion)
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Note that BM represents the benchmark case. For the other notations, k case1:

k1 = 0.5, k2 = 0.5; k case2: k1 = 0.3, k2 = 0.7; h case1: hm = 0.01, hM = 1.5; h

case2: hm = 0.07, hM = 0.5.

Table 2.4 shows that sample means are essentially the same over a broad range of

model parameters. The main difference is sample standard deviations. Percentage

changes over the benchmark values are listed in parentheses. The performance of

state-dependent intensity strategies is robust for some parameters, including weight

k1, k2, minimum intensity level hm and maximum intensity level hM . Changes of

these parameters do not greatly change sample standard deviations and quantile

values at low and high ends. On the other hand, it seems important to have correct

estimations of parameters α and h0 to avoid large changes of the standard deviation.

Those parameters have strong impact on the estimated intensity levels. For example,

if one overestimates the initial default intensity (h0 = 15 instead of correct value

h0 = 10) then the sample standard deviation is greatly increased with large loss at

low end quantile value.

Next we do some robust tests to see the impact of changes of model parameters on the

distribution of optimal terminal wealth, including drift µ, volatility σ, correlation

ρ, and percentage loss LS. We change drift and volatility parameters by 20% of

their benchmark values and correlation and percentage loss parameters by some big

deviations.

Table 2.5 lists statistical results of distributional sensitivity to changes of parame-

ters. It is clear that sample means are essentially the same for all parameters, but

sample standard deviations are sensitive to changes of drift, volatility, correlation

and percentage loss, which would significantly affect overall distributions of optimal

terminal wealth. This requires one to have good estimations of these parameters to

have correct distributions. It is well known that it is easy to estimate volatility but

difficult to estimate drift (see Rogers (2013)) and information of percentage loss is

rarely available. Since optimal trading strategies and optimal wealth distributions
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mean std dev 2.3% quantile 97.7% quantile
benchmark 107.78 22.60 84.08 171.82
µS = 0.12 107.05 (-0.68%) 17.54 (-22.39%) 91.98 (9.39%) 158.13 (-7.97%)
µS = 0.08 108.55 (0.71%) 28.35 (25.44%) 75.99 (-9.62%) 187.88 (9.35%)
µP = 0.18 107.53 (-0.23%) 21.78 (-3.61%) 80.93 (-3.75%) 165.05 (-3.94%)
µP = 0.12 108.08 (0.28%) 25.58 (13.17%) 83.68 (-0.48%) 182.54 (6.24%)
σS = 0.36 107.28 (-0.46%) 18.87 (-16.49%) 88.04 (4.71%) 161.89 (-5.78%)
σS = 0.24 108.47 (0.64%) 27.88 (23.37%) 78.37 (-6.79%) 188.35 (9.62%)
σP = 0.48 107.74 (-0.04%) 21.94 (-2.92%) 84.12 (0.04%) 169.01 (-1.63%)
σP = 0.32 107.86 (0.07%) 23.56 (4.24%) 83.84 (-0.29%) 175.82 (2.33%)
ρ = −0.3 108.21 (0.40%) 25.50 (12.83%) 83.45 (-0.75%) 183.56 (6.83%)
ρ = 0.3 107.57 (-0.20%) 21.83 (-3.39%) 82.74 (-1.59%) 167.26 (-2.65%)
LS = 0.1 107.49 (-0.26%) 20.49 (-9.33%) 87.32 (3.85%) 166.49 (-3.10%)
LS = 0.4 108.24 (0.43%) 26.45 (17.05%) 77.52 (-7.80%) 181.95 (5.90%)
LP = 0.15 107.70 (-0.07%) 21.94 (-2.91%) 83.26 (-0.97%) 169.43 (-1.39%)
LP = 0.6 107.88 (-0.10%) 23.90 (5.74%) 84.69 (0.73%) 177.53 (3.32%)

Table 2.5: Robust test of model parameters (looping contagion)

are greatly influenced by these parameters which are difficult to be correctly esti-

mated, one needs to be cautious in using state-dependent intensity to model and

solve optimal investment problems. Using sub-optimal but conservative and robust

trading strategies, instead of optimal ones based on unobservable parameters and

intensities, might be more sensible and less risky.

2.7.4 Performance comparison of different initial stock

prices

Table 2.1 shows the overall distributions of the terminal wealth are similar whether

one uses the intensity hiz(s, p) or constant intensity 0.1 as approximation. This is

possibly due to the fact that the initial price of S and P are both 100, which results

in the inital intensity hiz(s, p) being equal to the constant intensity. The value 0.1

comes from the calibration which relies only on the historical data, while h(s, p)

is a forward-looking function which depends on the future stock prices. Table 2.1
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represents the normal situation where the default probability in calibration window

is close to that in investment window. However, if the initial intensity hiz(s, p) is

vastly different from 0.1 which comes from the estimation of calibration window

(one example is that the calibration window is just before the financial crisis, while

the investment starts from the financial crisis period), the distributions of terminal

wealth can be significantly different. We use a numerical example to illustrate this.

For simplicity, let the intensity function be given by hiz(s, p) = 20/(s + p). This

means the default intensity of S jumps from 20/(St + Pt) to 20/St after P defaults.

So is the situation when S defaults. Assume that the initial prices of S and P are

s = 10, p = 10 respectively, then the initial intensity is hS(0,0)(s, p) = hP(0,0)(s, p) = 1,

which makes the stocks ten times more likely to default than the constant intensity

h = 0.1 would have suggested (from the calibration window). This would cause

one to take different control strategies (more shortselling when s = 10, p = 10) and

would have large impact on the distributions of the terminal wealth as shown in the

table below.

mean std dev 2.3% quantile 97.7% quantile
All samples & h(S, P ) 179.74 63.21 58.63 316.08
All samples & h ≡ 0.1 66.26 22.87 44.62 138.28
Default & h(S, P ) 195.90 52.78 99.20 318.65
Default & h ≡ 0.1 57.70 7.16 44.23 73.82
No-default & h(S, P ) 88.18 31.46 50.36 172.72
No-default & h ≡ 0.1 114.78 20.69 78.99 157.11

Table 2.6: Sample statistics with different initial stock prices. Data: S0 = 10, P0 = 10

Table 2.6 shows the statistics of the terminal wealth with 10000 simulation scenarios

which produces 8542 default scenarios, a reflection of the high initial default intensity

hiz(S0, P0) = 1. When stock prices are small, defaultable stocks are very likely to

default. With S, P dependent intensity, the optimal controls are to short sell more

stocks, which results in a much larger mean (195.90) than the mean (57.70) with

constant intensity h ≡ 0.1 if stock S or P indeed defaults (anticipated). However, if
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stock does not default (non-anticipated), then the opposite outcomes appear. This

numerical test shows S, P -dependent control strategies may outperform or under-

perform S, P independent control strategies, depending on the anticipated market

event (default of stock) occurring or not.

Remark 2.7.5. We repeat the same tests on the other two parameter sets defined in

Remark 2.7.4. Table 2.7 and Table 2.8 show the statistics of the other two parameter

sets respectively. It is clear that the conclusion drawn in this section is very robust.

mean std dev 2.3% quantile 97.7% quantile
All samples & h(S, P ) 165.68 52.40 65.29 273.71
All samples & h ≡ 0.1 52.50 32.25 29.15 151.40
Default & h(S, P ) 179.67 43.00 100.40 277.57
Default & h ≡ 0.1 40.00 7.11 28.53 57.25
No-default & h(S, P ) 88.33 25.18 57.77 158.67
No-default & h ≡ 0.1 121.61 29.54 75.94 191.41

Table 2.7: Sample statistics with different initial stock prices of Parameter set 1

mean std dev 2.3% quantile 97.7% quantile
All samples & h(S, P ) 141.65 57.07 54.22 260.60
All samples & h ≡ 0.1 53.79 42.91 24.60 197.84
Default & h(S, P ) 154.05 52.26 65.22 268.57
Default & h ≡ 0.1 38.37 9.68 24.39 62.05
No-default & h(S, P ) 73.10 24.79 52.71 143.56
No-default & h ≡ 0.1 139.10 53.96 65.75 265.55

Table 2.8: Sample statistics with different initial stock prices of Parameter set 2

2.7.5 Numerical method for power utility

For power utility U(x) = (1/γ)xγ, 0 < γ < 1, the post-default case is well known

with the optimal control πS = (µS − r)/((σS)2(1− γ)) (and πP = 0) and the post-
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default value function v1(t, x) = (1/γ)xγg1(t), where

g1(t) = exp

((
rγ +

γ

2(1− γ)

(
µS − r
σS

)2
)

(T − t)

)
.

We conjecture that the pre-default value function takes the form

w(t, x, s, p) =
xγ

γ
f(t, s, p). (2.15)

Substituting (2.15) into (2.3), we get a semilinear PDE for f :

− ∂f

∂t
− 1

2
Tr
(
σσT (s, p)D2f

)
− sup

π∈A

{
bT (s, p, π)Df − β(s, p, π)f + g(t, s, p, π)

}
= 0,

(2.16)

with terminal condition f(T, s, p) = 1, where

b(s, p, π) :=

(µS + γmTπσS
)
s(

µP + γnTπσP
)
p

 , σ(s, p) :=

 σSs 0

ρσPp
√

1− ρ2σPp

 ,

Df :=

fs
fp

 , D2f :=

fss fsp

fsp fpp

 ,

and

β(s, p, π) := −rγ + h(s, p)− γ
(
θTπ +

1

2
(γ − 1)πTΣπ

)
,

g(t, s, p, π) := h(s, p)g1(t)(1− LTπ)γ.

Equation (2.16) is a nonlinear PDE with two state variables and it is highly un-

likely, if not impossible, to find a closed form solution f . However, by Pham (2009)

(Remark 3.4.2), equation (2.16) is the HJB equation for the value function v of the

following optimal control problem:

v(t, y) = sup
π∈A

E
[∫ T

t

Γ(t, u)g(u, Yu, πu)du+ Γ(t, T )

∣∣∣∣Yt = y

]
, (2.17)
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where Yu := (Su, Pu)
T , t ≤ u ≤ T , is a controlled Markov state process satisfying

the following SDE:

dYu = b(Yu, πu)du+ σ(Yu)dWu, t ≤ u ≤ T, (2.18)

with the initial condition Yt = y := (s, p)T , W is a 2-dimensional standard Brownian

motion and Γ(t, u) := exp
{
−
∫ u
t
β(Yl, πl)dl

}
is a discount factor.

By our theoretical result, we claim that the value function v(t, y) is the unique

viscosity solution of the HJB equation (2.16). Moreover, if the HJB equation (2.16)

has a classical solution, then it is the value function v(t, y). In other words, we may

find the solution f(t, s, p) of equation (2.16) by solving a stochastic optimal control

problem (2.17). Since the diffusion coefficient of SDE (2.18) does not contain control

variable π, we may use the numerical method of Kushner and Dupuis (2001) to find

the optimal value function in (2.17), which would give us a numerical approximation

to the solution f(t, s, p) of equation (2.16). Next we give some details.

According to Kushner and Dupuis (2001), the process Y can be approximated by

a Markov chain process, which transits a point Yt = (s, p) at time t to one of nine

points Yt+∆t may take at time t + ∆t, that is, (s, p), (s± δ, p), (s, p± δ), (s + δ, p±

δ), (s− δ, p± δ), with the following transition probabilities:

aδ,∆t ((s, p), (s, p) | π) := 1− ∆t

δ
(|b1|+ |b2|)

− ∆t

δ2

(
(σSs)2 + (σPp)2 − |ρ|σSσP sp

)
aδ,∆t ((s, p), (s± δ, p) | π) :=

∆t

δ
b±1 +

∆t

2δ2
(σSs)2 − ∆t

2δ2
|ρ|σSσP sp

aδ,∆t ((s, p), (s, p± δ) | π) :=
∆t

δ
b±2 +

∆t

2δ2
(σPp)2 − ∆t

2δ2
|ρ|σSσP sp

aδ,∆t ((s, p), (s+ δ, p± δ) | π) :=
∆t

2δ2
ρ±σSσP sp

aδ,∆t ((s, p), (s− δ, p∓ δ) | π) :=
∆t

2δ2
ρ±σSσP sp,
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where δ is the step size of space, ∆t := (T − t)/N is the step size of time with N ≥ 1

an integer, b1 := (µS + γmTπσS)s, b2 := (µP + γnTπσP )p and x+ := max{x, 0},

x− := max{−x, 0}.

The numerical scheme is based on the following discretized dynamic programming

principle:

v(k∆t, Sk∆t, Pk∆t)

≈ sup
πk∈A

(
g(k∆t, Sk∆t, Pk∆t, πk)∆t

+ exp
{
−β(SNk , P

N
k , πk)∆t

}
E
[
v
(
(k + 1)∆t, SNk+1, P

N
k+1

)])

for k = N−1, . . . , 1, 0, where πk is the piece-wise constant control and the expectaton

is computed with the help of the above Markov chain transition probabilities. The

terminal condition is given by v(N∆t, SN∆t, PN∆t) = 1.

We compare the passive investment and active investment under the power utility

setting. Most parameter values used in power utility case are the same as log utility

benchmark case, except the step size of space δ = 5, the step size of time ∆t = 0.1,

and the set of control parameters are aS = aP = −1.0, bS = bP = 1.0. Table 2.9 lists

the numerical results with mean, variance, and quantile values at lower and upper

ends. It is clear the performance is similar to that of the log utility as one would

expect.

mean std dev 2.3% quantile 97.7% quantile
All samples + h(S, P ) 106.38 17.45 77.30 148.20
All samples + constant h 105.99 14.90 79.92 139.08
Default + h(S, P ) 106.70 21.00 71.67 158.63
Default + constant h 106.18 15.78 78.50 140.40
No-default + h(S, P ) 106.35 17.06 77.83 146.52
No-default + constant h 105.97 14.80 80.03 138.94

Table 2.9: Sample means, standard deviations, and quantile values with power utility (looping con-
tagion)
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There is a backward stochastic differential equation (BSDE) representation of the

solution f(t, s, p) of equation (2.16). So in theory one may find f if one can solve

a highly nonlinear BSDE, which is not pursued in this thesis, see Cheridito et al.

(2007) for details.

Remark 2.7.6. Solving the optimal control for power utility relies on the numer-

ical method in Kushner and Dupuis (2001). By guessing the specific form of the

value function (2.15), we simplify the HJB equation (2.16) such that the resulting

controlled process (2.18) has volatility term σ(Yu) independent of control π. For

general utility function, the controlled process is normally dependent of π, thus the

convergence result of Kushner and Dupuis (2001) is invalid. For the completeness

of the numerical test section, we develop a numerical method in Appendix C, which

is adapted to the general utility function.

2.8 Proofs of the Main Theorems

We prove the main theorems in this section, including the continuity of one-sided

contagion value function (Theorem 2.4.2), viscosity solution representation (Theo-

rem 2.6.2) and comparison principle (Theorem 2.6.6).

2.8.1 Proof of continuity of one-sided contagion value

function

Proof. We prove the theorem in four steps: 1) v0 is continuous in x, uniformly in

t, s, p, 2) v0 is continuous in s, uniformly in t, p, 3) v0 is continuous in p, uniformly

in t, s and 4) v0 is continuous in t. Combining these four steps gives the continuity

of v0 in t, x, s, p.

Step 1. For any x1, x2 ∈ [0,∞) and t, s, p ∈ [0, T ] × (0,∞)2, using Assumption

2.3.2, we have
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|v0(t, x1, s, p)− v0(t, x2, s, p)| =
∣∣∣∣sup
π∈A

E
[
U(X t,x1,s,p,π

T )
]
− sup

π∈A
E
[
U(X t,x2,s,p,π

T )
]∣∣∣∣

≤ sup
π∈A

E
[∣∣U(X t,x1,s,p,π

T )− U(X t,x2,s,p,π
T )

∣∣]
≤ K sup

π∈A
E
[∣∣X t,x1,s,p,π

T −X t,x2,s,p,π
T

∣∣γ]
≤ K|x1 − x2|γ,

by virtue of (2.2). Therefore, v0 is continuous in x, uniformly in t, s, p.

Step 2. Fix 0 < s1 < s2 < ∞ and t, x, p ∈ [0, T ] × [0,∞) × (0,∞). Denote by Si

the stock price that starts from si, i = 1, 2, and hi and τi the corresponding default

intensity and default time of stock P , respectively. By our model setting, τi can be

represented by

τi := inf

{
s ≥ t :

∫ s

t

hiudu ≥ X
}
,

where X is a standard exponential random variable on the probability space (Ω,G,P)

and is independent of the filtration (Ft)t≥0, which means τi are totally inaccessible

stopping times.

Define τmin := min {τ1, τ2}. It is clear that before τmin, the stock price dynamic is a

standard geometric Brownian motion. We have

E
[∣∣S1

u − S2
u

∣∣ I{u<τmin}] ≤ K|s1 − s2|

and

E
[∫ τmin∧u

t

∣∣h1
u − h2

u

∣∣ du] ≤ KE
[∫ u

t

∣∣S1
u − S2

u

∣∣ I{u<τmin}du] ≤ K|s1 − s2| (2.19)

for any u ∈ [t, T ].

If there is no jump on interval [t, T ], then sup[t,T ] |H1
u − H2

u| = 0 and X t,x,s1,p,π
T =

X t,x,s2,p,π
T , where H i is the jump process associated with default time τi. If there is
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at least one jump on interval [t, T ], then sup[t,T ] |H1
u −H2

u| = 1 as τ1 and τ2 do not

jump at the same time. We have the relation

|X t,x,s1,p,π
T −X t,x,s2,p,π

T | = |X t,x,s1,p,π
T −X t,x,s2,p,π

T | sup
[t,T ]

|H1
u −H2

u|

≤ (|X t,x,s1,p,π
T |+ |X t,x,s2,p,π

T |) sup
[t,T ]

|H1
u −H2

u|.

Since sup[t,T ] |H1
u−H2

u| equals 0 or 1, we have (sup[t,T ] |H1
u−H2

u|)α = sup[t,T ] |H1
u−H2

u|

for any α > 0. Using (x+ y)γ ≤ xγ + yγ for x, y ≥ 0 and 0 < γ ≤ 1 and the Cauchy-

Schwarz inequality, also noting Remark 2.3.1, we have

E
[∣∣X t,x,s1,p,π

T −X t,x,s2,p,π
T

∣∣γ] ≤ E

[
(|X t,x,s1,p,π

T |γ + |X t,x,s2,p,π
T |γ) sup

[t,T ]

|H1
u −H2

u|

]
≤ K

((
E
[
|X t,x,s1,p,π

T |2γ
])1/2

+
(
E
[
|X t,x,s2,p,π

T |2γ
])1/2

)
·

(
E

[
sup
[t,T ]

|H1
u −H2

u|

])1/2

≤ Kxγ

(
E

[
sup
[t,T ]

|H1
u −H2

u|

])1/2

.

We therefore have

|v0(t, x, s1, p)− v0(t, x, s2, p)| ≤ K sup
π∈A

E
[
|X t,x,s1,p,π

T −X t,x,s2,p,π
T |γ

]
≤ Kxγ

(
E

[
sup
[t,T ]

|H1
u −H2

u|

])1/2

.

We can decompose H i as H i
u = M i

u + Aiu, where M i is a martingale and Aiu :=∫ u∧τi
t

hisds is a bounded variation process, see Bielecki and Rutkowski (2003). Ap-
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plying Doob’s sub-martingale inequality, we have

E

[
sup
[t,T ]

|H1
u −H2

u|

]
= E

[
sup
[t,T ]

|H1
u −H2

u|2
]

≤ 2E

[
sup
[t,T ]

|M1
u −M2

u |2 + sup
[t,T ]

|A1
u − A2

u|2
]

≤ 8E
[
|M1

T −M2
T |2
]

+ 2E

[
sup
[t,T ]

|A1
u − A2

u|2
]
.

Since h is a monotone function of s by Assumption 2.2.1, without loss of generality,

we assume h is non-increasing in s, then h1 ≥ h2 before the first default occurs. By

the definition of τi, we have τ1 ≤ τ2 and H1
t ≥ H2

t . Then

∣∣A1
u − A2

u

∣∣ =

∣∣∣∣∫ u

t

h1
sds−

∫ u

t

h2
sds

∣∣∣∣ I{u≤τ1≤τ2} +

∣∣∣∣∫ τ1

t

h1
sds−

∫ u

t

h2
sds

∣∣∣∣ I{τ1<u≤τ2}
+

∣∣∣∣∫ τ1

t

h1
sds−

∫ τ2

t

h2
sds

∣∣∣∣ I{τ1≤τ2<u}
=

(∫ u

t

h1
sds−

∫ u

t

h2
sds

)
I{u≤τ1≤τ2} +

(
X −

∫ u

t

h2
sds

)
I{τ1<u≤τ2}

+ (X − X ) I{τ1≤τ2<u}

= A1
u − A2

u

for any u ∈ [t, T ]. Therefore,

sup
[t,T ]

|A1
u − A2

u|2 ≤ K sup
[t,T ]

|A1
u − A2

u| = K sup
[t,T ]

(A1
u − A2

u).

Note that A1
u − A2

u is non-decreasing before τ1 ∧ T and non-increasing after τ1 ∧ T ,

we conclude that

sup
[t,T ]

(A1
u − A2

u) = A1
τ1∧T − A

2
τ1∧T =

∫ τ1∧T

t

(h1
u − h2

u)du.
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By inequality (2.19), we have

E

[
sup
[t,T ]

|A1
u − A2

u|2
]
≤ KE

[∫ τ1∧T

t

(h1
u − h2

u)du

]
≤ K|s1 − s2|. (2.20)

Since H1
T −H2

T equals 0 or 1, we have

|M1
T −M2

T |2 ≤ 2|H1
T −H2

T |2 + 2|A1
T − A2

T |2

≤ 2(H1
T −H2

T ) +K(A1
T − A2

T )

≤ 2(M1
T −M2

T ) +K(A1
T − A2

T ).

