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Abstract

A novel multi-fidelity modelling methodology for structural reliability analysis using the Boundary Element

Method (BEM) with an Implicit Differentiation Method (IDM) is presented. Reliability analyses are conducted

with methods such as Monte Carlo Simulation (MCS) and the First-Order Reliability Method (FORM). The

higher-order sensitivities of the elastostatic Boundary Element Method equations with respect to changes in

several geometric variables have been derived for the first time for use with the IDM for the purpose of conducting

reliability analyses with the Second-Order Reliability Method (SORM), a more accurate alternative to FORM

for problems with non-linear limit state functions. Multi-fidelity formulations involving the IDM have also been

derived for the first time, making use of the metamodelling technique Kriging. The use of multi-fidelity modelling

enables the creation of a model that has similar accuracy to a high-fidelity model, but with a computational

cost similar to that of a low-fidelity model. By combining the accuracy of the IDM with the efficiency of multi-

fidelity modelling the proposed methodology has the capability to be very effective when used for structural

reliability analysis. The IDM is validated through a numerical example for which the analytical solution is

known. A further two numerical examples featuring an I-beam section and a triangular support bracket with

a large number of variables are also investigated. Results show that the employed multi-fidelity models were

up to 6000 times faster in terms of CPU-time than the high-fidelity model, while also providing probabilities

of failure that were up to 2225 times more accurate than the low-fidelity model. Overall, it has been shown

that the use of the proposed IDM/multi-fidelity modelling methodology significantly improved the efficiency

and accuracy of the above reliability analysis techniques when applied to complex problems involving a large

number of random variables under high levels of uncertainty.

Keywords: Structural reliability analysis; Multi-fidelity modelling; Kriging; Sensitivity Analysis; Boundary

Element Method (BEM); Implicit Differentiation Method (IDM)

1. Introduction

Reliability analysis offers engineers many advantages when designing structures. It enables engineers to

understand how uncertainties in various design parameters influence the reliability of their structure, and allows

them to focus on the most critical areas of their design and helps them identify ways of improving its overall
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reliability. Among the methods used for structural reliability analysis are statistical methods and non-statistical

methods [1]. Statistical methods include techniques such as Monte Carlo Simulation (MCS) which simulates the

limit state function directly, while non-statistical methods include techniques such as the First-Order Reliability

Method (FORM) and the Second-Order Reliability Method (SORM), which approximate the limit state func-

tion using first-order and second-order Taylor series expansions respectively. For many problems, particularly

complex ones involving highly non-linear limit state functions, SORM is often more accurate than FORM due

its use of higher-order sensitivities, allowing for a better approximatation of reliability in these cases. More

details of these methods can be found in many books on the topic of reliability analysis [2, 3, 4].

The Boundary Element Method (BEM) has shown itself to be an effective tool for the analysis of engineering

structures. Regarding its application to the topic of structural reliability analysis, it has several features that

make it a useful alternative to the Finite Element Method (FEM). Such features include the reduction of the

dimensionality of the problem and its ability to obtain a similar level of accuracy to the FEM while using a

much coarser mesh. Re-meshing can also be significantly easier with the BEM due to its inherent boundary-only

discretization, allowing for sensitivity analyses involving geometric variables to be more efficiently carried out.

These advantages, and others, are discussed in more detail in previous works concerning sensitivity analyses

with geometric variables involving: elastostatic structures [1, 5, 6], fatigue crack growth [7, 8, 9], creep [10],

plate bending [11], and topology optimization [12].

Two approaches that have been used with the BEM to obtain the sensitivities required by FORM and SORM

are the Finite Difference Method (FDM) [6, 7] and another which involves the use of an Implicit Differentiation

Method (IDM) [5, 13, 14]. The FDM involves the use of finite differences to obtain derivatives. Being a relatively

crude method, its accuracy is heavily dependent on the stepsize used [15]. In many cases, the optimal stepsize

can only be determined through a trial-and-error approach, making the FDM computationally expensive to

carry out. The use of an IDM, on the other hand, involves the direct differentiation of the discretised BEM

equations, resulting in a solution without the need of a trial-and-error approach, significantly improving the

efficiency of the formulations. This direct differentiation is highly efficient as only those parts of the BEM

equations which are influenced by a change in a variable need to be re-evaluated. The result is a significant

improvement in efficiency, as only some equations will need to be updated during the reliability analyses. A

comprehensive overview of the application of the BEM to structural analysis, as well as an introduction to the

IDM used in this work, can be found in [16].

In the context of this work, surrogate modelling or metamodelling, refers to the process of substituting a

real model for a ‘surrogate’ model. The surrogate model is typically created by evaluating the response of the

real model at several points, called design points/sites. Types of metamodels that have been employed in the

past with regards to structural reliability analysis include polynomials [6, 10, 17, 18, 19], Kriging [20, 21, 22],

and Neural Networks (NNs) [23, 24]. Although surrogate models are not as accurate as the real model over the

entire domain being investigated, they can act as very effective substitutes for the real model over a small part

of the domain. This makes them very useful for reliability analyses.

Multi-fidelity modelling is a specific type of metamodelling, whereby a surrogate model approximating a

high-fidelity model (HFM) is created by evaluating both the response of the HFM and a low-fidelity model

(LFM) at several design sites, within the domain being investigated. In the context of numerical computational

methods such as the FEM and the BEM, LFMs and HFMs refer to models with coarse and fine element

discretisations respectively. The aim of multi-fidelity modelling is to provide a multi-fidelity model (MFM) that
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is of similar accuracy to the HFM over the required domain, but at a computational cost similar to that of

the LFM. Two recent reviews of metamodelling techniques have been undertaken by Simpson et al [25] and

Bhosekar et al [26] . Multi-fidelity models created in the past include those based on polynomials [27, 28, 6], and

those based on Kriging [29, 30, 20]. Due to its many advantages, multi-fidelity modelling has found extensive

use with the FEM, with notable examples being [27, 28, 20]. However, its application to structural reliability

analysis has received limited attention, with one known example being [20] for the XFEM (Extended Finite

Element Method). Examples of the application of multi-fidelity modelling with the BEM are limited, one known

example is [6].

