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The quantized charges x of four-dimensional stringy black holes may be assigned to elements of an

integral Freudenthal triple system whose automorphism group is the corresponding U duality and whose

U-invariant quartic norm �ðxÞ determines the lowest-order entropy. Here, we introduce a Freudenthal

duality x ! ~x, for which ~~x ¼ �x. Although distinct from U duality, it nevertheless leaves �ðxÞ invariant.
However, the requirement that ~x be an integer restricts us to the subset of black holes for which �ðxÞ is
necessarily a perfect square. The issue of higher-order corrections remains open as some, but not all, of the

discrete U-duality invariants are Freudenthal invariant. Similarly, the quantized charges A of five-

dimensional black holes and strings may be assigned to elements of an integral Jordan algebra, whose

cubic norm NðAÞ determines the lowest-order entropy. We introduce an analogous Jordan dual A?, with

NðAÞ necessarily a perfect cube, for which A?? ¼ A and which leaves NðAÞ invariant. The two dualities

are related by a 4D=5D lift.
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I. INTRODUCTION

The purpose of this paper is to introduce two new dual-
ities, distinct from U duality, which act on black hole
charges in 4D and 5D and which leave the lowest-order
entropy invariant. Some, but not all, of the other discrete
U-duality invariants are also conserved, so the question of
higher-order corrections remains open.

It is well known that the four-dimensional supergravities
that arise from string and M theory, such as the N ¼ 2
dilaton/axion, complex Kähler form, complex structure
(STU), N ¼ 2 ‘‘magic,’’ N ¼ 4 heterotic and N ¼ 8
M/Type II, may all be described by a Freudenthal triple
system (FTS) MðJÞ [1–10], where J is a cubic Jordan
algebra underlying the corresponding 5D supergravity
[3,11,12]. The corresponding continuousU duality is given
by the automorphism group AutðMðJÞÞ, e.g. E7ð7Þ in the

case of N ¼ 8 [13]. The FTS admits a skew-symmetric
bilinear form fx; yg, a quartic form �ðx; y; z; wÞ, and a
trilinear operator Tðx; y; zÞ, defined by fTðx; y; zÞ; wg ¼
2�ðx; y; z; wÞ. To lowest order, the extremal nonrotating
black hole entropy is given by

S4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j�ðxÞj

q
; (1)

where �ðxÞ ¼ �ðx; x; x; xÞ. ‘‘Large’’ Bogomol’nyi-Prasad-
Sommerfield (BPS), ‘‘small’’ BPS, and large non-BPS
correspond to �ðxÞ> 0, �ðxÞ ¼ 0, and �ðxÞ< 0, respec-
tively. In this continuous case, the black hole entropy,
U-duality orbits, and generating solutions are well under-
stood [5,7,10,14–24].

In the fully quantized string theory, however, black hole
charges x must be integer valued and hence assigned to
elements of an integral FTS MðJÞ where J is an integral
cubic Jordan algebra [25–28]. The correspondingU duality
is given by the discrete automorphism group AutðMðJÞÞ,
e.g. E7ð7ÞðZÞ in the case of N ¼ 8 [29], with x trans-

forming as a 56. In particular, �ðxÞ is now quantized:

�ðxÞ 2 f0; 1g mod 4: (2)

From a mathematical point of view, much less is known
about the integral case. For example, we shall see that the
general classification of U duality orbits in D ¼ 4 is lack-
ing, except for the special class of projective black holes.
The class of projective FTS elements is of particular rele-
vance to recent developments in number theory [28,30].
Here, we introduce the Freudenthal dual or F dual,

defined for large BPS and non-BPS black holes by

~x ¼ TðxÞj�ðxÞj�1=2; (3)

where TðxÞ ¼ Tðx; x; xÞ 2 MðJÞ. Requiring that ~x is an
integer therefore restricts us to that subset of black holes

for which j�ðxÞj is a perfect square and for which j�ðxÞj1=2
divides TðxÞ:

d4ðxÞ ¼
�
d3ðxÞ
d1ð~xÞ

�
2
; (4)

where d1ðxÞ ¼ gcdðxÞ, d3ðxÞ ¼ gcdðTðxÞÞ, and d4ðxÞ ¼
j�ðxÞj. Applying the F duality once more yields

~~x ¼ �x: (5)

Despite the nonpolynomial nature of the transformation
(3), the F-dual scales linearly in the sense that

~xðnxÞ ¼ n~xðxÞ; n 2 Z: (6)

The U-duality integral invariants fx; yg and �ðx; y; z; wÞ
are not generally invariant under F duality but f~x; xg, �ðxÞ,
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and hence the lowest-order black hole entropy, are invari-
ant. However, higher-order corrections may also depend on
discrete U-duality invariants involving the various greatest
common divisors (gcds) [31–35]. Under F duality certain
discrete U-duality invariants are conserved, while others
are not necessarily, as is discussed in Sec. III B. For ex-
ample, the product d1ðxÞd3ðxÞ is invariant but d1ðxÞ and
d3ðxÞ separately need not be. A 4D black hole is called
primitive if d1ðxÞ ¼ 1, so the F dual of a primitive black
hole need not itself be primitive.

As described in Sec. II A, the FTS divides black holes
into five distinct ranks or orbits. Though F duality (3) was
defined for rank 4 black holes for which both T and � are
nonzero, in Sec. III E, we consider extending to ranks 0, 1,
and 2 for which both T and � vanish (but not rank 3 for
which� vanishes but not T). However, the apparent lack of
uniqueness favors continuing to restrict F duality to large
black holes.

Similar remarks apply to the quantized charges A of five-
dimensional black strings and the quantized charges B of
five-dimensional black holes, which may be assigned to
elements of an integral cubic Jordan algebra J, whose
reduced structure group Str0ðJÞ is the corresponding U
duality, e.g. E6ð6ÞðZÞ in the case of N ¼ 8 with A trans-

forming as a 27 and B as a 270. The Jordan algebra admits a
trace bilinear form TrðX; YÞ, a cubic norm NðX; Y; ZÞ and a
quadratic adjoint map X] uniquely defined by TrðX]; YÞ ¼
3NðX; X; YÞ. To lowest order, the extremal nonrotating
black hole and black string entropies are given, respec-
tively, by

S5ðblack stringÞ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNðAÞj

q
;

S5ðblack holeÞ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNðBÞj

q
;

(7)

where NðAÞ ¼ NðA; A; AÞ 2 Z. Large BPS and small BPS
correspond to N � 0, and N ¼ 0, respectively.

Here, we also introduce the Jordan dual or J dual,
defined for large black strings and holes by

A? ¼ A]NðAÞ�1=3; B? ¼ B]NðBÞ�1=3; (8)

where we take the real root as implied by the notation.
Requiring that A? and B? are integers therefore restricts us
to that subset of black holes for which NðAÞ and NðBÞ are
perfect cubes and for which NðAÞ1=3 divides A] and

NðBÞ1=3 divides B]

d3ðAÞ ¼
�
d2ðAÞ
d1ðA?Þ

�
3
; d3ðBÞ ¼

�
d2ðBÞ
d1ðB?Þ

�
3
; (9)

where d1ðAÞ ¼ gcdðAÞ, d2ðAÞ ¼ gcdðA]Þ, d3ðAÞ ¼ NðAÞ
and similarly for B. Applying the J duality once more
yields

A?? ¼ A; B?? ¼ B: (10)

Despite the nonpolynomial nature of the transformation
(8), the J dual scales linearly in the sense that

A?ðnAÞ¼nA?ðAÞ; B?ðnBÞ¼nB?ðBÞ; n2Z: (11)

The U-duality integral invariants TrðX; YÞ and
NðX; Y; ZÞ are not generally invariant under Jordan duality
but TrðX?; XÞ, NðXÞ and hence the lowest-order black hole
and black string entropy, are invariant. However, higher-
order corrections may also depend on discrete U-duality
invariants involving the various gcds [31–35]. Under J
duality certain discrete U-duality invariants are conserved,
while others are not necessarily, as is discussed in
Sec. VIB. For example, the product d1ðAÞd2ðAÞ is invariant
but d1ðAÞ and d2ðAÞ separately need not be. A 5D black
hole/string is called primitive if d1 ¼ 1, so the J dual of a
primitive black hole/string need not itself be primitive.
As described in Sec. II A, the Jordan algebra divides

black strings/holes into four distinct ranks or orbits.
Though J duality (8) was defined for rank 3, for which
both A] and NðAÞ are nonzero, in Sec. VIC we consider
extending the definition to ranks 0 and 1, for which both A]

and NðAÞ vanish, (but not rank 2 for which NðAÞ vanishes
but not A]). However, the apparent lack of uniqueness
favors continuing to restrict J duality to large black
holes/strings.
Many of our results simplify if we confine our attention

to the Neveu-Schwarz–Neveu-Schwarz (NS-NS) sector,
which is interesting in its own right for the heterotic and
STU black holes. This is treated in Sec. IV, where inter alia
we answer yes to the question posed in [35]: Is a general
D ¼ 4,N ¼ 8 black hole always U duality related to one
with only NS-NS charges?
The 4D=5D lift [36] associates a rotating 5D black hole

to a nonrotating 4D black hole. In Sec. VII, we show that
two black holes related by F duality in 4D are related by J
duality when lifted to 5D.
In Sec. VIII, we examine the all-important question of

the invariance of the exact entropies under F and J dual-
ities. In the special 5D and projective 4D cases where all
U-duality invariants are preserved, the exact entropy is F
and J-dual invariant, but in a trivial way: the transforma-
tions can always be undone by a U duality. In the 4D
nonprojective case, the question of U equivalence remains
open because of the inability to ‘‘reverse engineer’’ the
black holes’ charges given their (known) U-duality invar-
iants. In the 4D and 5D cases where not all U-duality
invariants are preserved, there is insufficient information
and further research is required.

II. REVIEW OF JORDAN ALGEBRAS AND THE
FREUDENTHAL TRIPLE SYSTEM

A. Jordan algebras and 5D black holes

A Jordan algebra J [37–41] is vector space defined over
a ground field F equipped with a bilinear product satisfying

X � Y ¼ Y � X;

X2 � ðX � YÞ ¼ X � ðX2 � YÞ; 8 X; Y 2 J:
(12)
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For our purposes the relevant Jordan algebras are all ex-
amples of the class of integral cubic Jordan algebras [25–
28]. An integral cubic Jordan algebra comes equipped with
a cubic form N: J ! Z, satisfying Nð�XÞ ¼ �3NðXÞ,
8 � 2 Z, X 2 J. Additionally, there is an element c 2
J satisfying NðcÞ ¼ 1, referred to as a base point. There is
a general prescription for constructing cubic Jordan alge-
bras, due to Freudenthal, Springer, and Tits [42–44], for
which all the properties of the Jordan algebra are essen-
tially determined by the cubic form. We sketch this con-
struction here, following closely the conventions of
[28,44].

Let V be a vector space equipped with both a cubic
norm, N: V ! Z, satisfying Nð�XÞ ¼ �3NðXÞ, 8 � 2 Z,
X 2 V, and a base point c 2 V such that NðcÞ ¼ 1. If
NðX; Y; ZÞ, referred to as the full linearization of N, de-
fined by

NðX; Y; ZÞ :¼ 1

6
½NðX þ Y þ ZÞ � NðX þ YÞ � NðX þ ZÞ

� NðY þ ZÞ þ NðXÞ þ NðYÞ þ NðZÞ�
(13)

is trilinear then one may define the following four maps,
(1) The trace,

Tr ðXÞ ¼ 3Nðc; c; XÞ; (14a)

(2) A quadratic map,

SðXÞ ¼ 3NðX; X; cÞ; (14b)

(3) A bilinear map,

SðX; YÞ ¼ 6NðX; Y; cÞ; (14c)

(4) A trace bilinear form,

Tr ðX; YÞ ¼ TrðXÞTrðYÞ � SðX; YÞ: (14d)

A cubic Jordan algebra J with multiplicative identity 1 ¼
cmay be derived from any such vector space ifN is Jordan
cubic, that is,

(1) The trace bilinear form (14d) is nondegenerate.
(2) The quadratic adjoint map, ]: J ! J, uniquely

defined by TrðX]; YÞ ¼ 3NðX; X; YÞ, satisfies
ðX]Þ] ¼ NðXÞX; 8 X 2 J: (15)

The Jordan product is then defined using

X � Y ¼ 1
2ðX � Y þ TrðXÞY þ TrðYÞX � SðX; YÞ1Þ;

(16)

where, X � Y is the linearization of the quadratic adjoint

X � Y ¼ ðXþ YÞ] � X] � Y]: (17)

Finally, the Jordan triple product is defined as

fX; Y; Zg ¼ ðX � YÞ � Zþ X � ðY � ZÞ � ðX � ZÞ � Y:

(18)

While in general an integral Jordan algebra is not closed
under the Jordan product, the cubic norm and trace bilinear
form are integer valued, which are the crucial properties for
our purposes. Moreover, J is closed under the quadratic
adjoint map and its linearization as required.
Important examples include the sets of 3� 3 Hermitian

matrices, which we denote as JA3 , defined over the four

division algebrasA ¼ R,C,H orO (or their split signature
cousins) with Jordan product X � Y ¼ 1=2ðXY þ YXÞ,
where XY is just the conventional matrix product. See
[41] for a comprehensive account. In addition there is the
infinite sequence of spin factors Z �Qn, where Qn is an
n-dimensional vector space over Z [28,40,41,43,45].
The structure group StrðJÞ is composed of all linear

bijections on J that leave the cubic norm N invariant up
to a fixed scalar factor,

NðgðXÞÞ ¼ �NðXÞ; 8 g 2 StrðJÞ: (19)

The reduced structure group Str0ðJÞ leaves the cubic norm
invariant and therefore consists of those elements in StrðJÞ
for which � ¼ 1 [2,41,46]. The usual concept of matrix
rank may be generalized to cubic Jordan algebras and is
invariant under both StrðJÞ and Str0ðJÞ [28,40]. See
Table I.
To lowest order, the extremal nonrotating black hole and

black string entropies are given, respectively, by

S5ðblack stringÞ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffi
NðAÞ

p
; S5ðblack holeÞ ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffi
NðBÞ

p
:

(20)

Large BPS black holes and strings correspond to rank 3
with NðAÞ, NðBÞ � 0 and small BPS correspond to ranks 1
and 2 with NðAÞ, NðBÞ ¼ 0. In Table II we have listed the
fraction of unbroken supersymmetry for the N ¼ 8 case.
The Dirac-Schwinger quantization condition for an elec-

tric black hole and a magnetic string with charges A, B in
the Jordan language is given by

Tr ðA; BÞ 2 Z: (21)

TABLE I. Partition of the space J into four orbits of Str0ðJÞ or
ranks.

Condition

Rank A A] NðAÞ N ¼ 8 BPS

0 ¼ 0 ¼ 0 ¼ 0 1

1 � 0 ¼ 0 ¼ 0 1=2
2 � 0 � 0 ¼ 0 1=4
3 � 0 � 0 � 0 1=8
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B. The Freudenthal triple system and 4D black holes

Given an integral cubic Jordan algebra J, one is able to
construct an integral FTS by defining the vector space
MðJÞ,

M ðJÞ ¼ Z � Z � J � J: (22)

An arbitrary element x 2 MðJÞ may be written as a
‘‘2� 2 matrix,’’

x ¼ � A
B �

� �
; where �;� 2 Z and A; B 2 J:

(23)

For convenience we identify the quantity

�ðxÞ :¼ 1
2ð��� TrðA; BÞÞ: (24)

The FTS comes equipped with a nondegenerate bilinear
antisymmetric quadratic form, a quartic form, and a tri-
linear triple product [1,2,28,47,48]:
(1) Quadratic form fx; yg: MðJÞ �MðJÞ ! Z

fx; yg ¼ ��� ��þ TrðA;DÞ � TrðB;CÞ;

where x ¼ � A

B �

 !
; y ¼ � C

D �

 !
: (25a)

(2) Quartic form q: MðJÞ ! Z

�ðxÞ ¼ �4½�NðAÞ þ �NðBÞ�ðxÞ2 � TrðA]; B]Þ�:
(25b)

The quartic norm �ðxÞ is either 4k or 4kþ 1 for
some k 2 Z.