Since M i is martingale, also note that τ1 ∧ T ≤ τ2 ∧ T , we have

E|M1
T −M2

T |2 ≤ KE[A1
T − A2

T ]

= KE
[∫ τ1∧T

t

h1
sds−

∫ τ2∧T

t

h2
sds

]
≤ KE

[∫ τ1∧T

t

(h1
s − h2

s)ds

]
≤ K|s1 − s2|.

(2.21)

Combining (2.21) and (2.20), we conclude that E
[
sup[t,T ] |H1

u −H2
u|
]
≤ K|s1 − s2|,

which gives

|v0(t, x, s1, p)− v0(t, x, s2, p)| ≤ Kxγ|s1 − s2|
1
2 .

Therefore, v0 is continuous in s, uniformly in t, p.

Step 3. Fix 0 < p1 < p2 < ∞ and t, x, s ∈ [0, T ] × [0,∞) × (0,∞), by same

technique as in Step 2, we can show

|v0(t, x, s, p1)− v0(t, x, s, p2)| ≤ Kxγ|p1 − p2|
1
2 .

Therefore, v0 is continuous in p, uniformly in t, s.

Step 4. For any 0 ≤ t1 < t2 ≤ T and x, s, p ∈ [0,∞)× (0,∞)2, by the definition of
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v0 and the dynamic programming principle, ∀δ > 0, ∃π(δ) ∈ A such that

v0(t1, x, s, p)− δ ≤ E
[
v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,p

t2

)
I{t2<τ} + v1

(
t2, X

t1,x,π(δ)
t2

)
I{t2≥τ}

]
≤ v0(t1, x, s, p).

Rearranging the order, we have

|v0(t1, x, s, p)− v0(t2, x, s, p)| − δ

≤
∣∣∣E [v0

(
t2, X

t1,x,s,π(δ)
t2 , St1,st2 , P t1,p

t2

)
I{t2<τ} + v1

(
t2, X

t1,x,π(δ)
t2

)
I{t2≥τ}

]
− v0(t2, x, s, p)

∣∣∣
≤ E

[∣∣∣v0

(
t2, X

t1,x,s,π(δ)
t2 , St1,st2 , P t1,p

t2

)
I{t2<τ} − v0(t2, x, s, p)

∣∣∣]
+ E

[∣∣∣v1

(
t2, X

t1,x,π(δ)
t2

)
I{t2≥τ}

∣∣∣] .
Using the Cauchy-Schwartz inequality, we have

E
[∣∣∣v1

(
t2, X

t1,x,s,π(δ)
t2

)
I{t2≥τ}

∣∣∣] ≤ E
[∣∣∣v1

(
t2, X

t1,x,s,π(δ)
t2

)∣∣∣2]1/2√
P
(
t2 ≥ τ

)
≤ K(1 + xγ)

√
P
(
t2 ≥ τ

)
,

which tends to 0 since P
(
t2 ≥ τ

)
→ 0 as t2 − t1 → 0.

Next we prove the first term E
[∣∣∣v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,p

t2

)
I{t2<τ} − v0(t2, x, s, p)

∣∣∣]
goes to zero as t2 − t1 → 0.

E
[∣∣∣v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,p

t2

)
I{t2<τ} − v0(t2, x, s, p)

∣∣∣]
≤ E

[∣∣∣(v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,p

t2

)
− v0

(
t2, x, S

t1,s
t2 , P t1,p

t2

))
I{t2<τ}

∣∣∣]
+ E

[∣∣(v0

(
t2, x, S

t1,s
t2 , P t1,p

t2

)
− v0(t2, x, s, P

t1,p
t2 )

)
I{t2<τ}

∣∣]
+ E

[∣∣(v0

(
t2, x, s, P

t1,p
t2

)
− v0(t2, x, s, p)

)
I{t2<τ}

∣∣]+ E
[∣∣v0(t2, x, s, p)I{t2≥τ}

∣∣] .
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As shown in Step 1,

∣∣∣v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,p

t2

)
− v0

(
t2, x, S

t1,s
t2 , P t1,p

t2

)∣∣∣ ≤ K
∣∣∣X t1,x,s,p,π(δ)

t2 − x
∣∣∣γ ,

and by (2.2),

E
[∣∣∣X t1,x,s,p,π(δ)

t2 − x
∣∣∣2] ≤ 2x2 + 2E

[∣∣∣X t1,x,s,p,π(δ)
t2

∣∣∣2] <∞.
Therefore,

∣∣∣X t1,x,s,p,π(δ)
t2 − x

∣∣∣γ is uniformly integrable, and we can exchange the order

of expectation and limit to get

lim
t2−t1→0

E
[∣∣∣v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,p

t2

)
− v0

(
t2, x, S

t1,s
t2 , P t1,p

t2

)∣∣∣ I{t2<τ}]
≤ E

[
K lim

t2−t1→0

∣∣∣X t1,x,s,p,π(δ)
t2 − x

∣∣∣γ] = 0.

The same argument can be applied to the term

E
[∣∣v0

(
t2, x, S

t1,s
t2 , P t1,p

t2

)
− v0(t2, x, s, P

t1,p
t2 )|I{t2<τ}

∣∣]
based on Step 2 and

E
[∣∣v0

(
t2, x, s, P

t1,p
t2

)
− v0(t2, x, s, p)|I{t2<τ}

∣∣]
based on Step 3, and we conclude that

lim
t2−t1→0

E
[∣∣v0

(
t2, x, S

t1,s
t2 , P t1,p

t2

)
− v0(t2, x, s, P

t1,p
t2 )|I{t2<τ}

∣∣]
≤ E

[
Kxγ lim

t2−t1→0

∣∣St1,st2 − s
∣∣ 1

2

]
= 0
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and

lim
t2−t1→0

E
[∣∣v0

(
t2, x, s, P

t1,p
t2

)
− v0(t2, x, s, p)|I{t2<τ}

∣∣]
≤ E

[
Kxγ lim

t2−t1→0

∣∣P t1,p
t2 − p

∣∣ 1
2

]
= 0.

The last term |v0(t2, x, s, p)|P(t2 ≥ τ) ≤ K(1 + xγ)P(t2 ≥ τ), which tends to zero

when t2 − t1 → 0. Therefore

E
[∣∣∣v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,p

t2

)
I{t2<τ} − v0(t2, x, s, p)

∣∣∣]→ 0

as t2 − t1 → 0 and we finally have

lim
t2−t1→0

|v0(t1, x, s, p)− v0(t2, x, s, p)| ≤ δ.

Since δ is arbitrary, we conclude that v0(t, x, s, p) is continuous in t. Combining Steps

1,2,3,4, we conclude that v0(t, x, s, p) is continuous in [0, T ]× [0,∞)× (0,∞)2.

2.8.2 Proof of viscosity solution

We first show the proof of the following lemma that is used in the viscosity subso-

lution proof.

Lemma 2.8.1. Denote by Rz := Rz(t, x, s) the following function

Rz := sup
π∈A

{
θTπx

∂wz
∂x

+
1

2
πTΣπx2∂

2wz
∂x2

+
∑
i∈Iz

ρTi σπσixsi
∂2wz
∂x∂si

+
∑
i∈Iz

hiz(s)wzi

(
t, x

(
1−

N∑
j=1

Ljiπ
j

)
, si

)}
,

where wz ∈ C1,2,...,2 for ∀z ∈ I. Then Rz is continuous in (t, x, s).

Proof. Let z ∈ I and the point (t̄, x̄, s̄) ∈ [0, T ) × (0,∞)Nz+1 and Bη(t̄, x̄, s̄) be the
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ball with center (t̄, x̄, s̄) and radius η. By the definition of supremum function, for

any δ > 0, there exists a control π ∈ A such that

Rz(t̄, x̄, s̄)− δ ≤ θTπx̄
∂wz
∂x

(t̄, x̄, s̄) +
1

2
πTΣπx̄2∂

2wz
∂x2

(t̄, x̄, s̄)

+
∑
i∈Iz

ρTi σπσix̄s̄i
∂2wz
∂x∂si

(t̄, x̄, s̄)

+
∑
i∈Iz

hiz(s̄)wzi

(
t̄, x̄

(
1−

N∑
j=1

Ljiπ
j

)
, s̄i

)
, (2.22)

For any point (t, x, s) ∈ Bη(t̄, x̄, s̄), we have

Rz(t, x, s) ≥ θTπx
∂wz
∂x

(t, x, s) +
1

2
πTΣπx2∂

2wz
∂x2

(t, x, s)

+
∑
i∈Iz

ρTi σπσixsi
∂2wz
∂x∂si

(t, x, s)

+
∑
i∈Iz

hiz(s)wzi

(
t, x

(
1−

N∑
j=1

Ljiπ
j

)
, si

)
, (2.23)

Subtracting (2.23) from (2.22), we have

Rz(t̄, x̄, s̄)−Rz(t, x, s)− δ

≤ θTπ

(
x̄
∂wz
∂x

(t̄, x̄, s̄)− x∂wz
∂x

(t, x, s)

)
+

1

2
πTΣπ

(
x̄2∂

2wz
∂x2

(t̄, x̄, s̄)− x2∂
2wz
∂x2

(t, x, s)

)
+
∑
i∈Iz

ρTi σπσi

(
x̄s̄i

∂2wz
∂x∂si

(t̄, x̄, s̄)− xsi
∂2wz
∂x∂si

(t, x, s)

)

+
∑
i∈Iz

(
hiz(s̄)wzi

(
t̄, x̄

(
1−

N∑
j=1

Ljiπ
j

)
, s̄i

)
− hiz(s)wzi

(
t, x

(
1−

N∑
j=1

Ljiπ
j

)
, si

))
.

Taking the limit superior and then letting δ tend to 0, we have

Rz(t̄, x̄, s̄) ≤ lim inf
(t,x,s)→(t̄,x̄,s̄)

Rz(t, x, s). (2.24)

Similarly, using the smoothness of wz and boundedness of π and hiz for ∀z ∈ I and
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i ∈ {1, . . . , N}, we can get

Rz(t̄, x̄, s̄) ≥ lim sup
(t,x,s)→(t̄,x̄,s̄)

Rz(t, x, s). (2.25)

Inequalities (2.24) and (2.25) imply that Rz(t, x, s) is continuous in (t, x, s) for ∀z ∈

I.

Combining Lemma 2.8.1 and the smoothness of w, we conclude that Fz given in

Definition 2.6.1 is continuous in (t, x, s). Based on this result, we prove the value

function v := (vz)z∈I is a viscosity solution to the PDE system (2.3).

Proposition 2.8.2. The value function v := (vz)z∈I is a viscosity supersolution to

equation (2.3) on [0, T )× (0,∞)N+1.

Proof. Let z̄ ∈ I, (t̄, x̄, s̄) ∈ [0, T ) × (0,∞)Nz̄+1 and ϕ := (ϕz)z∈I be tuple of test

functions where ϕz ∈ C1,2,...,2
(
[0, T )× (0,∞)Nz+1

)
for ∀z ∈ I such that

0 = ((vz̄)∗ − ϕz̄) (t̄, x̄, s̄) = min
[0,T )×(0,∞)Nz̄+1

((vz̄)∗ − ϕz̄) (t, x, s), (2.26)

and (vz)∗ ≥ ϕz for ∀z ∈ I on [0, T )× (0,∞)Nz+1.

By definition of (vz̄)∗, there exists a sequence (tm, xm, sm) in [0, T )×(0,∞)Nz̄+1 such

that

(tm, xm, sm)→ (t̄, x̄, s̄) and vz̄(tm, xm, sm)→ (vz̄)∗(t̄, x̄, s̄),

when m goes to infinity. By the continuity of ϕz̄ and by (2.26) we also have that

γm := vz̄(tm, xm, sm)− ϕz̄(tm, xm, sm)→ 0,

when m goes to infinity.

Let π ∈ A be a constant control process and Bη(xm, sm) ∈ (0,∞)Nz̄+1 be the

ball with center (xm, sm) and radius η > 0. Note that when m is large enough,
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(xm, sm) ∈ Bη(x̄, s̄), thus ∀(x, s) ∈ Bη(xm, sm), we have (x, s) ∈ B2η(x̄, s̄). We

denote by X tm,xm
u the associated controlled wealth process. Let τπm be the stopping

time given by

τπm := inf
{
u ∈ [tm, T ) :

(
X tm,xm
u , Stm,smu

)
/∈ Bη(xm, sm)

}
.

Let (hm) be a strictly positive sequence such that

hm → 0 and
γm
hm
→ 0,

when m goes to infinity. Then we can define a stopping time θm give by θm :=

τπm ∧ (tm + hm) ∧ τ̃m where τ̃m is the first default time of the surviving stocks,

starting from tm.

Next we use the weak dynamic programming principle (weak-DPP) proved in Bouchard

and Touzi (2011), that is,

vz̄(t, x, s) ≥ E

[∑
z∈I

(vz)∗
(
θ,X t,x,s,z̄

θ , St,sθ
)
I{Hθ=z}

]
,

for any G-measurable stopping time θ ∈ [t, T ] such that Xθ and Sθ are L∞–bounded.

Since under stopping time θm, the processes S and X are both bounded, we can

apply above weak dynamic programming principle (weak-DPP) for vz̄(tm, xm, sm)

to θm and get

vz̄(tm, xm, sm) ≥ E

[∑
z∈I

(vz)∗
(
θm, X

tm,xm,sm,z̄
θm

, Stm,smθm

)
I{Hθm=z}

]
.

Equation (2.26) implies (vz)∗ ≥ ϕz for ∀z ∈ I, thus

ϕz̄(tm, xm, sm) + γm ≥ E

[∑
z∈I

ϕz
(
θm, X

tm,xm,sm,z̄
θm

, Stm,smθm

)
I{Hθm=z}

]
.
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Applying Ito’s formula to the whole term in bracket, we obtain

γm
hm
− E

[
1

hm

∫ θm

tm

∑
z∈I

Lπϕz(u,Xπ
u , Su)I{Hu=z}du

]
≥ 0 (2.27)

after noting that the stochastic integral term cancels out by taking expectations

since the integrand is bounded. Note that Lπϕz (u,X tm,xm
u , Stm,smu ) is defined the

same as (2.4).

Next we investigate the stopping time θm when m is large enough. Firstly, for the

stopping time τπm, denoting Em := {τ̃m > tm + hm}, we have

P (τπm ≤ tm + hm | Em)

= P

(
sup

t∈[tm,tm+hm]

(∣∣X tm,xm
t − xm

∣∣2 +
∑
i∈Iz̄

∣∣Si,tm,smt − sm,i
∣∣2) ≥ η2 | Em

)

≤ P

(
sup

t∈[tm,tm+hm]

∣∣X tm,xm
t − xm

∣∣2 ≥ η2

Nz̄ + 1
| Em

)

+
∑
i∈Iz̄

P

(
sup

t∈[tm,tm+hm]

∣∣Si,tm,smt − sm,i
∣∣2 ≥ η2

Nz̄ + 1
| Em

)

≤ Nz̄ + 1

η2

(
E

[
sup

t∈[tm,tm+hm]

∣∣X tm,xm
t − xm

∣∣2 | Em]

+
∑
i∈Iz̄

E

[
sup

t∈[tm,tm+hm]

∣∣Si,tm,smt − sm,i
∣∣2 | Em]).

By Pham (2009), Page 67, each term in the bracket converges to zero as m → ∞,

which gives

lim
m→∞

P (τπm ≤ tm + hm | Em) = 0.

By definition of conversion time τ̃m, we have

P
(
EC
m

)
= 1− E

[
e−

∫ tm+hm
tm

∑
i∈Iz̄ h

i
z̄(Su)du

]
≤ 1− e−Khm

55



due to the boundedness of intensity function hiz̄. Thus

lim
m→∞

P(EC
m) = 0.

Finally for the stopping time τπm ∧ τ̃m, we have

P (τπm ∧ τ̃m ≤ tm + hm) ≤ P (τπm ≤ tm + hm) + P
(
EC
m

)
= P (τπm ≤ tm + hm, Em) + P

(
τπm ≤ tm + hm, E

C
m

)
+ P

(
EC
m

)
≤ P (τπm ≤ tm + hm | Em) + 2P

(
EC
m

)
. (2.28)

Combining above results, we get

lim
m→∞

P (τπm ∧ τ̃m ≤ tm + hm) = 0.

We now estimate

−γm
hm

≤ E

[
1

hm

∫ θm

tm

−
∑
z∈I

Lπϕz(u,Xπ
u , Su)I{Hu=z}du

]

≤ E

[
1

hm

∫ tm+hm

tm

−
∑
z∈I

Lπϕz(u,Xπ
u , Su)I{Hu=z}du | τπm ∧ τ̃m > tm + hm

]
· P (τπm ∧ τ̃m > tm + hm)

+ E

[
1

hm

∫ τπm∧τ̃m

tm

−
∑
z∈I

Lπϕz(u,Xπ
u , Su)I{Hu=z}du | τπm ∧ τ̃m ≤ tm + hm

]
· P (τπm ∧ τ̃m ≤ tm + hm)

≤ E
[

1

hm

∫ tm+hm

tm

−Lπϕz̄
(
u,X tm,xm

u , Stm,smu

)
du | τπm ∧ τ̃m > tm + hm

]
+KP (τπm ∧ τ̃m ≤ tm + hm) .

By the mean value theorem and dominated convergence theorem, taking limit on

both sides of the inequality, we have

−Lπϕz̄(t̄, x̄, s̄) ≥ 0,
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which implies

Fz̄
(
t̄, x̄, s̄, ϕ,∇(t,x,s)ϕz̄,∇2

(x,s)ϕz̄
)
≥ 0,

due to the arbitrariness of π ∈ A.

Proposition 2.8.3. The value function v := (vz)z∈I is a viscosity subsolution to

equation (2.3) on [0, T )× (0,∞)N+1.

Proof. Let z̄ ∈ I, (t̄, x̄, s̄) ∈ [0, T ) × (0,∞)Nz̄+1 and ϕ := (ϕz)z∈I be tuple of test

functions where ϕz ∈ C1,2,...,2
(
[0, T )× (0,∞)Nz+1

)
for ∀z ∈ I such that

0 = ((vz̄)
∗ − ϕz̄) (t̄, x̄, s̄) = max

[0,T )×(0,∞)Nz̄+1
((vz̄)

∗ − ϕz̄) (t, x, s), (2.29)

and (vz)
∗ ≤ ϕz for ∀z ∈ I on [0, T )× (0,∞)Nz+1.

We prove the result by contradiction. Assume on the contrary that

Fz̄
(
t̄, x̄, s̄, ϕ,∇(t,x,s)ϕz̄,∇2

(x,s)ϕz̄
)
> 0

Then by the continuity of Fz̄, there exists δ > 0 and η > 0 such that

Fz̄
(
t, x, s, ϕ,∇(t,x,s)ϕ,∇2

(x,s)ϕ
)

= − sup
π∈A
Lπϕz̄(t, x, s) > δ

for (t, x, s) ∈ Bη(t̄, x̄, s̄). By definition of (vz̄)
∗, there exists a sequence (tm, xm, sm)

taking values in B η
2
(t̄, x̄, s̄) such that

(tm, xm, sm)→ (t̄, x̄, s̄) and vz̄(tm, xm, sm)→ (vz̄)
∗(t̄, x̄, s̄),

when m goes to infinity. By the continuity of ϕz̄ and by (2.29) we also have that

γm := vz̄(tm, xm, sm)− ϕz̄(tm, xm, sm)→ 0,

when m goes to infinity.
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We denote by X tm,xm,π
u the controlled wealth process associated with control process

π ∈ A. Let τπ
m

m be the stopping time given by

τπm := inf
{
u ∈ [tm, T ) :

(
u,X tm,xm,π

u , Stm,smu

)
/∈ B η

2
(tm, xm, sm)

}
.

Let (hm) be a strictly positive sequence such that

hm → 0 and
γm
hm
→ 0,

when m goes to infinity. Then we can define a stopping time θm give by θm :=

τπm ∧ (tm + hm) ∧ τ̃m where τ̃m is the first default time of surviving stocks starting

from tm.

Next we use the weak dynamic programming principle (weak-DPP) proved in Bouchard

and Touzi (2011), that is, for any ε > 0, there exists a control process π ∈ A such

that

vz̄(t, x, s)− ε ≤ E

[∑
z∈I

(vz)
∗ (θ,X t,x,s,z̄,π

θ , St,sθ
)
I{Hθ=z}

]
,

for any G–stopping time θ ∈ [t, T ].

We apply above weak dynamic programming principle (weak-DPP) for vz̄(tm, xm, sm)

to θm and get for ε = δ hm
2
> 0, there exists π ∈ A such that

vz̄(tm, xm, sm)− δhm
2
≤ E

[∑
z∈I

(vz)
∗ (θm, X tm,xm,sm,z̄,π

θm
, Stm,smθm

)
I{Hθm=z}

]
.

Equation (2.29) implies (vz)
∗ ≤ ϕz for ∀z ∈ I, thus

ϕz̄(tm, xm, sm) + γm − δ
hm
2
≤ E

[∑
z∈I

ϕz
(
θm, X

tm,xm,sm,z̄,π
θm

, Stm,smθm

)
I{Hθm=z}

]
.
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Applying Ito’s formula to the whole term in bracket, we obtain

γm
hm
− δ

2
≤ E

[
1

hm

∫ θm

tm

∑
z∈I

Lπϕz(u,Xπ
u , Su)I{Hu=z}du

]

≤ E
[

1

hm

∫ tm+hm

tm

Lπϕz̄(u,Xπ
u , Su)du | τπm ∧ τ̃m > tm + hm

]
+KP (τπm ∧ τ̃m ≤ tm + hm)

after noting that the stochastic integral term cancels out by taking expectations

since the integrand is bounded. By the similar technique as the supersolution proof,

we can show that P (τπm ∧ τ̃m ≤ tm + hm)→ 0 as m→∞.