Two types of surrogate models that have been used in the past for multi-fidelity modelling with structural

reliability analysis are Kriging [20] and response surfaces [6]. Lefebvre et al [20] employed a sophisticated

approach to multi-fidelity modelling based structural reliability analysis through the use of co-Kriging, a variant

of Kriging that takes into account data of different fidelities. The work conducted in [6] built on the work

presented by Vitali et al [27] with the FEM and applied multi-fidelity modelling to structural reliability analysis

using the BEM. MFMs in the form of response surfaces were created using the response of a HFM and a LFM

at a number of design points. Direct MFMs which involved directly calling the LFM, and indirect models

which involved approximating the LFM as a response surface, were created. It was found that the direct MFMs

provided the greatest improvement in accuracy over the LFM when used with FORM, SORM, and MCS.

The main objective of this work concerns the development of a multi-fidelity modelling methodology with

the boundary element method for structural reliability analysis. This involves the derivation of multi-fidelity

modelling formulations for the IDM, via Kriging. Due to the significant benefits that multi-fidelity modelling

can provide, as well as the inherent advantages of the BEM, particularly for structural reliability analysis, the

development of multi-fidelity modelling formulations for the BEM is an area of great interest. The employed

IDM, involving the direct differentiation of the BEM equations, represents a significant improvement in efficiency

over the FDM used in the past. It is used in this work as an alternative to the FDM for the evaluation of the

sensitivities necessary for FORM. The necessary formulations for the IDM with SORM have also been derived.

Multi-fidelity modelling is achieved through the use of Kriging, which involves interpolating between design

points. It is therefore more suitable than other modelling techniques for the creation of multi-fidelity models

with numerical methods such as the BEM. The use of Kriging allows for accurate multi-fidelity models to be

created, improving the efficiency of the reliability analysis formulations. In summary, the specific main novel

contributions of this current work are:

• The higher-order sensitivities of a structure to changes in certain design variables are derived for the

first time with the IDM for the BEM. These higher-order sensitivities are required by the Second-Order

Reliability Method (SORM), an advanced method for structural reliability analysis. Since SORM involves

the calculation of the second-order derivatives of the response of a structure, it can more accurately

approximate non-linear limit state functions, such as those in this work. Previous applications with an

IDM for the BEM have been limited to the First Order Reliability Method (FORM).

• Multi-fidelity modelling formulations for an IDM with the BEM have been derived for the first time. The

significant improvement in efficiency that could be gained from the use of multi-fidelity modelling, added

to the accuracy of the IDM, has the potential to make the proposed multi-fidelity/IDM methodology very

effective when applied to structural reliability analysis.
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2. Reliability analysis formulations

The criteria for determining structural failure used in this work is based on the maximum stress present in a

BEM model. The location of maximum stress in the structure is termed point A. If the maximum stress in the

structure, σA, exceeds the material strength, σc, then the structure is assumed to have failed. The boundary

between the structure failing and not-failing is defined as a limit state. This can be represented mathematically

as a limit state function (LSF) or performance function [3], g(Z):

g(Z) = σc − σA(X) (1)

where Z is a size q vector containing all of the design/random variables under investigation, and X (X ⊆ Z)

is a size n (n = q − 1) vector of the design variables that influence σA. In this work, X is identical to Z but

excludes σc since it does not influence σA. All other variables in X are assumed to influence σA.

The reliability, PR, of a structure can be determined by evaluating the following integral:

PR = 1− PF = P{g(Z) > 0} =

∫
g(Z)>0

fZ(Z)dZ (2)

where fZ(Z) is the joint PDF of Z. PF and PR involve integrating fZ(Z) over the regions defined by g(Z) < 0

(the failure region) and g(Z) > 0 (the safe region) respectively. All of the random variables are assumed to

be mutually independent. The direct evaluation of the above integral is usually very difficult since it can be

multidimensional if many random variables are involved. The integration boundary g(Z) = 0 can also be

multidimensional and is usually a non-linear function.

There are several methods that can be used to evaluate this integral; MCS, which involves sampling from

the distribution of each random variable , and FORM and SORM, which attempt to simplify the integration.

2.1. Monte Carlo Simulation (MCS)

MCS involves randomly sampling from known probability distributions to determine an unknown probability

distribution [2]. If Z = (Z1,Z2, . . . ,Zq) is a vector of known random variables, and if y = h(Z), where y is a

random variable with an unknown probability distribution and h is some process or function, then the variables

in Z can be randomly sampled per their probability distributions and used as the inputs to h and a value for y

can be obtained. This is repeated many times until a histogram can be created of y, allowing us to estimate its

probability distribution.

For each simulation, the variables in Z are randomly sampled from their probability distributions, with the

samples of the variables in X being used as inputs to a BEM model to evaluate σA. If g(Z) < 0 (σA(X) > σc)

for a simulation, then the structure is assumed to have failed for that simulation. After a certain number of

simulations have been carried out, NMCS , the total number of simulations in which the structure failed, NF ,

can be determined and the failure probability, PF , can be calculated as:

PF =
NF

NMCS
(3)

Reliability can be calculated as:

PR = 1− PF (4)

Because MCS is a simple brute-force sampling method, it can be used as a benchmark to validate the results

obtained from the LSF approximation methods, FORM and SORM.
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2.2. First Order Reliability Method (FORM)

The first order reliability method (FORM) used in this work refers to the advanced first-order second-

moment (AFOSM) method for non-linear limit state functions. There are two steps that FORM takes to make

the integration in equation (2) more manageable. The first step involves simplifying fZ(Z) such that its contours

are more regular and symmetric. This is achieved by transforming the random variables Z = (Z1,Z2, . . . ,Zq)

from Z-space into U-space, the standard normal space. Equation (1) can then be represented in terms of U as

g(U). Equation (2) can now be written as:

PR = 1− PF = P{g(U) > 0} =

∫
g(U)>0

fU(U)dU (5)

where fU(U) is the joint PDF of U. As a result of this transformation to U-space, the contours of the integrand

fU(U) are now concentric circles about the origin (for two random variables) or hyperspheres (for a higher

number of random variables) [2].