(3) Triple product T: MðJÞ �MðJÞ �MðJÞ !
MðJÞ, which is uniquely defined by

fTðx; y; wÞ; zg ¼ 2�ðx; y; w; zÞ; (25c)

where �ðx; y; w; zÞ is the full linearization of �ðxÞ
such that �ðx; x; x; xÞ ¼ �ðxÞ. For future conve-
nience we present here an explicit form for TðxÞ ¼
Tðx; x; xÞ:

TðxÞ ¼ T� TA

TB T�

� �
¼ 2

���ðxÞ � NðBÞ �ð�B] � B� A]Þ þ �ðxÞA
ð�A] � A� B]Þ � �ðxÞB ��ðxÞ þ NðAÞ

� �
: (25d)

Note that all the necessary definitions, such as the
cubic and trace bilinear forms, are inherited from
the underlying Jordan algebra J.

Of particular importance to our discussion is the auto-
morphism group AutðMðJÞÞ, which is given by the set of
all invertible Z-linear transformations, which leave both
fx; yg and �ðx; y; w; zÞ invariant [2]. Note, for any trans-

formation � 2 AutðMðJÞÞ we have
Tð�ðxÞ; �ðyÞ; �ðwÞÞ ¼ �ðTðx; y; wÞÞ: (26)

AutðMðJÞÞ is the U-duality group, e.g. E7ð7Þ in the case of

N ¼ 8. The discrete 4D U-duality group is generated by
the following three maps [2,28]:

	ðCÞ: � A

B �

 !
�

�þ ðB;CÞ þ ðA;C]Þ þ �NðCÞ Aþ �C

Bþ A� Cþ �C] �

 !
; (27a)

c ðDÞ: � A

B �

 !
�

� Aþ B�Dþ �D]

Bþ �D �þ ðA;DÞ þ ðB;C]Þ þ �NðCÞ

 !
; (27b)

TðsÞ: � A

B �

 !
�

��1� sðAÞ
s0�1ðBÞ ��

 !
; (27c)

where s 2 StrðJÞ, and s0 is its adjoint defined with respect
to the trace bilinear form TrðX; sðYÞÞ ¼ Trðs0ðXÞ; YÞ.

Following [28], the Freudenthal triple systems, defined
by the various Jordan algebras mentioned here, and their
associated automorphism groups are summarized in
Table III. This table covers most of the black holes of
interest: N ¼ 2 STU, N ¼ 2 coupled to n vector mul-

tiplets; magic N ¼ 2 and N ¼ 8. The heterotic string
with N ¼ 4 supersymmetry and SLð2;ZÞ � SOð6; 22;ZÞ
U duality may also be included by using the Jordan algebra
Z �Q5;21 [9,49].

The conventional concept of matrix rank may be gener-
alized to Freudenthal triple systems in a natural and
AutðMðJÞÞ invariant manner. The rank of an arbitrary

TABLE II. Partition of the space MðJÞ into five orbits of
ðMðJÞÞ or ranks.

Condition

Rank x 3Tðx; x; yÞ þ fx; ygx Tðx; x; xÞ �ðxÞ N ¼ 8 BPS

0 ¼ 0 ¼ 0 8 y ¼ 0 ¼ 0 1

1 � 0 ¼ 0 8 y ¼ 0 ¼ 0 1=2
2 � 0 � 0 ¼ 0 ¼ 0 1=4
3 � 0 � 0 � 0 ¼ 0 1=8
4 � 0 � 0 � 0 >0 1=8
4 � 0 � 0 � 0 <0 0
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element x 2 MðJÞ is uniquely defined using the relations
in Table II [28,48]. The rank of any element is invariant
under AutðMðJÞÞ [28].

To lowest order, the extremal nonrotating black hole
entropy is given by

S4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j�ðxÞj

q
: (28)

Large BPS and large non-BPS black holes correspond to
rank 4 with �ðxÞ> 0 and �ðxÞ< 0, respectively. Small
BPS black holes correspond to ranks 1, 2 and 3 with
�ðxÞ ¼ 0. In Table II we have listed the fraction of un-
broken supersymmetry for the N ¼ 8 case.

The Dirac-Schwinger quantization condition relating
two black holes with charges x and x0 within the FTS
language is given by

fx; x0g 2 Z: (29)

C. The 4D=5D lift

Recent work [36] has established a simple correspon-
dence relating the entropy of 4D BPS black holes in
type IIA theory compactified on a Calabi-Yau Y to the
entropy of spinning 5D BPS black holes in M-theory
compactified on Y � TN�, where TN� is a Euclidean 4-

dimensional Taub–Newman-Unti-Tamburino space with
Newman-Unti-Tamburino charge �. Using this 4D=5D
lift the electric black hole charge Q and spin J � may be

identified with the dyonic charges of the 4D black hole
giving a precise relationship between the leading order
entropy formulae. This relationship has then been used to
count the 4D BPS black hole degeneracies in N ¼ 8
string theory [50] exploiting the known results from the
analysis of 5-dimensional black holes [31,34,35,50–53].

This correspondence between the D ¼ 5 black hole
changesQ and J � and the D ¼ 4 electric/magnetic black

hole charges is neatly captured in terms of the FTS [9].
Identifying the black string magnetic charge P and

black hole electric charge Q

P ¼ B] � �A; Q ¼ A] � �B; (30)

and the corresponding angular momenta

J � ¼ � 1

2
T� ¼ ��ðxÞ þ NðBÞ;

J � ¼ � 1

2
T� ¼ ���ðxÞ � NðAÞ;

(31)

we find

�ðxÞ ¼ 4

�2
fNðP Þ � J �

2g ¼ 4

�2
fNðQÞ � J �

2g: (32)

Hence,

S4 ¼ 1

�
S5ðblack stringÞ ¼ 1

�
S5ðblack holeÞ; (33)

where, allowing for rotation,

S5ðblack stringÞ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNðP Þ � J �

2j
q

;

S5ðblack holeÞ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNðQÞ � J �

2j
q

:

(34)

To prove (32) from a purely Jordan algebraic perspective
we begin by using the identity

Tr ðX; X]Þ ¼ 3NðXÞ (35)

to write

3Nð�A� B]Þ ¼ Trð�A� B]; ð�A� B]Þ]Þ: (36)

Then, using

ðXþ YÞ] ¼ X � Y þ X] þ Y]; (37)

we have

TABLE III. The automorphism group AutðMðJÞÞ and the dimension of its representation dimMðJÞ given by the Freudenthal
construction defined over the cubic Jordan algebra J with dimension dimJ and reduced structure group Str0ðJÞ. The quantizedN ¼
8 theories in 5 and 4 dimensions have U-duality groups E6ð6ÞðZÞ and E7ð7ÞðZÞ, respectively.
Jordan algebra J Str0ðJÞ dimJ AutðMðJÞÞ dimðMðJÞÞ
Z � � � 1 SLð2;ZÞ 4

Z � Z SOð1; 1;ZÞ 2 SLð2;ZÞ � SLð2;ZÞ 6

Z � Z � Z SOð1; 1;ZÞ � SOð1; 1;ZÞ 3 SLð2;ZÞ � SLð2;ZÞ � SLð2;ZÞ 8

Z �Qn SOðn� 1; 1;ZÞ � SOð1; 1;ZÞ nþ 1 SLð2;ZÞ � SOð2; n;ZÞ 2nþ 4
JZ3 SLð3;ZÞ 6 Spð6;ZÞ 14

JC3 SLð3;CÞ 9 SUð3; 3;ZÞ 20

JH3 SU�ð6;ZÞ 15 SO�ð12;ZÞ 32

JO3 E6ð�26ÞðZÞ 27 E7ð�25ÞðZÞ 56

JO
s

3 E6ð6ÞðZÞ 27 E7ð7ÞðZÞ 56
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3Nð�A� B]Þ ¼ Trð�A� B]; ð��AÞ � B] þ �2A]

þ NðBÞBÞ
¼ Trð�A� B]; ð��AÞ � B]Þ þ 3�3NðAÞ

� �2 TrðA]; B]Þ þ �TrðA; BÞNðBÞ
� 3NðBÞ2: (38)

Finally, using

Tr ðX; Y � ZÞ ¼ 6NðX; Y; ZÞ; (39)

which may be derived from the definition of the quadratic
adjoint

Tr ðX]; YÞ ¼ 3NðX; X; YÞ; (40)

we see that

Trð�A� B]; ð��AÞ � B]Þ ¼ 6Nð�A� B];��A; B]Þ
¼ 2½Nð�A� B]Þ

þ NðB]Þ � Nð�AÞ�: (41)

Hence, on substituting back into (38) one finds

Nð�A� B]Þ ¼ �3NðAÞ � �2 TrðA]; B]Þ
þ �TrðA; BÞNðBÞ � NðBÞ2; (42)

and hence

�ðxÞ ¼ � 4

�2
f½��þ NðBÞ�2 þ ½�3NðAÞ � �2 TrðA]; B]Þ

þ �TrðA; BÞNðBÞ � NðBÞ2�g
¼ 4

�2
fNðB] � �AÞ � ½��þ NðBÞ�2g; (43)

as required. Had we started with NðQÞ we would have
obtained the analogous black hole equation.

D. Greatest common divisors, discrete U-duality
invariants, and dyon orbits

Macroscopic physical quantities, such as the leading
order Bekenstein-Hawking entropy, are necessarily invari-
ant under the continuousU-duality group of the underlying
low energy supergravity action. For example, the lowest-
order black hole entropy ofN ¼ 8,D ¼ 4 supergravity is
determined by the unique quartic E7ð7ÞðRÞ invariant �ðxÞ.
However, in the full quantum theory this continuous sym-
metry is broken to a discrete subgroup due to the Dirac-
Schwinger quantization conditions. Consequently, the
physical quantities of the quantized theory may also de-
pend on a number of previously absent discrete invariants.
Moreover, the U-duality charge orbits are furnished with
an increased level of subtlety, and their full characteriza-
tion may depend crucially on the new discrete invariants.
For example, see [32] for a complete treatment of the
T-duality dyon orbits of the heterotic string on a T6, which

depend not only on the continuous SLð2;RÞ �
SOð6; 22;RÞ quartic invariant but also on two further dis-
crete invariants of the fully quantized U-duality group
SLð2;ZÞ � SOð6; 22;ZÞ.
Typically, these discrete invariants are given by greatest

common divisors of particular dyon charge combinations.
As such, they are obviously not defined in the continuous
case and may only be introduced for quantized charges.
Accordingly, before presenting some of the key features of
discrete invariants and charge orbits in D ¼ 5 and D ¼ 4,
we begin by recalling some useful properties of the greatest
common divisor ( gcd) of integers a, b, c:
(1) The gcd is commutative and associative,

gcdða; bÞ ¼ gcdðb; aÞ;
gcdðgcdða; bÞ; cÞ ¼ gcdða; gcdðb; cÞÞ

¼ gcdða; b; cÞ:
(44)

(2) The gcd satisfies the following basic identities,

gcdðac; bcÞ ¼ c gcdða; bÞ
gcdðaþ cb; bÞ ¼ gcdða; bÞ
gcdðb=c; a=cÞ ¼ gcdða; bÞ=c for cja; b: (45)

D ¼ 5:
(1) For an element X of an integral Jordan algebra, an

integer d divides X, denoted djX, if X ¼ dX0 with
the X0 integral.

(2) The gcd of a collection of not all zero integral
Jordan algebra elements is defined to be the greatest
integer that divides them. By definition gcd is posi-
tive. The gcd may be used to define the following set
of discrete U-duality invariants [27]:

d1ðXÞ ¼ gcdðXÞ d2ðXÞ ¼ gcdðX]Þ
d3ðXÞ ¼ jNðXÞj: (46)

(3) An n� n matrix X is said to be in Smith normal
form if X is a diagonal matrix

X ¼ ðX1; X2 . . .XnÞ
� diagðX1; X2 . . .XnÞ; Xi 2 Z; (47)

with XijXiþ1 for all i ¼ 1; 2 . . . n� 1, and all zeros
lie in the bottom right corner.

(4) When J is JA3 , where A is one of the three integral

split composition algebras Cs, Hs or Os, which
includes the all-important N ¼ 8 example with
E6ð6ÞðZÞ U duality, the most general black string

charges A (or equally black hole charges B) may
be brought into Smith normal form by a U-duality
transformation
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A ¼ ðA1; A2; A3Þ; (48)

with A1jA2, A2jA3 and A1, A2 	 0 [27]. Note, in the
J ¼ Z � Z � Z case, while the charges are already
in diagonal form, the reduced structure group in not
large enough to put them in Smith normal form.

(5) ForJ ¼ JA3 whereA is one of the three integral split

composition algebras Cs, Hs or Os, which again
includes the central N ¼ 8 example, the orbit rep-
resentatives of all black strings (holes) have been
fully classified [27]. By virtue of the fact that any
element A is U duality equivalent to a Smith normal
form (48) the complete set of U-duality orbit repre-
sentatives may be written as

kð1; l; lmÞ; where k; l 	 0; m 2 Z: (49)

That this gives the complete set of distinct orbits
follows from the fact that k, l, and m are uniquely
determined by theU-duality invariants d1ðAÞ, d2ðAÞ,
and NðAÞ. This follows simply from A ¼ kð1; l; lmÞ
with A] ¼ k2ðl2m; lm; lÞ:
d1ðAÞ ¼ k d2ðAÞ ¼ k2 gcdðl2m; lm; lÞ ¼ k2l

d3ðAÞ ¼ k3l2jmj; (50)

so that d1ðAÞ fixes k, d2ðAÞ ¼ d21ðAÞl determines l
and then m is set by d3ðXÞ with the sign given by
sgnðNðXÞÞ. Consequently, the Smith normal form of
any black string (hole) is unique; any two black
strings A and A0 with d1ðAÞ ¼ d1ðA0Þ, d2ðAÞ ¼
d2ðA0Þ and NðAÞ ¼ NðA0Þ are U duality related.
Conversely, two black strings with distinct Smith
normal forms are not U duality related. A simple
example is given by

A ¼ kð1; 1; 1Þ; A0 ¼ ð1; k; k2Þ; (51)

for which, NðAÞ ¼ NðA0Þ ¼ k3, but d2ðAÞ ¼ k2 and
d2ðA0Þ ¼ k.
There are black string (hole) configurations with the
same cubic norm and hence lowest-order entropy
that are not U duality related.

(6) A black string A (black hole B) is said to be primi-
tive if d1ðAÞ ¼ 1 (d1ðBÞ ¼ 1). A primitive black
hole in Smith normal form clearly has k ¼ 1. For
primitive black holes in N ¼ 8, D ¼ 5 type II
string theory a degeneracy counting formula has
been derived in [52], which depends not only on
the leading order entropy NðBÞ but also on the
discrete invariant d2ðBÞ.