Since
(
u,X tm,xm,πm

u , Stm,smu

)
∈ Bη(t̄, x̄, s̄) in [tm, tm + hm] if τπm ∧ τ̃m > tm + hm, we

have

Lπϕz̄
(
u,X tm,xm,πm

u , Stm,smu

)
< −δ

in [tm, tm + hm]. Thus

γm
hm
− δ

2
≤ E

[
1

hm

∫ tm+hm

tm

−δdu
]

+KP (τπm ∧ τ̃m ≤ tm + hm) .

Then we obtain

lim
m→∞

γm
hm
− δ

2
≤ −δ,

which implies 0 ≤ − δ
2
. We thus get the desired contradiction with δ > 0.

2.8.3 Proof of comparison principle

To prove the comparison principle, we need an alternative definition of viscosity

solution in terms of the notions of semijets defined as below.

Definition 2.8.4. For z ∈ I, given wz a function on [0, T )×(0,∞)Nz+1, the superjet

59



of wz at (t, x, s) ∈ [0, T )× (0,∞)Nz+1 is defined by:

P1,2,...,2,+wz(t, x, s) =
{

(R, q,Q) ∈ R× RNz+1 × S(Nz+1)×(Nz+1) such that

wz(t
′, x′, s′) ≤ wz(t, x, s) +R(t′ − t) + 〈q,X ′ −X〉

+
1

2
〈Q(X ′ −X), X ′ −X〉+ o(|t′ − t|2 + |X ′ −X|2)

}
,

where X = (x, s), X ′ = (x′, s′), and the bracket 〈·, ·〉 is the inner product of two

vectors. We define its closure P̄1,2,...,2,+wz(t, x, s) as the set of elements (R, q,Q) ∈

R×RNz+1×S(Nz+1)×(Nz+1) for which there exists a sequence (tm, Xm, Rm, qm, Pm) ∈

[0, T )×(0,∞)Nz+1×P1,2,...,2,+wz(t,X) satisfying (tm, Xm, Rm, qm, Qm)→ (t,X,R, q,Q).

We also define the subjets

P1,2,...,2,−wz(t, x, s) = −P1,2,...,2,+(−wz)(t, x, s),

P̄1,2,...,2,−wz(t, x, s) = −P̄1,2,...,2,+(−wz)(t, x, s).

By standard arguments, one has an equivalent definition of viscosity solutions in

terms of semijets: w := (wz)z∈I is a viscosity subsolution (resp. supersolution) to

(2.3) at (t, x, s) ∈ [0, T ) × (0,∞)N+1 if and only if for all z ∈ I and (R, q,Q) ∈

P̄1,2,...,2,+wz(t, x, s) (resp. P̄1,2,...,2,−wz(t, x, s)).

Fz (t, x, s, w, (R, q), Q) ≤ (resp. ≥) 0.

We can now state and prove the following comparison principle which gives rise to

the uniqueness of viscosity solution.

Proposition 2.8.5. Let W := (Wz)z∈I (resp. V := (Vz)z∈I) be a u.s.c. viscosity

subsolution (resp. l.s.c. viscosity supersolution) of (2.3) on [0, T ) × (0,∞)N+1 and

satisfy the growth condition |Wz(t, x, s)|, |Vz(t, x, s)| ≤ K(1 + xγ), the terminal re-

lation Wz(T, x, s) ≤ Vz(T, x, s), and the boundary relations Wz(t, x, s) ≤ Vz(t, x, s)

on the boundary of [0,∞)Nz+1 for ∀z ∈ I. Then we have Wz ≤ Vz for ∀z ∈ I on
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[0, T ]× [0,∞)Nz+1.

Proof. We prove the result in several steps.

Step 1. Let W̃z = eΓtWz and Ṽz = eΓtVz for constant Γ > 0, then a straightforward

calculation shows that W̃ (resp. Ṽ ) is a subsolution (resp. supersolution) of

− sup
π∈A
L̃πwz(t, x, s) = 0, on [0, T )× (0,∞)Nz+1,

for z ∈ I, where L̃π is given by

L̃πwz(t, x, s) =
∂wz
∂t

+ (r + θTπ)x
∂wz
∂x

+
∑
i∈Iz

µisi
∂wz
∂si

+
1

2
πTΣπx2∂

2wz
∂x2

+
1

2

∑
i∈Iz

σ2
i s

2
i

∂2wz
∂s2

i

+
∑

i,j∈Iz ,i<j

ρijσiσjsisj
∂2wz
∂si∂sj

+
∑
i∈Iz

ρTi σπσixsi
∂2wz
∂x∂si

+
∑
i∈Iz

hiz(s)

(
wzi

(
t, x

(
1−

N∑
j=1

Ljiπ
j

)
, si

)
− wz

)
− Γwz. (2.30)

We will show that W̃z ≤ Ṽz for ∀z ∈ I on [0, T ]× [0,∞)Nz+1 in the next few steps,

thus we conclude Wz ≤ Vz. We further define F̃ function by

F̃z
(
t, x, s, w,∇(t,x,s)wz,∇2

(x,s)wz
)

= − sup
π∈A
L̃πwz(t, x, s).

Step 2. Define Ṽ n
z := Ṽz+

1
n
φz(t, x, s), where φz(t, x, s) = e−λt

(
1 + x2γ +

∑
i∈Iz s

2γ
i

)
.

We claim that Ṽ n is a viscosity supersolution to (2.30). Note that

P1,2,...,2,−Ṽ n
z (t, x, s) = P1,2,...,2,−Ṽz(t, x, s) +

1

n
(R′, q′, Q′) ,
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where R′ = −λφz, q′ = 2γe−λt
(
x2γ−1, s2γ−1

1 , . . . , s2γ−1
i , . . . , s2γ−1

N

)
for i ∈ Iz and

Q′ = 2γ(2γ − 1)e−λt


x2γ−2 0 . . . 0

0 s2γ−2
1 . . . 0

...
...

...
...

0 0 . . . s2γ−2
N

 .

We have that for all (R, q,Q) ∈ P1,2,...,2,−Ṽ n
z (t, x, s),

(
R− R′

n
, q − q′

n
,Q− Q′

n

)
∈ P1,2,...,2,−Ṽz(t, x, s).

Since Ṽ is a viscosity supersolution to (2.30), we have

F̃z

(
t, x, s, Ṽ ,

(
R− R′

n
, q − q′

n

)
, Q− Q′

n

)
≥ 0

for ∀z ∈ I by the equivalent definition of viscosity supersolution. Using the in-

equality sup{A − B} ≥ sup{A} − sup{B} and the boundedness of controls and

coefficients, we have

F̃z

(
t, x, s, Ṽ n, (R, q), Q

)
≥ F̃z

(
t, x, s, Ṽ ,

(
R− R′

n
, q − q′

n

)
, Q− Q′

n

)
+

1

n

(
λ+ Γ +

∑
i∈Iz

hiz(s)−K

)
φz

for a constant K > 0. Therefore, F̃z

(
t, x, s, Ṽ n, (R, q), Q

)
≥ 0 for a large enough

λ, which implies that Ṽ n is a viscosity supersolution of (2.30).

Step 3. We show that for all n ≥ 1, it is W̃z ≤ Ṽ n
z for z ∈ I on [0, T )× (0,∞)Nz+1,

and thus conclude that W̃ ≤ Ṽ . Fix n ≥ 1 and define

Mz := sup
X∈[0,T )×(0,∞)Nz+1

[W̃z(X)− Ṽ n
z (X)],
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and

M := max
z∈I

Mz = Mz̄,

where X := (t, x, s). We next show that M ≤ 0. Suppose on the contrary that

M > 0, by the growth condition on W̃z̄ and Ṽz̄ we have

lim
x,s→∞

(W̃z̄ − Ṽ n
z̄ )(t, x, s) = −∞

for any t ∈ [0, T ). By the terminal and boundary conditions, we also have

(W̃z̄ − Ṽ n
z̄ )(T, x, s) ≤ 0, (W̃z̄ − Ṽ n

z̄ )(t, 0, s) ≤ 0, (W̃z̄ − Ṽ n
z̄ )(t, x, 0) ≤ 0.

Note that here s = 0 denotes si = 0 for any i ∈ Iz.

Since W̃z̄− Ṽ n
z̄ is upper-semicontinuous and M > 0, there exists some open bounded

set O ∈ [0, T )× (0,∞)Nz̄+1 such that

M = max
X∈O

[W̃z̄(X)− Ṽ n
z̄ (X)] > 0.

We now use the doubling variable technique. For any fixed ε > 0, define

Φ(X, Y ) := Φε(X, Y ) = W̃z̄(X)− Ṽ n
z̄ (Y )− φ1(X, Y ),

where φ1(X, Y ) := 1
ε
‖X − Y ‖2. Note that Φ is upper-semicontinuous and hence

achieves its maximum M̃ = M̃ε on the compact set Ō2 at (X̃, Ỹ ) = (X̃ε, Ỹε). We

may write that, for all ε > 0,

M ≤ M̃ = W̃z̄(X̃)− Ṽ n
z̄ (Ỹ )− φ1(X̃, Ỹ ) ≤ W̃z̄(X̃)− Ṽ n

z̄ (Ỹ ).

The sequence (X̃, Ỹ ) converges, up to a subsequence, to some (X̂, Ŷ ) ∈ Ō2. More-

over, since Wz̄(X̃) − V n
z̄ (Ỹ ) is upper bounded due to the upper-semicontinuity of
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W̃z̄ and −Ṽ n
z̄ , we know φ1(X̃, Ỹ ) is bounded, which implies X̂ = Ŷ . Let ε tend to

0 and take the lim sup, we get M ≤ W̃z̄(X̂)− Ṽ n
z̄ (Ŷ ) ≤ M . Therefore, X̂ = Ŷ ∈ O

and φ1(X̃, Ỹ )→ 0.

Step 4. Since (X̃, Ỹ ) converges to (X̂, X̂) with X̂ := (t̂, x̂, ŝ) ∈ O, we may assume

that for ε small enough, (X̃, Ỹ ) lies in O. We may write X̃ := (t1, x1, s1) and

Ỹ := (t2, x2, s2). Then we have

∇X̃φ1 = −∇Ỹ φ1 =
2

ε
(X̃ − Ỹ ).

Applying Crandall-Ishii’s lemma (see Crandall et al. (1992)), we have that there

exist Q and Q′ in SNz̄+1 such that

(
∇X̃φ1, Q

)
∈ P̄1,2,...,2,+W̃z̄(X̃),

(
−∇Ỹ φ1, Q

′) ∈ P̄1,2,...,2,−Ṽ n
z̄ (Ỹ )

and the following matrix inequality holds in the non-negative definite sense:Q 0

0 −Q′

 ≤ 3

ε

 INz̄+1 −INz̄+1

−INz̄+1 INz̄+1

 .

By the viscosity subsolution (resp. supersolution) property of W̃ (resp. Ṽ n), we

have

F̃z̄

(
t1, x1, s1, W̃ ,∇X̃φ1, Q

)
≤ 0 (2.31)

and

F̃z̄

(
t2, x2, s2, Ṽ

n,−∇Ỹ φ1, Q
′
)
≥ 0. (2.32)

Subtracting (2.31) from (2.32), using the fact that the difference of the supreme is
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less than the supreme of the difference, we obtain

Γ
(
W̃z̄(X̃)− Ṽ n

z̄ (Ỹ )
)

+
∑
i∈Iz̄

(
hiz̄(s1)W̃z̄(X̃)− hiz̄(s2)Ṽ n

z̄ (Ỹ )
)

≤ sup
π∈A

{
J1(π) + J2(π) + J3(π)

}
,

where

J1(π) = (r + θTπ)
2(x1 − x2)2

ε
+
∑
i∈Iz̄

µi
2(s1i − s2i)

2

ε
,

J2(π) =
∑
i∈Iz̄

(
hiz̄(s1)W̃z̄i

(
t1, x1

(
1−

N∑
j=1

Ljiπ
j

)
, si1

)

− hiz̄(s2)Ṽ n
z̄i

(
t2, x2

(
1−

N∑
j=1

Ljiπ
j

)
, si2

))
,

and

J3(π) =
1

2
πTΣπ

(
x2

1Q1,1 − x2
2Q
′
1,1

)
+

1

2

∑
i∈Iz̄

σ2
i

(
s2

1iQki,ki − s2
2iQ
′
ki,ki

)
+

∑
i,j∈Iz̄ ,i<j

ρijσiσj

(
s1is1jQki,kj − s2is2jQ

′
ki,kj

)
+
∑
i∈Iz̄

ρTi σπσi
(
x1s1iQ1,ki − x2s2iQ

′
1,ki

)
.

Since φ1(X̃, Ỹ ) → 0, we can derive lim supε→0 J1(π) = 0 for any π. By the defini-

tion of M , we have lim supε→0 J2(π) ≤
∑

i∈Iz̄ h
i
z̄(ŝ)M for any π. By the structure

condition and Crandall Ishii’s inequality, we have

J3(π) ≤ K

ε

(
|x1 − x2|2 +

∑
i∈Iz̄

|s1i − s2i|2
)
.
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Thus we can derive that lim supε→0 J3(π) ≤ 0 for any π. Therefore

lim sup
ε→0

(
Γ
(
W̃z̄(X̃)− Ṽ n

z̄ (Ỹ )
)

+
∑
i∈Iz̄

(
hiz̄(s1)W̃z̄(X̃)− hiz̄(s2)Ṽ n

z̄ (Ỹ )
))

= ΓM +
∑
i∈Iz̄

hiz̄(ŝ)M ≤
∑
i∈Iz̄

hiz̄(ŝ)M.

Since Γ > 0, we have M ≤ 0, which is a contradiction to the assumption that

M > 0. We conclude that M ≤ 0, which implies Wz ≤ Vz for ∀z ∈ I on [0, T ) ×

(0,∞)Nz+1.

2.9 Conclusions

In this chapter we consider a utility maximization problem with looping contagion

risk. We assume that the default intensity of one company depends on the stock

prices of other companies and the default of one company induces immediate drops

in the stock prices of the other surviving companies. In addition to the verifica-

tion theorem, we prove the value function is the unique viscosity solution of the

HJB equation system. We also compare and analyse the statistical distributions of

terminal wealth of log utility based on two optimal strategies, one using the full

information of intensity process, the other a proxy constant intensity process. Our

numerical tests show that, statistically, using trading strategies based on stock price

dependent intensities would achieve higher return on average, especially when the

difference of the stock dependent intensity and the proxy constant intensity is big,

but could also be more volatile in extreme scenarios. There remain many open ques-

tions in utility maximization with contagion risk, for example, the BSDE simulation

method for power utility. We leave these and other questions to future research.

66



3
Dynamic Portfolio Optimization

of Contingent Convertible Bond

3.1 Introduction

Contingent convertible bond, also known as CoCo bond, is a hybrid security issued

by banks as debt instruments. The mechanism of CoCo bond is different from

traditional convertible bond in that the conversion from debt to equity is contingent,

which means CoCo bond is automatically converted into equity according to some

pre-defined trigger event. The two main elements to define a CoCo bond are the

trigger event and the conversion price. The trigger event of a CoCo bond can be

based either on a mechanical rule or on supervisors’ discretion or the mixture of

both. Under the mechanical rule, the conversion is activated when a pre-specified

capital ratio of the issuing bank is below a fixed threshold. The most used capital
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ratio is the common equity tier 1 capital (CET1) ratio. Under the discretionary rule,

or called ’point of non-viability’ (PONV) rule, the conversion is activated based on

the regulator’s judgment when they think the conversion is necessary to prevent the

issuing bank’s insolvency. When the conversion is activated, the CoCo bond value

is either written down or converted from debt into equity. The conversion price

determines the rate at which the CoCo bond market value is converted into equity.

After 2008 financial crisis, Basel III introduces stronger regulation rules to financial

institutions. Under Basel III, all banks are required to maintain at least 4.5% (im-

proved from 2% under Basel II) of common equity tier 1 capital (CET1) of their

risk-weighted assets (RWAs). As CoCo bond has the nature of automatically con-

verted from debt into equity in financial distressed period, it is believed to improve

the issuing bank’s ability to absorb loss. Therefore, the issuance of CoCo bond by

banks is supported by regulators, and the CoCos are counted into the RWAs of the

issuing bank. For the issuing banks, CoCo bond is not only used to meet Basel III

regulation requirement, but also cheaper than equity to maintain due to its debt

nature. Since the first CoCo bond issued by Lloyds Banking Group in December

2009, there has been a rapid increase in the CoCo bond market size. Up to June

2018, the CoCo market size has reached e180bn. The European big banks such as

Barclays, BNP Paribas, HSBC and Santander are the main contributors of CoCo

market.

The CoCo bond is becoming extremely attractive to investors in the current low

interest rate market. Compared with a corporate bond which normally pays coupon

below 5%, Coco bond usually pays the fixed annual coupon between 5% to 10%.

The high coupon rate reflects the fact that a CoCo bond is exposed to higher credit

risk than the standard corporate bond. For a standard corporate bond, the main

risk comes from the default, which depends on the issuing firm’s credit risk level.

However, the dominating risk of a CoCo bond is the conversion mechanism itself.

As the design of conversion mechanism is to help the issuing banks to strengthen
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their capital, the conversion risk is naturally higher than the default risk. Therefore,

none of the CoCo bonds have credit rating higher than BBB in the current market.

However, the issuers of CoCo bonds are not poorly rated corporates but highly

rated banks, thus it is believed by many fund investors that the spread between

default and conversion risk has been overestimated and the current high coupon

is an arbitrage opportunity. The view is supported by the case of Banco Popular

which immediately defaults before the CoCo conversion is triggered. In June 2017,

Banco Popular becomes the first CoCo example which is wiped out of its value due

to the resolution into Santander. The failure of Banco Popular gives an example

where the conversion of CoCo bond is not necessarily strictly before the default

occurs. Moreover, in the case of Banco Popular’s failure, the spillover into the rest

of the market is very little, which eliminates the concern from both investors and

regulators that there exists strong contagion across CoCo bond market. Compared

with equity, the CoCo bond market produced a record performance with returns of

about 18% in 2017, which is more than European bank shares.

There has been extensive research in CoCo bond pricing and risk management.

The CoCo bond pricing is addressed by two main modelling approaches – struc-

tural approach and reduced-form approach. The structural approach work includes

Spiegeleer and Schoutens (2012) transforming the accounting trigger into a stock

price trigger by introducing an implied stock price barrier level s∗. The implied s∗

is unknown but can be calibrated from the historical market prices. The conversion

time is defined to be the first passage time that the stock price drops below s∗.

Based on the same approach, Corcuera et al. (2013) further employs a so-called

smile conform model assuming the stock price follows a Levy process, incorporating

fatter tails and jumps. The main drawback of both work is that the stock price at

conversion is fixed under their assumption, which breaks the randomness of conver-

sion price and consequently the loss given conversion of CoCo bond in reality. Brigo,

et al. (2015) models the bank default by AT1P model and then converts the firm

value into the accounting ratio by a linear regression model. Leung and Kwok (2015)
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models the log CET1 ratio Yt as an OU process and define two trigger types – one

trigger event and Parisian trigger. One trigger event means that the first passage

time that Yt hits the fixed barrier B and Parisian trigger means that Yt stays under

the non-viable state G > B cumulatively over a certain period of time. Based on the

Parisian feature, they design numerical method for CoCo pricing. Jang, et al. (2018)

models the issuing bank’s stock price St by a geometric Brownian motion and its

RWA-per-share value L by a single random variable. The conversion time is defined

by the first passage time that the ratio of St/L is less than a fixed threshold value

α0. Under this setup, they obtain closed-form formula for the CoCo bond price with

a CET1 ratio trigger. They further model the post-conversion risk by introducing

a regulatory default time. The regulatory default time is defined by the first pas-

sage time (after conversion) that St/L
′ < α1, where L′ is the new RWA-per-share

random variable after dilution (due to conversion). They compare the difference

between CoCo prices with/without post-conversion risk taking into account. The

reduced-form approach models the conversion by a pure jump model. As it only

requires the specification of the conversion intensity and the jump magnitude of the

stock price at the conversion time, it is easier to calibrate than the equity structural

approach. Cheridito and Xu (2015) assumes that the conversion intensity is deter-

ministic. Chung and Kwok (2016) is the first trying to combine structural approach

and reduced-form approach. It defines two conversion triggers – accounting trigger

and regulatory trigger. The accounting trigger is modeled by the first passage time

of the capital ratio hitting the trigger threshold. The regulatory trigger is defined

as a pure jump process, while the jump intensity depends on both capital ratio and

stock price. However, Chung and Kwok (2016) assumes that CoCo bond holder re-

ceives a predefined number of stock shares of the issuing bank. Firstly, this setting is

unrealistic in the real CoCo bond market. Secondly, the assumption underestimates

the conversion loss. As the market stock price at conversion is random, it is likely

under such setting that the CoCo bond holder receives equity which is worth more

than the CoCo bond market value when conversion occurs. Due to the technical
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limitation, Chung and Kwok assume that the stock price drops a fixed fraction only

when the conversion is caused by regulatory trigger, but not by accounting trigger.