The second step involves approximating the integration boundary g(U) = 0 as a first-order Taylor expansion:

g(U) ≈ g(U∗) +∇g(U∗)(U−U∗)T (6)

where U∗ = (U∗1,U
∗
2, . . . U∗q) is the expansion point. ∇g(U∗) is:

∇g(U∗) =

(
∂g(U)

∂U1
,
∂g(U)

∂U2
, ...,

∂g(U)

∂Uq

)∣∣∣∣∣
U∗

(7)

To minimize the accuracy lost by this approximation it is necessary to expand g(U) at the point U∗ that

contributes the most to the integration seen in equation (5) and so will be the point that corresponds to the

highest probability density. This point is termed the most probable point (MPP) [2] and is the point along the

integration boundary g(U) = 0 that is closest to the origin of U-space. The distance between the MPP and the

origin of U-space is termed the reliability index β. β is related to the probability of failure PF and reliability

PR in the following manner:

PR = 1− PF = 1− Φ(−β) = Φ(β) (8)

where Φ denotes the standard normal cumulative distribution function (CDF). Equation (8) states that a high

value of β corresponds to a high level of reliability. A variable’s importance, or degree of contribution, to the

reliability index from FORM can be determined by calculating its sensibility: U∗i /|U
∗|.

In this work, a Newton-Raphson type recursive algorithm developed by Rackwitz and Fiessler [31] is used

to determine the MPP. The initial guess for the algorithm for each variable was chosen to be 0, corresponding

to the mean of each variable in Z-space.

2.3. Second Order Reliability Method (SORM)

Approximating the LSF using a linear surface, as is the case with FORM, will lead to a loss in accuracy if

the LSF has a high level of curvature. The second-order reliability method (SORM) involves approximating the

LSF using a second-order Taylor expansion and so is able to provide greater accuracy when used with non-linear

LSFs, as is the case in this work with the BEM. In SORM, the LSF is approximated as:

g(U) ≈ g(U∗) +∇g(U∗)(U−U∗)T +
1

2
(U−U∗)H(U∗)(U−U∗)T (9)
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where H(U∗) is the Hessian matrix evaluated at U∗, and contains the second-order derivatives of the LSF with

respect to the random variables in U-space:

H(U∗) =



∂2g(U∗)

∂U2
1

∂2g(U∗)

∂U1∂U2
. . .

∂2g(U∗)

∂U1∂Uq

∂2g(U∗)

∂U2∂U1

∂2g(U∗)

∂U2
2

. . .
∂2g(U∗)

∂U2∂Uq

...
...

. . .
...

∂2g(U∗)

∂Uq∂U1

∂2g(U∗)

∂Uq∂U2
. . .

∂2g(U∗)

∂U2
q


(10)

Since SORM is of a higher-order than FORM it is expected that it will more accurately approximate non-linear

LSFs, such as those involved in this work. The SORM used in this work is Breitung’s asymptotic approximation

[32]:

PF = P{g(Z) < 0} = Φ(−βFORM )

q−1∏
i=1

(1 + βFORMκi)
−1/2 (11)

where βFORM is the converged value of the reliability index calculated from FORM, and κi (i = 1, . . . , q − 1)

are the principal curvatures of the limit state function at the converged MPP location U∗ from FORM. This

approximation is accurate only for large values of β, which is the case for practical high-reliability problems

[3, 33]. The probability of failure from SORM can now be calculated using equation (11) and the reliability

index calculated using the following equation:

β = −Φ−1(PF ) = −Φ−1(1− PR) (12)

2.4. Derivative evaluation

FORM and SORM both require the evaluation of the derivatives of the limit state function seen in equation

(1). There are two methods that can be used to obtain these derivatives, these are the FDM, which involves the

use of finite differences to approximate the derivatives, and the IDM, which involves the direct differentiation

of the discretized boundary integral equations. In this work, the IDM is used to calculate the derivatives with

respect to geometric random variables, while the FDM has been employed for variables such as applied load

and Poisson’s ratio.

2.4.1. Implicit Differentiation Method (IDM)

The IDM used in this work involves the direct differentiation of the boundary integral equations with

respect to some geometric random variable Zm (m = 1, 2, . . . , q − 1). For conciseness, only the most important

formulations related to the IDM are presented. The reader is referred to [16] for a comprehensive overview of

the IDM used in this work as well as of the standard 2D elastostatic BEM formulations.

The 2D elastostatics displacement boundary integral equation is:

Cij(x
′)uj(x

′) +−
∫
S

Tij(x
′,x)uj(x)dS =

∫
S

Uij(x
′,x)tj(x)dS (13)

where −
∫

represents a Cauchy principal value integral. Subscripts i and j represent the dimensions of the problem,

with i, j = 1, 2 for 2D problems. x′ and x denote the collocation node and field point respectively. Cij is the free

term. uj(x
′) and tj(x

′) are the displacements and tractions respectively in the j ’th direction at the collocation
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node x′. This equation describes the displacements and tractions along each of the elements of the BEM model.

The displacement and traction fundamental solutions for 2D elastostatics, Uij and Tij respectively, are:

Uij(x
′,x) =

1 + ν

4πE(1− ν)

{
(3− 4ν) ln

(
1

r

)
δij + r,ir,j

}
(14)

Tij(x
′,x) =

−1

4π(1− ν)r

{
∂r

∂n
[(1− 2ν)δij + 2r,ir,j ]− (1− 2ν)(r,inj − r,jni)

}
(15)

where r is the distance between the collocation point x′ and the field point x, and ∂r/∂n = r,knk = r,1n1+r,2n2.

n1 and n2 are the components of the unit outward normal vector of the element which contains the field point

(the field/integration element).

The discretized form of the 2D elastostatics displacement boundary integral equation (13) is:

Cij(x
′)uj(x

′) +

Ne∑
ne=1

M∑
α=1

Pneα
ij uneα

j =

Ne∑
ne=1

M∑
α=1

Qneα
ij tneα

j (16)

where the superscripts ne and α denote field element number and local node number respectively, Ne is the

total number of elements present in the BEM model, and M is the number of nodes in each element (3 for

quadratic elements). For 2D problems:

Pneα
ij = −

∫ +1

−1
Tij(x

′,x(η))Nα(η)Jne(η)dη (17)

Qneα
ij =

∫ +1

−1
Uij(x

′,x(η))Nα(η)Jne(η)dη (18)

where Uij and Tij are the 2D elastostatic displacement and traction fundamental solutions respectively, Nα(η)

are the shape functions, defined in terms of the non-dimensional coordinate η (−1 ≤ η ≤ 1), and Jne(η) is the

Jacobian. The evaluation of (16) results in the following system of equations:

Hu = Gt (19)

After the substitution of the known boundary conditions, the resulting system of equations is:

AX = F (20)

where A is a matrix containing known coefficients, X is a vector of unknown boundary conditions, and F is a

vector containing known coefficients and prescribed boundary conditions.