D ¼ 4:
(1) For an element x of an integral FTS, an integer d

divides x, denoted djx, if x ¼ dx0 with x0 integral.
(2) The gcd of a collection of not all zero integral FTS

elements is defined to be the greatest integer that
divides them. By definition gcd is positive. The gcd

may be used to define the following1 set of discrete
U-duality invariants [28,35]:

d1ðxÞ ¼ gcdðxÞ
d2ðxÞ ¼ gcdð3Tðx; x; yÞ þ fx; ygxÞ 8 y

d02ðxÞ ¼ gcdðP ðxÞ;QðxÞ;RðxÞÞ
d3ðxÞ ¼ gcdðTðx; x; xÞÞ d4ðxÞ ¼ j�ðxÞj
d5ðxÞ ¼ gcdðx ^ TðxÞÞ;

(52)

where ^ denotes the antisymmetric tensor product.
P ¼ B] � �A, and Q ¼ A] � �B are the charge
combinations appearing in the 4D=5D lift (30) and
RðxÞ: J ! J is a Jordan algebra endomorphism
given by

R ðxÞðCÞ ¼ 2�ðxÞCþ 2fA; B; Cg; C 2 J;

(53)

where fA; B; Cg is the Jordan triple product (18).
Taken together, ðP ðxÞ;QðxÞ;RðxÞÞ form the adjoint
representation of the 4D U duality: 133 in the case
of E7ð7ÞðZÞ. Under the 5D U duality, they transform

as the fundamental, contragredient fundamental,
and adjoint representations, respectively: 27, 270,
and 1þ 78 in the case of E6ð6ÞðZÞ.
The second discrete invariant d2ðxÞ may be re-
phrased using the fact that an integer n divides
3Tðx; x; yÞ þ fx; ygx for all y if and only if it divides
the following five expressions [28]:

2P ; 2Q; 3���TrðA;BÞ; RðxÞ; Rðx0Þ;
(54)

where

x ¼ � A
B �

� �
; x0 ¼ � B

A �

� �
: (55)

Note, on restricting to the STU subsector with J ¼
Z � Z � Z

R ðxÞ ¼ ð��� TrðA; BÞÞ1þ 2A � B; (56)

and therefore RðxÞ ¼ Rðx0Þ and 3���
TrðA; BÞ ¼ TrðRðxÞÞ so that, using the STU notation
presented in Tables V and VII, one obtains

d2ðxÞ ¼ gcdð�A; �B; �CÞ; (57)

with �A, �B, �C given in (185) transforming, re-
spectively, as ð3; 1; 1Þ, ð1; 3; 1Þ, ð1; 1; 3Þ under
SLð2;ZÞ � SLð2;ZÞ � SLð2;ZÞ.

1In the N ¼ 8 case, Sen [35] denotes d02ðxÞ by c , and d5ðxÞ
by 
.
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(3) x is said to be reduced if it is of the form

x ¼ � A
0 �

� �
; (58)

with �> 0, �j�, �jA. x is said to be diagonal
reduced if in addition A is diagonal. For a reduced
x, d1ðxÞ ¼ �.

(4) WhenJ is eitherZ � Z � Z or JA3 , whereA is one of

the three integral split composition algebras Cs, Hs

or Os, which includes the all-important N ¼ 8
example with E7ð7ÞðZÞ U duality,2 the most general

black hole charge x may be brought by a U-duality
transformation to the diagonal reduced canonical
form depending on just five parameters [28]

x ¼ � ðA1; A2; A3Þ
0 �

� �
; (59)

with �> 0, �j�, �jA.
(5) Moreover, for the cases with J ¼ JA3 , A may be

transformed into Smith diagonal form so that
A1jA2, A2jA3 and A1, A2 	 0 [27,28], in which
case we may write the most general black hole in
a further simplified form:

x ¼ �
1 kð1; l; lmÞ
0 j

� �
; (60)

with k, l 	 0. In this notation the discrete U-duality
invariants (52) are given by

d1ðxÞ ¼ �

d2ðxÞ ¼ �2 gcdðj; 2kÞ
d02ðxÞ ¼ �2 gcdðj; kÞ
d3ðxÞ ¼ �3 gcdðj; 2k2lÞ
d4ðxÞ ¼ �4jj2 þ 4k3l2mj
d5ðxÞ ¼ �4 gcdðj; k2lÞ:

(61)

However, unlike the D ¼ 5 case the invariants (61)
are insufficient to determine uniquely j, k, l, m, as
can be seen by taking any example with j ¼ 1. Note,
however, that � is clearly fixed by d1ðxÞ.
Consequently, the reduced canonical form (60) of
any given black hole is not necessarily unique and,
to the best of our knowledge, there is no complete
classification of the U-duality orbits. For example,

x ¼ �
1 ð0; 0; 0Þ

ð0; 0; 0Þ j

� �
;

x0 ¼ �
1 ðj; 0; 0Þ

ð0; 0; 0Þ j

� �
;

(62)

are both in canonical form and U duality related

using 	ðCÞ in (27a) with C ¼ ð1; 0; 0Þ.
It is clear from (61) that there are black holes with
the same quartic norm but differing discrete invari-
ants. A simple example is given by

x ¼ 1 2ð1; 0; 0Þ
0 2

� �
; x0 ¼ 1 ð1; 0; 0Þ

0 2

� �
;

(63)

for which, �ðxÞ ¼ �ðx0Þ ¼ 4, but d02ðxÞ ¼ 2 and
d02ðx0Þ ¼ 1. In summary,
there are black hole configurations with the same
quartic norm and hence lowest-order entropy that
are definitely not U duality related;
but more surprisingly,
there are black hole configurations having the same
quartic norm and same discrete invariants of (61)
that are apparently not U duality related.
A simple example is given by

x ¼ 1 ð1; 2; 2Þ
0 1

� �
; x0 ¼ 1 ð1; 1; 4Þ

0 1

� �
:

(64)

However, without a complete classification of the
U-duality orbits one is not able to be certain in
general about the U equivalence of black hole
charge vectors.

(6) x is said to be primitive if d1ðxÞ ¼ 1. A primitive
diagonally reduced black hole clearly has � ¼ 1.

(7) An element x is said to be projective if its U-duality
orbit contains a diagonal reduced element satisfying

gcdð�A1; ��; A2A3Þ ¼ 1;

gcdð�A2; ��; A1A3Þ ¼ 1;

gcdð�A3; ��; A1A2Þ ¼ 1:

(65)

The concept of a projective element was originally
introduced for the case J ¼ Z � Z � Z along with
certain generalizations central to the new view on
Gauss composition and its extension as expounded
in [30]. This is the definition relevant to the STU
model and is related to d02ðxÞ. It is given by

gcdðP iðxÞ;QiðxÞ;RiðxÞÞ ¼ 1; i ¼ 1; 2; 3;

(66)

where the index i refers to the three components of
Z � Z � Z, andRðxÞ is in the reduced form (56). In
the STU language of Sec. V this projectivity condi-
tion is

gcdð12�i
00;

1
2�

i
11; �

i
01Þ ¼ 1; i ¼ A; B; C; (67)

where �i is given in (185). Using (179) this becomes

gcdð12P2
i ;

1
2Q

2
i ; Pi �QiÞ ¼ 1; i ¼ A; B;C; (68)

where the index i refers to the three triality related

2But excludes the magicN ¼ 2 supergravities based on C, H
or O [3,11,12], which require a separate treatment [26,27].
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versions of P, Q transforming as a ð2; 4Þ of
SLAð2;ZÞ � SOð2; 2;ZÞ, SLBð2;ZÞ � SOð2; 2;ZÞ
or SLCð2;ZÞ � SOð2; 2;ZÞ [10,54]. The idea was
then further generalized in [28] giving the appropri-
ate definition forN ¼ 8,D ¼ 4 black holes, which
we adopted here (65).
The class of projective FTS elements is of particular
relevance to recent developments in number theory
[28,30].

(8) If x is projective, then d02ðxÞ ¼ 1.
(9) If d3ðxÞ ¼ 1, then x is projective.

(10) If d3ðxÞ 	 3 or TðxÞ ¼ 0, then x is not projective.
(11) When � is odd, d3ðxÞ ¼ 1 iff x is projective.
(12) While the general treatment of orbits in D ¼ 4 is

lacking, the orbit representatives of projective black
holes have been fully classified in [28], at least for
J ¼ JA3 , where A is one of the three integral split

composition algebras Cs, Hs or Os, which again
includes the central N ¼ 8 example. Any projec-
tive element x is U duality equivalent to an element
[28]

1 ð1; 1; mÞ
ð0; 0; 0Þ j

� �
; j 2 f0; 1g; m 2 Z;

(69)

where the values ofm and j are uniquely determined
by �ðxÞ. Further,

(i) U duality, for example E7ð7ÞðZÞ, acts transitively on

projective elements of a given norm �ðxÞ.
(ii) If �ðxÞ is a squarefree3 integer equal to 1 (mod 4) or

if �ðxÞ ¼ 4k, where k is squarefree and equal to 2 or
3 (mod 4), then x is projective and hence U duality
acts transitively. In the projective case all black holes
with the same quartic norm and hence lowest-order
entropy are U duality related.

III. THE 4D FREUDENTHAL DUAL

A. Definition

Given a black hole with charges x, we define its
Freudenthal dual by

~x ¼ TðxÞj�ðxÞj�1=2: (70)

As described in Sec. II A, the FTS divides black holes into
five distinct ranks or orbits. F duality (70) is initially
defined for large rank 4 black holes for which both T and
� are nonzero. Small black holes are discussed in
Sec. III E.

The invariance of �ðxÞ follows by noting that

2�ðxÞ ¼ fTðxÞ; xg; (71)

where TðxÞ ¼ Tðx; x; xÞ obeys

TðTðxÞÞ ¼ ��2ðxÞx; (72)

and hence

�ðTðxÞÞ ¼ �ðxÞ3: (73)

So,

�ð~xÞ ¼ �ðTðxÞÞ�ðxÞ�2 ¼ �ðxÞ: (74)

Moreover,

~~x ¼ Tð~xÞj�ðxÞj�1=2 ¼ TðTðxÞÞ�ðxÞ�2 ¼ �x: (75)

In the case of two black holes related by Freudenthal
duality, the Dirac-Schwinger quantization condition (29)
becomes

f~x; xg ¼ fTðxÞ; xgj�ðxÞj�1=2 ¼ 2 sgnð�Þj�ðxÞj1=2; (76)

which is also invariant. Note the factor of 2.
As noted in Sec. I, for a valid dual charge vector ~x, we

require that j�ðxÞj is a perfect square. So we may write

j�ðxÞj ¼ 1
4f~x; xg2; (77)

with

f~x; xg ¼ ~��� ~��þ Trð ~A; BÞ � Trð ~B; AÞ: (78)

This is a necessary, but not sufficient condition because we
further require that

d4ðxÞ ¼
�
d3ðxÞ
d1ð~xÞ

�
2 ¼

�
d3ð~xÞ
d1ðxÞ

�
2 ¼ d4ð~xÞ: (79)

Since F duality requires that �ðxÞ is a perfect square, the
squarefree condition discussed in item 12 of Sec. II D does
not apply to the subset of black holes admitting an F dual,
which may or may not be projective:
Nonprojective black holes related by an F duality not

conserving d1 provide examples of configurations with the
same quartic norm and hence lowest-order entropy that are
definitely not U duality related,
but more surprisingly,
nonprojective black holes related by an F duality con-

serving d1 provide examples of configurations with the
same quartic norm, and same discrete invariants (61),
that are apparently not U duality related. Furthermore,
without a complete orbit classification it is still an open
question whether such black holes in general are U duality
related [28].
The U-duality integral invariants fx; yg and �ðx; y; z; wÞ

are not generally invariant under Freudenthal duality, while
f~x; xg,�ðxÞ, and hence the lowest-order black hole entropy,
are invariant. However, higher-order corrections to the
black hole entropy depend on some of the discrete
U-duality invariants, to which we now turn.

3An integer is squarefree if its prime decomposition contains
no repetition.
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B. The action of F duality on discrete U-duality
invariants

The first important observation we make is that since

Tð�ðxÞ; �ðyÞ; �ðzÞÞ ¼ �ðTðx; y; zÞÞ;
8 � 2 AutMðJÞ;

F duality commutes with U duality

g�ðxÞ ¼ �ð~xÞ: (81)

We shall see that of the discrete U-duality invariants listed
in (52), not only d4ðxÞ but also d2ðxÞ, d02ðxÞ, and d5ðxÞ are
F-dual invariant. However, d1 ¼ gcdðxÞ and d3 ¼
gcdðTðxÞÞ need not be.

The invariance of d5ðxÞ follows from (72), which implies

~x ^ Tð~xÞ ¼ TðxÞj�j�1=2 ^ TðTðxÞj�j�1=2Þ
¼ �j�j�2TðxÞ ^ �2x ¼ sgnð�Þx ^ TðxÞ (82)

and, hence, d5ðxÞ ¼ d5ð~xÞ.
To prove the invariance of d02ðxÞ, we examine P ðxÞ,

QðxÞ, andRðxÞ in turn. First, for the black string magnetic
charge P we find from (25d)

j�j ~P ¼ 4f½��A] þ A� B] þ �ðxÞB�]
� ð��ðxÞ þ NðBÞÞ � ½�B] � B� A] � �ðxÞA�g:

(83)

Using ðX þ YÞ] ¼ X � Y þ X] þ Y] the first term of (83)
gives

½ � �A] þ A� B] þ �ðxÞB�]
¼ ��ðA� B]Þ � A] þ �ðxÞðA� B]Þ � B

� ��ðxÞA] � Bþ ðA� B]Þ] þ �2NðAÞAþ �ðxÞ2B]:

(84)

This may be further simplified using the identities

X] � ðX� YÞ ¼ NðXÞY þ TrðX]; YÞX
ðX � YÞ] ¼ TrðX]; YÞY þ TrðY]; XÞX � X] � Y];

(85)

which follow from the quadratic adjoint definition and the
requirement that ðX]Þ] ¼ NðXÞX. These identities yield
ðA� B]Þ � A] ¼ NðAÞB] þ TrðA]; B]ÞA
ðA� B]Þ � B ¼ NðBÞAþ TrðA; BÞB]

ðA� B]Þ] ¼ TrðA]; B]ÞB] þ TrðA; BÞNðBÞA
� NðBÞA] � B: (86)

Using the above to simplify (84) and then substituting into
(88) gives, after collecting terms,

j�j ~P ¼ 4½�2�� �TrðA; BÞ � ��ðxÞ�A] � B

þ �ðB] � �AÞ: (87)

The first term vanishes identically so that

~P ¼ sgnð�ÞðB] � �AÞ ¼ sgnð�ÞP : (88)

A similar treatment goes through for Q:

~Q ¼ sgnð�ÞðA] � �AÞ ¼ sgnð�ÞQ: (89)

Finally, in order to demonstrate the invariance of RðxÞ we
exploit the fact that since U duality commutes with F
duality we may assume x to be in reduced form (58) so that

R ðxÞðCÞ ¼ ��C: (90)

For reduced x the dual is given by

j�j1=2~x ¼ ��2� ��A
2�A] ��2 þ 2NðAÞ

� �
; (91)

where � ¼ ��2�2 � 4�NðAÞ. Upon substituting in for
RðxÞðCÞ one finds
j�jRð~xÞðCÞ ¼ ��ð�½�2�2 þ 8NðAÞ�Cþ 4�fA; A]; CgÞ

¼ ���C; (92)

where we have used fX; X]; Yg ¼ NðXÞY [44] in the final
step. Hence, R is also invariant up to a sign.