To the best of our knowledge, there has been no existing research in the literature

on dynamic portfolio optimization of CoCo bond. However, there exists quite a

few work on defaulable bond optimization problem in the literature. Hou and Jin

(2002) derives a closed-form solution for an investor who optimally allocates her

wealth among a defaultable bond, a default-free stock and a risk-free bank account

in finite time horizon. They assume the utility function is power utility and the

default of bond is modelled by reduced-form approach where the default intensity

follows an OU process. Bielecki and Jang (2006) extends the work of Hou and Jin

(2002) by explicitly modelling the recovered amount in default using the conditional

diversification assumption of Jarrow et al. (2005). All the parameters, however,

are assumed to be constant. Bo et al. (2010) considers an infinite horizon portfolio

optimization problem. The investor can optimally allocate her wealth into a default-

able perpetual bond, a default-free stock and a risk-free bank account. The utility

function is log utility. They assume that both the intensity and the default premium

process depend on a common Brownian factor. Unlike Hou and Jin (2002), where

the dynamic of the defaultable bond is derived from the closed-form bond price for-

mula given by Duffie and Singleton (1999), they heuristically postulate the dynamic

without stochastic (Brownian motion) term and prove the dynamic is correct only

if all the parameters are constant, see Remark 3.4.3. Capponi and Figueroa-Lopez

(2011) considers a portfolio optimization problem in a regime-switching market,

where the investor can dynamically allocate her wealth among a defaultable bond,

a default-free stock, and a risk-free bank account. All the market coefficients de-

pend on the market regimes. They derive the dynamic of defaultable bond under

regime-switching model via the closed-form pricing formula in Duffie and Singleton

(1999). They give a verification theorem which shows the solution of HJB equation

under smoothness assumption is the value function.
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All of the above papers assume that the defaultable bond is zero-coupon bond.

However, one significant feature of CoCo bond is that it pays higher coupon than

the standard defaultable bond. Therefore, investigating the impact of coupon is

crucial for CoCo bond modelling. In this paper we analyse the optimal trading

strategy of CoCo bond, where the investor can dynamically allocate her wealth into

a CoCo bond that pays a continuous annual coupon with fixed rate c, and a risk-

free bank account. We use the reduced-form approach for CoCo pricing and assume

that the conversion intensity is a function of coupon rate and the issuing bank’s

stock price. The idea behind this assumption is that the conversion probability

information is contained in both the coupon level c and the capital structure of

the issuing bank. Moreover, as the conversion occurs only when the issuing bank’s

capital ratio is low, we make the further assumption that there is no conversion

risk (the intensity value is zero) when stock price is above a fixed implied barrier

level s∗. Under this setting, the drawback of Chung and Kwok (2016) such that the

conversion risk is underestimated naturally disappears. Under such model setting,

we compare CoCo bond investment performance with investing into the issuing

bank’s stock. To the best of our knowledge, we are the first in the literature tackling

the dynamic portfolio optimization problem of CoCo bond. We extend Duffie and

Singleton (1999) approach to derive the closed-form CoCo bond pricing formula with

continuous coupon. Based on the risk-neutral pricing formula, we derive the dynamic

of CoCo bond price under physical measure. We prove the pre-conversion value

function is the unique viscosity solution of the corresponding HJB equation. We

analyse the loss given conversion of CoCo bonds with different contractual features

and propose the idea in our paper that the conversion intensity is a function of

coupon rate and issuing bank’s stock price, and becomes zero when stock price is

above the implied barrier level s∗. This setting combines the flexibility of reduced-

form approach and the special feature of CoCo bond such that the conversion risk is

reflected by the coupon rate level and the capital structure. We compare and analyse

the statistical distributions of terminal wealth of log utility and power utility based
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on two investment assets, one with CoCo bond, the other with stock issued by

the same bank. Our simulation results show that, the CoCo bond holders bear

much more loss than equity holders when conversion occurs. However, investing

into CoCo bond gets more profit (mean) while bearing less market risk (volatility)

as long as conversion does not occur. We also analyse the sensitivity of terminal

wealth distribution to different market scenarios.

The rest of the chapter is organized as follows. In Section 3.2, we introduce CoCo

bond structure and analyse the loss given conversion of different contractual fea-

tures. In Section 3.3, we introduce the market model. In Section 3.4, we derive

the CoCo bond pricing formula under risk-neutral measure. In Section 3.5, we de-

rive the dynamic of CoCo bond under physical measure by change of measure. In

Section 3.6, we describe the dynamic portfolio optimization problem. Section 3.7

defines the value function and the corresponding HJB equation and Section 3.8 con-

tains the main theorem (Theorem 3.8.5) which states that the value function is the

unique viscosity solution of the HJB equation. In Section 3.9, we derive the closed-

form optimal control for log utility and give the numerical method to solve power

utility, and perform numerical tests and statistical distribution analysis. Section

3.10 concludes the chapter.

3.2 CoCo Bond Structure

A CoCo bond contract is characterized by its conversion trigger event and conversion

price. Table 3.1 shows 5 live Coco contracts in the current market. Taking the

contract with Bloomberg ISIN ID CH0244100266 as an example, the CoCo bond

is issued by UBS AG and pays a fixed 5.125% coupon annually. The CoCo bond

was issued close to the par value, with maturity date 15/05/2024. It will be written

down if the CET1 ratio of UBS AG falls below 5%.
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Issuing bank UBS HSBC LLOYDS CreditSuisse Barclays

ISIN CH0244100266 US404280AT69 US539439AG42 XS1076957700 US06738EAB11
Coupon rate 5.125% 6.375% 7.50% 6.25% 6.625%

Coupon frequency Annually Semi-annually Quarterly Semi-annually Quarterly
Issue Price 99.905 100.0 100.0 100.0 100.0
Maturity 15/05/2024 Perpetual Perpetual Perpetual Perpetual
Callable No 30/03/2025 27/06/2024 18/12/2024 15/09/2019

Accounting trigger CET1 < 5% CET1 < 7% CET1 < 7% CET1 < 5.125% CET1 < 7%
Regulatory trigger No No No Yes (by FINMA) No
Conversion Price Written-down $4.03 $1.072 Written-down £1.65

Table 3.1: CoCo bond contracts (Source: Bloomberg)
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In the current CoCo market, most of the CoCo bonds are perpetual bonds which

are callable after 5 or 10 years. Some of the CoCo bonds are immediately written

down when the trigger events occur, and the rest are converted into equity shares of

the issuing bank, e.g. US539439AG42 (LLOYDS). We denote the equity-converted

CoCo bond by EC-CoCo and the written-down CoCo bond by WD-CoCo in the rest

of paper.

For an EC-CoCo, the conversion price determines the number of shares the CoCo

holders can receive. Denote CP the conversion price and F the face value, then the

number of converted shares Cr is equal to F/CP in principle. Denote the conversion

time by τ , then the equity share price Sτ is usually not equal to Sτ− as the conversion

of CoCo bond has an immediate impact on the stock price. On one hand, the

information of CoCo conversion activated is a damage to investor’s confidence, which

will have a negative impact on its stock price. On the other hand, a sudden injection

of new shares into the market causes dilution effect. Both result in the stock price

immediately dropping down. In this paper, we assume that the loss of stock price

only comes from dilution effect, and the number of shares in the market before

conversion is M and number of CoCo bonds in the market is MC , then the total

equity is MSτ−. Due to the dilution effect, the stock price after conversion becomes

Sτ =
MSτ−

M +MCCr
.

Thus the loss fraction of stock price due to dilution effect is

LS =
Sτ− − Sτ
Sτ−

=
MCCr

M +MCCr
.

Denote α = F MC

M
, then the loss fraction of stock price for a EC-CoCo is

LSEC =
α

α + CP
.

Thus the EC-CoCo holder receives CrSτ−(1−LSEC) after conversion. The loss given
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conversion ratio (LGC) of an EC-CoCo holder can be expressed by

LGC = 1− Cr
Pτ−

Sτ−(1− LSEC),

where Pτ− is the CoCo market value right before the conversion. Note that the

loss given conversion is linearly decreasing with Cr, thus Cr plays a crucial role in

determining the LGC of EC-CoCo holder. Although Cr is equal to F/CP in principle,

there is a Conversion Shares Offer Consideration rule which allows the issuing bank

to reduce the conversion ratio Cr on its discretion. The rule is designed to protect the

share holders from significant dilution effect. Therefore, we approximate the actual

conversion ratio Cr by Pτ−/CP when estimating the LGC.∗ We will show that one

benefit of such approximation is that the loss of CoCo bond holder is non-negative as

long as the stock price at conversion is below some implied threshold, which makes

the model more reasonable. With the approximation that Cr = Pτ−/CP , we have

very tractable LGC formula

LGC = 1− Sτ−
CP

(1− LSEC) = 1− Sτ−
α + CP

.

For a written-down CoCo, there is no dilution effect thus the loss of stock price

LSWD = 0. When the conversion trigger is activated, 1 − R fraction of face value is

written down.† Therefore, R can be treated as the recovery rate and the written-

down fraction 1−R is the loss given conversion of the WD-CoCo holder.

The conversion price CP normally takes the following representation:

CP = max{β1Sτ−, β2SF},

where β1, β2 ∈ {0, 1} are constant and SF is a pre-determined constant. Taking

∗It is generally believed that the CoCo market price is lower than the face value right before
conversion.
†The fraction R is determined on issuing bank’s discretion at conversion time.
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US539439AG42 (LLOYDS) for example, the conversion price is $1.072, thus β1 =

0, β2 = 1, SF = $1.072. The stock price of LLOYDS was $0.96 on the CoCo issuing

date. The conversion fixed price is determined to be higher than the stock price

at issuing date because a higher conversion price help to get rid of the significant

dilution effect if conversion occurs. Note that most equity-converted CoCo bonds

use the fixed conversion price.

Next we analyze the loss of stock price LSEC and the LGC of a EC-CoCo under

different conversion price settings. Depending on the β values, we have the following

scenarios:

• β1 = 0, β2 = 1. The conversion price CP = SF , which is a fixed price de-

termined at CoCo inception. The downwards jump size of stock price is a

constant equal to

LSEC =
α

α + SF
,

and the loss given conversion of CoCo investor becomes a linear decreasing

function of stock price before conversion

LGC = 1− Sτ−
α + SF

.

Note that LGC in this case can be negative. A sufficient condition to guarantee

that LGC is non-negative is Sτ− ≤ α + SF .

• β1 = 1, β2 = 0. The conversion price CP = Sτ−, which is the stock price at

the conversion time. The loss fraction of stock price is a decreasing function

of stock price before conversion

LSEC =
α

α + Sτ−
,
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and the loss given conversion of CoCo investor becomes

LGC = 1− Sτ−
α + Sτ−

=
α

α + Sτ−
.

• β1 = 1, β2 = 1. The conversion price CP = max{Sτ−, SF}, which is the stock

price at the conversion time floored by a constant SF . The loss fraction of

stock price is

LSEC =
α

α + max{Sτ−, SF}
,

and the loss given conversion becomes

LGC = 1− Sτ−
α + max{Sτ−, SF}

=
α + max{Sτ−, SF} − Sτ−

α + max{Sτ−, SF}
.

Remark 3.2.1. Note that under the contracts {β1 = 1, β2 = 0} and {β1 = 1, β2 =

1}, it is naturally true that LGC ∈ (0, 1]. However, under the first case {β1 =

0, β2 = 0}, the loss given conversion could be negative if Sτ− > α+SF . In this case,

the CoCo holder gains money instead of losing money when CoCo bond is forced to

convert. The model is not realistic if the stock price is still at high level when the

conversion is close to be activated. In our market model, we force Sτ− ≤ α + SF

by introducing an implied stock price barrier s∗ above which the CoCo bond is not

exposed to conversion risk.

3.3 Market Model Setting

Assume that there are one contingent convertible (CoCo) bond whose maturity is

T1
‡ and one risk-free bank account in the market. We denote the CoCo bond price by

{Pt}t≥0, the risk-free bank account amount by (Bt)t≥0 with the risk-free interest rate

r. We assume that the CoCo bond is automatically written down or converted into

‡As most of the CoCo bonds in the market are perpetual bonds which are callable after 10
years, we assume T1 is much greater than the portfolio optimization maturity T throughout this
paper.
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Cr ∈ [0,∞) shares of equity, whose price is denoted by {S̃t}t≥0, after a contractually

pre-defined trigger event occurs, with loss given conversion (LGC) rate Lt ∈ [0, 1].

Before the conversion occurs, CoCo bond pays a fixed continuous coupon at constant

annual rate c. Assume (Ω,G, (Gt)t≥0,P) is a complete probability space satisfying

the usual conditions. (Gt)t≥0 is an enlarged filtration given by Gt = Ft∨Ht, where Ft
is the filtration generated by a standard Brownian motion W and be independent of

(Ht)t≥0. Let τ be a non-negative random variable representing the conversion time

of the CoCo bond, defined by

τ := inf

{
t ≥ 0 :

∫ t

0

hudu ≥ X
}
,

where (ht)t≥0 is the Hazard (intensity) process and X is a standard exponential

random variable on the probability space (Ω,G,P) and is independent of the filtration

(Ft)t≥0, which means τ are totally inaccessible stopping times. Then (Ht)t≥0 is

defined by Ht := σ(Hu : u ≤ t), where Ht := I{τ≤t} which equals 0 if τ > t and

1 otherwise. The default indicator process (Ht)t≥0 is associated with the intensity

process (ht)t≥0. The consequence of such construction of τ is the so-called H–

hypothesis, which means any F–square integrable martingale is also a G-square

integrable martingale, see Bielecki and Rutkowski (2003). The market model before

conversion occurs is given by the following SDEs (stochastic differential equations):

dSt
St−

= µdt+ σdWt,
dBt

Bt

= rdt, (3.1)

where µ and σ are drift and volatility of the issuing bank’s stock price. When

conversion occurs, we assume that the stock price drops immediately by a fraction

LS ∈ [0, 1). Therefore, the traded stock price S̃t has the following dynamic:

dS̃t

S̃t−
= µdt+ σdWt − LSt dHt.

Based on the analyses in Section 3.2, we make the following assumptions.
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Assumption 3.3.1. The loss of stock price at conversion LSt := LS(St) where LS(·)

is a bounded deterministic function.

Assumption 3.3.2. The loss given conversion of CoCo bond Lt := L(St) is a

bounded, continuous deterministic function.

Remark 3.3.3. Note that St and S̃t are identical up to conversion time τ . Due

to technical reason, we assume LSt and Lt are functions of St instead of S̃t−, as LSt

and Lt impact the optimization problem only up to (including) conversion. After

conversion, the CoCo bond value drops to zero and stock price follows the standard

Geometric Brownian motion. Under the current assumption, both LSt and Lt are

F–measurable.

3.4 CoCo Bond Pricing under Risk-neutral Mea-

sure

We derive the CoCo bond pricing formula based on the model setting specified in

Section 3.3. For simplicity, we assume the face value F = 1 throughout this paper.

Note that under Assumption 3.3.2, Lt is F–predictable. We treat CoCo bond as

a bond component while the equity component is only a recovery amount. After

conversion, the CoCo bond has zero value. Duffie and Singleton (1999) derives the

pricing formula of a zero-coupon defaultable bond P 0
t under recovery of market value

(RMV) scheme:

P 0
t = I{τ>t}EQ

[
e−

∫ T1
t (r+Luh

Q
u)du | Ft

]
,

where the F–measurable process hQ is the conversion intensity under risk-neutral

measure Q. We will discuss the relation between hQ and h in the following sections.

For technical reason, we assume that the continuous coupon is paid based on the

CoCo market value instead of the face value F . Following the virtue of Duffie and

Singleton (1999), under recovery of market value (RMV) scheme, we heuristically
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conjecture the CoCo pricing formula as following:

Pt = I{τ>t}EQ
[
e−

∫ T1
t (r−c+LuhQu)du | Ft

]
. (3.2)

Following the similar proof of Duffie and Singleton, in order to confirm this conjec-

ture, we use the fact that the discounted gain process must be a martingale under

Q. The discounted gain process G is defined by

Gt := e−rtVt(1−Ht) +

∫ t

0

e−rs(1− Ls)Vs−dHs +

∫ t

0

e−rscVs(1−Hs)ds,

where Vt is the pre-default CoCo price. As Duffie and Singleton, we suppose that V

does not itself jump at the default time τ , then applying Ito’s Formula to Gt gives

dGt = e−rt(1−Ht)
(
dVt − (r − c+ Lth

Q
t )Vtdt− LtVt(dHt − hQt (1−Ht)dt

)
.

Thus for G to be a Q martingale, it is necessary and sufficient that

Vt =

∫ t

0

(r − c+ Lth
Q
t )Vtdt+Mt

for some Q-martingale Mt. Given the terminal condition VT1 = 1, this implies (3.2)

by Duffie and Singleton (1999).

Based on the pricing formula (3.2), we derive the dynamic of CoCo bond price under

risk-neutral measure Q by the following proposition.

Proposition 3.4.1. Assuming that the intensity process hQt is F–measurable and

satisfies E
[
e−2

∫ T1
0 (r+Luh

Q
u)du
]
< ∞, then the dynamic of CoCo bond price under Q

is given by
dPt
Pt−

=
(
r − c+ Lth

Q
t

)
dt+ λtdW

Q
t − dHt, (3.3)

where λt is a F–predictable process.

Proof. Denote Vt := EQ
[
e−

∫ T1
t (r−c+LuhQu)du | Ft

]
, then (3.2) can be written as Pt =
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I{τ>t}Vt. We reformat Vt into Vt = btφt, where bt := e
∫ t
0 (r−c+LuhQu)du and

φt := EQ
[
e−

∫ T1
0 (r−c+LuhQu)du | Ft

]
. (3.4)

Since φt is a (Q,F)–martingale by conditional expectation structure, and the ran-

dom variable e−
∫ T1
0 (r+Luh

Q
u)du is square-integrable and F–measurable, there exists a

F–predictable process λt such that

dφt = φtλtdW
Q
t ,

by Martingale representation theorem. Thus the pre-conversion CoCo price Vt fol-

lows dynamic
dVt
Vt

= (r − c+ Lth
Q
t )dt+ λtdW

Q
t .

The dynamic of CoCo bond price is given by

dPt = (1−Ht−)dVt − Vt−dHt

= Pt−
(
(r − c+ Lth

Q
t )dt+ λtdW

Q
t

)
− Pt−dHt,

which implies
dPt
Pt−

=
(
r − c+ Lth

Q
t

)
dt+ λtdW

Q
t − dHt.

Remark 3.4.2. By Martingale representation theorem, the volatility of CoCo bond

dynamic λt is an unknown F–predictable process. We assume λ a deterministic

function of t, c later in this chapter. In the numerical test section, we will treat it

as a constant volatility and calibrate to the historical CoCo prices.

Remark 3.4.3. Bo et al. (2010) conjecture the price dynamics for a defaultable

perpetual bond that pays a constant coupon C̃ per unit time as follows:

dPt = rPtdt+
Lht
ηt
Ptdt− C̃dt− LdHt, (3.5)
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where 1
ηt

is the default risk premium. They verify that the proposed dynamic is

correct if all the parameters are constant. For their market model where default

intensity and risk premium are both deterministic functions of an external factor,

however, they directly randomize the market parameters of (3.5) and mention that

the dynamic might be invalid, see Remark 2.1 in Bo et al. (2010). If all the

parameters are constant in our model setting, we have φt defined by (3.4) constant,

thus λt = 0 as a special case of Martingale representation theorem. Thus the

CoCo dynamic (3.3) degenerates to (3.5). However, note that directly randomizing

the market parameters of (3.5) under heuristic argument loses the stochastic term

λdWQ
t .

3.5 Dynamic of CoCo Bond under Physical Mea-

sure

We have derived the dynamic of CoCo bond under risk-neutral measure. However,

the dynamic portfolio optimization problem is defined under physical measure P. We

firstly discuss change of measure in this section, and derive the dynamic of CoCo

bond under physical measure accordingly. All the following discussions are based

on Bielecki and Rutkowski (2003).

Let Q be an equivalent martingale measure. We work under the H–hypothesis.

Let us fix the investment terminal time by T > 0 and T � T1. We introduce the

Radon-Nikodym density process ηt for any t ∈ [0, T ] by

ηt :=
dQ
dP

∣∣∣∣
Gt

= E[ηT | Gt],

where ηT is a GT–measurable and integrable random variable, such that P(ηT >

0) = 1 and E[ηT ] = 1. ηt is a (P,G)–martingale by construction. Thus according

to Bielecki and Rutkowski (2003) (Corollary 5.2.4), η admits the following dynamic
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representation

dηt = ηt− (βtdWt + κtdMt) ,

where βt and κt are G–predictable processes, and Mt is a (P,G)–martingale given by

Mt = Ht −
∫ t

0

(1−Hu−)hudu.

Further, by Bielecki and Rutkowski (2003) (Proposition 5.3.1), the process

WQ
t = Wt −

∫ t

0

βudu

follows a Brownian motion with respect to G under Q, and the process

MQ
t = Ht −

∫ t

0

(1−Hu−)(1 + κu)hudu

follows a G–martingale under Q. Therefore, the relation between hQ and h is given

by hQt := (1 + κt)ht. The quantity 1 + κt is the coverage ratio, which reflects

the conversion risk premium. Empirically, κt decreases with conversion risk and

converges to zero when conversion risk tends to infinity, see Heynderickx et al.

(2016). The dynamic of traded stock price under Q is

dS̃t

S̃t−
=
(
µ+ σβt − LSt (1 + κt)ht

)
dt+ σdWQ

t − LStM
Q
t .

Since the drift of stock price is equal to interest rate r under risk-neutral measure

Q, we have the following relation among processes βt, κt and ht:

βt =
r − µ+ LSt (1 + κt)ht

σ
.

Combining with Proposition 3.4.1, we get the dynamic of CoCo bond under physical

measure P by the following proposition.
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Proposition 3.5.1. Assuming that both ht and κt are F–measurable and satisfy

E
[
e−2

∫ T1
0 (r+Lu(1+κu)hu)du

]
< ∞, then the dynamic of CoCo bond price under P is

given by
dPt
Pt−

= (r − c+ Lt(1 + κt)ht − βtλt) dt+ λtdWt − dHt.

Proof. As both ht and κt are F–measurable and satisfy E
[
e−2

∫ T1
0 (r+Lu(1+κu)hu)du

]
<

∞, the conditions in Proposition 3.4.1 are satisfied and

dPt
Pt−

= (r − c+ Lt(1 + κt)ht) dt+ λtdW
Q
t − dHt.