To obtain the first order derivatives of the boundary stresses necessary for FORM, the first-order derivative

of equation (16) with respect to some geometric variable Zm is required:

Cij,m(x′)uj(x
′)+Cij(x

′)uj,m(x′) +

Ne∑
ne=1

M∑
α=1

Pneα
ij uneα

j,m +

Ne∑
ne=1

M∑
α=1

Pneα
ij,mu

neα
j

=

Ne∑
ne=1

M∑
α=1

Qneα
ij tneα

j,m +

Ne∑
ne=1

M∑
α=1

Qneα
ij,mt

neα
j

(21)

where Pneα
ij and Qneα

ij were obtained from the normal BEM analysis (equations 17 and 18). Their derivatives

with respect to Zm are:

Pneα
ij,m = −

∫ +1

−1
Tij,m(x′,x(η))Nα(η)Jne(η)dη +−

∫ +1

−1
Tij(x

′,x(η))Nα(η)Jne
,m(η)dη (22)

Qneα
ij,m =

∫ +1

−1
Uij,m(x′,x(η))Nα(η)Jne(η)dη +

∫ +1

−1
Uij(x

′,x(η))Nα(η)Jne
,m(η)dη (23)
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Full expressions for the derivatives in (22) and (23) can be seen in the appendix. These derivatives contain

the terms ri,m = ∂ri/∂Zm = [xi,m(x)− xi,m(x′)] and r,m = r,krk,m, where xi,m is a function of the local node

coordinates:

xi,m(η) =

M∑
α=1

Nα(η)xαi,m (24)

In this work, xαi,m was calculated using the first-order finite difference scheme:

xαi,m =
xαi (Zm + ∆Z′m)− xαi (Zm)

∆Z′m
(25)

where ∆Z′m is a very small change in Zm. It was found that the value of ∆Z′m made very little impact on the

accuracy of the first-order derivatives from the IDM for all of the geometric variables Zm investigated. ∆Z′m

was given a normalised value equal to 1×10−3% of Zm as this was found to provide accurate results.

The IDM uses finite difference equations only for the calculation of xαi,m, and later for xαi,mm. After this,

only the direct derivatives of the BEM integral equations are used.

From (21) the system of equations obtained is of the form:

H,mu + Hu,m = G,mt + Gt,m (26)

Since the prescribed boundary conditions are constant, it is assumed that they will not change with a change

in Zm. It can therefore be said that if uj(x) is prescribed then uj,m(x) = 0, where x is a boundary node, the

same is true for tj(x). After taking into account these prescribed boundary conditions the resulting system of

equations is:

AX,m = F,m −A,mX (27)

where X,m contains the first order derivatives of the unknown boundary conditions. The matrices A and X are

identical to those shown in (20) for the standard BEM analysis.

In the IDM, the entries of the matrix A,m which correspond to the situation where both the collocation node

and the integration element lie on fixed boundaries are zero. This occurs if a change in the geometric variable

Zm results in no change to either the x coordinate or the y coordinate of the collocation node or to any of the

coordinates of any of the nodes in the integration element. This corresponds to the case where xαi,m = 0 for

all α and i for the integration element and xci,m = 0 for all i, where c denotes the local node corresponding to

the collocation node in the collocation node-containing element. Because of this, only the integration element

- collocation node pairs which do not lie on fixed boundaries are required to be calculated. This significantly

improves the computational efficiency of the above formulations.

To obtain the second order derivatives of the boundary stresses necessary for SORM, the second-order

derivative of equation (16) with respect to some geometric variable Zm are required:

Cij,mm(x′)uj(x
′) + 2Cij,m(x′)uj,m(x′) + Cij(x

′)uj,mm(x′)

+

Ne∑
ne=1

M∑
α=1

Pneα
ij uneα

j,mm + 2

Ne∑
ne=1

M∑
α=1

Pneα
ij,mu

neα
j,m +

Ne∑
ne=1

M∑
α=1

Pneα
ij,mmu

neα
j

=

Ne∑
ne=1

M∑
α=1

Qneα
ij tneα

j,mm + 2

Ne∑
ne=1

M∑
α=1

Qneα
ij,mt

neα
j,m +

Ne∑
ne=1

M∑
α=1

Qneα
ij,mmt

neα
j

(28)
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where Pneα
ij,mm and Qneα

ij,mm are:

Pneα
ij,mm = −

∫ +1

−1
Tij,mm(x′,x(η))Nα(η)Jne(η)dη

+ 2−
∫ +1

−1
Tij,m(x′,x(η))Nα(η)Jne

,m(η)dη +−
∫ +1

−1
Tij(x

′,x(η))Nα(η)Jne
,mm(η)dη

(29)

Qneα
ij,mm =

∫ +1

−1
Uij,mm(x′,x(η))Nα(η)Jne(η)dη

+ 2

∫ +1

−1
Uij,m(x′,x(η))Nα(η)Jne

,m(η)dη +

∫ +1

−1
Uij(x

′,x(η))Nα(η)Jne
,mm(η)dη

(30)

where ri,mm = ∂2ri/∂Z2
m = xi,mm(x) − xi,mm(x′), r,mm = r,imri,m + r,iri,mm, and r,im = (ri,m − r,ir,m)/r.

xi,mm is a function of the local node coordinates:

xi,mm =

M∑
α=1

Nα(η)xαi,mm (31)

In this work xi,mm was calculated using the second-order central finite difference scheme:

xαi,mm =
xαi (Zm + ∆Z′′m)− 2xαi (Zm) + xαi (Zm −∆Z′′m)

(∆Z′′m)2
(32)

where ∆Z′′m is a very small change in Zm. As with ∆Z′m, it was found that the value of ∆Z′′m made very little

impact on the accuracy of the second-order derivatives obtained from the IDM for all of the geometric variables

Zm investigated. ∆Z′′m was given a normalised value equal to 1% of Zm as this was found to provide accurate

results.