~R ¼ sgnð�Þ��C ¼ sgnð�ÞR: (93)

This clearly establishes the invariance of d02ðxÞ under F
duality.
To prove the invariance of d2ðxÞ we first rephrase the

problem using the fact that an integer n divides
3Tðx; x; yÞ þ fx; ygx for all y if and only if it divides the
following five expressions [28]:

2P ; 2Q; 3���TrðA;BÞ; RðxÞ; Rðx0Þ;
(94)

where

x ¼ � A
B �

� �
; x0 ¼ � B

A �

� �
: (95)

Hence, we are only further required to establish the invari-
ance of 3��� TrðA; BÞ. The proof goes along much the
same lines to obtain

3~� ~��Trð ~A; ~BÞ ¼ sgnð�Þ½3��� TrðA; BÞ�: (96)

Finally, recall that restricting to the STU subsector d2ðxÞ
takes the reduced form

d2ðxÞ ¼ gcdð�A; �B; �CÞ: (97)

In this case, proof of F-dual invariance is simplified since
each � is individually invariant, up to a sign, under F
duality (191).
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As for d1ðxÞ and d3ðxÞ, it follows from (79) that their
product is invariant

d1ðxÞd3ðxÞ ¼ d1ð~xÞd3ð~xÞ; (98)

but separately they need not be. Another way to state this is
that the F dual of a primitive black hole may not itself be
primitive. To see this, recall that by definition

x ¼ d1ðxÞx0; (99)

where x0 is primitive with d1ðx0Þ ¼ 1. Hence,

TðxÞ ¼ d1ðxÞ3Tðx0Þ; (100)

and

�ðxÞ ¼ d1ðxÞ4�ðx0Þ: (101)

So,

~x ¼ d1ðxÞTðx0Þj�ðx0Þj�1=2 ¼ d1ðxÞ~x0; (102)

and

d1ð~xÞ ¼ d1ðxÞd1ð~x0Þ: (103)

Hence, d1ðxÞ is invariant if d1ð~x0Þ ¼ d1ðx0Þ � 1, which is
not necessarily so.

Typically, the literature on exact 4D black hole degen-
eracies [9,31–35,50–53,55–60] deals only with primitive
black holes d1ðxÞ ¼ 1. We are not required to impose this
condition and generically do not do so.

In Sec. III D, we provide examples that preserve d1ðxÞ
and examples that do not. If desired, however, one might
restrict the subset of black holes admitting an F dual even
further by demanding that d1ðxÞ, and hence d3ðxÞ, be
conserved.

C. F dual in canonical basis

Recall that, subject to the caveats in item 12 of Sec. II D,
we may write any black hole in the diagonally reduced
canonical form (60)

x ¼ �
1 kð1; l; lmÞ
0 j

� �
; (104)

where �> 0, k, l 	 0, and �, j, k, l, m 2 Z. The quartic
norm of this element is

�ðxÞ ¼ �ðj2 þ 4k3l2mÞ�4: (105)

For x to be a rank 4 we must impose

j � 0 _ klm � 0; (106)

where _ here denotes logical disjunction. Note that in
order for the charge vector to be BPS we need sgnðj2 þ
4k3l2mÞ ¼ �1 and hence sgnðmÞ ¼ �1 is a necessary (and
insufficient) condition. Using (105) and the general form
for TðxÞ, we find that the general F dual is

~x ¼ �jj2 þ 4k3l2mj�1=2

� �j jkð1; l; lmÞ
2k2lðlm;m; 1Þ j2 þ 2k3l2m

� �
: (107)

In order that ~x be integer, we need to impose the following
three constraints:

jj2 þ 4k3l2mj1=2 ¼ n0 2 N; (108a)

�j=n0 ¼ n1 2 Z; (108b)

2k2l�=n0 ¼ n2 2 N0; (108c)

where sgnn1 ¼ sgnj. Equation (108a) forces � to be a
perfect square, (108b) then ensures that the ~� component
of ~x lies in Z, and (108c) guarantees that the ~B component
is integral. These conditions are also sufficient to make the
~A and ~� components integer valued. The dual system then
becomes

~x ¼ �n1 n1kð1; l; lmÞ
n2ðlm;m; 1Þ n1jþ n2klm

� �
: (109)

The utility of this form is that all valid dual charge vectors
can be specified modulo a sign by their j, k, l,m, n1 and n2
values. Clearly, if both n1 and n2 vanish the entire system
vanishes, failing to preserve rank. However, n1 and n2 can
vanish separately and still leave a rank 4 system. This is to
be expected since F dual preserves � so that (109) must
also satisfy (106), telling us that one of n1, n2 must be
nonzero, given the definitions (108). As a sanity check we
may evaluate the quartic form for (109) to discover that we
require

jn1 � 0 _ klmn1 � 0 _ klmn2 � 0 (110)

for the dual system to be a large black hole. Satisfyingly,
(110) is equal to its logical conjunction with (106).
Furthermore, we find

d1ð~xÞ ¼ gcdðn1; n2Þ; d2ð~xÞ ¼ gcdð2kn21 þ 2mn22; 2n1ðjn1 þ 2klmn2Þ;�k2ln21 þ jn1n2 þ klmn22Þ ¼ �2 gcdðj; 2kÞ;
d02ð~xÞ ¼ gcdðkn21 þmn22; n1ðjn1 þ 2klmn2Þ;�k2ln21 þ jn1n2 þ klmn22Þ ¼ �2 gcdðj; kÞ;
d3ð~xÞ ¼ �3n0; d4ð~xÞ ¼ d4ðxÞ; d5ð~xÞ ¼ d5ðxÞ: (111)

As expected, (79) is satisfied and

d1ð~xÞd3ð~xÞ ¼ �3n0 gcdðn1; n2Þ ¼ �4 gcdðj; 2k2lÞ ¼ d1ðxÞd3ðxÞ: (112)
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D. Large black hole examples

Turning now to examples, we note from (106) that there
are only three cases to consider, j ¼ 0 ^ klm � 0, j � 0 ^
klm ¼ 0, and the most complicated case jklm � 0 (where
^ is logical conjunction). A number of examples satisfying
these conditions and the constraints (108) are specified in
Table IV.
Case 1: j ¼ 0 ^ klm � 0 We initially obtain

n0 ¼ 2ljk3mj1=2; n1 ¼ 0; n2 ¼ jk=mj1=2�: (113)

To force n2 2 Z we make k=m a perfect square: k ¼
p2jmj, p 2 Z n f0g. This reduces n0 to 2p3m2l as given
in Table IV. Notably, this ansatz furnishes integral n1 and
n2 and exhausts the possibilities for the j ¼ 0 case. BPS
and non-BPS charge vectors in this case are related by a
sign flip on m.
Case 2: j � 0 ^ klm ¼ 0 We immediately note that this
case is, at least ostensibly, considerably more complicated
than the last since there is more than one way in which klm
can vanish: the three ways k, l and m can vanish individu-
ally, the three ways they vanish in pairs, and the one way
they can all vanish. Nevertheless, we only need to consider
three cases out of these seven since, glancing at (104), we
note that when k ¼ 0 the values of l and m are irrelevant,
and similarly when k � 0 ^ l ¼ 0 the value of m is irrele-
vant. In all three subcases, we have

n0 ¼ jjj; n1 ¼ sgnj�; n2 ¼ 2k2l�=jjj: (114)

Clearly, n2 2 Z is the problematic condition.
Subcase 2.1: k ¼ 0. We immediately have n2 ¼ 0.
Subcase 2.2: l ¼ 0. We immediately have n2 ¼ 0.
Subcase 2.3: m ¼ 0. The remaining case sets only m ¼ 0,
and it remains for 2k2l�=j 2 Z to be imposed. In general,
j may divide k and/or l and/or � individually, and one
would have to resort to a prime decomposition to progress.
Further discussion of this subcase may be found in
Appendix A.
Case 3: jklm � 0 By far the most taxing case, since the
perfect square requirement in general demands the solution
of the Diophantine equation j2 þ 4k3l2m ¼ 
p2, 0 �
p 2 Z. This case does however include BPS elements,
whereas Case 2 forced sgn� ¼ �1. The examples pre-

sented in Table IV postulate either odd or even j and
restrict k, l so that only m needs to compensate for j.
Subcase 3.1: j ¼ 2p. We have

jð2pÞ2 þ 4k3l2mj ¼ ð2qÞ2;
q 2 Z ) k3l2m ¼ 
q2 � p2;

(115)

and it remains to find k, l, m satisfying this requirement.
Further discussion of this general subcase may be found in
Appendix A.
3.1.1 Restricting to k ¼ l ¼ 1, choose a compensating m:

m ¼ �ðp2 
 q2Þ; (116)

under which

n0 ¼ 2jqj n1 ¼ p�=jqj n2 ¼ �=jqj: (117)

Consequently, we must restrict to q ¼ 
1. This neverthe-
less leaves open the possibility that the charge vector is
BPS since sgn� corresponds to the sign choice in the m
postulate.
3.1.2 If we now allow l to be arbitrary and set p ¼ lr, r 2
Z we can choose the same compensating m, but are forced
to make an ansatz for � to make ~x and � integer.

m ¼ �ðr2 
 q2Þ; � ¼ njqj; (118)

under which

n0 ¼ 2ljqj n1 ¼ nr n2 ¼ n; (119)

where n 2 N. This subcase has the additional property that
d1 and d3 change under F duality (see Table V). Further
discussion of this subcase may be found in Appendix A.
3.1.3 A final example is given by imposing k3m ¼ 4qðq

rÞ so that �ðxÞ ¼ �4l2ð2q
 rÞ2�4 (here, we still have
p ¼ lr). This yields

n0 ¼ 2lj2r
 qj n1 ¼ nr n2 ¼ nk2; (120)

where clearly we have made the further imposition � ¼
nj2q
 rj. Hence, for r ¼ 1, d1ð~xÞ ¼ n so that we may
take a nonprimitive black hole to a primitive F-dual black
hole.
Subcase 3.2: j ¼ 2pþ 1. In contrast to the previous sub-
case, m must now counter a linear term in j:

TABLE IV. Conditions on parameters for several example FTSs, where p 2 Z. Parameters n0, n1, and n2 are fixed by (108). Note
that we still require �> 0, k, l 	 0, and n0 � 0 in all cases.

Case j k l m sgn� n0 n1 n2

1 0 p2jmj >0 � 0 �sgnm 2jp3jm2l 0 jpj�
2.1 � 0 0 	 0 2 Z � jjj �sgnj 0

2.2 � 0 >0 0 2 Z � jjj �sgnj 0

2.3 � 0 >0 >0 0 � jjj �sgnj 2k2l�=jjj
3.1.1 2p 1 1 �ðp2 
 1Þ 
 2 jpj� �
3.1.2 2lr 1 >0 �ðr2 
 qÞ 
 2ljqj nr n
3.1.3 2lr >0 >0 4qðq
 rÞ=k3 � 2lj2q
 rj nr nk2

3.2 2pþ 1 1 1 �pðpþ 1Þ � 1 ð2pþ 1Þ� 2�
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m ¼ �pðpþ 1Þ; (121)

under which

n0 ¼ 1 n1 ¼ ð2pþ 1Þ� n2 ¼ 2�: (122)

This sets � to ��4 so all such black holes are non BPS.
A summary of the examples considered, along with ex-
plicit forms of x and ~x are presented in Table V.

Projective canonical black holes

Since the projective black holes have been fully classi-
fied (69), the complete subset admitting an F dual may be

computed in a concise manner, which we may therefore
present in full. Recall, all projective black holes are U dual
to the projective canonical form

xproj ¼ 1 ð1; 1; mÞ
ð0; 0; 0Þ j

� �
; (123)

with quartic norm

�ðxprojÞ ¼ �ðj2 þ 4mÞ; (124)

where m 2 Z and j 2 f0; 1g are uniquely determined from
the starting FTS x by

m � 1
4ð�ðxÞ � j2Þ j � �ðxÞmod 2: (125)

TABLE V. Table containing various valid integral x and ~x. Note from the final two columns that the U-duality invariants d1 and d3
may or may not be separately conserved under F duality but their product always is.

Case FTS � d2 d02 d5 d1 d3

1
j ¼ 0,

k ¼ p2jmj
x ¼ �

1 p2jmjð1; l; lmÞ
0; 0; 0 0

� �
sgnð�mÞ�
4p6�4l2m4

2p2�2jmj p2�2jmj p4�4lm2 � 2p4�3lm2

~x ¼ �jpj 0 0; 0; 0
lm;m; 1 p2jmjlm

� � jpj� 2jpj3�3lm2

2.1 k ¼ 0
x ¼ �

1 0; 0; 0
0; 0; 0 j

� � ��4j2 �2jjj �2jjj �4jjj � �3jjj

~x ¼ sgnðjÞ� �1 0; 0; 0
0; 0; 0 j

� �
2.2 l ¼ 0

x ¼ �
1 k; 0; 0

0; 0; 0 j

� � ��4j2 �2�
gcdðj; 2kÞ

�2�
gcdðj; kÞ

�4jjj � �3jjj

~x ¼ sgnðjÞ� �1 k; 0; 0
0; 0; 0 j

� �
2.3 m ¼ 0, jj2k2l�

x ¼ �
1 k; kl; 0

0; 0; 0 j

� � ��4j2 �2�
gcdðj; 2kÞ

�2�
gcdðj; kÞ

�4�
gcdðj; k2lÞ

� �3�
gcdðj; 2k2lÞ

~x ¼ �
jjj

�j jkð1; l; 0Þ
0; 0; 2k2l j2

� �
gcdð�; 2k2l�j Þ �3jjj

3.1.1 j ¼ 2p,

k ¼ l ¼ 1,

m ¼ �ðp2 
 1Þ
x ¼ �

1 1; 1;�p2 � 1
0; 0; 0 2p

� � 
4�4 2�2 �2 �4 � 2�3

~x ¼ �
�p pð1; 11mÞ

m;m; 1 p2 � 1

� �
3.1.2 j ¼ 2lr;

k ¼ 1; � ¼ jqjn;
m ¼ �ðr2 
 q2Þ

x ¼ jqjn 1 1; l; lm
0; 0; 0 2lr

� � 
4q6n4l2 2q2n2 q2n2 q4n4l jqjn 2jqj3n3l

~x ¼ n
�r rð1; l; lmÞ

lm;m; 1 lðr2 
 q2Þ
� �

n 2jqj4n3l

3.1.3 j ¼ 2lr;

k3m ¼ 4qðq
 rÞ;
� ¼ nj2q
 rj

x ¼ nj2q
 rj 1 kð1; l; lm
0; 0; 0 2lr

� � �4l2�
ð2q
 rÞ2�4

2�2�
gcdðlr; kÞ

�2�
gcdð2lr; kÞ

�4l�
gcdð2r; k2Þ

nj2q
 rj 2ln3 gcdðr; k2Þj2q
 rj3

~x ¼ n
�r rkð1; l; lmÞ

k2ðlm;m; 1Þ 2lr2 þ k3lm

� �
n gcdðr; k2Þ 2ln3 � ð2q
 rÞ4

3.2 j ¼ 2pþ 1;

k ¼ l ¼ 1;

m ¼ �ðp2 þ pÞ
x ¼ �

1 1; 1;�p2 � p
0; 0; 0 2pþ 1

� � ��4 �2 �2 �4 � �3

~x ¼ �
�ð2pþ 1Þ ð2pþ 1Þð1; 1; mÞ
2ðm;m; 1Þ 2p2 þ 2pþ 1

� �
P.1 �; k; l ¼ 1;

m ¼ 
1; j ¼ 0
x ¼ 1 1; 1;
1

0; 0; 0 0

� � �4 2 1 1 1 2

~x ¼ 0 0; 0; 0

1;
1; 1 
1

� �
P.2 �; k; l; j;¼ 1; m ¼ 0

x ¼ 1 1; 1; 0
0; 0; 0 1

� �
-1 1 1 1 1 1

~x ¼ �1 1; 1; 0
0; 0; 2 1

� �
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Clearly, xproj is obtained from (104) by setting �, k, and l to

unity, so we may carry over the results of our previous
analysis. The dual charge vector is

~x proj ¼ �n1 n1ð1; 1; mÞ
n2ðm;m; 1Þ n1jþ n2m

� �
; (126)

the preserved discrete invariants are

d2ð~xprojÞ ¼ d2ðxprojÞ ¼ gcdð2; jÞ;
d02ð~xprojÞ ¼ d02ðxprojÞ ¼ 1;

d4ð~xprojÞ ¼ d4ðxprojÞ ¼ n20;


ð~xprojÞ ¼ 
ðxprojÞ ¼ 1;

(127)

while the altered discrete invariants are

d1ðxprojÞ ¼ 1 d1ð~xprojÞ ¼ gcdðn1; n2Þ
d3ðxprojÞ ¼ gcdð2; jÞ d3ð~xprojÞ ¼ n0;

(128)

where the ni are now given by

n0 ¼ jj2 þ 4mj1=2 n1 ¼ j=n0 n2 ¼ 2=n0: (129)

There are only two possible cases:
Case P.1: j ¼ 0. The ni simplify to

n0 ¼ 2jmj1=2 n1 ¼ 0 n2 ¼ jmj�1=2; (130)

which clearly requires m ¼ 
1 for integral ~x. This is
evidently Subcase 3.1 with p ¼ 0. See Table V, example
P.1, for the explicit form of the x and ~x.