Replacing dWQ
t by dWt − βtdt, we get the desired dynamic under P.

Remark 3.5.2. Define θt := Lt(1 +κt)ht−βtλt, then the drift of CoCo bond under

physical measure P is r − c + θt. Since we assume that CoCo bond pays annual

coupon at rate c, the yield of CoCo bond is then r+ θt. Thus θt is the exceed return

over risk-free rate r. As the return of current CoCo market is greater than that of

the equity market, we have r + θt > µ. We will use this relation in the numerical

test section.

3.6 Description of Portfolio Optimization Prob-

lem

Investors dynamically allocate proportion (π, 1− π) of their total wealth into CoCo

bond P and bank account B before conversion occurs. After conversion, CoCo bond

is converted into equities, thus investors dynamically allocate proportion (π, 1− π)

of their total wealth into stock S and bank account B.

The admissible control set A is the set of control processes π that are progressively

measurable with respect to the filtration (Ft) and πt ∈ A for all t ∈ [0, T ]. The set
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A is defined by

A :=
{
π ∈ O and π ≤ 1− εA

}
for some bounded set O ⊂ R and constant εA > 0. Note that the condition π ≤ 1−εA
guarantees that 1− Ltπ ≥ εA for t ∈ [0, T ]. Therefore the wealth process is always

non-negative.

We can naturally split the portfolio optimization problem into two stages – pre-

conversion stage and post-conversion stage. Denote the wealth process by {Xt}t≥0,

then the dynamic of pre-conversion wealth process is given by

dXt

Xt−
= πt−

(
dPt
Pt−

+ cdt+ (1− Lt)dHt

)
+ (1− πt)

dBt

Bt

= (r + θtπt) dt+ λtπtdWt − Ltπt−dHt, (3.6)

and the dynamic of post-conversion wealth process is given by

dXt

Xt

= (r + (µ− r)πt) dt+ σπtdWt,

which is a standard Merton’s problem with default-free stock and bank account.

Remark 3.6.1. For a given control process π ∈ A, equation (3.6) admits a unique

strong solution that satisfies

sup
t∈[0,T ]

E [Xα
t ] ≤ Kxα (3.7)

for any α > 0. This can be easily verified as Xα
t = xαNtMt, where

Nt := exp

(
α

∫ t

0

(
r + θuπu −

1

2
λ2
uπ

2
u

)
du+

1

2
α2

∫ t

0

λ2
uπ

2
udu

+ α

∫ t

0

ln(1− Luπu−)dHu

)
,

Mt := exp

(∫ t

0

αλuπudWu −
1

2
α2

∫ t

0

λ2
uπ

2
udu

)
.
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Since At is a bounded set for any t ∈ [0, T ] and 1 − Ltπ ≥ εA, we have |Nt| < K,

independent of t, and Mt is an exponential martingale, thus E [Mt] = 1, which gives

(3.7).

3.7 Value Function and Hamilton-Jacobi-Bellman

Equation

Our objective is to maximize the expected utility of the terminal wealth, that is,

sup
π∈A

E [U (Xπ
T )] .

We make the following assumption of the general utility function. Note that the

Power utility U(x) = (1/γ)xγ, 0 < γ < 1, satisfies Assumption 3.7.1, but not log

utility. However, due to the special structure of log utility, we derive the optimality

and regularity of the value function directly in the following numerical test.

Assumption 3.7.1. The utility function U is defined on [0,∞), is continuous,

non-decreasing, concave, and satisfies U(0) > −∞ and |U(x)| ≤ K(1 + xγ) for all

x ∈ [0,∞), where K > 0 and 0 < γ < 1 are constants.

In the above sections, we require the processes ht, κt to be F–measurable and satisfy

some square integrable conditions. To make the optimization problem adapt to the

proper HJB equation, we make the further assumptions:

Assumption 3.7.2. We make the following assumptions on the processes ht, κt, λt, θt:

• ht := h(c, St) is a bounded deterministic function that is continuous in St for

∀c > 0. Further, h(c, s) = 0 if s ≥ s∗ where s∗ ∈ (0, SF + α] is an implied

stock price barrier.

• κt := κ(t, c) is a bounded deterministic function that is continuous in t ∈ [0, T )

for ∀c > 0.
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• λt := λ(t, c) is a bounded deterministic function that is Lipschitz continuous

in t ∈ [0, T ) for ∀c > 0.

• θt := θ(t, c, St) is Lipschitz continuous in t, s ∈ [0, T )× (0,∞) for ∀c > 0.

Remark 3.7.3. We assume that the coupon rate c is fixed throughout this paper,

thus the constant c can be seen as a correction term of the functions defined in

Assumption 3.7.2. Intuitively, both h and θ are increasing with c. Empirically,

κ is decreasing with c, see Heynderickx et al. (2016). Examples can be found in

numerical tests section.

Remark 3.7.4. Under the assumption that h(c, s) = 0 if s ≥ s∗, it is practically

reasonable that the CoCo bond is not exposed to conversion risk when the stock

price is still at a high level. The parameter s∗ is a fixed implied stock price barrier

level, which can be calibrated to the historical data, see Spiegeleer and Schoutens

(2012).

Due to the existence of conversion event, the problem can be naturally split into

pre-conversion case and post-conversion case. The latter is a standard Merton’s

problem and the post-conversion value function v1 is a function of time t and wealth

x only. We will only discuss the pre-conversion case in the following sections. The

pre-conversion value function v0 is defined by

v0(t, x, s) = sup
π∈A

E [U (Xπ
T ) | Xt = x, St = s,Ht = 0]

for (t, x, s) ∈ [0, T ]×(0,∞)2. Note that the coupon rate c is assumed to be constant,

thus not one of the variables of v0. Moreover, if we assume h is independent of s,

then v0 is a function of t, x only.

Remark 3.7.5. Combining Assumption 3.7.1 and Remark 3.6.1, we have

|v0(t, x, s)| ≤ K(1 + xγ).
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The pre-conversion value function satisfies the following HJB equation by the dy-

namic programming principle

− sup
π∈A
Lv0(t, x, s) = 0 (3.8)

for (t, x, s) ∈ [0, T )× (0,∞)2 with terminal condition v0(T, x, s) = U(x), where L is

the infinitesimal generator of S and X processes with control π, given by

Lv0(t, x, s) =
∂v0

∂t
+ rx

∂v0

∂x
+ µs

∂v0

∂s
+

1

2
σ2s2∂

2v0

∂s2
− h(c, s)v0

+ θ(t, c, s)πx
∂v0

∂x
+

1

2
λ(t, c)2π2x2∂

2v0

∂x2

+ σλ(t, c)πxs
∂2v0

∂x∂s
+ h(c, s)v1 (t, x(1− L(s)π)) , (3.9)

where v1 is the known post-conversion value function.

3.8 Viscosity Solution Representation

As post-conversion case is a classical Merton’s problem, we assume that the post-

conversion value function v1 ∈ C1,2 ([0, T )× (0,∞)) ∪ C ([0, T ]× (0,∞)). To facili-

tate discussions of viscosity solution, we define F function by

F
(
t, x, s, w,∇(t,x,s)w,∇2

(x,s)w
)

= − sup
π∈A
Lw(t, x, s),

where∇(t,x,s)w ∈ R3 is the gradient vector of w with respect to (t, x, s), and∇2
(x,s)w ∈

R2×2 is the Hessian matrix of w with respect to (x, s). w and its derivatives are

evaluated at (t, x, s). The HJB equation (3.8) is the same as

F
(
t, x, s, v0,∇(t,x,s)v0,∇2

(x,s)v0

)
= 0.
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We denote that w∗ and w∗ are upper-semicontinuous envelope and lower-semicontinuous

envelope of w respectively. We will show in this section that the pre-conversion value

function v0 is the unique viscosity solution to equation (3.8) based on the definition

below.

Definition 3.8.1. (i) w is a (discontinuous) viscosity subsolution of (3.8) on [0, T )×

(0,∞)2 if

F
(
t̄, x̄, s̄, ϕ,∇(t,x,s)ϕ,∇2

(x,s)ϕ
)
≤ 0

for all (t̄, x̄, s̄) ∈ [0, T )×(0,∞)2 and ϕ ∈ C1,2,2 ([0, T )× (0,∞)2) such that w∗(t̄, x̄, s̄) =

ϕ(t̄, x̄, s̄) and w∗ ≤ ϕ on [0, T )× (0,∞)2.

(ii) w is a (discontinuous) viscosity supersolution of (3.8) on [0, T )× (0,∞)2 if

F
(
t̄, x̄, s̄, ϕ,∇(t,x,s)ϕ,∇2

(x,s)ϕ
)
≥ 0

for all (t̄, x̄, s̄) ∈ [0, T )×(0,∞)2 and ϕ ∈ C1,2,2 ([0, T )× (0,∞)2) such that w∗(t̄, x̄, s̄) =

ϕ(t̄, x̄, s̄) and w∗ ≥ ϕ on [0, T )× (0,∞)2.

(iii) We say that w is a (discontinuous) viscosity solution of (3.8) on [0, T )× (0,∞)2

if it is both a viscosity subsolution and supersolution of (3.8).

Note that in Chapter 1, the viscosity solution is defined by the solution of the HJB

equation system. In this chapter, we have that v1 is smooth in prior, thus the

viscosity solution definition 3.8.1 can be treated as a special (simplified) version of

the definition 2.6.1 in Chapter 1.

The main result in this section is that the pre-conversion value function v0 is the

unique viscosity solution of equation (3.8) on [0, T )× (0,∞)2 if v0 is continuous on

the boundary. This result is given by the following two propositions.

Proposition 3.8.2. The pre-conversion value function v0 is a viscosity solution of

equation (3.8) on [0, T )× (0,∞)2.
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The uniqueness of viscosity solution is given by the following comparison principle

result.

Proposition 3.8.3. Let W (resp. V ) be a u.s.c. viscosity subsolution (resp. l.s.c.

viscosity supersolution) of (3.8) on [0, T )× (0,∞)2 and satisfy the growth condition

|W |, |V | ≤ K(1 + xγ) for γ > 0, the terminal relation W (T, x, s) ≤ V (T, x, s),

and the boundary relations W (t, 0, s) ≤ V (t, 0, s) and W (t, x, 0) ≤ V (t, x, 0) for

∀(t, x, s) ∈ [0, T )× [0,∞)2. Then we have W ≤ V on [0, T ]× [0,∞)2.

We skip the proofs of Proposition 3.8.2 and 3.8.3 in this chapter, as they are special

cases of the viscosity results in Chapter 1.

Remark 3.8.4. The boundedness and Lipschitz continuity assumptions in Assump-

tion 3.7.2 are essential in comparison principle proof. Moreover, we assume the

structure condition in the comparison principle proposition in Chapter 1. We slightly

modify the definition of structure condition in this chapter by

J(π) ≤ K

ε

(
|t1 − t2|2 + |x1 − x2|2 + |s1 − s2|2

)
, ∀π ∈ A,

where

J(π) =
1

2
υT

Q 0

0 −Q′

 υ,

where

υ =
(
λ(t1, c)πx1, σs1, λ(t2, c)πx2, σs2

)T
,

for (ti, xi, si) ∈ O such that O ∈ [0, T ) × (0,∞)2 is bounded for i = 1, 2 and Q,Q′

satisfy Q 0

0 −Q′

 ≤ 3

ε

 I2 −I2

−I2 I2

 .
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Actually, simple algebraic calculation shows that

J(π) ≤ 3

2ε
υT

 I2 −I2

−I2 I2

 υ

≤ 3

2ε

(
π2|λ(t1, c)x1 − λ(t2, c)x2|2 + σ2|s1 − s2|2

)
.

By Lipschitz continuity of λ(t, c), we have

J(π) ≤ 3

2ε

(
π2λ(t1, c)

2|x1 − x2|2 + π2x2
2|λ(t1, c)− λ(t2, c)|2 + σ2|s1 − s2|2

)
≤ 3

2ε

(
π2λ(t1, c)

2|x1 − x2|2 + π2x2
2K|t1 − t2|2 + σ2|s1 − s2|2

)
.

Due to boundedness of λ(t, c) and xi, the structure condition is satisfied.

We finally conclude the main theorem of this section:

Theorem 3.8.5. Suppose that the pre-conversion value function v0 satisfies the ter-

minal condition (v0)∗(T, x, s) ≤ (v0)∗(T, x, s) and boundary conditions (v0)∗(t, 0, s) ≤

(v0)∗(t, 0, s), (v0)∗(t, x, 0) ≤ (v0)∗(t, x, 0) for ∀(t, x, s) ∈ [0, T ]× [0,∞)2, then it is the

unique viscosity solution of equation (3.8) on [0, T )× (0,∞)2.

3.9 Numerical Tests

In this section, we give an example with log utility and perform some numerical

tests and statistical and sensitivity analysis.
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3.9.1 Optimal strategies for log utility

For U(x) = lnx, the post-conversion case is well known with the optimal control

π = (µ−r)/(σ)2 and the post-conversion value function v1(t, x) = ln x+g1(t), where

g1(t) =

(
r +

1

2

(
µ− r
σ

)2
)

(T − t).

We conjecture that the pre-conversion value function takes the form

v0(t, x, s) = lnx+ f(t, s). (3.10)

Substituting (3.10) into (3.8), we get a linear PDE for f :

∂f

∂t
+

1

2
(σs)2fss + µsfs − h(c, s)f + r + h(s)g1(t) + sup

π∈A
G(t, c, s, π) = 0 (3.11)

with the terminal condition f(T, s) = 0, where G is defined by

G(t, c, s, π) = θ(t, c, s)π − 1

2
λ(t, c)2π2 + h(c, s) ln (1− L(s)π) .

Since A is compact and G is continuous, there exists an optimal solution which

satisfies the optimality condition

θ(t, c, s)− λ(t, c)2π − L(s)h(c, s)
1

1− L(s)π
= 0 (3.12)

and we get the optimal control π∗ as

(π)∗(t, c, s) = min

{
(π)∗f (t, c, s),

1− εA
L(s)

}
, (3.13)
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where

(π)∗f (t, c, s) =
λ(t)2 + L(s)θ(t, c, s)−

√
(λ(t)2 − L(s)θ(t, c, s))2 + 4L(s)2λ(t)2h(c, s)

2L(s)λ(t)2
.

For technical reason of viscosity solution representation proof, we assume that π ≤

1 − εA in the previous sections. However, to guarantee that the wealth process to

be non-negative, we only need the condition that π ≤ 1−εA
L(s)

. Therefore, we release

the boundary condition of optimal control (π)∗(t, c, s) in the numerical test.

In the case where λ(t)2 ≥ L(s)θ(t, c, s), as h→ 0, (π)∗(t, c, s)→ min
{
θ(t,c,s)
λ(t)2 ,

1−εA
L(s)

}
which is the optimal control of a standard Merton’s model.

3.9.2 Sensitivity of optimal strategies to parameters

Given the closed-form optimal strategies (3.13), we can analyse the sensitivity of

optimal strategies to parameters. We test 4 parameters in this section – L, h, θ and

λ. Among them, L and h contain the information of conversion risk, while θ and

λ represent the information of market risk. Note that θ also depends on the other

three parameters:

θ =
λ

σ
(µ− r) +

(
L− λ

σ
LS
)

(1 + κ)h.

Despite of the high coupon, the CoCo bond as a fixed income product, is featured

to have low volatility compared to the corresponding equity share. Table 3.2 sum-

marizes the volatilities of CoCo bond and equity share of the 5 CoCo contracts in

Table 3.1. It is clear that the equity share has the annual volatility range between

20% to 40%, while the CoCo bond volatility range is between 5% to 15%.

Issuing bank UBS HSBC LLOYDS CreditSuisse Barclays

CoCo vol 0.05 0.11 0.10 0.08 0.13
Equity vol 0.27 0.21 0.36 0.32 0.30

Table 3.2: Volatility of CoCo bond and equity share
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Based on the historical data analysis, we set εA = 0.01, λ = 0.1, L = 0.4, r =

0.02, h = 0.1, µ = 0.1, σ = 0.3, LS = 0.3, κ = 2.5 as benchmark. Under the chosen

benchmark parameter set, the value of θ is equal to 0.13. The rationale of benchmark

θ value can be seen in Remark 3.5.2. Note that the benchmark parameter set fits

a typical EC-CoCo. For a WD-CoCo, L is the written-down fraction 1 − R and

LS = 0.

We implement the sensitivity test by tuning one of the parameters while keeping

the others as the benchmark values.

Figure 3.1: Sensitivity of optimal control to LGC and h

Figure 3.1 shows the sensitivity of optimal strategy to parameters L and h. Left

panel in Figure 3.1 shows that as L increases, the optimal fraction into CoCo bond

increases and then decreases. The humped shape is caused by the fact that the

increase of L dominates the drift term of CoCo bond when L is small. However,

when L becomes large, it dominates the potential loss at conversion. Right panel

in Figure 3.1 shows that as h increases, the optimal strategy is always decreasing.

However, the drift of CoCo bond is also increasing with h, thus the decreasing speed

of optimal control is very slow when h is large.

Figure 3.2 shows the sensitivity of optimal strategy to parameters θ and λ. θ is the

exceed return (including coupon) of CoCo bond to risk-free return, thus the increase

of θ results in the increase of optimal control, as shown in the left panel of Figure

3.2. The right panel shows the sensitivity of λ. It is clear that the optimal strategy
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Figure 3.2: Sensitivity of optimal control to θ and λ

decreases with λ, which is the same as the standard Merton’s model. However, as

λ also occurs in the drift term of CoCo bond, the optimal control goes down and

limits to some value as λ increases.

From Figure 3.1 and 3.2, we can find the trade off effect between the conversion

risk and yield of CoCo bond. In general, the higher the conversion risk CoCo

holder takes, the higher yield they are going to receive. As a result, the optimal

strategy of CoCo bond seems always staying positive (no short-selling) with our

chosen benchmark parameters. This phenomenon is significantly different from the

optimal strategy of equity shares, see Chapter 1.

3.9.3 Performance comparison between investing into CoCo

bond and equity

In this section, we compare the performance between investing into CoCo bond and

the stock issued by the same bank. We simply assume that the intensity function

is only a function of the stock price s and corrected by the coupon rate c. The

intensity function h is given by

h(c, s) = min
{

max
{

0, ch0(s−a − (s∗)−a), 0
}
, hM

}
, (3.14)

96



where h0 is a scaling parameter and hM is the maximum intensity. The coupon c is

used as a correction term. The idea is that the larger the coupon c is, the higher the

conversion risk is implied by the market. In the meanwhile, the yield r+ θ(t, c, s) is

higher as a compensation.

We also assume that the risk premium parameter κ is a function of coupon rate c.

Inspired by empirical evidence that the general risk premium (1 +κ in our case) lies

between 2 and 5, and decreases with conversion risk, we set

κ(c) = κ0e
−c.

where κ0 = 2.5 in the benchmark case.

In this comparison test, we choose the following benchmark values:

a = 0.8, s∗ = 120, h0 = 300, hM = 10, c = 0.1.

Note that s∗ = 120 means there is no conversion risk if the stock price is above 120

(we assume stock price starts from 100).

We compare two investors who want to invest into the same company/bank. The

company/bank issues common equity (stock) and CoCo bond. One investor invests

into CoCo bond and risk-free bank account, and the other invests into stock and bank

account. The investor who decides to invest into CoCo bond will follow strategy

(3.13). For the equity investor, the optimal strategy can be derived similarly as in

Chapter 1:

(π)∗(c, s) = min

{
(π)∗f (c, s),

1− εA
LS(s)

}
,

where

(π)∗f (c, s) =
σ2 + LS(s)(µ− r)−

√
(σ2 − LS(s)(µ− r))2 + 4LS(s)2σ2h(c, s)

2LS(s)σ2
.
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After conversion, (π)∗ = (µ−r)/σ2 is the solution of the standard Merton’s problem.

We will compare the performance between CoCo bond and equity investment based

on the above benchmark parameter values and we further assume that:

T = 1, S0 = 100, P0 = 100, x0 = 100.

We compare EC-CoCo and WD-CoCo respectively.

Equity-converted CoCo bond

Following the general market convention, we assume the EC-CoCo has a fixed con-

version price SF , thus the drop of stock price at conversion is also fixed

LSEC =
α

α + SF
,

and the LGC is given by LGC = 1− Sτ−
α+SF

. By our assumption, LGC is a function

of St, thus we set

L(s) = 1− min {s, s∗}
α + SF

.

The intuition is that with no information about Sτ−, we simply estimate Sτ−|Ft by

the current stock price St capped by s∗. We further assume that:

SF = 120, α = 50.

Under the above setting, L(s) is always greater than LS(s). It makes sense as the

loss of CoCo holder should be more than that of equity holder when conversion

occurs.

Figure 3.3 shows the benchmark intensity function with respect to stock prices and

the optimal controls of CoCo bond and equity with respect to stock prices. From

Figure 3.3, it is clear that both the optimal strategies of CoCo bond and equity

increase with the stock price. However, the overall optimal control of CoCo bond is

98



Figure 3.3: Benchmark intensity function and optimal controls (Fully converted case)

much larger than that of equity. This is due to the CoCo bond feature of high yield

and low volatility, although CoCo bond is exposed to larger loss when conversion

occurs. It is also interesting to notice that when stock price is very low (conversion

intensity is very high), the optimal strategy of CoCo bond is still longing. The

difference of such behavior between CoCo bond and equity is in that the CoCo

bond yield also increases with conversion intensity. As shown in sensitivity analysis,

there is a trade off between the high yield and high conversion risk. Note that

under the benchmark parameters choice, the initial conversion intensity is 0.1 and

the initial CoCo yield r + θ is 0.15.