The system of equations resulting from (28) is of the form:

H,mmu + 2H,mu,m + Hu,mm = G,mmt + 2G,mt,m + Gt,mm (33)

As before, it can be said that if uj(x) is prescribed then uj,mm(x) = 0, where x is a boundary node, the same is

true for tj(x). After taking into account these prescribed boundary conditions the resulting system of equations

is as follows:

AX,mm = F,mm − 2A,mX,m −A,mmX (34)

where X,mm contains the second order derivatives of the unknown boundary conditions. The matrices A and

X are identical to those shown in (20) for the standard BEM analysis. A,m and X,m were obtained during the

first-order derivative analysis using equation (27) and are used again here.

Similar to the first-order derivatives case, the entries of the matrix A,mm which correspond to the situation

where both the collocation node and the integration element lie on fixed boundaries are zero. This corresponds

to the case where xαi,m = xαi,mm = 0 for all α and i for the integration element and xci,m = xci,mm = 0 for all i,

where c denotes the local node corresponding to the collocation node in the collocation node-containing element.

Because of this, only the integration element - collocation node pairs which do not lie on fixed boundaries are

required to be calculated. This significantly improves the efficiency of the formulations.

Although the Hessian matrix H(U∗) (equation 10) includes both diagonal terms and non-diagonal (cross-

derivative) terms, it was found in this work that the presence of the cross-derivative terms produced only a

very small change in βSORM of, at most, 0.17%, while increasing the computation time of H(U∗) by between

200%-1100%. Therefore, the non-diagonal terms in H(U∗) were omitted.
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Depending on the relative location of the collocation point x′ and the field point x, the integrals of the fun-

damental solutions seen in equations (17) and (18), (22) and (23), and (29) and (30) can be said to have one of

five different levels of singularities. These levels go from regular integrals, which have no singularity and can be

dealt with using standard Gaussian quadrature, to hyper-singular integrals, which are very strong singularities

that have to be dealt with using special methods. Details on methods that can be used to deal with these five

levels of singularities can be found in Chapter 11 of [16].

3. Multi-fidelity modelling

In this work, Kriging is used to create multi-fidelity models to approximate the response of a high-fidelity

BEM model. Kriging models involve the use of design data in their creation. This design data is composed of

the inputs to a BEM model, called the design sites, and the corresponding responses of the BEM model to these

inputs. In this work, only one response is considered - the maximum stress in the structure, σA. The matrix of

design sites, S, and the vector of responses, Y, are shown below:

S =


s1

s2
...

sm

 =


s11 s12 . . . s1n

s21 s22 . . . s2n
...

...
. . .

...

sm1 sm2 . . . smn

 (35)

Y =


y(s1)

y(s2)
...

y(sm)

 =


Y1

Y2
...

Ym

 (36)

where m is the number of design sites, n is the number of input variables, and y is the response of the BEM

model, σA.

The Design and Analysis of Computer Experiments (DACE) refers to methods used to determine the m

design sites used in S to create the surrogate models. A common type of design used with DACE are Latin

Hypercube designs, examples of which can be found in [6, 28, 27, 34]. Latin Hypercube (LHC) designs are

widely used to create surrogate models for computer programs. LHC designs are space-filling and so provide

good coverage over the design domain [34]. In this work, Latin Hypercube designs are used to obtain the design

sites in S.

The design points for each variable were determined by inversely uniformly sampling from the variable’s

cumulative distribution function (CDF). A number of intervals m were created between the probabilities 1%

and 99% on each variable’s CDF, and the median value for each interval was chosen, providing m equally-spaced

values of probability between 1% and 99%. For each CDF, the inverse CDF for each of the m probabilities was

then calculated, providing a total of m samples for each variable. By carrying out this procedure, a type of

importance sampling is achieved. It is ensured that the design points are more concentrated in the more-likely

areas of each variable’s domain and less concentrated in the less-likely areas. An m× n matrix of design points

can then be created and the order of the rows of each column can be randomized, ensuring that the data points

cover the entire domain.
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3.1. Kriging

Surrogate models created using Kriging are investigated in this work. Kriging involves the creation of a

generalized least squares (GLS) model which accounts for the correlation in the residuals between the regression

model and observations. Kriging is suitable for approximating computer models, which are deterministic in

nature, since it interpolates the data points used to design the Kriging model [35]. In this work, Kriging

is investigated for its ability to create accurate surrogate models of a BEM model for reliability analysis.

The Matlab Kriging toolbox DACE [36] is used to create the Kriging models. For conciseness only a short

introduction to Kriging is provided. More information on Kriging can be found in [37].

3.1.1. Mathematical form

A Kriging model is of the form:

ŷ(x) = f(x)Tβ + z(x) (37)

where ŷ(x) is termed the Kriging predictor and is the predicted output from the Kriging model at some trial

site x, where xj ∈ Rn. f(x) is a vector of length p containing the functions of the regression model evaluated at

x, where p is the number of parameters in the regression model. β is a vector of size p containing the regression

coefficients. And z (x) is a stationary Gaussian process with zero mean and covariance:

cov[z(si), z(x)] = E[z(si)z(x)] = σ2R(θ, si,x) (38)

where E denotes expectation and σ2 is the process variance. The correlation model or spatial correlation

function (SCF) R controls the influence of nearby points on the output of the Kriging predictor ŷ(x) by

calculating the correlation between the design points si, i = (1, 2, . . . ,m), and the trial site x. The vector

θ, θj ∈ Rn (θj > 0), contains the parameters of the SCF and they determine the level of influence that the

distance between the points si and x have on the correlation coefficient R. The most commonly used SCF in

engineering is the Gaussian correlation function, due to its ability to provide an approximation surface that

is smooth and infinitely differentiable [37]. This is particularly useful in this work since the first-order and

second-order derivatives of this surface are required by FORM and SORM. The Gaussian correlation function

is therefore used in this work. It is of the following form:

R(θ, si,x) =

n∏
j=1

Rj(θj , sij , xj) =

n∏
j=1

exp(−θj |sij − xj |2) =

n∏
j=1

exp(−θj |dj |2) = exp

(
n∑
j=1

(−θj |dj |2)

)
(39)

3.2. Multi-fidelity modelling with the Boundary Element Method

In this work, two types of multi-fidelity models are used to approximate the maximum stress in the structure,

σA. One type involves directly calling the low-fidelity BEM model each time a multi-fidelity approximation is

required, the direct multi-fidelity models, and the other involves calling a surrogate model of the low-fidelity