This example is just the primitive Reissner-Nordstrom
rank 4 black hole, which may be regarded as a bound state
at threshold of four singly charged primitive rank 1 black
holes [54,61,62].

Case P.2: j ¼ 1. We find

n0 ¼ j4mþ 1j1=2 n1 ¼ j4mþ 1j�1=2

n2 ¼ 2j4mþ 1j�1=2;
(131)

which clearly requires m ¼ 0 for integral ~x. This is evi-
dently Subcase 3.2 with p ¼ 0. See Table V, example P.2,
for the explicit form of the x and ~x.

Recall, all projective black holes with a given norm are
U duality related. In particular, since F duality has pre-
served projectivity in the above examples, the F-dual
charge vector ~x is necessarily U duality related to the
original x as is discussed in Appendix C.

E. Small black holes?

For large black holes there is an unambiguous F dual
stemming from the fact that both TðxÞ and �ðxÞ are non-
zero. For rank 3 one finds �ðxÞ ¼ 0 but TðxÞ � 0, and one
would not expect an F dual to exist. For lower ranks both
quantities vanish, and since ~x is a vanishing cubic quantity
over the square root of a vanishing quartic quantity, one
might expect a finite result.

Consider Case 1 of Table V and put l ¼ 0;

x ¼ �
1 p2jmjð1; 0; 0Þ
0 0

� �
;

~x ¼ jpj� 0 ð0; 0; 0Þ
ð0; m; 1Þ 0

� �
:

(132)

This black hole and its F dual have vanishing TðxÞ and
�ðxÞ; both are rank 2 according to the classification of
Table II.
Now consider Case 2.2 of Table V and put j ¼ 0, k ¼

p2jmj:
x ¼ �

1 p2jmjð1; 0; 0Þ
0 0

� �
;

~x ¼ �
�1 p2jmjð1; 0; 0Þ

ð0; 0; 0Þ 0

� �
:

(133)

The starting point is the same as Case 1, but the dual is
different, although it is still rank 2. So the F dual depends
on the order of the two operations (i) j ¼ 0, k ¼ p2jmj
(ii) l ¼ 0.
If we further set p ¼ 0 in Case 1

x ¼ �
1 ð0; 0; 0Þ
0 0

� �
; ~x ¼ 0; (134)

then not even the rank is conserved since x is rank 1 and ~x is
rank 0.
For Case 2.2, on the other hand,

x¼�
1 ð0;0;0Þ
0 0

� �
; ~x¼�

�1 ð0;0;0Þ
ð0;0;0Þ 0

� �
; (135)

both x and ~x are rank 1.
In view of this apparent lack of uniqueness we shall

continue to restrict the definition of F duality to large black
holes.

IV. THE NS-NS SECTOR

A. P, Q notation

Under the decomposition of the N ¼ 8 U-duality
group E7ð7ÞðZÞ to the S-duality group SLð2;ZÞ and the

T-duality group SOð6; 6;ZÞ
E7ð7ÞðZÞ � SLð2;ZÞ � SOð6; 6;ZÞ (136)

the 56 decomposes as

56 ! ð2; 12Þ þ ð1; 32Þ: (137)

The ð2; 12Þ is identified as the NS-NS sector, whereas the
ð1; 32Þ is associated with the Ramond-Ramond charges.
Since any N ¼ 8 charge vector x is U dual to a diagonal
reduced form (59), the Ramond-Ramond charges can al-
ways be transformed away for a generic black hole,4 and

4Answering in the affirmative the question posed in [35]: Can
one always assume that a D ¼ 4,N ¼ 8 black hole is U duality
related to a configuration with only NS-NS charges present?
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we are free to consider those black holes with only NS-NS
charges present. We write the 12 electric and 12 magnetic
charges as Q and P, respectively. In this case the quartic
norm takes the simple, manifestly SLð2;ZÞ � SOð6; 6;ZÞ
invariant form

�ðP;QÞ ¼ P2Q2 � ðP �QÞ2: (138)

Applying the trilinear map to x in this sector one finds5

TP

TQ

� �
¼ P �Q �P2

Q2 �P �Q
� �

P
Q

� �
; (139)

where TP and TQ denote the new P andQ components. The

Freudenthal dual then becomes

~P
~Q

� �
¼ 1ffiffiffiffiffiffiffij�jp TP

TQ

� �
¼ 1ffiffiffiffiffiffiffij�jp P �Q �P2

Q2 �P �Q
� �

P
Q

� �
: (140)

While we have been focusing here on the NS-NS sector
of the N ¼ 8 theory, the same formulae (138)–(140) also
apply to the toroidal compactification of the heterotic
string with N ¼ 4 supersymmetry and SLð2;ZÞ �
SOð6; 22;ZÞ U duality. The relevant Jordan algebra is Z �
Q5;21 [9,49] and P and Q are now 28-vectors.6

In this case, we may introduce a further discrete
U-duality invariant, the torsion [63]:

rðP;QÞ ¼ gcdðP��Þ; (141)

where

P�� ¼ P�Q� � P�Q�: (142)

For primitive P and Q, the complete set of independent
T-duality invariants was determined in [32]. It consists of
the three familiar invariants P2, Q2 and P �Q, the torsion
rðP;QÞ and two further interdependent discrete invariants
u1 and u2, which are constructed below. If P and Q are not
individually primitive, there are two additional T-duality
invariants given by gcdðPÞ and gcdðQÞ.7 Assume P and Q
are individually primitive and let a, b be two charge
vectors satisfying

a �Q ¼ 1; b � P ¼ 1: (143)

Define

u1 ¼ a �PmodrðP;QÞ; u2 ¼ b �QmodrðP;QÞ: (144)

It was shown in [32] that u1, u2, so defined, are indepen-
dent of the choice of a, b, are T-duality invariant and that
u2 is uniquely determined by u1 (and vice versa). Any two

such dyons are T duality related if and only if all five
invariants have identical values.
Let us consider the action of F duality on these T-duality

invariants. P2, Q2, and P �Q are invariant up to a sign
determined by the quartic norm

~P 2 ¼ sgnð�ÞP2 ~Q2 ¼ sgnð�ÞQ2

~P � ~Q ¼ sgnð�ÞP �Q:
(145)

Moreover,

P � ~Q ¼ � ~P �Q ¼ sgnð�Þj�j1=2; (146)

and the quantization rule is

P � ~Q� ~P �Q ¼ sgnð�Þ2j�j1=2: (147)

Note also that

~P�� ¼ sgnð�ÞP�� (148)

and therefore the torsion is also invariant under F duality.
Clearly, when d1ðP;QÞ and d3ðP;QÞ are not conserved

under F duality, then neither u1 nor gcdðPÞ, gcdðQÞ are
preserved. However, in cases when gcdðPÞ ¼ 1 and
gcdðQÞ ¼ 1 are in fact conserved under F duality it is
not difficult to verify that u1ðP;QÞ is also preserved.
Consequently, two 1=4-BPS (�> 0) F-dual states are T

dual if and only if both gcdðPÞ ¼ 1 and gcdðQÞ ¼ 1 are
preserved. On the other hand, non-BPS (�< 0) F-dual
states cannot be T duality related. Moreover, since
d1ðP;QÞ is not necessarily invariant under F duality,
gcdðPÞ and gcdðQÞ are not generically invariant.
It is worth emphasizing that the F duality (140) is not

generically an SLð2;ZÞ S duality, but in certain specific
circumstances with � positive the two may coincide.

B. F dual in Sen basis

Although the canonical basis of Sec. III C is most con-
venient for our purposes, it is also useful to re-express our
results in the basis used by Sen and collaborators
[32,33,35], which may be more familiar to the black hole
community:

P ¼
Q1

J
Q5

0

0BBB@
1CCCA; Q ¼

0
n
0
1

0BBB@
1CCCA; (149)

with Q5jJ, Q1. Here, n represents an NS 5-brane winding
charge, Q1 a fundamental string winding charge, while J
and Q5 are units of Kaluza-Klein monopole charge asso-
ciated with two distinct circles of the T6. In FTS language
we have using (180)

x ¼ � ðA1; A2; A3Þ
ðB1; B2; B3Þ �

� �
¼ �1 ðn;Q1; Q5Þ

ð0; 0; 0Þ J

� �
; (150)

5This form of the trilinear map also appears in [35].
6This case is mentioned in the mathematical literature, e.g.

[28] but it is not clear how many of the results of Sec. II D
continue to apply. See however [32].

7For the heterotic string we have a complete set of T-duality
invariants, which uniquely determine the black hole charges up
to T duality. This contrasts with the N ¼ 8 case and its
U-duality invariants.
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which is also summarized in Table VII. We see immedi-
ately that x is chosen to be primitive and that we must
impose

Q5 � 0 ^ ðJ � 0 _ nQ1 � 0Þ (151)

for x to be a valid rank 4 charge vector. Using the metric

0 12

12 0

� �
; (152)

we have

Q2 ¼ 2n; P2 ¼ 2Q1Q5; P �Q ¼ J; (153)

TP

TQ

� �
¼ J �2Q1Q5

2n �J

� �
;

P
Q

� �
; (154)

and

� ¼ 4nQ1Q5 � J2: (155)

The Freudenthal dual is then given by

~P ¼ j4nQ1Q5 � J2j�1=2

JQ1

J2 � 2nQ1Q5

JQ5

�2Q1Q5

0BBB@
1CCCA;

~Q ¼ j4nQ1Q5 � J2j�1=2

2nQ1

nJ
2nQ5

�J

0BBB@
1CCCA:

(156)

Since (150) is not in the canonical form of Sec. III C we
must begin a new analysis to restrict the charges such that
they provide an integer valued dual. SinceQ5jJ,Q1 we can
write J ¼ s1Q5 and Q1 ¼ s2Q5, si 2 Z giving

P ¼ Q5

s2
s1
1
0

0BBB@
1CCCA; Q ¼

0
n
0
1

0BBB@
1CCCA; (157)

Q2 ¼ 2n; P2 ¼ 2s2Q5
2; P �Q ¼ s1; (158)

TP

TQ

� �
¼ Q5s1 �2s2Q5

2

2n �s1Q5

� �
P
Q

� �
; (159)

� ¼ �ðs12 � 4ns2ÞQ5
2; (160)

so that

~P ¼ jQ5jjs12 � 2ns2j�1=2

s1s2
s1

2 � 2ns2
s1

�2s2

0BBB@
1CCCA;

~Q ¼ sgnðQ5Þjs12 � 2ns2j�1=2

2ns2
ns1
2n
�s1

0BBB@
1CCCA;

(161)

whose corresponding x and ~x FTS charge vectors are

x ¼ �1 ðn;Q1Q5s2; Q5Þ
0 Q5s1

� �
; (162)

~x ¼ �sgnðQ5Þjs21 � 4ns2j�1=2

� s1 s1ðn; s2Q5; Q5Þ
2ðs2Q5; n; ns2Þ ðs21 � 2ns2ÞQ5

 !
: (163)

We see that in order to restrict (161) or (163) to be a valid
set of charges we must impose the following three con-
straints:

js21 � 4ns2j1=2 ¼ k0 2 N; (164a)

s1=k0 ¼ k1 2 Z; (164b)

k3=k0 ¼ k2 2 N0; (164c)

where sgnk1 ¼ sgns1 and k3 is defined by

k3 :¼
�
k0jk1j n; s2 ¼ 0
2 gcdðn; s2Q5Þ else;

(165)

with this definition being motivated by the relations (45).
Equation (164a) furnishes a perfect square �, while (164b)

and (164c), respectively, make ~P0;2 and ~Q1;3 (or the � and
B components of ~x) integral. As was the case in Sec. III D,

these conditions suffice to make ~P1;3 and ~Q0;2 (or the A and
� components of ~x) integral as well. The constraints (164)
are directly analogous to (108), with the added complica-
tion of k3 arising from the A component of x no longer
being in Smith normal form.
The dual system becomes

~P ¼ jQ5j
k1s2

k1s1 � 2ns2k2=k3
k1

�2s2k2=k3

0BBB@
1CCCA;

~Q ¼ sgnðQ5Þ
2ns2k2=k3

nk1
2nk2=k3
�k1

0BBB@
1CCCA;

(166)

~x¼�sgnQ5
k1 k1ðn; s2Q5;Q5Þ

k2=k3ðs2Q5; n; ns2Þ ð2k1 � ns2k2=k3ÞQ5

� �
:

(167)

While this dual includes denominators, they are guaranteed
to cancel so it is a valid black hole. Clearly, if both k1 and
k2 vanish the entire system vanishes, failing to preserve
rank. However, k1 and k2 can vanish separately and still
leave a rank 4 system. In summary, we have

Q5 � 0 ^ ðk1 � 0 _ ns2k2 � 0Þ; (168)

which is equal to its logical conjunction with (151) and is
of the same form of (110) provided one remembers s1 /
k1. Further, using (45) we find
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d2ð~xÞ ¼ d2ðxÞ ¼ gcdð2n;Q5Þ;
d02ð~xÞ ¼ d02ðxÞ ¼ gcdðn;Q5Þ;
d4ð~xÞ ¼ d4ðxÞ ¼Q5

2js12 � 4ns2j ¼ J2 � 4nQ1Q5;

d5ð~xÞ ¼ d5ðxÞ ¼ 2jQ5jgcdðn; s1Q5; s2Q5Þ
¼ 2gcdðnQ5; JQ5;Q1Q5Þ;

rð ~P; ~QÞ ¼ rðP;QÞ ¼ jQ5j; (169)

and

d1ðxÞ ¼ 1 d1ð~xÞ ¼ gcdðk1; k2Þ
d3ðxÞ ¼ jQ5j gcdðk3; lÞ
d3ð~xÞ ¼ k0jQ5j ¼ gcdð2nQ5; 2Q1Q5; JÞ:

(170)

As expected (79) is satisfied.

C. Examples

When considering examples we have three cases as in
Sec. III D, namely, s1 ¼ 0 ^ ns2 � 0, s1 � ^0ns2 ¼ 0,
and ns1s2 � 0. Examples satisfying these conditions and
constraints (164) are listed in Table VI. These are discussed
in more detail in Appendix B.