We simulate 10000 paths of stock prices and corresponding CoCo bond prices, among

which there are 1026 paths containing conversion. Figure 3.4 shows one of the sample

paths of stock prices, optimal strategies, and optimal wealth with two different

trading assets. The left panel shows price paths of stock S and CoCo bond P . Since

both assets are driven by the same Brownian motion, their paths have similar trend

but different volatility. At conversion time, CoCo bond price P drops to zero and

stock price S jumps down then continues. The middle panel shows the optimal

control processes. The overall optimal holding of CoCo bond is much larger than

that of equity. The optimal strategy of equity becomes short selling when stock

price is low. The right panel shows the sample wealth paths with different trading

assets. As the holding of equity is much less than that of CoCo bond, the loss of
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equity holder is limited when conversion occurs, while the loss of CoCo bond holders

is huge.

Figure 3.4: Sample paths of stock price, optimal control, and wealth (Fully converted CoCo)

Figure 3.5 shows the statistical distributions of the wealth at time T . The terminal

wealth is generated by two assets separately: one is optimal strategy with CoCo

bond, the other is optimal strategy with equity. The mid and right panels show the

histograms of terminal wealth of these two strategies when conversion indeed occur

or does not occur, respectively. It is clear that the overall distributions have marked

differences at tail parts, that is, probabilities of great under-performance and out-

performance are both higher when investing into CoCo bond. This can be seen

in the middle and right panels. When conversion indeed occurs, the performance

of investing into CoCo bond is much worse than investing into equity. This is

because the optimal strategy of CoCo bond is longing due to the high yield and low

volatility, while that of equity becomes short selling when stock price is sufficiently

low. However, the right panel shows that when conversion does not occur, the loss

probability of investing into CoCo are less than equity (left tail), while the gain

probability of investing into CoCo is larger than equity (right tail). This means

investing into CoCo is a much better choice if conversion does not occur, due to the

benefit of high yield and low volatility.

The terminal distribution statistics are summarized in Table 3.3. From Table 3.3,

when conversion occurs, the mean of final wealth with CoCo investment (41.92) is

much smaller than that with equity investment (92.68). Meanwhile, both the 2.3%

quantile and 97.7% quantile are smaller than investing into equity. However, when
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Figure 3.5: Terminal wealth distribution of EC-CoCo

conversion does not occur, the mean of CoCo investment (133.02) is significantly

higher than investing into equity (107.48), and the standard deviation (20.47) is

smaller than investing into equity (23.02), which means investing into CoCo has

more profit and less market risk when conversion does not occur. Therefore, we

might conclude that investing into CoCo bond is better choice if the investor has

the anticipation that the bank has sufficient capital and the conversion probability

is very small.

mean std dev 2.3% quantile 97.7% quantile
All samples + CoCo 123.68 33.88 34.99 181.52
All samples + Equity 105.96 23.18 77.29 168.54
Conversion + CoCo 41.92 8.80 26.47 61.93
Conversion + Equity 92.68 20.15 62.20 143.60
No-Conversion + CoCo 133.02 20.47 102.75 183.50
No-Conversion + Equity 107.48 23.02 87.30 170.60

Table 3.3: Sample means, standard deviations, and quantile values (EC-CoCo)

The histograms and tables seem to indicate, for CoCo bond holders, the risk is

dominated by conversion. When conversion does not occur, investing into CoCo

bond is better than investing into equity in terms of mean and standard deviation of

terminal wealth distribution. However, the CoCo bond holders would bear huge loss

if the conversion occurred. On the contrary, investing into equity is more sensitive

to the market risk, instead of conversion risk.

Written-down CoCo bond
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For the WD-CoCo, there is no dilution effect thus LS = 0 and L(s) = 1 − R. We

assume R = 0.5 as the benchmark case. The yield of WD-CoCo is generally larger

than that of EC-CoCo, as the loss of WD-CoCo is very likely to be larger. In fact,

under the benchmark parameters, the yield of WD-CoCo is equal to 0.2 which is

even 5% beyond the yield of EC-CoCo.

mean std dev 2.3% quantile 97.7% quantile
All samples + CoCo 125.26 35.26 29.06 177.85
All samples + Equity 109.23 29.71 62.68 174.56
Conversion + CoCo 34.79 7.46 21.92 51.22
Conversion + Equity 90.86 21.83 55.65 145.09
No-Conversion + CoCo 135.61 18.30 107.44 179.16
No-Conversion + Equity 111.33 29.77 64.67 175.48

Table 3.4: Sample means, standard deviations, and quantile values (WD-CoCo)

Table 3.4 shows the statistics of terminal wealth distribution when the CoCo bond

is written down at conversion. From Table 3.4, although the loss feature is different,

the general conclusion drawn is similar to the case of EC-CoCo.

3.9.4 Sensitivity analysis of terminal wealth distribu-

tion

The conclusion drawn in the comparison test is particularly on the benchmark pa-

rameter set. We investigate the sensitivity of terminal wealth distribution to the

market parameters in this section. Throughout this section, we assume that the

CoCo bond is equity-converted type (EC-CoCo).

Sensitivity to Coupon Rate

The coupon rate c plays an important role in our model setting. On one hand, the

yield of CoCo bond r + θ is impacted by coupon rate. Intuitively, the larger the

coupon rate is, the higher the CoCo yield is. On the other hand, a large coupon

reflects a high conversion probability. Therefore it is a trade off between chasing the
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high yield and avoiding the high conversion risk. We investigate the sensitivity of

terminal wealth distribution to the coupon rate c. We consider two scenarios in this

section: 1) high coupon rate c = 0.2 and 2) low coupon rate c = 0.05. The other

parameters are assumed to be the same as benchmark case.

(1) High coupon rate.

We simulate 10000 paths of stock prices and corresponding CoCo bond prices, among

which there are 1822 paths containing conversion. Compared with the benchmark

case, the number of converted paths is significantly increased due to the high con-

version intensity. In fact, under the scenario c = 0.2, the initial conversion intensity

is 0.2 and the initial yield of CoCo bond is 0.24.

mean std dev 2.3% quantile 97.7% quantile
All (CoCo) 138.04 (11.61%) 54.69 (61.42%) 36.79 (5.14%) 256.52 (41.32%)
All (Equity) 106.04 (0.08%) 25.04 (8.02%) 79.93 (3.42%) 172.26 (2.21%)
C (CoCo) 52.88 (26.15%) 15.24 (73.18%) 29.47 (3.42%) 92.46 (2.21%)
C (Equity) 112.36 (21.23%) 35.86 (77.93%) 65.70 (5.63%) 201.06 (40.01%)
NC (CoCo) 157.01 (18.03%) 40.37 (97.22%) 108.09 (5.20%) 269.87 (47.07%)
NC (Equity) 104.64 (-2.64%) 21.66 (-5.91%) 85.84 (-1.67%) 164.36 (-3.66%)

Table 3.5: Sample means, standard deviations, and quantile values (High coupon rate).

Table 3.5 shows the statistics of terminal wealth distribution with c = 0.2. Note that

we use C to denote conversion and NC to denote no conversion. The percentage in

the bracket shows the relative change compared with the benchmark case. Due to

the high conversion risk, the trading strategy of equity becomes more conservative,

thus the mean of equity terminal wealth when conversion occurs increases, while

that when conversion does not occur decreases. However, the overall performance

of CoCo investment (in any scenario) shows significant improvement in mean and

percentiles (thus the whole distribution) compared to the benchmark case. Although

the high coupon implies the high conversion risk, the high yield compensates for it.

As a result, the performance of CoCo investment is much better than equity when

conversion does not occur, while the opposite phenomenon happens when conversion
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occurs.

(2) Low coupon rate.

In this scenario, we assume c = 0.05, thus the initial conversion intensity is 0.05 and

initial yield of CoCo bond is slightly higher than 0.1. We simulate 10000 paths of

stock prices and corresponding CoCo bond prices, among which there are 526 paths

containing conversion.

mean std dev 2.3% quantile 97.7% quantile
All (CoCo) 116.01 (-6.20%) 26.72 (-21.13%) 33.73 (-3.60%) 172.80 (-4.80%)
All (Equity) 106.95 (0.93%) 25.67 (10.74%) 75.85 (-1.86%) 171.05 (1.49%)
C (CoCo) 35.13 (-16.20%) 6.96 (-20.91%) 51.74 (95.47%) 22.29 (-64.01%)
C (Equity) 80.47 (-13.17%) 16.31 (-19.06%) 53.44 (-14.08%) 122.77 (-14.51%)
NC (CoCo) 120.50 (-9.41%) 19.17 (-6.35%) 97.66 (-4.95%) 173.88 (-5.24%)
NC (Equity) 108.42 (0.87%) 25.29 (9.86%) 79.72 (-8.68%) 172.10 (0.88%)

Table 3.6: Sample means, standard deviations, and quantile values (Low coupon rate).

Table 3.6 shows the statistics of terminal wealth distribution with c = 0.05. From

Table 3.6, although the mean of CoCo terminal wealth is still larger than equity

when conversion does not occur, the difference becomes much smaller.

Table 3.5 and Table 3.6 indicate that, the larger the coupon rate c is, the better

performance the CoCo investment can achieve, especially when no conversion occurs.

Sensitivity to Risk Premium

The coupon rate determines both the CoCo yield and conversion risk, while the risk

premium parameter κ0 only contributes to the yield of CoCo bond. We investigate

the sensitivity of terminal wealth distribution to the κ0 in this section, thus decou-

ple the impact of yield to the terminal wealth distribution. We also consider two

scenarios: 1) high risk premium with κ0 = 5 and 2) low risk premium with κ0 = 1.

(1) High risk premium.

Under the scenario κ0 = 5, the initial yield of CoCo bond is 0.22. Table 3.7 shows the
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statistics of terminal wealth distribution. It is clear that the equity terminal wealth

is not sensitive to the risk premium and the slight difference from benchmark case

comes from simulation error. For the CoCo investment, the mean of no-conversion

CoCo terminal wealth distribution is much increased, thus a higher risk premium

increases the profit of CoCo holder significantly when no conversion occurs. Of

course, since high risk premium does not increase the conversion risk, the trading

strategy is relatively more aggressive, thus the loss is even larger when conversion

does occur.

mean std dev 2.3% quantile 97.7% quantile
All (CoCo) 157.51 (27.35%) 66.44 (96.10%) 23.98 (-31.47%) 307.53 (69.42%)
All (Equity) 105.89 (-0.07%) 23.12 (-0.26%) 78.12 (1.07%) 167.07 (-0.87%)
C (CoCo) 30.62 (-26.96%) 9.77 (11.02%) 15.97 (-39.67%) 55.32 (-10.67%)
C (Equity) 92.02 (-0.71%) 20.37 (1.09%) 57.86 (-6.98%) 140.45 (-2.19%)
NC (CoCo) 171.47 (28.91%) 54.06 (164.09%) 112.90 (9.88%) 312.84 (70.49%)
NC (Equity) 107.41 (-0.07%) 22.90 (-0.52%) 87.33 (0.03%) 168.74 (-1.09%)

Table 3.7: Sample means, standard deviations, and quantile values (High risk premium).

(2) Low risk premium.

Under the scenario κ0 = 1, the initial yield of CoCo bond is 0.11. The corresponding

terminal wealth distribution statistics are shown in Table 3.8.

mean std dev 2.3% quantile 97.7% quantile
All (CoCo) 110.65 (-10.54%) 24.28 (-28.34%) 52.12 (48.96%) 165.84 (-8.64%)
All (Equity) 106.27 (0.29%) 23.35 (0.73%) 79.31 (2.61%) 168.39 (-0.09%)
C (CoCo) 60.91 (45.30%) 12.48 (41.82%) 37.81 (42.84%) 90.09 (45.47%)
C (Equity) 93.72 (1.12%) 20.92 (3.82%) 60.01 (-3.52%) 146.09 (1.73%)
NC (CoCo) 116.28 (-12.58%) 18.08 (-11.68%) 95.93 (-6.64%) 167.67 (-8.63%)
NC (Equity) 107.69 (0.20%) 23.19 (0.74%) 87.26 (-0.05%) 169.72 (-0.52%)

Table 3.8: Sample means, standard deviations, and quantile values (Low risk premium).

Table 3.8 confirms that the CoCo bond is not as attractive as that with high risk

premium. Although it is still true that the performance of CoCo investment is better
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than equity in terms of mean and standard deviation, the difference between CoCo

and equity is not as significant as before. However, when conversion does occur, the

loss of CoCo investment is much more than that of equity investment.

Sensitivity to Initial Stock Price

Under the benchmark case, we assume that S0 = 100 such that the initial conversion

intensity is around 0.1. However, under the financial distress period (e.g. 2008-

2009 financial crisis period), the conversion intensity could be much higher than the

benchmark value. We test in this section the case where the initial stock price is

low, which equivalently means the initial conversion probability is large. We set

S0 = 80. The corresponding initial conversion intensity becomes 0.25, and thus the

yield of CoCo bond is 0.4. We simulate 10000 paths among which there are 2584

containing conversion. The conversion probability is close to one quarter.

mean std dev 2.3% quantile 97.7% quantile
All (CoCo) 148.30 (19.91%) 57.64 (70.13%) 34.16 (-2.37%) 244.76 (34.84%)
All (Equity) 104.07 (-1.78%) 17.91 (-22.74%) 79.79 (3.23%) 156.21 (-7.32%)
C (CoCo) 49.85 (18.92%) 13.04 (48.18%) 27.24 (2.91%) 76.48 (23.49%)
C (Equity) 107.18 (15.65%) 26.04 (29.23%) 67.19 (8.02%) 168.82 (17.56%)
NC (CoCo) 174.22 (30.97%) 30.48 (48.90%) 129.19 (25.73%) 249.75 (36.10%)
NC (Equity) 103.25 (-3.94%) 14.95 (-35.06%) 92.48 (5.93%) 147.73 (-13.41%)

Table 3.9: Sample means, standard deviations, and quantile values (Low initial stock price).

Table 3.9 shows the statistics of terminal wealth distribution when initial stock

price S0 = 80. Due to the feature of high yield, the mean of CoCo terminal wealth

when conversion does not occur is much higher than that of equity terminal wealth.

Compared with Table 3.7, it is interesting to find that the means of CoCo terminal

wealth under no-conversion case are similar, however, the standard deviation is much

smaller. As discussed, increasing the risk premium has no impact to the conversion

risk, thus the trading strategy is much more aggressive. As a consequence, the

mean of CoCo terminal wealth under conversion case in Table 3.7 is significantly

lower than that in Table 3.9.
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Sensitivity to Written-Down Fraction

For a WD-CoCo, the written-down fraction 1−R is an important feature which de-

termines the loss of CoCo holders when conversion occurs. We analyze the terminal

wealth distribution sensitivity to R in this section. We also consider two scenarios

in this section: 1) high written-down fraction R = 0.2 and 2) low written-down

fraction R = 0.8.

(1) High written-down fraction.

In this scenario, we assume R = 0.2. Table 3.10 shows the statistics of terminal

wealth distribution. Compared with Table 3.4, it is clear that the performance

of equity investment is similar. It is interesting to note that the performance of

CoCo investment is also similar to the benchmark case. The high written-down

fraction has multiple impacts. The yield increases with the written-down fraction

and the optimal control becomes more conservative. The combined effects seem to

compensate for each other, and result in the robust performance under different

written-down fractions.

mean std dev 2.3% quantile 97.7% quantile
All (CoCo) 123.92 (-1.07%) 35.11 (-0.43%) 30.00 (3.23%) 183.61 (3.24%)
All (Equity) 109.05 (-0.16%) 29.24 (-1.58%) 62.34 (-0.54%) 174.25 (-0.18%)
C (CoCo) 36.59 (5.17%) 8.54 (14.48%) 21.50 (-1.92%) 55.70 (8.75%)
C (Equity) 90.18 (-0.75%) 22.75 (4.21%) 55.46 (-0.34%) 144.04 (-0.72%)
NC (CoCo) 134.04 (-1.16%) 19.50 (6.56%) 108.75 (1.22%) 185.80 (3.71%)
NC (Equity) 111.00 (-0.30%) 29.28 (-1.65%) 64.05 (-0.96%) 174.85 (-0.36%)

Table 3.10: Sample means, standard deviations, and quantile values (High written-down fraction).

(2) Low written-down fraction.

In this scenario, we assume R = 0.8. Table 3.11 confirms that the performance of

CoCo bond investment is robust under different written-down fraction levels.

Table 3.10 and Table 3.11 indicate that the performance of WD-CoCo investment

is generally robust with different written-down fraction levels, with slight difference
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mean std dev 2.3% quantile 97.7% quantile
All (CoCo) 127.36 (1.68%) 39.52 (12.08%) 29.19 (0.45%) 196.15 (10.29%)
All (Equity) 109.65 (0.38%) 29.56 (-0.50%) 62.83 (0.24%) 175.66 (0.63%)
C (CoCo) 36.29 (4.31%) 9.18 (23.06%) 22.64 (3.28%) 56.70 (10.70%)
C (Equity) 90.87 (0.01%) 22.72 (4.08%) 54.35 (-2.34%) 142.73 (-1.63%)
NC (CoCo) 137.72 (1.56%) 26.06 (42.40%) 93.07 (-13.37%) 197.94 (10.48%)
NC (Equity) 111.61 (0.25%) 29.57 (-0.67%) 64.81 (0.22%) 179.83 (2.48%)

Table 3.11: Sample means, standard deviations, and quantile values (Low written-down fraction).

in tail distribution of terminal wealth.

3.9.5 Optimal strategies for power utility

For power utility U(x) = (1/γ)xγ, 0 < γ < 1, the post-conversion case is well known

with the optimal control πS = (µS − r)/(σ2(1 − γ)) and the post-conversion value

function v1(t, x) = (1/γ)xγg1(t), where

g1(t) = exp

((
rγ +

γ

2(1− γ)

(
µ− r
σ

)2
)

(T − t)

)
.

We conjecture that the pre-conversion value function takes the form

v0(t, x, s) =
xγ

γ
f(t, s). (3.15)

Substituting (3.15) into (3.8), we get a linear PDE for f :

∂f

∂t
+ sup

π∈A

{
b(t, s, π)fs +

1

2
σ2s2fss − β(t, c, s, π)f + g(t, c, s, π)

}
= 0 (3.16)

with the terminal condition f(T, s) = 1, where

b(t, s, π) := (µ+ γσλ(t)π)s,
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β(t, c, s, π) := −rγ + h(c, s)− γθ(t, c, s)π − 1

2
γ(γ − 1)λ(t)2π2,

g(t, c, s, π) := h(c, s)g1(t)(1− L(s)π)γ.

By Pham (2009) (Remark 3.4.2), the HJB equation (3.16) can be mapped to the

following optimal control problem:

dYt = b(t, Yt, πt)dt+ σYtdZt, Y0 = s, (3.17)

J(t, y, π) = E
[∫ T

t

Γ(t, c, u)g(u, c, Yu, πu)du+ Γ(t, c, T )

]
,

v(t, s) = sup
π∈A

J(t, s, π), (3.18)

where Zt is a standard Brownian motion and

Γ(t, c, u) := exp

{
−
∫ u

t

β(l, c, Yl, πl)dl

}
.

By our theoretical result, we claim that the value function v(t, s) is the unique

viscosity solution of the HJB equation (3.16).

We adopt the numerical method in Kushner and Dupuis (2001) to solve the above

optimization problem. Kushner and Dupuis approximate the process Yt by a Markov

chain, which transits from Yt to Yt+∆t with probability Qδ,∆t (Yt, Yt+∆t | π). Note

that δ is the step size of space and ∆t is the step size of time. Fix the time horizon

[t, T ] and a time discretization

∆t :=
T − t
N

,

where N ≥ 1 is an integer. For simplicity, we assume t = 0. According to Kushner

and Dupuis (2001), we approximate the process (3.17) by a Markov chain with
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transition probabilities:

Qδ,∆t (s, s | π) := 1− ∆t

δ
|b(t, s, π)| − ∆t

δ2
σ2s2

Qδ,∆t (s, s± δ | π) :=
∆t

δ
b(t, s, π)± +

∆t

2δ2
σ2s2

where x+ := max{x, 0}, x− := max{−x, 0}.

The numerical scheme is based on the following backward discretized dynamic pro-

gramming principle (discretized DPP):

v(k∆t, Yk∆t) ≈ sup
πk∈A

E
[
g(k∆t, c, Yk∆t, πk)∆t

+ Γ(k∆t, c, (k + 1)∆t)v
(
(k + 1)∆t, Y(k+1)∆t

) ]
,

where πk is the piece-wise constant control and we approximate Γ(k∆t, c, (k +

1)∆t) ≈ exp {−β(k∆t, c, Yk∆t, πk)∆t}.

Note that we can apply the similar algorithm to the equity investment case. We

apply above algorithm to the benchmark case with γ = 0.5, δ = 5 and step size of

time ∆t = 0.1. The CoCo bond is assumed to be EC-CoCo.

mean std dev 2.3% quantile 97.7% quantile
All samples + CoCo 141.75 75.47 11.09 301.97
All samples + Equity 111.66 65.23 28.52 284.05
Conversion + CoCo 21.94 7.86 4.55 35.63
Conversion + Equity 99.42 34.49 67.76 180.24
No-Conversion + CoCo 157.22 60.99 115.75 316.29
No-Conversion + Equity 119.05 63.14 38.50 290.45

Table 3.12: Sample means, standard deviations, and quantile values of power utility (EC-CoCo)

The result is similar to the log utility case such that the main risk of investing into

CoCo bond is contained in the conversion. As long as no conversion occurs, investing

into CoCo bond has better performance than equity in terms of both mean and
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standard deviation of terminal wealth distribution. However, if conversion occurs,

the loss of CoCo holders is significantly larger than the equity holders.