BEM model instead of the actual low-fidelity BEM model, these are the indirect multi-fidelity models. It

is expected that the indirect models will be computationally less expensive than the direct models, but less

accurate. In this work, calculating these multi-fidelity approximations involves creating correction Kriging

models λ̂(x) and δ̂(x). λ(x) is the ratio between the maximum stress calculated from the high-fidelity BEM

model σHFA (x) and the maximum stress calculated from the low-fidelity BEM model σLFA (x), while δ(x) is the

difference between σHFA (x) and σLFA (x). The ratio and difference were used for the multi-fidelity approximations

instead of derivative based approximations due to their ability to be applied to larger areas within the design
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domain and their ability to smooth out noise [27]. To create λ̂(x) and δ̂(x), the ratio and the difference were

calculated at each design point si (i = 1, 2, . . . ,m) shown in equation (35):

λ(si) =
σHFA (si)

σLFA (si)
(40)

δ(si) = σHFA (si)− σLFA (si) (41)

The vectors λ and δ are used as Y in equation (36) for the creation of λ̂(x) and δ̂(x) respectively. The

multi-fidelity approximations for the maximum stress, σA, are as follows:

σ̂MF1
A (x) = λ̂(x)σLFA (x) (42)

σ̂MF2
A (x) = δ̂(x) + σLFA (x) (43)

σ̂MF3
A (x) = λ̂(x)σ̂LFA (x) (44)

σ̂MF4
A (x) = δ̂(x) + σ̂LFA (x) (45)

where σ̂LFA (x) is the surrogate Kriging model of the low-fidelity BEM model. Equations (42) and (43) correspond

to the multi-fidelity approximations that involve directly calling the low-fidelity model, the direct multi-fidelity

approximations, while equations (44) and (45) correspond to the multi-fidelity approximations that involve

approximating the response of the low-fidelity model as a response surface, the indirect multi-fidelity approxi-

mations.

In addition to these multi-fidelity approximations, a surrogate model of the high-fidelity BEM model σ̂HFA (x),

referred to as HFM∗, was created and compared in terms of performance to the four multi-fidelity approximations

above. The limit state functions of the four multi-fidelity models, the surrogate model of the high-fidelity BEM

model, and the two BEM models can be seen below:

ĝMFk(Z) = σc − σ̂MFk
A (X) k = 1, 4 (46)

ĝHF (Z) = σc − σ̂HFA (X) (47)

gLF (Z) = σc − σLFA (X) (48)

gHF (Z) = σc − σHFA (X) (49)

A flow diagram showing the steps involved in the creation of the Kriging models used for the multi-fidelity

models can be seen in figure 1.

For FORM and SORM, the first and second-order derivatives of the limit state functions (equations 46 - 49)

with respect to the variables in Z are required. Since the first-order derivatives of the limit state functions with

respect to σc are equal to 1, it is more important to determine the derivatives with respect to the variables in

X. As an example, the first order derivative of ĝMF1(Z) with respect to Xi (i = 1, 2, ..., q − 1) is:

∂ĝMF1(Z)

∂Xi
= −∂σ̂

MF1
A (X)

∂Xi
= −λ̂(X)

∂σLFA (X)

∂Xi
− σLFA (X)

∂λ̂(X)

∂Xi
(50)

The derivative ∂λ̂(X)/∂Xi is the derivative of the response of the Kriging model λ̂ and can be directly obtained.

However, the derivative ∂σLFA (X)/∂Xi is the derivative of the response of the low-fidelity BEM model and so

is more difficult to obtain. It can be obtained using finite-differences with the FDM or directly with the IDM.
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Define the number of design sites m and identify
the number of input variables n to be used in S

Create S (eq. 35) using a Latin Hyper Cube (LHC) design.

Evlauate the low-fidelity model and the high-fidelity model at each
design point si (i = 1, 2, ...,m) to obtain σLFA (si) and σHFA (si)

respectively. Calculate λi(si) and δi(si) using these values.

Create the Kriging models σ̂LFA , σ̂HFA , λ̂, and δ̂ using
the vectors σLFA , σHFA , λ, δ respectively as Y in eq. 36.

The limit state functions (eqs. 46 - 49)
can now be evaluated for some point Z.

Figure 1: A flow diagram showing the steps involved in the creation of the Kriging models used for the multi-fidelity models.

4. Numerical examples

In this section, the proposed multi-fidelity modelling based structural reliability analysis formulations for

the BEM with the IDM are validated for a pressurized thin ring structure for which the analytical solution is

known. The application of the proposed methodology is also investigated for a more complex example featuring

a I-beam section with a large number of random variables. Lastly, a significantly more complex example with

a very low expected probability of failure (around 1× 10−4%) is investigated to demonstrate the efficiency and

robustness of the proposed IDM when used for reliability analysis with FORM and SORM. A part of this last

example, a study is carried out to compare the computation time of FDM with the IDM.

4.1. Example 1: Thin ring

In order to validate the Boundary Element Method when calculating response derivatives using the IDM, a

numerical example involving the thin ring structure shown in figure 2 subjected to uniform external pressure

was investigated. The boundaries of the ring were discretised into 64 quadratic elements: 32 along the inner

boundary, and 32 along the outer boundary. 64 elements were chosen as this number was found to provide

stress convergence.

A B

po

ri

ro

Figure 2: The pressurized thin ring used in example 1. Points A and B are labeled.
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In this example the limit state function can be written as:

g(Z) = σc − σA(X) (51)

where Z = (ri, ro, po, σc) and X = (ri, ro, po). σA is the value of maximum stress and occurs at point A in figure

1. The von Mises yield criterion is employed for the maximum stress:

σv(X)|A = σvA(X) =
[
σ2
11(X)|A − σ11(X)|Aσ22(X)|A + σ2

22(X)|A + 3σ2
12(X)|A

]1/2
(52)

If σvA > σc, where σc is the yield strength, the structure is assumed to have failed. The analytical solution for

σvA is expressed in terms of polar coordinates and can be found in [38].

The variables in Z were treated as random variables and were assigned the probability distributions seen

in table 1. For simplicity, the variables were assigned non-dimensional values for the mean and coefficient of

variation (COV), with COV = σ/µ, where σ and µ are the standard deviation and mean respectively.