V. THE STU MODEL

A. Jordan and FTS identities for J ¼ Z � Z � Z

In this section, we focus on the STU model [54], which
corresponds toJ ¼ Z � Z � Z and for which theU duality
is SLð2;ZÞ � SLð2;ZÞ � SLð2;ZÞ.
(1) For diagonal Jordan algebra elements A ¼

ðA1; A2; A3Þ and B ¼ ðB1; B2; B3Þ, we have

A � B ¼ ðA1B1; A2B2; A3B3Þ NðAÞ ¼ A1A2A3 TrðAÞ ¼ A1 þ A2 þ A3

SðAÞ ¼ A1A2 þ A2A3 þ A3A1 SðA; BÞ ¼ A1ðB2 þ B3Þ þ A2ðB3 þ B1Þ þ A3ðB1 þ B2Þ

TrðA; BÞ ¼ A1B1 þ A2B2 þ A3B3 A] ¼ ðA2A3; A3A1; A1A2Þ A� B ¼
A2B3 þ A3B2

A3B1 þ A1B3

A1B2 þ A2B1

0@ 1A
NðA; B;CÞ ¼ 1

6
ðA1ðB2C3 þ B3C2Þ þ A2ðB3C1 þ B1C3Þ þ A3ðB1C2 þ B2C1ÞÞ:

(171)

(2) For the most general case of the triple system with diagonal Jordan algebra entries A ¼ ðA1; A2; A3Þ and B ¼
ðB1; B2; B3Þ,

x ¼ � ðA1; A2; A3Þ
ðB1; B2; B3Þ �

� �
; (172)

we have �ðxÞ ¼ 1
2 ð��� ðA1B1 þ A2B2 þ A3B3ÞÞ, and the quartic form � becomes

�ðxÞ ¼ �4½�2 þ �A1A2A3 þ �B1B2B3 � A1A2B1B2 � A3A1B3B1 � A2A3B2B3�
¼ �ð�2�2 þ A2

1B
2
1 þ A2

2B
2
2 þ A2

3B
2
3Þ þ 2ð��ðA1B1 þ A2B2 þ A3B3Þ þ A1A2B1B2

þ A3A1B3B1 þ A2A3B2B3Þ � 4ð�A1A2A3 þ �B1B2B3Þ
¼ �4½ð�þ A1B1Þ2 � ð�A1 � B2B3Þð�B1 � A2A3Þ�
¼ �4½ð�þ A2B2Þ2 � ð�A2 � B3B1Þð�B2 � A3A1Þ�
¼ �4½ð�þ A3B3Þ2 � ð�A3 � B1B2Þð�B3 � A1A2Þ�; (173)

TABLE VI. Examples of F duality in the Sen basis. Parameters k0, k1, and k2 are fixed by (164) up to a sign, and k3 is given by (165).
By inspection of (163), d1ð~xÞ is seen to be given by gcdðk1; k2Þ and for all the examples tabulated d1ð~xÞ ¼ 1. Note that we still require
k0 � 0 in all cases.

Case s1 s2 n sgn� k0 k1 k2 k3

1.1 0 
n � 0 
 2jnj 0 1 2jnj
1.2 0 � 0 
s2 
 2js2j 0 1 2js2j
2.1 � 0 0 � 0 � js1j sgns1 2jn=s1j 2jnj
2.2 � 0 � 0 0 � js1j sgns1 2js2Q5=s1j 2js2Q5j
2.3 � 0 0 0 � js1j sgns1 1 js1j
3.1.1 2p p
 1 p� 1 � 2 p k3=2 2 gcdðp� 1; ðp
 1ÞQ5Þ
3.1.2 2p p2 
 1 1 
 2 p 1 2

3.1.3 2p 1 p2 
 1 
 2 p k3=2 2 gcdðp2 
 1; Q5Þ
3.2 2pþ 1 p p
 1 � 1 2pþ 1 k3 2 gcdðpþ 1; pQ5Þ
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where all five forms exemplify triality. Finally, we have

T� ¼ �2ð��þ B1B2B3Þ T� ¼ 2ð��þ 2A1A2A3Þ TA1
¼ �2ð�B2B3 � ðA2B2 þ A3B3 þ �ÞA1Þ

TA2
¼ �2ð�B3B1 � ðA3B3 þ A1B1 þ �ÞA2Þ TA3

¼ �2ð�B1B2 � ðA1B1 þ A2B2 þ �ÞA3Þ
TB1

¼ 2ð�A2A3 � ðA2B2 þ A3B3 þ �ÞB1Þ TB2
¼ 2ð�A3A1 � ðA3B3 þ A1B1 þ �ÞB2Þ

TB3
¼ 2ð�A1A2 � ðA1B1 þ A2B2 þ �ÞB3Þ:

(174)

As well as describing the 8 charges of the STU
model in full generality the above expressions also
cover a generic FTS in diagonal reduced form.

The STU model describesN ¼ 2 supergravity coupled
to three vector multiplets. Consequently, there are four
electric charges q and four magnetic charges p

x ¼ �q0 ðp1; p2; p3Þ
ðq1; q2; q3Þ p0

� �
: (175)

See Table VII for a summary of the charges we assign to
the FTS. In this case,

NðAÞ ¼ p1p2p3; NðBÞ ¼ q1q2q3; (176)

and

A]ðPÞ ¼ ðp2p3; p1p3; p1p2Þ;
B]ðQÞ ¼ ðq2q3; q1q3; q1q2Þ;

(177)

and �ðxÞ of (173) becomes [64]

�ðxÞ ¼ �ðp � qÞ2 þ 4½ðp1q1Þðp2q2Þ þ ðp1q1Þðp3q3Þ
þ ðp3q3Þðp2q2Þ � p0q1q2q3 þ q0p

1p2p3�:
(178)

Or using the transformation between P, Q and p, q:

p0

p1

p2

p3

q0
q1
q2
q3

266666666666664

377777777777775
¼ 1ffiffiffi

2
p

P0 � P2

Q0 þQ2

P3 � P1

�P3 � P1

Q0 �Q2

�P0 � P2

Q3 �Q1

�Q3 �Q1

266666666666664

377777777777775
; (179)

under which we obtain the relations

P2 ¼ 2ðp2p3 � p0q1Þ; P �Q ¼ p � q� 2p1q1;

Q2 ¼ 2ðp1q0 þ q2q3Þ: (180)

Then we find

�ðP;QÞ ¼ P2Q2 � ðP �QÞ2; (181)

which is manifestly invariant under SLð2Þ � SOð2; 2Þ.
These eight charges may be usefully rewritten in the

Cayley basis as a 2� 2� 2 hypermatrix aABC [54]. In the
black hole-qubit correspondence [65–72] the aABC are
interpreted as the state vector coefficients of a three-qubit
system (Alice, Bob, and Charlie). Intriguingly, the FTS
Table II also provides the classification of different kinds of
three-qubit entanglement [73,74].
Performing a binary to decimal a0; . . . ; a7 conversion on

the indices of a, we have

p0; p1; p2; p3; q0; q1; q2; q3
� �
¼ a0; �a1; �a2; �a4; a7; a6; a5; a3
� �

;

(182)

under which

x ¼ �a7 �ða1; a2; a4Þ
ða6; a5; a3Þ a0

� �
: (183)

One finds that the quartic norm �ðxÞ is related to Cayley’s
hyperdeterminant by

�ðxÞ ¼ det�A ¼ det�B ¼ det�C ¼: � deta; (184)

where, following [10,75,76] we have defined the three
matrices �A, �B, and �C

ð�AÞA1A2
¼ "B1B2"C1C2aA1B1C1

aA2B2C2
;

ð�BÞB1B2
¼ "C1C2"A1A2aA1B1C1

aA2B2C2
;

ð�CÞC1C2
¼ "A1A2"B1B2aA1B1C1

aA2B2C2
;

(185)

transforming, respectively, as ð3; 1; 1Þ, ð1; 3; 1Þ, ð1; 1; 3Þ
under SLð2Þ � SLð2Þ � SLð2Þ. Explicitly,

TABLE VII. Assignments of values to a generic Freudenthal
triple system.

Basis � � A1 A2 A3 B1 B2 B3

Canonical � �j �k �kl �klm 0 0 0

Projective 1 j 1 1 k 0 0 0

Sen �1 J ¼ s1Q5 n Q1 ¼ s2Q5 Q5 0 0 0

STU �q0 p0 p1 p2 p3 q1 q2 q3
Cayley �a7 a0 �a1 �a2 �a4 a6 a5 a3

L. BORSTEN, D. DAHANAYAKE, M. J. DUFF, AND W. RUBENS PHYSICAL REVIEW D 80, 026003 (2009)

026003-18



�A ¼ 2ða0a3 � a1a2Þ a0a7 � a1a6 þ a4a3 � a5a2
a0a7 � a1a6 þ a4a3 � a5a2 2ða4a7 � a5a6Þ

� �
;

�B ¼ 2ða0a5 � a4a1Þ a0a7 � a4a3 þ a2a5 � a6a1
a0a7 � a4a3 þ a2a5 � a6a1 2ða2a7 � a6a3Þ

� �
;

�C ¼ 2ða0a6 � a2a4Þ a0a7 � a2a5 þ a1a6 � a3a4
a0a7 � a2a5 þ a1a6 � a3a4 2ða1a7 � a3a5Þ

� �
;

(186)

deta :¼ �1
2"

A1A2"B1B2"A3A4"B3B4"C1C4"C2C3aA1B1C1
aA2B2C2

aA3B3C3
aA4B4C4

¼ a2000a
2
111 þ a2001a

2
110 þ a2010a

2
101 þ a2100a

2
011 � 2ða000a001a110a111 þ a000a010a101a111 þ a000a100a011a111

þ a001a010a101a110 þ a001a100a011a110 þ a010a100a011a101Þ þ 4ða000a011a101a110 þ a001a010a100a111Þ
¼ a20a

2
7 þ a21a

2
6 þ a22a

2
5 þ a23a

2
4 � 2ða0a1a6a7 þ a0a2a5a7 þ a0a4a3a7 þ a1a2a5a6 þ a1a3a4a6 þ a2a3a4a5Þ

þ 4ða0a3a5a6 þ a1a2a4a7Þ; (187)

TABC takes one of three equivalent forms

TA3B1C1
¼ �"A1A2aA1B1C1

ð�AÞA2A3
TA1B3C1

¼ �"B1B2aA1B1C1
ð�BÞB2B3

TA1B1C3
¼ �"C1C2aA1B1C1

ð�CÞC2C3
: (188)

Explicitly,

T0 ¼ a0ða3a4 þ a2a5 þ a1a6 � a0a7Þ � 2a1a2a4 T1 ¼ a1ð�a3a4 � a2a5 þ a1a6 � a0a7Þ þ 2a0a3a5

T2 ¼ a2ð�a3a4 þ a2a5 � a1a6 � a0a7Þ þ 2a0a3a6 T3 ¼ a3ð�a3a4 þ a2a5 þ a1a6 þ a0a7Þ � 2a1a2a7

T4 ¼ a4ða3a4 � a2a5 � a1a6 � a0a7Þ þ 2a0a5a6 T5 ¼ a5ða3a4 � a2a5 þ a1a6 þ a0a7Þ � 2a1a4a7

T6 ¼ a6ða3a4 þ a2a5 � a1a6 þ a0a7Þ � 2a2a4a7 T7 ¼ a7ð�a3a4 � a2a5 � a1a6 þ a0a7Þ þ 2a3a5a6:

(189)

Note

�ðTÞ ¼ det�ðaÞ�ðaÞ; (190)

so

�ð~aÞ ¼ sgnð�Þ�ðaÞ: (191)

Defining

SA1
A2

¼ "A1A3�A3A2
ðdet�Þ�1=2; (192)

we find

detS ¼ sgnð�Þ; (193)

and a Freudenthal duality cannot be undone by an SLð2Þ
duality in the non-BPS case �< 0.

B. Examples

Example 1 Choose

x ¼ � a7 ða1; a2; a4Þ
ð0; 0; 0Þ 0

� �
; (194)

in which case

�A ¼ 2
�a1a2 0

0 a4a7

 !
; �B ¼ 2

�a4a1 0

0 a2a7

 !
;

�C ¼ 2
�a2a4 0

0 a1a7

 !
; (195)

and

�ðxÞ ¼ �4a7a1a2a4 ¼ 4q0p
1p2p3: (196)

The trilinear map yields

TðxÞ ¼ �2
0 ð0; 0; 0Þ

a7ða2a4; a1a4; a1a2Þ a1a2a4

� �
; (197)

setting a7 ¼ 
a1 ¼ n and a2 ¼ a4 ¼ m so that

x ¼ �n �ð
n;m;mÞ
ð0; 0; 0Þ 0

� �
: (198)

In this example P2 ¼ 2m2, P �Q ¼ 0, Q2 ¼ �2n2 and

�ðxÞ ¼ �4m2n2 (199)

and the dual system ~x is then given by

~x ¼ �sgnðmnÞ 0 ð0; 0; 0Þ
ðm;
n;
nÞ 
m

� �
: (200)

Example 2 Choose

x ¼ �a7 ð�a1; 0; 0Þ
ða6; 0; 0Þ a0

� �
; (201)

in which case
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�A ¼ 0 a0a7 � a1a6
a0a7 � a1a6 0

� �
;

�B ¼ 0 a0a7 � a1a6
a0a7 � a1a6 0

� �
;

�C ¼ 2a0a6 a0a7 þ a1a6
a0a7 þ a1a6 2a1a7

� �
:

(202)

In this example P2 ¼ 0, P �Q ¼ a0a7 � a1a6, Q2 ¼
�a1a7, and

�ðxÞ ¼ �ða0a7 � a1a6Þ2 (203)

and the dual system ~x is then given by

~x ¼ a7 ð�a1; 0; 0Þ
ð�a6; 0; 0Þ a0

� �
: (204)

VI. THE 5D JORDAN DUAL

A. Definition

Given a black string with charges A or black hole with
charges B, we define its Jordan dual by

A? ¼ A]NðAÞ�1=3; B? ¼ B]NðBÞ�1=3; (205)

where we take the real root as implied by the notation. As
described in Sec. II A, the Jordan algebra divides black
holes and strings into four distinct ranks or orbits. J duality
is initially defined for large rank 3 strings for which both
A] and NðAÞ are nonzero and large rank 3 holes for which
both B] and NðBÞ are nonzero. Small black holes and
strings are discussed in Sec. VI C, we also discuss an
alternative definition of the Jordan dual in Appendix D.

The invariance of NðAÞ follows by noting that

Tr ðA]; AÞ ¼ 3NðAÞ; (206)

where A] obeys

ðA]Þ] ¼ NðAÞA; (207)

and hence

NðA]Þ ¼ NðAÞ2: (208)

So,

NðA?Þ ¼ NðA]NðAÞ�1=3Þ ¼ NðAÞ: (209)

Moreover,

A?? ¼ ðA]NðA]Þ�1=3Þ]NðA?Þ�1=3 ¼ A: (210)

Similar results hold for B.
In the case of a black holes and black string related by

Jordan duality, the Dirac-Schwinger quantization condi-
tion (21) is given by

Tr ðA?; AÞ ¼ 3NðAÞ2=3; (211)

which is also invariant. Note the factor of 3.

As noted in Sec. I, for a valid dual A?, we require that
NðAÞ is a perfect cube. This is a necessary, but not suffi-
cient condition, because we further require that

d3ðAÞ ¼
�
d2ðAÞ
d1ðA?Þ

�
3 ¼

�
d2ðA?Þ
d1ðAÞ

�
3 ¼ d3ðA?Þ: (212)

In the 5D case the Smith diagonal form of (48) is unique
in the sense that it is unambiguously determined by the
U-duality invariants d1ðAÞ, d2ðAÞ and NðAÞ.
Black holes related by a J duality not conserving d1ðAÞ

provide examples of configurations with the same cubic
norm and hence lowest-order entropy that are not U dual-
ity related.
The U-duality integral invariants TrðX; YÞ and

NðX; Y; ZÞ are not generally invariant under Jordan duality,
while TrðA?; AÞ and NðAÞ, and hence the lowest-order
black hole entropy are. However, higher-order corrections
to the black hole entropy depend on some of the discrete
U-duality invariants, to which we now turn.