3.10 Conclusions

In this chapter we consider a utility maximization problem of CoCo bond. We

assume that the conversion intensity is a function of the coupon rate and the stock

price of the issuing bank, and the intensity value is zero when stock price is above

the implied barrier level. The conversion of CoCo bond induces an immediate drop

in the stock price of the issuing bank. We analyse the loss given conversion structure

of different CoCo bond contracts and we prove the pre-conversion value function is

the unique viscosity solution of the HJB equation. We also compare and analyse the

statistical distributions of terminal wealth of log utility and power utility based on

two investment assets, one with CoCo bond and the other with stock of the issuing

bank. Our simulation results show that, the CoCo bond holders bear much more loss

than equity holders when conversion occurs. However, investing into CoCo bond gets

more profit (mean) while bearing less market risk (volatility) as long as conversion

does not occur. There remain many open questions in utility maximization of CoCo

bond, for example, what is the proper CoCo bond price dynamic if the coupon is

paid continuously at rate c to the face value instead of the market value. We leave

these and other questions to future research.
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4
Conclusions

This thesis is concentrated on the dynamic portfolio optimization with credit risk.

In Chapter 3, we consider a utility maximization problem with defaultable stocks

and looping contagion risk. We assume that the default intensity of one company

depends on the stock prices of itself and other companies, and the default of the

company induces immediate drops in the stock prices of the surviving companies. We

prove that the value function is the unique viscosity solution of the HJB equation. By

numerical tests, we compare the statistical distributions of the terminal wealth based

on two strategies, one using the full information of intensity process and the other a

proxy constant intensity process. Our numerical result shows that, statistically, the

looping contagion risk model and exogenous factor model have similar performance

in general market situations. However, if there are big drops of stock prices at the

start of investment, one may greatly improve the performance of investment if one

uses the looping contagion risk model.
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In Chapter 4, we consider a dynamic portfolio optimization with contingent con-

vertible (CoCo) bond. We model the conversion of CoCo bond by reduced-form

approach and assume that the conversion intensity is a deterministic function of the

coupon rate and the issuing bank’s stock price. Theoretically, we prove that the

value function is the unique viscosity solution of the corresponding HJB equation.

Practically, we compare the performance between investing into CoCo bond and the

issuing bank’s stock. We analyse the statistical distributions of terminal wealth of

log utility and power utility based on these two investment choices. Our simulation

results show that, the CoCo bond holders bear more loss than equity holders if con-

version occurs. However, investing into CoCo bond gets more profit (mean) while

bearing less market risk (volatility) as long as conversion does not occur.

We develop a numerical method to solve the dynamic portfolio optimization prob-

lem with Heston model framework in Appendix C. The numerical method is based

on approximating the controlled process by a tree model and applying dynamic pro-

gramming principle to the approximated tree model. We use numerical test to show

the convergence of the numerical method.

There remain many open questions in this thesis. For example, the BSDE simulation

method for power utility, the proper CoCo bond price dynamic if the coupon is paid

continuously at rate c to the face value instead of the market value, the theoretical

proof of the convergence of numerical method. We leave these and other questions

to future research.
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A
Empirical Evidence of

Contagion Risk

We give simple empirical example in this appendix, that shows the evidence such

that there exists looping contagion risk in the financial market.

Figure A.1: Looping contagion risk existence evidence (left: comparison of iShares US Financials
ETF (IYF) and Lehman Brothers (LEHMQ); right: comparison of Citibank CDS spread and Bank of
America stock price). Data Source: Bloomberg

119



The left panel of Figure A.1 shows the comparison of Lehman Brothers stock price

and the iShares US Financial ETF (IYF) price. It is clear that there is strong

correlation between the stock prices of Lehman Brothers and IYF. The price of IYF

can be treated as a signal or factor that reflects the entire situation of financial

sector. On one hand, it implies that the default risk of any single firm in financial

sector goes up when IYF price drops down. On the other hand, the failure of any

financial institutions (e.g. Lehman Brothers) leads to sharp falls in IYF price.

The right panel of Figure A.1 shows the relation between Bank of America stock

price and Citi CDS spread. The CDS spread reflects the default probability from

market point of view. From Figure A.1, there exists clear pattern such that the

CDS spread of Citibank decreases with the stock price of Bank of America. The

similar pattern can be seen among the other financial institutions, e.g. Barclays, JP

Morgan, Goldman Sachs.

Therefore, Figure A.1 is an empirical evidence which indicates that there exists

strong contagion risk in the financial market.
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B
One-sided Contagion Risk

We show some extra interesting results of the one-sided contagion risk defined in

Example 2.2.1. Due to the simple structure that there is only one default in the

model setting, the problem can be naturally split into pre-default case and post-

default case. The latter is a standard utility maximization problem as stock P

disappears and the post-default value function v1 is a function of time t and wealth

x only, see Pham (2009). We will only discuss the pre-default case in this section.

The pre-default value function is defined by

v0(t, x, s, p) = sup
π∈A

E [U(Xπ
T )|Xt = x, St = s, Pt = p,Ht = 0]

for (t, x, s, p) ∈ [0, T ]× (0,∞)3.

As shown in Theorem 2.4.2, the pre-default value function v0 is continuous in

(t, x, s, p) ∈ [0, T ] × [0,∞) × (0,∞)2. It is clear that the natural boundary con-

dition at x = 0 is v0(t, 0, s, p) = U(0). The natural boundary condition at s = 0 is
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the optimal value function in a market with two securities, one defaultable stock P

and one riskless bank account B. However, due to the lack of continuity at s = 0,

the natural boundary condition may be irrelevant. Same for the boundary condi-

tion for p = 0. To compensate for this, we make the following assumption for the

pre-default value function.

Assumption B.0.1. Denote the boundary of [0,∞)2 by B, then B := {{0} × [0,∞)}∪

{[0,∞)× {0}}. Assume v̂0(t, x, s, p) = lim(t′,x′,s′,p′)→(t,x,s,p) v0(t′, x′, s′, p′) exists for

any (t, x, s, p) ∈ [0, T ]× [0,∞)× B.

By definition, v̂0 is a proper boundary condition for the pre-default value function

v0 at s = 0 or p = 0, which equals the natural boundary condition if v0 is continuous

at s = 0 and p = 0. Define

ṽ0(t, x, s, p) =

v0(t, x, s, p) if (s, p) /∈ B

v̂0(t, x, s, p) if (s, p) ∈ B.

The modified pre-default value function ṽ0 is continuous on [0, T ]× [0,∞)3 by The-

orem 2.4.2 and Assumption B.0.1 and satisfies the following HJB equation by the

DPP

− sup
π∈A
Lπw(t, x, s, p) = 0 (B.1)

for (t, x, s, p) ∈ [0, T )× (0,∞)3 with terminal condition w(T, x, s, p) = U(x), where

Lπ is the infinitesimal generator of processes S, P and X with control π, given by

Lπw(t, x, s, p) =
∂w

∂t
+ (r + θTπ)xwx + µSsws + µPpwp +

1

2
πTΣπx2wxx

+
1

2
(σSs)2wss +

1

2
(σPp)2wpp + σSmTπxswxs + σPnTπxpwxp

+ ρσSσP spwsp + h(s, p)(v1

(
t, x
(
1− LTπ

))
− w),
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where v1 is the post-default value function, m = (σS, ρσP )T , n = (ρσS, σP )T .

By Remark 2.6.5, the structure condition holds for the one-sided contagion model

setting. Therefore, all the conditions in Theorem 2.6.6 are satisfied. We have the

following viscosity solution properties for the modified pre-default value function.

Theorem B.0.2. The modified pre-default value function ṽ0 is the unique con-

tinuous viscosity solution of (B.1) on [0, T ) × (0,∞)3, satisfying the growth con-

dition |ṽ0(t, x, s, p)| ≤ K(1 + xγ) for some constant 0 < γ < 1, the terminal

condition ṽ0(T, x, s, p) = U(x), and the boundary conditions ṽ0(t, 0, s, p) = U(0),

ṽ0(t, x, s, p) = v̂0(t, x, s, p) for (s, p) ∈ B.

Remark B.0.3. Note that for the one-sided contagion risk model, the continuity of

modified pre-default value function ṽ0 has been proved in prior. Thus the proofs of

Theorem 2.8.3 and 2.6.6 which rely on the upper (lower) semi-continuous envelops

can be simplified accordingly.
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C
Numerical Method Based on

Tree approximation

In this appendix, we investigate the numerical method to solve a dynamic portfolio

optimization problem under Heston model framework. We consider an investor who

dynamically puts her money into a stock and a risk-free bank account. The stock

price is driven by the Heston model. Kraft (2005) shows that the optimal strategy

and value function can be solved in closed form, under following conditions:

• The market price of risk of Heston model is equal to a linear function of the

volatility process;

• The investor’s utility function is power utility.

To the best of our knowledge, there has been no successful attempt to solve the

portfolio optimization under Heston model explicitly without assuming above con-
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ditions. To solve this problem numerically, one can try the numerical method to

solving the HJB equation directly. However, it is known that numerically solving

the HJB equation under Heston model setting is difficult due to lack of boundary

conditions. Ma et al. (2017) introduces the dual control Monte Carlo method to

get tight bounds of value function under this framework. Alternatively, one may

apply the numerical method introduced by Kushner and Dupuis (2001). In Chapter

3 and 4, we apply the numerical methods by Kushner and Dupuis (2001) to power

utility numerical tests, respectively. By guessing that the value function takes the

form (2.15), we find that the resulting controlled process (2.18) of the new control

problem (2.17) has the volatility term σ(Yu) independent of control π. In general,

Kushner and Dupuis’ numerical method is designed for the controlled process in the

following form

dYt = b(Yt, πt) + σ(Yt)dWt,

where the volatility term σ(Yt) of the controlled process is assumed to be independent

of control πt. The idea is to approximate the original controlled process Yt by an

appropriate finite state Markov chain.

For the portfolio optimization problem under Heston model framework, we will show

later that the controlled process Yt has the following form Yt := (Xt, Vt), where Xt

is the wealth process and Vt is the stochastic variance following CIR process. It can

be checked that the wealth process Xt contains control in the volatility term, see

(C.2). Therefore, the theoretical convergence result proved in Kushner and Dupuis

(2001) can not be applied. Moreover, the approximated Markov chain starting from

y := (x, v) can only take 9 combinations in the next step – (x, v), (x± δ, v), (x, v ±

δ), (x ± δ, v ± δ), (x ± δ, v ∓ δ). As the wealth process Xt and volatility process Vt

normally have different magnitudes, there is strong stability issue of the numerical

method if the same δ is applied as the step size for both x and v.

We extend the approach in Kushner and Dupuis (2001) to develop a numerical

method to solve the dynamic portfolio optimization problem under Heston model
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framework. Instead of approximating the controlled process by a Markov chain

with identical constant step size δ, we approximate the continuous dynamic of the

controlled process by a discrete non-combining tree, whose step size depends on the

volatility value at each step. We show the convergence of our numerical method,

by comparing the numerical result (from our approach) with the theoretical result

from Kraft (2005) (under power utility) and the tight bounds estimated from Ma

et al. (2017) (under non-HARA utility). The numerical comparison shows that the

approximated controls and value function from our numerical method converges to

the real solution.

Problem Description

Assume that (Ω,F ,Ft, P ) is a given probability space with filtration Ft generated

by standard Brownian motions W and Z with correlation coefficient ρ ∈ (−1, 1) and

completed with all P–null sets. There exists one stock in the market whose price is

denoted by {St}t≥0. The dynamic of St follows the Heston model

dSt
St

= µdt+
√
VtdWt, S0 = s,

dVt = κ(θ − Vt)dt+ σ
√
VtdZt, V0 = v,

(C.1)

with initial conditions s, v > 0, given positive parameters µ, κ, θ, σ. By standard

argument, we assume that the Feller condition is satisfied, which means 2κθ > σ2,

thus the Heston model has a unique positive solution.

An investor dynamically allocates proportions (πt, 1 − πt) of the total wealth into

the stock and the bank account. The admissible control set A is the set of control

processes π that are progressively measurable with respect to the filtration (Ft)

and πt ∈ A for ∀t ∈ [0, T ]. The set A is defined such that the wealth process is

non-negative for ∀t ∈ [0, T ]. The bank account {Bt}t≥0 follows

dBt

Bt

= rdt,
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where r > 0 is the constant risk-free rate. The dynamic of the wealth process (Xt)t≥0

is given by
dXt

Xt

= (r + (µ− r)πt) dt+ πt
√
VtdWt. (C.2)

Note that the volatility term of the wealth process is stochastic and contains control

π in the place.

We consider the utility maximization problem defined by

sup
π∈A

E[U(Xπ
T )],

where U is a utility function that is continuous, non-decreasing and concave on

(0,∞). Then the value function is defined by

G(t, x, v) = sup
π∈A

E [U(Xπ
T )|Xt = x, Vt = v] , (C.3)

Note that throughout this appendix, we denote the value function by G, as the

notation v denotes the value of the initial variance process in this appendix.

By dynamic programming principle, G satisfies the following HJB equation:

− sup
π∈A
Lw(t, x, v) = 0 (C.4)

for (t, x, v) ∈ [0, T )× (0,∞)2 with terminal condition w(T, x, v) = U(x), where L is

the infinitesimal generator of processes X, V with control π, given by

Lw(t, x, v) =
∂w

∂t
+ (r + (µ− r)π)xwx + κ(θ − v)wv

+
1

2
π2x2vwxx +

1

2
σ2vwvv + ρπσxvwxv.

Remark C.0.4. Kraft (2005) shows that under the assumptions that (1) µ = r+λVt

with λ constant, (2) U(x) = xγ

γ
with γ ∈ (0, 1) and (3) γ

1−γλ
(
κρ
σ

+ λ
2

)
< κ2

2σ2 , the
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HJB equation (C.4) can be solved explicitly with value function given by

G(t, x, v) =
xγ

γ
f(t, v)c, (C.5)

where

f(t, v) = exp
{γ
c
r(T − t)− A(t, T )−B(t, T )v

}
,

and the optimal strategy given by

π∗(t) =
1

1− γ
λ+

γ

(1− γ)2
ρσλ2 eã(T−t) − 1

eã(T−t)(κ̃+ ã)− κ̃+ ã
. (C.6)

Note that A(t, T ), B(t, T ) are deterministic functions given by

A(t, T ) = −κθ(κ̃− ã)

σ2
(T − t) +

2κθ

σ2
ln

(
1− ke−ã(T−t)

1− k

)
,

B(t, T ) = 2β̃
eã(T−t) − 1

eã(T−t)(κ̃+ ã)− κ̃+ ã
,

and c = 1−γ
1−γ+ρ2γ

, β̃ = − 1
2c

γ
1−γλ

2, ã =

√
κ̃2 + 2β̃σ2, κ̃ = κ− γ

1−γρλσ, k = κ̃−ã
κ̃+ã

.

By Remark C.0.4, we have the theoretical result for the value function and optimal

control under certain assumptions. Although constrained by the restricted assump-

tions, the theoretical result from Kraft (2005) can be used as benchmark, to test

the convergence of our numerical result in the following sections.

Numerical Method Description

In the following sections, we will describe our numerical method based on the non-

combining tree model.

Construction of the Approximating Tree

We construct the approximating tree model for the controlled process (Xt, Vt) fol-

lowing the virtue of Euler scheme in this section. We fix a time horizon [t, T ] where
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T > t is maturity time and a time discretization

∆t :=
T − t
N

,

where N ≥ 1 is an integer. In the following sections, we assume t = 0 for simplicity.

Consider the discrete processes {SNk , V N
k }Nk=0 of the form

SNk := SNk−1

(
1 + µ∆t+

√
V N
k ∆tξSk

)
, SN0 = s, (C.7)

and

V N
k := V N

k−1 + κ(θ − V N
k−1)∆t+ σ

√
V N
k−1∆tξVk , V N

0 = v, (C.8)

where ξVk = ρξSk +
√

1− ρ2ξZk and (ξS, ξZ)’s are random variables taking values in

{−1, 1} with probabilities 1
2

respectively. For completeness, we assume that ξS0 =

ξZ0 = 0.

Denote the value function under a N periods tree model setting by GN(t, x, v) and

the wealth process by XN , then we have

GN(t, x, v) = sup
π∈AN

E
[
U(XN,π

T ) | XN
t = x, V N

t = v
]
, (C.9)

where AN is the admissible control set from time t = 0 to T = N∆t. The evolution

of wealth process from k∆t to (k + 1)∆t can be deduced from

XN
(k+1)∆t −XN

k∆t

XN
k∆t

= πk
SNk+1 − SNk

SNk
+ r(1− πk)∆t.

Thus

XN
(k+1)∆t = XN

k∆t

(
1 + r∆t+ πk

(
(µ− r)∆t+

√
V N
k ∆tξSk+1

))
, (C.10)
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where πk is the constant fraction of wealth into risky asset S from time step k∆t to

(k + 1)∆t.

We will introduce the method to compute GN which is an approxy of the real

value function G defined by (C.3). The discrete optimal control at each step is a

byproduct.

Computation Method for the Approximated Value Function

We numerically solve the approximated value function (C.9) by applying discrete

dynamic programming principle. Define Θ := (Θk)
N
k=0 where Θk := (XN

k∆t, V
N
k ).

Then the evolution from Θk to Θk+1 is

Θk+1 | πk :=



Θ1
k+1(πk) with prob. 1/4,

Θ2
k+1(πk) with prob. 1/4,

Θ3
k+1(πk) with prob. 1/4,

Θ4
k+1(πk) with prob. 1/4,

where

Θ1
k+1(πk) =

(
XN
k∆t

(
1 + r∆t+ πk

(
(µ− r)∆t+

√
V N
k ∆t

))
, V N

k+1(1)

)
,

Θ2
k+1(πk) =

(
XN
k∆t

(
1 + r∆t+ πk

(
(µ− r)∆t+

√
V N
k ∆t

))
, V N

k+1(2)

)
,

Θ3
k+1(πk) =

(
XN
k∆t

(
1 + r∆t+ πk

(
(µ− r)∆t−

√
V N
k ∆t

))
, V N

k+1(3)

)
,

Θ4
k+1(πk) =

(
XN
k∆t

(
1 + r∆t+ πk

(
(µ− r)∆t−

√
V N
k ∆t

))
, V N

k+1(4)

)
,

and

V N
k+1(1) = V N

k + κ(θ − V N
k )∆t+ σ

√
V N
k ∆t(ρ+

√
1− ρ2),

V N
k+1(2) = V N

k + κ(θ − V N
k )∆t+ σ

√
V N
k ∆t(ρ−

√
1− ρ2),
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V N
k+1(3) = V N

k + κ(θ − V N
k )∆t+ σ

√
V N
k ∆t(−ρ+

√
1− ρ2),

V N
k+1(4) = V N

k + κ(θ − V N
k )∆t+ σ

√
V N
k ∆t(−ρ−

√
1− ρ2).

Remark C.0.5. In implementation of the numerical method, we require the can-

didate control πk ∈ R such that the wealth process is non-negative, which means

1 + r∆t+ πk

(
(µ− r)∆t−

√
V N
k ∆t

)
> 0.

Also note that there is chance that V N
k+1 < 0 in implementation. We set zero as the

lower bound by standard truncation argument.

By dynamic programming principle (DPP), we have

GN(k∆t,Θk) = sup
π∈ANk

E
[
GN ((k + 1)∆t,Θk+1) | Θk

]
,

and

GN ((N − 1)∆t,ΘN−1) = sup
π∈ANN−1

E
[
U(XN,π

N∆t) | ΘN−1

]
,

where ANk is the admissible control set from time k∆t to (k + 1)∆t.

Therefore, the numerical method to solve the approximated value function (C.9)

can be summarized as the following steps:

• Step 1: k = N − 1.

GN ((N − 1)∆t,ΘN−1)

= sup
π∈ANN−1

E
[
U(XN,π

N∆t) | ΘN−1

]
=

1

2

[
U

(
XN

(N−1)∆t

(
1 + r∆t+

(
(µ− r)∆t+

√
V N
N−1∆t

)
π∗N−1

))
+ U

(
XN

(N−1)∆t

(
1 + r∆t+

(
(µ− r)∆t−

√
V N
N−1∆t

)
π∗N−1

))]
,
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where

π∗N−1 = argmax
π∈ANN−1

[
U

(
XN

(N−1)∆t

(
1 + r∆t+

(
(µ− r)∆t+

√
V N
N−1∆t

)
π

))
+ U

(
XN

(N−1)∆t

(
1 + r∆t+

(
(µ− r)∆t−

√
V N
N−1∆t

)
π

))]
.

• Step 2: 0 ≤ k < N − 1.

GN (k∆t,Θk)

= sup
π∈ANk

E
[
GN ((k + 1)∆t,Θk+1) | Θk

]
=

1

4

[
GN

(
(k + 1)∆t,Θ1

k+1(π∗k)
)

+GN
(
(k + 1)∆t,Θ2

k+1(π∗k)
)

+GN
(
(k + 1)∆t,Θ3

k+1(π∗k)
)

+GN
(
(k + 1)∆t,Θ4

k+1(π∗k)
) ]
,

where

π∗k = argmax
π∈ANk

[
GN

(
(k + 1)∆t,Θ1

k+1(π)
)

+GN
(
(k + 1)∆t,Θ2

k+1(π)
)

+GN
(
(k + 1)∆t,Θ3

k+1(π)
)

+GN
(
(k + 1)∆t,Θ4

k+1(π)
) ]
.

The tree of variance process V for a fixed number of periods N is known at time 0,

however the tree size increases rapidly due to the non-recombining property. For a

N periods tree model, the number of V states for each period is given by Table C.1.

Period 1 2 3 4 5 6 7 8 ... N
Size 4 16 64 256 1024 4096 16384 65536 ... 4N

Table C.1: Tree size of variance process V .

Further, the tree of wealth process X is not fixed due to the continuous control

π in the place. To reduce the computation size and make the numerical method
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applicable in practice, we introduce a heuristic interpolation scheme for the wealth

process X and variance process V . We will then adjust the numerical method

described above based on the introduced interpolation scheme.