Zi Xi Symbol Description Distribution Mean COV

Z1 X1 ri Inner radius Lognormal 1.0 0.1
Z2 X2 ro Outer radius Normal 10.0 0.1
Z3 X3 po Outer pressure Lognormal 1.0 0.2
Z4 - σc Yield strength Lognormal 3.0 0.2

Table 1: The four random variables investigated in example 1 and their probability distributions

4.1.1. Results and discussion

In order to validate the IDM, the first and second-order derivatives of the radial displacement ur and the

von Mises stress σv at points A and B in figure 1 with respect to the internal hole radius ri were calculated

using the IDM and compared to those obtained from the analytical solution. All displacements and stresses, as

well as their derivatives, were calculated at the mean values of each variable shown in table 1. The BEM is able

to approximate ur and σv at both points A and B with a high level of accuracy, achieving percentage errors of

the order of 1×10−4%. This high level of accuracy is also seen in the first and second-order derivatives of ur

and σv shown in table 2.

Model

Derivative Analytical IDM

∂ur(A)/∂ri -2.02039 -2.02037
∂ur(B)/∂ri -3.98130×10−1 -3.98128×10−1

∂σv(A)/∂ri 3.98130×10−2 3.98127×10−2

∂σv(B)/∂ri 2.04948×10−2 2.04947×10−2

∂2ur(A)/∂r2i -1.21032×10−1 -1.21030×10−1

∂2ur(B)/∂r2i -4.16121×10−1 -4.16118×10−1

∂2σv(A)/∂r2i 4.16121×10−2 4.16117×10−2

∂2σv(B)/∂r2i 2.25971×10−2 2.25969×10−2

Table 2: First and second-order radial displacement derivatives ∂ur/∂ri and ∂2ur/∂r2i , and first and second-order von Mises
stress derivatives ∂σv/∂ri and ∂2σv/∂r2i evaluated at positions A and B using the analytical solution and the IDM.

It can be seen from table 2 that the IDM is able to accurately calculate the first-order and second-order

derivatives of both the displacements and the boundary stresses at points A and B. Regarding the derivatives

in table 2, it achieved a maximum percentage error with respect to the analytical solution of 1.7×10−3%.

14



This demonstrates that the IDM approach used in this work can accurately calculate displacement and stress

derivatives.

To further validate the IDM, the reliability indices, β, and probabilities of failure, PF , calculated using

FORM and SORM were compared to those obtained from the analytical solution. They are compared in table

3. The probability distributions seen in table 1 were used for each of the variables. The methodology shown in

section 2 was used for FORM and SORM.

β PF (%)

Model FORM SORM MCS FORM SORM MCS

Analytical 1.41211 1.41073 1.410 7.8959 7.9162 7.927
IDM 1.41212 1.41075 - 7.8957 7.9160 -

Table 3: Reliability indices and probabilities of failure obtained from the analytical solution and the IDM using FORM, SORM,
and MCS.

It can be seen from table 3 that the IDM provided very similar reliability indices to those obtained from

the analytical solution, with percentage errors with respect to the analytical solution of 1.113×10−3% and

1.110×10−3% for FORM and SORM respectively. Reliability analyses were also carried out using MCS for the

analytical solution. A reliability index of 1.410 and a probability of failure of 7.927% were obtained. A total

of 3×1010 simulations were carried out to obtain convergence of the reliability index to 3 decimal places. The

very small amount of error between SORM (for both the analytical solution and the IDM) and MCS for the

analytical solution demonstrates the accuracy of SORM as well as of the IDM. Overall, the reliability indices

obtained from FORM, SORM, and MCS are very similar, this is due to the simplicity of the example under

investigation, with the variables in X showing highly linear relationships to σA over the domain investigated.

To explore the importance of each variable when evaluating the reliability indexes from FORM seen in Table

3, each variable’s sensibility was calculated and they are shown in Table 4. It can be seen that the analytical

solution and the IDM compare very well. The variables which contributed the most to the reliability indices

were po and σc.

Sensibility U∗i /|U
∗|

Notation Symbol Analytical IDM
U1 ri 7.17747×10−3 7.17743×10−3

U2 ro -7.20271×10−3 -7.20268×10−3

U3 po 7.09569×10−1 7.09569×10−1

U4 σc -7.04563×10−1 -7.04563×10−1

Table 4: Sensibilities calculated for the analytical solution and the IDM for the variables in example 1.

Overall, results suggest that the IDM is able to accurately calculate the first-order and second-order deriva-

tives of both boundary stresses and displacements. Validation of the IDM was accomplished through two

approaches. The first approach involved comparing the derivatives calculated from the IDM to those obtained

from an analytical solution, to which the IDM achieved very similar results. The second approach involved com-

paring the reliability indices obtained from FORM an SORM to those obtained using MCS, a method which

does not require the calculation of derivatives. Results showed that the IDM was able to provide reliability

indices for FORM and SORM that were very close to those obtained from MCS.
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4.2. Example 2: I-beam section

In this example, the I-beam section with a center circular hole seen in figure 3 is considered. The limit state

function in this case is:

g(Z) = σc − σA(X) (53)

with Z = (tflange, wflange, tweb, lweb, rfillet, rhole, σapp, ν, σc) and X = (tflange, wflange, tweb, lweb, rfillet, rhole,

σapp, ν). The random variables investigated and their probability distributions can be seen in table 5. Low COV

values have been given to geometric variables since it is assumed that they can be measured quite accurately,

while relatively high COV values have been given to the material properties and the applied load since they are

typically more difficult to accurately measure than geometric variables. Also, the variation of the applied load

and the material properties over the structure’s service life will not be insignificant, adding uncertainty to their

values.