B. The action of J duality on discrete U-duality
invariants

J duality commutes with U duality in the sense that A?

transforms contragredient to A. This follows from the
property that a linear transformation s belongs to the
norm preserving group if and only if

sðAÞ � sðBÞ ¼ s0ðA� BÞ; (213)

where s0 is given by

Tr ðsðAÞ; s0ðBÞÞ ¼ TrðA; BÞ (214)

and always belongs to the norm preserving group if s itself
does [77]. This implies

ðsðAÞÞ? ¼ s0ðA?Þ: (215)

As we shall see in the following section, of the discrete
invariants listed in (46), only the cubic norm d3ðAÞ is
generically preserved under J duality.

C. Smith diagonal form and its dual

We have already seen in Sec. II D that we may write the
most general black string charge configuration, up to U
duality, as

A ¼ kð1; l; lmÞ; (216)

where k, l 	 0. In this case,

A] ¼ k2lðlm;m; 1Þ; (217)

and

NðAÞ ¼ k3l2m: (218)

So the Jordan dual black string is given by

A? ¼ kðl=mÞ1=3ðlm;m; 1Þ: (219)
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Hence, we require k3l ¼ n3jmj, n 2 N. The general A and
A? related by J duality are then

A ¼ kð1; l; lmÞ A? ¼ nðlm;m; 1Þ; (220)

with gcds

d1ðAÞ ¼ k d1ðA?Þ ¼ n d2ðAÞ ¼ k2l

d2ðA?Þ ¼ n2jmj d3ðAÞ ¼ k3l2jmj d3ðA?Þ ¼ n3m2l:

(221)

So d3ðAÞ is conserved as expected and so is the product
d1ðAÞd2ðAÞ but not d1ðAÞ and d2ðAÞ separately, except
when n ¼ k.

The similar form of A and A? when n ¼ k suggests they
may be related. In fact they must be related by a U duality
because they have the same d1, d2, and d3.

Note that N2 is a perfect cube

N2 ¼ ðnklmÞ3; (222)

which also implies that N is a perfect cube, as can be
deduced by considering its prime decomposition, consis-
tent with the claim in Sec. I.

For large black holes there is an unambiguous J dual
stemming from the fact that both A] andNðAÞ are nonzero.
For rank 2 we have NðAÞ ¼ 0 but A] � 0, and we do not
expect a J dual to exist. For lower ranks both quantities
vanish and since A? is a vanishing quadratic quantity over
the cube root of a vanishing cubic quantity, we might
expect a finite result. As in 4D, however, the result is not
unique. Putting m ¼ l and then setting l ¼ 0 in (216) and
(220) yields

A ¼ kð1; 0; 0Þ A? ¼ kð0; 0; 1Þ; (223)

which are both rank 1. But putting l ¼ 0 yields

A ¼ kð1; 0; 0Þ A? ¼ 0: (224)

So A is the same but the dual is rank 0. As in the
Freudenthal case, therefore, this apparent lack of unique-
ness favors continuing to restrict J duality to large black
holes/strings.

VII. FREUDENTHAL/JORDAN DUALITYAND THE
4D/5D LIFT

A. Reduced element

We recall that a black hole can be put into reduced form

x ¼ � A
0 �

� �
: (225)

We now show that for these five parameter black holes the
lift of the Freudenthal dual is related to the Jordan dual. For
the black hole in (225) we have

�ðxÞ ¼ ��2�2 � 4�NðAÞ;

TðxÞ ¼ ��2� ��A
2�A] ��2 þ 2NðAÞ

� �
:

(226)

We have the following P ðxÞ and QðxÞ
P ðxÞ ¼ B] � �A ¼ ��A QðxÞ ¼ A] � �B ¼ A];

(227)

with the following norms

NðP ðxÞÞ ¼ ��3NðAÞ; NðQðxÞÞ ¼ NðAÞ2; (228)

and the following angular momenta

J � ¼ �1
2T� ¼ 1

2�
2�;

J � ¼ �1
2T� ¼ �1

2��
2 � NðAÞ: (229)

The Freudenthal dual of x is given by

~x ¼ ~� ~A
~B ~�

 !
¼ 1

j�j1=2
��2� ��A
2�A] ��2 þ 2NðAÞ

� �
:

(230)

Hence,

~A ] ¼ �2�2A]

j�j ; ~B] ¼ 4�2NðAÞA
j�j : (231)

So we have the following P ð~xÞ and Qð~xÞ

Pð~xÞ ¼ ~B] � ~� ~A ¼ 4�2NðAÞA
j�j � ��2�

j�j1=2 � ��Aj�j1=2

¼ �
ð�2�2 þ 4�NðAÞ

j�j A ¼ �sgnð�Þ�A; (232)

and

Qð~xÞ ¼ ~A] � ~� ~B ¼ �2�2A]

j�j � ��2 þ 2NðAÞ
j�j1=2 � 2�A

]

j�j1=2

¼ �ð�2�2 þ 4�NðAÞ
j�j A] ¼ sgnð�ÞA]: (233)

Hence,

P ð~xÞ ¼ sgnð�ÞP ðxÞ; Qð~xÞ ¼ sgnð�ÞQðxÞ; (234)

as expected from (88) and (89). Similarly, we find

J �ð~xÞ ¼ j�j1=2�; J �ð~xÞ ¼ j�j1=2�; (235)

so that

�ð~xÞ ¼ j�jJ �
�2ð4 sgnð�ÞNðP Þ � j�j�2Þ ¼ �ðxÞ:

(236)

Now, if we take the Jordan duals of P ðxÞ and QðxÞ, we
have
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P ?ðxÞ ¼ P ðxÞ]
NðP ðxÞÞ1=3 ; Q?ðxÞ ¼ QðxÞ]

NðQðxÞÞ1=3 :
(237)

We can calculate P ] andQ] from (227), for which we get
P ] ¼ �2A] and Q] ¼ NðAÞA, we already know NðP Þ
and NðQÞ from (228), so that we now have

P ?ðxÞ ¼ �2A]

ð��3NðAÞÞ1=3 ¼ � �

NðAÞ1=3 A
];

Q?ðxÞ ¼ NðAÞA
NðAÞ2=3 ¼ NðAÞ1=3A;

(238)

with norms

NðP ?Þ ¼ ��3NðAÞ NðQ?Þ ¼ NðAÞ2: (239)

Putting all this together, we find

P̂ ?ðxÞ ¼ Q̂ð~xÞ; Q̂?ðxÞ ¼ P̂ ð~xÞ; (240)

where the hat denotes an element with the unit norm

X̂ ¼ X

NðxÞ1=3 ; NðX̂Þ ¼ 1: (241)

Thus, we have established

(242)

B. Example

To discuss J duality and F duality simultaneously, we
need NðAÞ a perfect cube and �ðxÞ a perfect square. So we
begin in canonical form (and assume m positive for sim-
plicity) with j ¼ 0, k ¼ p2m, and l ¼ q3m. So for x we
have

x ¼ �
1 p2mð1; q3m; q3m2Þ
0 0

 !
;

� ¼ �4p6q6�4m6

~x ¼ �p
0 ð0; 0; 0Þ

ðq3m2; m; 1Þ p2q3m3

 !
: (243)

While for A we have

A ¼ �p2mð1; q3m; q3m2Þ
NðAÞ ¼ q6p6�3m6

A? ¼ qð�p2mÞðq3m2; m; 1Þ ¼ mqp ~B: (244)

So d1ð~xÞ ¼ pd1ðxÞ 8 q in 4D but d1ðA?Þ ¼ qd1ðAÞ 8 p
in 5D.

We find

P ðA; BÞ ¼ ��2p2mð1; q3m; q3m2Þ
QðA; BÞ ¼ �2p4m3q3ðq3m2; m; 1Þ; (245)

and

P ð ~A; ~BÞ ¼ �2p2mð1; q3m; q3m2Þ
Qð ~A; ~BÞ ¼ ��2p4m3q3ðq3m2; m; 1Þ;

(246)

and

P ðA; BÞ? ¼ ��2p2mqðq3m2; m; 1Þ
QðA; BÞ? ¼ �2q2p4m3ð1; q3m; q3m2Þ: (247)

Hence, (240) is confirmed.

VIII. CONCLUSIONS

N ¼ 8:
In the subcases where d1ðxÞ is conserved, F duality x !

~x preserves all the U-duality invariants (52). The degener-
acy formula for the class of black holes considered in [35]
depends explicitly on only�ðxÞ and d5ðxÞ and therefore the
exact entropy in this case is F-dual invariant. The more
general case remains an open question since we are not
aware of a general U-duality invariant expression for dyon
degeneracies.
In the projective case, this result is somewhat trivial

because all black holes are U duality related and so, in
particular, the F dual ~x is U dual equivalent to x. The
explicit U duality is given in Appendix C.
In the nonprojective case, this result seems nontrivial

because we are not aware of any argument that would
indicate that the F dual ~x is U dual equivalent to x. For
example the negative j branch of case 2.1 of Table V:

x ¼ �
1 ð0; 0; 0Þ

ð0; 0; 0Þ j

� �
;

~x ¼ �
1 ð0; 0; 0Þ

ð0; 0; 0Þ �j

� �
:

(248)

Without a complete orbit classification the U equivalence,
or not, of F-dual black holes is a difficult question to
answer in general. Even with a full orbit classification
the invariance of the higher-order corrections to the en-
tropy would remain unsettled as we cannot be sure on
which invariants they depend. Could there be black holes
with the same precision entropy that are not U duality
related but are F duality related?
In the subcases where d1ðxÞ is not conserved, we can be

absolutely sure that the F dual ~x is notU dual equivalent to
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x. In this case, however, we do not know whether F duality
leaves higher-order corrections invariant because all the
treatments of higher-order corrections we are aware of are
restricted to d1ðxÞ ¼ 1.

These 4D conclusions, and the simpler 5D ones, are
summarized in Table VIII.

N ¼ 4, heterotic:
F duality x ! ~x leaves invariant� and (up to a sign) P2,

Q2 and P �Q. Moreover, the discrete torsion rðP;QÞ is
invariant. This result seems nontrivial because we are not
aware of any argument that would indicate that the F dual ~x
is T dual equivalent to x. In the cases where P2, Q2, and
P �Q flip sign, we can be absolutely sure that the F dual ~x
is not T dual equivalent to x. This corresponds specifically
to non-BPS black holes and, hence, the conjectured count-
ing formula for all 1=4-BPS dyons is not applicable.
However, it is perhaps encouraging that torsion is left
invariant as it plays a central role in the current N ¼ 4
dyon degeneracy calculations [58].

In the subcases where d1ðxÞ is not conserved, we can be
absolutely sure that the F dual ~x is notU dual equivalent to
x. In this case, however, we do not know whether F duality
leaves higher-order corrections invariant because all the
treatments of higher-order corrections we are aware of are
restricted to d1ðxÞ ¼ 1. This restriction is typically im-
posed to avoid complications arising from the possibility
that dyons with d1ðxÞ> 1 may decay into single particle
states. The consequences of this phenomenon for F-dual
black holes remains an open question.

N ¼ 2, magic:
The magic N ¼ 2 black holes may require a separate

analysis since the diagonally reduced form, central to our
present treatment, is not necessarily applicable in these
instances. In particular, for the octonionicN ¼ 2 example
(as opposed to the split-octonionic N ¼ 8 case) it is well
known that there are integral Jordan algebra elements that
cannot be diagonalized [25–27].

Further work:
For the time being the microscopic stringy interpretation

of F duality remains unclear. In part, this is due to the
F-duality action only being defined on the black hole
charges and not the component fields of the lowest-order
action. Having specified the necessary and sufficient con-
ditions (108) required for a well-defined F-dual charge
vector, one might ask how this space of black holes is

mathematically characterized and whether it has a broader
significance.
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APPENDIX A: MORE EXAMPLES IN CANONICAL
BASIS

Here, we provide further discussion of Subcases 2.3 and
3.1 of Sec. III D.
Subcase 2.3: To simplify our considerations we choose

to instead decompose j in terms of k, l, and �:

j ¼ 
2p1kp2 lp3�p4 ; pi 2 N0; (A1)

under which

n2 ¼ sgnj21�p1k2�p2 l1�p3�1�p4 ;

p1; p3; p4 2 f0; 1g; p2 2 f0; 1; 2g: (A2)

This treatment therefore encompasses the 23 � 3 ¼ 24most
obvious cases, but it leaves

d1ð~xÞ ¼
�
� p4 ¼ 0
gcdð�; 21�p1k2�p2 l1�p3Þ else:

(A3)

To further evaluate the gcd we need to make an ansatz for
�:

� ¼ 2q1kq2 lq3q4; q1;2;3 2 N0; q4 2 Z n f0g;
(A4)

under which

j ¼ 
2p1þq1p4kp2þq2p4 lp3þq3p4q4
p4

n2 ¼ sgnj21�p1þq1ð1�p4Þk2�p2þq2ð1�p4Þl1�p3þq3ð1�p4Þ

� q4
1�p4

d1ð~xÞ ¼ 2minðq1;1�p1Þkminðq2;2�p2Þlminðq3;1�p3Þ: (A5)

Subcase 3.1: Starting with j ¼ 2p we may postulate
p ¼ rl as in Subcase 3.1.2, but this time leave k arbitrary
to obtain

n0 ¼ 
2l½r2 þ k3m�1=2 ¼ 2lq; q 2 N;

n1 ¼ �r=q; n2 ¼ �k2=q;

sgn� ¼ �sgnðr2 þ k3mÞ:
(A6)

In general, suitable values of � must be chosen to enforce
n1, n2 2 Z. In Table IX we list all charge vectors satisfying
the ansatz j ¼ 2rl ^ jr2 þ k3mj ¼ q2, where we have the
absolute values of all parameters to be 5. This restriction
is motivated by space constraints rather than any difficulty

TABLE VIII. Are F or J duals related by U duality?

Duality d1 conserved? U dual?

F dual Yes Projective Yes

Nonprojective ?

F dual No No

J dual Yes Yes

J dual No No
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in finding more examples. Beyond these particular cases
we may simply search for solutions to jj2 þ 4k3l2mj ¼ p2,
p � 0. In Table X we list all examples for which the
absolute parameter values are  3.

APPENDIX B: EXAMPLES IN SEN BASIS

Case 1: s1 ¼ 0 ^ ns2 � 0 We initially obtain

k0 ¼ 2jns2j1=2; k1 ¼ 0;

k2 ¼ gcdðn; s2Q5Þjns2j�1=2; k3 ¼ 2 gcdðn; s2Q5Þ:
(B1)

To force k0 2 Z we require ns2 ¼ 
p2, p 2 Z. Clearly
then, we are not able to obtain an exhaustive decomposi-
tion as we did in the j ¼ 0 case of Sec. III D.

To progress we postulate that n and s2 are proportional to
each other, with a perfect square constant of
proportionality:
Subcase 1.1: s2 ¼ 
p2n2qþ1.

k0 ¼ 2jpnqþ1j; k2 ¼ jpnqj�1; k3 ¼ 2jnj: (B2)

Then p ¼ 
1, q ¼ 0 so that s2 ¼ 
n, k0 ¼ 2jnj, k2 ¼ 1
as in Table VI.