For the interpolation of variance process V , we firstly estimate the range of V size

for each period. Note that we can get the exact range of V size as the tree is fixed

at inception time. However, for a large N , the accurate range calculation is time

consuming. Therefore, we estimate the range of V size by the following scheme:

Vk,1 ≤ V N
k ≤ Vk,2,

where V0,1 = V0,2 = V0 and

Vk,1 = Vk−1,1 + κ(θ − Vk−1,1)∆t+ σ
√
Vk−1,1∆t

(
−ρ · sign(ρ)−

√
1− ρ2

)
,

Vk,2 = Vk−1,2 + κ(θ − Vk−1,2)∆t+ σ
√
Vk−1,2∆t

(
ρ · sign(ρ) +

√
1− ρ2

)
.

To check the estimation performance, we apply above estimation scheme to the fol-

lowing three sets of parameter values and compare with the corresponding accurate

range for a 10 periods tree model.

• Parameter set 1: κ = 3.0, θ = 0.04, σ = 0.2, ρ = −0.7, V0 = 0.04, T = 1, N =

10;

• Parameter set 2: κ = 5.0, θ = 0.16, σ = 0.9, ρ = 0.1, V0 = 0.25, T = 1, N = 10;

• Parameter set 3: κ = 1.15, θ = 0.348, σ = 0.39, ρ = −0.64, V0 = 0.09, T =

1, N = 10.

Figure C.1 shows that the estimated range exactly coincides with the accurate range

for parameter set 1 and 3. However, the lower range estimation is slightly above the

true lower range for parameter set 2 which has a very large σ. Therefore, we fix our
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Figure C.1: Comparison of V range estimation and accurate range

estimation of lower range such that the range estimation is more conservative:

Vk,1 = 0.

In the following numerical test, we use the estimation range of V N
k given by

V0,1 = V0,2 = V0

and

[
0, Vk−1,2 + κ(θ − Vk−1,2)∆t+ σ

√
Vk−1,2∆t

(
ρ · sign(ρ) +

√
1− ρ2

)]
.

for k ≥ 1.

It is more tricky for the estimation of wealth process range as the wealth process

depends on the control. Define πmax to be the largest control into consideration,

then we can estimate the range of Xk∆t for each time step k∆t. The range of Xk∆t

is estimated by

Xk,1 ≤ XN
k∆t ≤ Xk,2,

where X0,1 = X0,2 = X0 and

Xk,1 = Xk−1,1

(
1 + r∆t+

(
(µ− r)∆t−

√
Vk−1,2∆t

)
πmax

)
,

Xk,2 = Xk−1,2

(
1 + r∆t+

(
(µ− r)∆t+

√
Vk−1,2∆t

)
πmax

)
.
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Based on the estimated range of X and V , we partition the range of Xk∆t into MX
k

intervals with equal length such that the length of each small interval is approxi-

mately equal to sX > 0, which means

MX
k = max

{
min

{⌈
Xk,2 −Xk,1

sX

⌉
,Mmax

}
,Mmin

}
,

where dxe := min{n ∈ Z | x ≤ n} and Mmax,Mmin are the maximum and minimum

number of intervals. Intuitively, it means that the range of Xk∆t is equally parti-

tioned into several intervals with length approximately equal to sX . The number

of intervals does not exceed Mmax for the benefit of computation speed and is not

below Mmin for the benefit of estimation accuracy. Similarly, we partition the range

of V N
k into MV

k intervals where

MV
k = max

{
min

{⌈
Vk,2 − Vk,1

sV

⌉
,Mmax

}
,Mmin

}
.

Denote the partition of Xk∆t by Xk and the partition of V N
k by Vk.

Adapted Computation Method based on Interpolation Scheme

Based on the interpolation scheme, we adapt the numerical scheme into the following

steps:

• Step 1: For each pair of ΘN−1 :=
(
XN

(N−1)∆t, V
N
N−1

)
∈ XN−1 × VN−1,

GN ((N − 1)∆t,ΘN−1)

= sup
π∈ANN−1

E
[
U(XN,π

N∆t) | ΘN−1

]
=

1

2

[
U

(
XN

(N−1)∆t

(
1 + r∆t+

(
(µ− r)∆t+

√
V N
N−1∆t

)
π∗N−1

))
+ U

(
XN

(N−1)∆t

(
1 + r∆t+

(
(µ− r)∆t−

√
V N
N−1∆t

)
π∗N−1

))]
,
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where

π∗N−1 = argmax
π∈ANN−1

[
U

(
XN

(N−1)∆t

(
1 + r∆t+

(
(µ− r)∆t+

√
V N
N−1∆t

)
π

))
+ U

(
XN

(N−1)∆t

(
1 + r∆t+

(
(µ− r)∆t−

√
V N
N−1∆t

)
π

))]
.

Thus we get the discretized value functions GN ((N − 1)∆t,ΘN−1) for each

ΘN−1 ∈ XN−1 × VN−1. Applying the standard bilinear interpolation method-

ology to GN ((N − 1)∆t,ΘN−1), we get the interpolation function G̃N−1(Θ̃)

for Θ̃ ∈ [0,∞) × [0,∞). For Θ̃ := (x, v) ∈ (x1, x2) × (v1, v2) where (x1, v1),

(x2, v1), (x1, v2), (x2, v2) ∈ XN−1 × VN−1, we have

G̃N−1(Θ̃) :=
1

(x2 − x1)(v2 − v1)
(x2 − x, x− x1)D

v2 − v

v − v1

 ,

where

D :=

GN ((N − 1)∆t, (x1, v1)) GN ((N − 1)∆t, (x1, v2))

GN ((N − 1)∆t, (x2, v1)) GN ((N − 1)∆t, (x2, v2))

 .

• Step 2: For each pair of Θk :=
(
XN
k∆t, V

N
k

)
∈ Xk × Vk where 0 ≤ k < N − 1,

GN (k∆t,Θk)

= sup
π∈ANk

E
[
GN ((k + 1)∆t,Θk+1) | Θk

]
=

1

4

[
GN

(
(k + 1)∆t,Θ1

k+1(π∗k)
)

+GN
(
(k + 1)∆t,Θ2

k+1(π∗k)
)

+GN
(
(k + 1)∆t,Θ3

k+1(π∗k)
)

+GN
(
(k + 1)∆t,Θ4

k+1(π∗k)
) ]

≈ 1

4

[
G̃k+1(Θ1

k+1(π∗k)) + G̃k+1(Θ2
k+1(π∗k))

+ G̃k+1(Θ3
k+1(π∗k)) + G̃k+1(Θ4

k+1(π∗k))

]
,
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where

π∗k = argmax
π∈ANk

[
G̃k+1(Θ1

k+1(π)) + G̃k+1(Θ2
k+1(π))

+ G̃k+1(Θ3
k+1(π)) + G̃k+1(Θ4

k+1(π))

]
.

Thus we get the discretized value functions G (k∆t,Θk) for each Θk ∈ Xk×Vk.

Applying the same bilinear interpolation methodology (specified in Step 1) to

the pair (Θk, G (k∆t,Θk)), then we get the interpolation function G̃k(Θ̃) for

Θ̃ ∈ [0,∞)× [0,∞).

In the following sections, we investigate the convergence of our numerical method

by comparing the numerical results with the theoretical results from Kraft (2005)

under power utility, and the tight bounds from Ma et al. (2017) under non-HARA

utility, respectively.

Convergence of Numerical Method for Power Utility

We compare the numerical results with power utility function with the closed form

solution in Kraft (2005). We set T = 1, X0 = 1, πmax = 3,Mmin = 3,Mmax =

10000, sX = 0.1, sV = 0.001 and the following 2 parameter value sets:

• Parameter set 1: λ = 1.0, r = 0.05, κ = 3.0, θ = 0.04, σ = 0.2, ρ = −0.7, V0 =

0.04.

• Parameter set 2: λ = 0.5, r = 0.05, κ = 1.15, θ = 0.348, σ = 0.39, ρ =

−0.64, V0 = 0.09.

Note that the 2 parameter sets are calibrated from the real market data, see Aky-

ildirim et al. (2014).

We compare the first time step control π∗0 and value function GN(0,Θ0) with the

theoretical results, under different choices of number of periods N . Due to the
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running time consumption issue, we choose the largest tested N to be 30. The

comparison result of parameter set 1 is given by Table C.2.

N 1 2 3 4 5 8
π∗0 2.1875 2.0216 2.0155 1.9990 1.9914 1.9792
GN 2.09165 2.09013 2.09082 2.09074 2.09074 2.09076

N 10 15 20 25 30 Kraft
π∗0 1.9744 1.9695 1.9654 1.9628 1.9589 1.9573
GN 2.09077 2.09078 2.09079 2.09079 2.09079 2.09079

Table C.2: Numerical Results of Parameter set 1 with Mmax = 10000, (sX , sV ) = (0.1, 0.001).

Table C.2 shows clearly that π∗0 and GN(0,Θ0) converge to Kraft’s real solutions

when N increases. Actually, the value function GN converges faster than the optimal

control. Table C.3 confirms the same convergence pattern of parameter set 2.

N 1 2 3 4 5 8
π∗0 1.0742 1.0037 0.9900 0.9831 0.9797 0.9720
GN 2.07284 2.09239 2.09516 2.09635 2.09700 2.09792

N 10 15 20 25 30 Kraft
π∗0 0.9747 0.9713 0.9701 0.9667 0.9654 0.9646
GN 2.09809 2.09821 2.09832 2.09928 2.09930 2.09930

Table C.3: Numerical Results of Parameter set 2 with Mmax = 10000, (sX , sV ) = (0.1, 0.001).

Note that the interpolation scheme introduces inaccuracy into the numerical method.

We further test the sensitivity of convergence speed to the roughness of the interpo-

lation scheme. Intuitively the roughness of the interpolation scheme is determined

by Mmax and (sX , sV ).

Table C.4 shows the numerical result with Mmax = 1000. Compared with Table

C.2, it is clear that although the approximated value function GN still converges to

the real value function G, the convergence speed is slower. This is due to the fact

that with a smaller Mmax, the interpolation grid size becomes larger when N is large

enough.

Table C.5 shows the numerical result with (sX , sV ) = (0.2, 0.002).
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N 1 2 3 4 5 8
π∗0 2.1875 2.0218 2.0158 1.9994 1.9904 1.9777
GN 2.09165 2.09013 2.09081 2.09074 2.09074 2.09076

N 10 15 20 25 30 Kraft
π∗0 1.9750 1.9687 1.9661 1.9650 1.9639 1.9573
GN 2.09077 2.09077 2.09078 2.09078 2.09079 2.09079

Table C.4: Numerical Results of Parameter set 1 with Mmax = 1000, (sX , sV ) = (0.1, 0.001).

N 1 2 3 4 5 8
π∗0 2.1875 2.0217 2.0139 1.9994 1.9923 1.9785
GN 2.09165 2.09018 2.09051 2.09065 2.09070 2.09073

N 10 15 20 25 30 Kraft
π∗0 1.9764 1.9722 1.9697 1.9680 1.9669 1.9573
GN 2.09074 2.09075 2.09077 2.09078 2.09079 2.09079

Table C.5: Numerical Results of Parameter set 1 with Mmax = 10000, (sX , sV ) = (0.2, 0.002).

The numerical comparison between the result from our numerical method and the

theoretical result from Kraft (2005) shows that for power utility function, the ap-

proximated value function and optimal control from our numerical result seems to

converge to the real solutions, and the convergence speed depends on the interpola-

tion scheme. Precisely, the convergence speed increases with Mmax while decreases

with sX and sV .

Convergence of Numerical Method for Non-HARA Utility

We compare the numerical results with a non-HARA utility function. We choose

the following non-HARA utility function given in Ma et al. (2017):

U(x) =
1

3
H(x)−3 +H(x)−1 + xH(x),

for x > 0, where

H(x) =

(
2

−1 +
√

1 + 4x

)1/2

.
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We firstly check the convergence of our numerical method with non-HARA utility

when σ = 0. Note that under the assumption that σ = 0, the Heston model

degenerates to Black-Scholes model and we can derive the closed-form solution under

this extreme case. We set the following benchmark parameter values (from Ma et

al. (2017)):

λ = 0.5, r = 0.05, κ = 10, θ = 0.05, σ = 0, ρ = −0.5, V0 = 0.05, T = 1, X0 = 1.

Table C.6 shows the comparison of the approximated value function from our nu-

merical method with the real solution.

N 1 2 3 4 5 8
GN 2.30618 2.30698 2.30725 2.30739 2.30747 2.30761

N 10 15 20 25 30 G
GN 2.30764 2.30770 2.30775 2.30779 2.30781 2.30781

Table C.6: Numerical Results of Non-HARA utility under Black-Scholes model with with πmax =
3,Mmax = 10000, (sX , sV ) = (0.1, 0.001).

It is clear that the approximated value function converges to the real solution. Also

note that in Ma et al. (2017), the estimated lower bound and upper bound are

2.30769 and 2.30784 respectively, thus the approximated value function lies in the

estimated range when N ≥ 15.

Next we test the real Heston model case where σ 6= 0, for which we don’t have

closed form solution from the literature. We compare the numerical result from our

approach with the estimated bounds from Ma et al. (2017). We use the following

benchmark parameter values (also from Ma et al. (2017)):

λ = 0.5, r = 0.05, κ = 10, θ = 0.05, σ = 0.5, ρ = −0.5, V0 = 0.5, T = 1, X0 = 1.

Table C.7 shows the comparison results. It is clear that the approximated value

function lies in the estimated range (LB: lower bound, UB: upper bound) when
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N ≥ 20.

N 1 2 3 4 5 8
GN 2.53466 2.40249 2.36203 2.35347 2.34764 2.33018

N 10 15 20 25 30 LB UB
GN 2.33003 2.32946 2.32803 2.32775 2.32773 2.32757 2.32786

Table C.7: Numerical Results of Non-HARA utility under Heston model with with πmax =
3,Mmax = 10000, (sX , sV ) = (0.1, 0.001).

The numerical comparison between the result from our numerical method and the

estimated bounds from Ma et al. (2017) shows that for non-HARA utility function,

the approximated value function from our numerical result seems to converge to the

real value function.

Conclusions

In this appendix, we introduce a numerical method to solve a dynamic portfolio op-

timization problem under Heston model framework. We approximate the controlled

process by a non-combining tree model and apply discrete dynamic programming

principle to the tree model directly. We numerically show the convergence of our ap-

proach, by comparing the approximated value function and optimal control with the

theoretical solutions from Kraft (2005) under power utility and the tight estimated

bounds from Ma et al. (2017). We also show that the convergence performance is

sensitive to the interpolation scheme. There remain many open questions in this nu-

merical approach. For example, the convergence result reported in this appendix is

only based on numerical investigation. The theoretical proof of convergence should

be considered in the future research.
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D
Notations and Theorems

D.1 General Notations and Abbreviations

For any real numbers x, y,

x+ = max(x, 0), x− = max(−x, 0), x ∧ y = min(x, y), x ∨ y = max(x, y).

Rd denotes the d–dimensional Euclidian space. R = R1. For all x = (x1, . . . , xd), y =

(y1, . . . , yd) in Rd, we denote by 〈·, ·〉 the inner product and by || · || the Euclidian

norm:

〈x, y〉 =
d∑
i=1

xiyi, ||x|| =
√
〈x, x〉.

Sn×d is the set of real-valued n × d matrices. In is the n × n identity matrix. For

all Σ = (σij)1≤i≤n,1≤j≤d ∈ Sn×d, we denote by ΣT = (σji)1≤j≤d,1≤i≤n the transpose

matrix in Sd×n. We set Tr(Σ) =
∑n

i=1 σ
ii the trace of a n×n matrix Σ ∈ Sn×n. We
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say that Σ1 ≤ Σ2 for Σ1,Σ2 ∈ Sn×n if Σ2 − Σ1 is nonnegative definite.

We denote by Bη(x) (resp. B̄η(x)) the open (resp. closed) ball of center x ∈ Rd,

and radius η > 0.

C ([0, T ]×O) is the space of all real-valued continuous functions on [0, T ]×O.

C1,2,...,2 ([0, T )×O) is the space of all real-valued continuous functions f on [0, T )×O

whose partial derivatives ∂f
∂t

, ∂f
∂xi

, ∂2f
∂xi∂xj

exist and are continuous on [0, T )×O.

f(x) = o(g(x)) means that limx→0 f(x)/g(x) = 0.

(Ω,F ,P): probability space.

(Ω,F , (Ft)t≥0,P): filtered probability space.

EQ[X | Ft]: expectation of random variable X under measure Q given filtration Ft.
dQ
dP : Radon-Nikodym density.

SDE: stochastic differential equation

BSDE: backward stochastic differential equation

PDE: partial differential equation

DPP: dynamic programming principle

HJB: Hamilton-Jacobi-Bellman

CoCo: contingent convertible

CET1: common equity tier 1

PONV: point of non-viability

RWA: risk-weighted asset

HARA: hyperbolic absolute risk aversion

u.s.c.: upper-semicontinuous

l.s.c.: lower-semicontinuous
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D.2 Definitions and Theorems

The utility function is used to represent investor’s risk averse level. It is usually

assumed that the utility function U(·) ∈ C2 has the following properties: strictly

concave and increasing. Under these assumptions, the relation between risk averse

and utility function defined by

Definition D.2.1. (Absolute risk aversion) The Arrow-Pratt measure of absolute

risk-aversion is defined as

A(x) := −U
′′(x)

U ′(x)
.

Based on Definition D.2.1, the Arrow-Pratt measure of log utility U(x) = ln x is 1/x

and that of power utility U(x) = xγ

γ
is (1− γ)/x.

Definition D.2.2. (HARA utility function) A function U(·) is said to be a HARA

(hyperbolic absolute risk aversion) function if it admits the representation

U(x) =
1− γ
γ

(
β

1− γ
x+ η

)γ
,

where γ < 1, γ 6= 0, β > 0, β
1−γx+ η > 0.

The following generalized Ito’s formula is cited from Protter (2005) and it is used

throughout this thesis.

Theorem D.2.3. (Generalized Ito’s formula) Let X be a semimartingale and let

f be a C2 real function. Then f(X) is again a semimartingale, and the following

formula holds:

f(Xt) = f(X0) +

∫ t

0

f ′(Xs−)dXC
s +

1

2

∫ t

0

f ′′(Xs−)d[X,X]Cs +
∑

0≤s≤t

∆f(Xs),

where XC is the continuous part of process X and ∆f(Xs) := f(Xs)− f(Xs−).
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The following existence and uniqueness result of one-dimensional SDE strong solu-

tion is used as the foundation of the wealth process definition throughout this thesis.

The theorem is cited from Øksendal (2003).

Theorem D.2.4. (Existence and uniqueness of SDE strong solution) Let us suppose

that the coefficients of the one-dimensional SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt (D.1)

satisfies the conditions

|b(t, x)− b(t, y)| ≤ K|x− y|,

|σ(t, x)− σ(t, y)| ≤ h(|x− y|),

for every 0 ≤ t <∞ and x, y ∈ R, where K is a positive constant and h : [0,∞)→

[0,∞) is a strictly increasing function with h(0) = 0 and

∫ ε

0

h−2(u)du =∞, ∀ε > 0.

Then there exists a unique strong solution to (D.1).

The following Doob’s sub-martingale inequality is used in the proof of Theorem 2.4.2

in Chapter 1. The theorem is cited from Pham (2009).

Theorem D.2.5. (Doob’s sub-martingale inequality) Let X be a sub-martingale that

takes nonnegative real values, then for a constant K > 0,

P
[

sup
0≤t≤T

Xt ≥ K

]
≤ E[XT ]

K
,

and consequently

E
[

sup
0≤t≤T

|Xt|p
]
≤
(

p

1− p

)p
E [|XT |p] .

The following Crandall-Ishii’s lemma is used in the proof of comparison principle

(Theorem 2.8.5). The Lemma is cited from Crandall et al. (1992).
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Lemma D.2.6. (Crandall-Ishii’s lemma) Let U (resp. V ) be a u.s.c. (resp. l.s.c.)

function on [0, T ) × Rn, φ ∈ C1,1,2,2([0, T )2 × Rn × Rn), and (t̄, s̄, x̄, ȳ) ∈ [0, T )2 ×

Rn × Rn a local maximum of U(t, x) − V (t, y) − φ(t, s, x, y). Then, for all η > 0,

there exist M,N ∈ Sn×n satisfying

(
∂φ

∂t
(t̄, s̄, x̄, ȳ), Dxφ(t̄, s̄, x̄, ȳ),M

)
∈ P̄2,+U(t̄, x̄),

(
−∂φ
∂s

(t̄, s̄, x̄, ȳ),−Dyφ(t̄, s̄, x̄, ȳ), N

)
∈ P̄2,−V (s̄, ȳ),

and M 0

0 −N

 ≤ D2
x,yφ(t̄, s̄, x̄, ȳ) + η

(
D2
x,yφ(t̄, s̄, x̄, ȳ)

)2
,

where P̄2,+U(t̄, x̄) (resp. P̄2,−V (s̄, ȳ)) are the limiting second-order superjet (resp.

subjet) of U (resp. V ).

Remark D.2.7. By choosing η = ε and φ(t, s, x, y) = 1
2ε

(|t− s|2 + |x− y|2), we

obtain M 0

0 −N

 ≤ 1

ε

 In −In
−In In

 .

The following Martingale representation theorem is cited from Protter (2005). It is

used in the derivation of CoCo bond dynamic under risk-neutral measure.

Theorem D.2.8. (Martingale representation theorem) Let (Wt)t≥0 be a Brownian

motion on a standard filtered probability space (Ω,F , (Ft)t≥0,P) and let F̄t be the

augmented filtration generated by W . If XT is a square integrable random variable

measurable with respect to F̄T , then there exists a predictable process λt which is

adapted with respect to F̄t, such that

XT = E[XT ] +

∫ T

0

λtdWt.
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