Subcase 1.2: n ¼ 
p2s2qþ1
2 .

k0 ¼ 2jps2qþ1j; k2 ¼ jps2qj�1 gcdðp2s2
2q; Q5Þ;

k3 ¼ 2js2j gcdðp2s2
2q; Q5Þ: (B3)

By again choosing p ¼ 
1, q ¼ 0 we obtain n ¼ 
s2,
k0 ¼ k3 ¼ 2js2j, k2 ¼ 1. In contrast to Case 1.1 we are not
however forced to choose these p, q values since an ansatz
for Q5 can satisfy the k2 integer requirement:

Q5 ¼ pr1s2
r2s; ri 2 N0; s 2 Znf0g; (B4)

under which

d1ð~xÞ � k2

¼ jpt1�1s2
t2�qj gcdðp2�t1s2

2q�t2 ; pr1�t1s2
r2�t2sÞ;

k3 ¼ 2jpt1s2
t2þ1j gcdðp2�t1s2

2q�t2 ; pr1�t1s2
r2�t2sÞ; (B5)

where we have defined

t1 :¼ minð2; r1Þ and t2 :¼ minð2q; r2Þ: (B6)

Insisting on t1, t2 (and hence r1, r2) satisfying k2, k3 2 Z
results in

k2¼

8>>>><>>>>:
jps2qj 2r1^2qr2

jps2r2�qjgcdðs22q�r2 ;pr1�2sÞ 2<r1^qr2<2q

js2qjgcdðp;s2r2�2qsÞ r1¼1^2q<r2

jpr1�1s2
r2�qj 1r12^qr22q;

k3¼2jps2qþ1jk2: (B7)

In order to completely evaluate the remaining gcds we
need to postulate

s2 ¼ 
pu; u 2 N0; (B8)

so that

k2 ¼
� jpquþ1j r2uþ r1  2ðquþ 1Þ
jpðr2uþr1Þ�ðquþ1Þj quþ 1  r2uþ r1 < 2ðquþ 1Þ;

k3 ¼ 2jpðqþ1Þuþ1jk2: (B9)

Case 2: s1 � 0 ^ ns2 ¼ 0 We have

k0 ¼ js1j; k1 ¼ sgns1;

k2 ¼ 2 gcdðn; s2Q5Þ=js1j; k3 ¼ 2 gcdðn; s2Q5Þ:
(B10)

In contrast to Sec. III D there are only three ways in which
ns2 can vanish.

TABLE X. Charge vector parameters resulting in integral dual
charge vectors. This is an exhaustive list for jpj, k, jmj, jqj values
 3.

� jjj k l m sgn� n0 jn1j n2 d1ð~xÞ
1 2 1 1 �2 þ 2 1 1 1

1 3 1 1 �2 � 1 3 2 1

2 2 1 1 �2 þ 2 2 2 2

2 2 1 1 3 � 4 1 1 1

2 3 1 1 �2 � 1 6 4 2

3 1 1 1 2 � 3 1 2 1

3 2 1 1 �2 þ 2 3 3 3

3 2 1 2 2 � 6 1 2 1

3 2 2 1 1 � 6 1 4 1

3 3 1 1 �2 � 1 9 6 3

3 3 1 3 2 � 9 1 2 1

TABLE IX. Charge vector parameters for (A6), restricting to
small parameter values, where s 2 N. This is an exhaustive list
for jrj, k, jmj, q values  5.

� jrj k m q sgn� n0 jn1j jn2j d1ð~xÞ
2s 1 1 �5 2 þ 4l s s s

1 1 �2 1 þ 2l 1 1 1

2s 1 1 3 2 � 4l s s s
3s 1 2 1 3 � 6l s 4s s
5s 1 2 3 5 � 10l s 4s s

2 1 �5 1 þ 2l 2 1 1

2 1 �3 1 � 2l 2 1 1

3s 2 1 5 3 � 6l 2s s s
2 2 �1 2 þ 4l 1 2 1

2s 3 1 �5 2 � 4l 3s s s
3 2 �1 1 � 2l 3 4 1

5s 3 2 2 5 � 10l 3s 4s s
4 2 �4 4 þ 8l 1 1 1

5 2 �3 1 � 2l 5 4 1

3s 5 2 �2 3 � 6l 5s 4s s
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Subcase 2.1: s2 ¼ 0.

k2 ¼ 2jn=s1j; k3 ¼ 2jnj: (B11)

Postulate

s1 ¼ 2p1np2p3; p1;2 2 N0; p3 2 Z n f0g;
(B12)

under which

k2 ¼ 21�p1 jn1�p2p3j; p1; p2 2 f0; 1g:

Subcase 2.2: n ¼ 0.

k2 ¼ 2js2Q5=s1j; k3 ¼ 2js2Q5j: (B14)

Postulate

l ¼ 2p1s2
p2Q5

p3p4; p1;2;3 2 N0; p4 2 Z n f0g;
(B15)

under which

k2 ¼ 21�p1 js21�p2Q5
1�p3p4j; p1; p2; p3 2 f0; 1g:

(B16)

Subcase 2.3: n ¼ s2 ¼ 0.

k2 ¼ 1; k3 ¼ js1j: (B17)

Case 3: ns1s2 � 0 This time we are required to find
solutions of js12 � 4ns2j ¼ p2, p � 0. As before, we first
examine odd and even s1:
Subcase 3.1: s1 ¼ 2p. To force k0 2 Z the product ns2
needs to be a sum or difference of squares p2 
 q2, in
which case

k0 ¼ 2jqj k1 ¼ p=jqj: (B18)

3.1.1 One way to achieve the desired form is through

s2 ¼ pþ q; n ¼ p� q; (B19)

under which

k2 ¼ jqj�1 gcdðp� q; ðpþ qÞQ5Þ: (B20)

Restricting to q ¼ 
1 to satisfy integer k1 sets k0 ¼ 2 and
k1 ¼ p. The discrete invariant d1 reduces to

d1ð~xÞ ¼ gcdðp; gcdðp� 1; ðp
 1ÞQ5ÞÞ
¼ gcdðp; p� 1; ðp
 1ÞQ5Þ ¼ 1: (B21)

3.1.2 Alternatively, one may postulate

s2 ¼ p2 
 q2; n ¼ 1; (B22)

so that

k2 ¼ jqj�1 gcdð1; ðp2 
2 qÞQ5Þ ¼ 1=jqj; (B23)

and we must choose q ¼ 
1.
3.1.3 If one instead picks

s2 ¼ 1; n ¼ p2 
 q2; (B24)

we have

k2 ¼ jqj�1 gcdðp2 
2 q;Q5Þ: (B25)

This time it is not necessary to set q ¼ 
1 since p and Q5

may be multiples of q:

p ¼ r1q; Q5 ¼ r2q; (B26)

so that

k2 ¼ gcdððr1 
 1Þq; r2Þ
d1ð~xÞ ¼ gcdðr1; ðr1 
 1Þq; r2Þ ¼ gcdðq; r1; r2Þ: (B27)

However, if we do set q ¼ 
1 we obtain

k2 ¼ gcdðp2 
 1; Q5Þ
d1ð~xÞ ¼ gcdðp; p
 1; Q5Þ ¼ gcdðp; 1; Q5Þ ¼ 1: (B28)

Subcase 3.2: s1 ¼ 2pþ 1. To counter the linear term aris-
ing in s21 we propose

s2 ¼ p; n ¼ pþ 1; (B29)

under which

k0 ¼ 1 k1 ¼ 2pþ 1 k2 ¼ 2 gcdðpþ 1; pQ5Þ:
(B30)

One could just as well have chosen s2 ¼ pþ 1, n ¼ p, but
this is trivially related to the chosen ansatz. Generalizations
involving a second parameter q run into the same k1
obstacle as in Subcase 3.1. We also find

d1ð~xÞ ¼ gcdð2pþ 1; 2 gcdðpþ 1; pQ5ÞÞ
¼ gcdð2pþ 1; 2ðpþ 1Þ; 2pQ5Þ ¼ 1: (B31)

Outside of these specialized cases one needs to solve the
Diophantine equation jl2 � 4mnj ¼ p2, p � 0.

APPENDIX C: UNDOING AN F DUALITY WITH A
U DUALITY IN THE PROJECTIVE CASE

We know from Sec. II D and [28] that all projective
black holes of the same entropy are U dual to each other
(since U duality acts transitively on the orbits). We also
know that F duality preserves entropy, hence when we
consider the F dual of a projective black hole, we must
be able to ‘‘U dual it back’’ to the original black hole. We
show that this is true here.
Furthermore, as we saw in Sec. IVA, under F duality, we

have
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P2 ! sgnð�ÞP2 Q2 ! sgnð�ÞQ2

P �Q ! sgnð�ÞP �Q;
(C1)

but since P andQ transform under the S� T duality group
SLð2;ZÞ � SOð6; 6;ZÞ, and an S or a T duality cannot flip
the signs of P2 or Q2, the U duality that undoes the F
duality must be in the larger E7ð7Þ.

A general projective black hole has the form [see (69)]

x ¼ 1 ð1; 1; mÞ
ð0; 0; 0Þ j

� �
; (C2)

where j 2 f0; 1g and m 2 Z. But the only examples that
have a well-defined Freudenthal dual have m ¼ 
1, j ¼ 0
and m ¼ 0, j ¼ 1. Let us look at the first case.

We are to show that Freudenthal dual of

x ¼ 1 ð1; 1; mÞ
ð0; 0; 0Þ 0

� �
; (C3)

with P2 ¼ 2m, Q2 ¼ �2, and P �Q ¼ 0 given by

~x ¼ 0 ð0; 0; 0Þ
ðm;m; 1Þ m

� �
; (C4)

with P2 ¼ �2, Q2 ¼ 2m, and P �Q ¼ 0, is U dual to x.
We will use the U-dual transformations defined in (27a).

First we put the B component of ~x into Smith normal
form,8

~x ¼ 0 ð0; 0; 0Þ
ðm;m; 1Þ m

� �
! 0 ð0; 0; 0Þ

ð1; m;mÞ m

� �
:

(C5)

On the Ps and Qs, this looks like

P2 ¼ �2 P2 ¼ �2m
Q2 ¼ 2m 			!triality

Q2 ¼ 2
P �Q ¼ 0 P �Q ¼ 0:

(C6)

So already, we see that for m ¼ �1, a simple triality will
flip the signs of P2 and Q2. Now apply a 	ðCÞ trans-
formation with C ¼ ð1; 0; 0Þ, then

0 ð0; 0; 0Þ
ð1; m;mÞ m

� �
!	ðCÞ 1 ðm; 0; 0Þ

ð1; m;mÞ m

� �
; (C7)

for which

P2 ¼ �2m P2 ¼ �2m
Q2 ¼ 2 !	ðCÞ

Q2 ¼ 2� 2m
P �Q ¼ 0 P �Q ¼ �2m:

(C8)

Followed by a c ðDÞ transformation with D ¼
ð�1;�m;�mÞ

1 ðm; 0; 0Þ
ð1; m;mÞ m

� �
!c ðDÞ 1 mð1�m;�1;�1Þ

ð0; 0; 0Þ 2m2

� �
:

(C9)

Recall that m ¼ 
1 so m2 ¼ 1, so the last element looks
like (after some triality)

1 ð�m;�m;m� 1Þ
ð0; 0; 0Þ 2

� �
; (C10)

for which

P2 ¼ �2m P2 ¼ m� 2

Q2 ¼ 2� 2m !c ðDÞ
Q2 ¼ 2m

P �Q ¼ �2m P �Q ¼ �2:

(C11)

Now apply transformation (iii) from Lemma 27 of [28]
with c ¼ 1, to get

1 ð�m;�m;m�1Þ
ð0;0;0Þ 2

� � 			!Lemma27 1 ð�m;�m;mÞ
ð0;0;0Þ 0

� �
;

(C12)

for which

P2 ¼ m� 2 P2 ¼ �2
Q2 ¼ 2m 			!Lemma27

Q2 ¼ 2m
P �Q ¼ �2 P �Q ¼ 0:

(C13)

For m ¼ �1 then this is equal to the original x, for m ¼
þ1 we have

1 ð�1;�1; 1Þ
ð0; 0; 0Þ 0

� �
; (C14)

to which we apply a norm preserving T transformation
such that the A component goes to (1,1,1), and then we are
back to the original x,

1 ð�1;�1; 1Þ
ð0; 0; 0Þ 2

� �
!T 1 ð1; 1; 1Þ

ð0; 0; 0Þ 0

� �
; (C15)

with

P2 ¼ �2 P2 ¼ 2m
Q2 ¼ 2m !T Q2 ¼ �2
P �Q ¼ 0 P �Q ¼ 0:

(C16)

APPENDIX D: ALTERNATIVE JORDAN DUAL
FORMULATION

Recall from Sec. VI that we defined the Jordan dual A?

of A, as

A ! A? ¼ A]

NðAÞ1=3 ; (D1)

part of the motivation for this definition is that the entropy
is preserved under J- duality

8In general, the operations used to put the Jordan algebra
elements in Smith normal form do not lie in the U-duality group
of the STU model. However, in this particular example, they
actually correspond to a triality.
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NðA?Þ ¼ N

�
A]

NðAÞ1=3
�
¼ 1

NðAÞNðA]Þ ¼ NðAÞ2
NðAÞ ¼ NðAÞ:

(D2)

However, we note that, while A belongs to the funda-
mental representation, e.g. 27 of E6 and describes a black
string, A? belongs to the contragredient representation, e.g.
270 of E6 and corresponds to a black hole (the ] map is a
map between the two representations).

An alternative definition, which maps 27 to 27 and 270 to
270, begins with a black string/hole pair. To lowest order,
the extremal nonrotating black string and black hole en-
tropies are given, respectively, by

S5 ¼ ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNðAÞj

q
; �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNðBÞj

q
Þ; (D3)

where NðAÞ ¼ NðA; A; AÞ. Large BPS and small BPS cor-
respond to NðAÞ � 0, and NðAÞ ¼ 0, respectively. The
Dirac-Schwinger quantization condition relating a black
string/hole pair with charges ðA; BÞ to one with charges
ðA0; B0Þ in the Jordan language is given by

Tr ðA; B0Þ � TrðB;A0Þ 2 Z: (D4)

The alternative Jordan dual or J dual, defined for large
black strings and holes by

ðA?; B?Þ ¼ 

�

B]

NðBÞ1=3 ;
A]

NðAÞ1=3
�
; (D5)

for which

ðA??; B??Þ ¼ ðA; BÞ: (D6)

In the case of a black string and a black hole related by J
duality

Tr ðB?; AÞ � TrðA?; BÞ ¼ 3ðNðAÞ2=3 � NðBÞ2=3Þ: (D7)

Note the factor of 3. Hence, for a valid dual ðA?; B?Þ we
require that NðAÞ2 and NðBÞ2 are perfect cubes. This is a
necessary, but not sufficient condition, because we also
require that A? and B? are themselves integer. This re-
stricts us to that subset of black strings and holes for which

d3ð ~BÞ ¼
�
d2ðBÞ
d1ðA?Þ

�
3
; d3ð ~AÞ ¼

�
d2ðAÞ
d1ðB?Þ

�
3
; (D8)

where d1ðAÞ ¼ gcdðAÞ, d2ðAÞ ¼ gcdðA]Þ, and d3ðAÞ ¼
jNðAÞj. Then,

Tr ðB?; AÞ � TrðA?; BÞ ¼ 3

��
d2ðBÞ
d1ðA?Þ

�
2 �

�
d2ðAÞ
d1ðB?Þ

�
2


:

(D9)

The U-duality integral invariants TrðA; BÞ and NðA; B;CÞ
are not generally invariant under Jordan duality but
TrðB?; AÞ � TrðA?; BÞ, NðAÞ and NðBÞ and hence the
lowest-order black string and black hole entropy, are in-
variant under this alternative J duality but only up to an
A-B interchange:

ðNðA?Þ; NðB?ÞÞ ¼ ðNðBÞ; NðAÞÞ: (D10)
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