The coefficient of variation of the applied stress (COVstr) was varied in the closed interval [0,0.2] in order to

test the performance of the multi-fidelity models over a wide range of uncertainties. The coefficients of variation

of the other variables were fixed. The I-beam is constructed out of steel ASTM-A36, the Poisson’s ratio and

tensile strength of which can be seen in table 5. The I-beam is subjected to uniform uniaxial tension along its

flanges and is assumed to be under plane-strain conditions. The maximum stress occurs as a vertical stress,

σ22, at the edge of the center circular hole (point A in figure 3). Therefore, σA = σ22|A.

wflange

tweb

lweb

tflange

rhole

rfillet

σapp

σapp

A

Figure 3: The I-beam section used in example 2

The boundaries of the I-beam seen in figure 3 were discretised into quadratic elements. Low-fidelity and

high-fidelity BEM models of 30 and 120 elements respectively were created. The number of elements in the

high-fidelity model was chosen based on a stress convergence test, while the number of elements in the low-

fidelity model was arbitrarily chosen. The internal stress distribution for the low-fidelity and high-fidelity BEM

models can be seen in figure 4. Around 4500 equally-space internal points were used for each model. It can be

seen that the high-fidelity model provides a smoother distribution of stress throughout the structure.
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Notation Symbol Description Distribution Mean COV

Z1 tflange Flange thickness Normal 4.00 cm 0.05
Z2 wflange Flange width Lognormal 20.0 cm 0.05
Z3 tweb Web thickness Lognormal 6.00 cm 0.05
Z4 lweb Web length Normal 16.0 cm 0.05
Z5 rfillet Fillet radius Normal 2.00 cm 0.05
Z6 rhole Hole radius Lognormal 1.20 cm 0.05
Z7 σapp Applied stress Lognormal 13.0 MPa COVstr

Z8 ν Poisson’s ratio Normal 0.26 0.10
Z9 σc(T) Tensile strength Lognormal 250 MPa 0.20

Table 5: The nine random variables investigated in example 2 and their probability distributions.
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Figure 4: The low-fidelity model (left) and the high-fidelity model (right) used in example 2.

4.2.1. Multi-fidelity modelling

Kriging models with linear regression functions were created according to the method described in section

3. Two datasets were created for each Kriging model, a design dataset with 60 design points (nd = 60), and

a test dataset composed of 600 test points (nt = 600). Since the coefficient of the variation COVstr is varied

in the closed interval [0,0.2], the surrogate models were designed at COVstr to provide good coverage over the

entire interval.

Table 6 shows various statistical parameters, R2, R2
adj , mean absolute percentage error (MAPE), and root

mean squared error (RMSE), of the four Kriging models created using the above procedure when run with

their test datasets. It is worth noting that since the Kriging models interpolate the design points, the Kriging

model returns the exact responses at those points, making statistical parameters evaluated from the design

dataset irrelevant. It can be seen that all of the surrogate models are highly accurate, with R2 values of 0.98

or higher. Based on the MAPE and R2 values, The ratio correction surface λ̂ proved to be more accurate than

the difference correction surface δ̂, suggesting that the multi-fidelity models based on λ̂ could prove to be more

accurate. Obtaining these four Kriging models using the above procedure required a CPU time of 310.3 minutes
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on a 6-core CPU. By parallelising key parts of the process, namely the creation of the response vector Y, the

total wall time was only 23.26 minutes.

Statistical parameter λ̂(x) δ̂(x) σ̂LFA (x) σ̂HFA (x)

R2 0.9985 0.9884 0.9989 0.9985
R2
adj 0.9984 0.9882 0.9989 0.9985

MAPE (%) 1.81×10−2 2.30 4.56×10−1 3.32×10−1

RMSE 3.57×10−4 2.72×101 1.11×102 1.42×102

Table 6: Various statistical parameters evaluated using the test datasets for the four Kriging models.

To evaluate the performance of the resulting MFMs and the surrogate model of the HFM, they were used

to calculate the maximum stress in the structure σA over 1×106 Monte Carlo simulations for the probability

distributions shown in table 5. Several BEM models of various fidelities, including the LFM and the HFM,

were also investigated. The results are shown in table 7. It can be seen that of the surrogate models, the direct

MFMs proved to be the most accurate, obtaining MAPE values that were substantially less than the LFM,

while requiring a very similar amount of CPU time to the LFM. On the other hand, the indirect MFMs and

HFM∗ were significantly faster than the LFM, but were about 10 times less accurate than the direct MFMs.

Model type Model MAPE (%) Average CPU time speed up ratio

Direct MFMs MF1 2.0×10−2 15.2
MF2 9.4×10−2 15.2

Indirect MFMs MF3 4.7×10−1 2.1×104

MF4 4.8×10−1 2.3×104

Surrogate model of the HFM HFM∗ 3.8×10−1 4.6×104

BEM models E30 (LFM) 4.5 15.2
E60 2.5 4.9
E90 8.9×10−1 2.1
E120 (HFM) 0.00 1.0

Table 7: Mean absolute percentage error (MAPE) of the maximum stress σA calculated at the mean values of the variables shown
in table 5 for each model. Also shown is the average CPU time speed up ratio for each model, compared to the HFM, evaluated

over 1 × 106 runs. Notation ‘EX’ denotes a BEM model of ‘X’ elements.

4.2.2. Results and discussion

Reliability analyses were conducted with MCS, FORM, and SORM for values of COVstr in the closed interval

[0,0.2] using the information shown in table 5. The results of these reliability analyses can be seen in figure 5. A

total of 5×108 Monte Carlo simulations were carried out for each MCS datapoint for each of the seven models to

ensure that the reliability indices converged to three decimal places. The results shown in figure 5 demonstrate

that FORM and SORM are able to very reliably approximate the actual probability of failure given by MCS.

The accuracy of SORM remains significantly higher than FORM for the values of COVstr investigated, this is

due to the non-linearity of the limit state function and the fact that SORM uses a second-order Taylor expansion

to approximate it. Despite this, the accuracy of SORM deteriorates slightly at higher levels of uncertainty, this

is due to the increasing non-linearity of the limit state function.

It can also be seen from figure 5 that MF1 is highly accurate, closely matching the HFM for all three

reliability analysis methods. It also proved to be the most accurate of the five surrogate models investigated, as

can be seen from figure 6. It proved to be 2225, 1155, and 662, times more accurate than the LFM for FORM,
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Figure 5: Reliability index β vs. the coefficient of variation of the applied stress COVstr for FORM, SORM, and MCS, for the
HFM and MF1.

SORM, and MCS respectively. This suggests that the ratio-based MFMs are more accurate than the difference-

based MFMs. Overall, the direct MFMs (MF1 and MF2), which involved directly calling the LFM, proved

to be more accurate than the indirect MFMs (MF3 and MF4), which approximated the LFM as a surrogate

model. The performance of the direct MFMs is made more notable when it is considered that the LFM has

relatively large error of 4.5%, as can be seen from table 7. This is because it contains only one quarter of the

elements present in the HFM. It is likely that increasing the number of elements in the LFM would improve the

performance of the MFMs, at the expense of increased computation time. The surrogate model approximation

of the HFM, HFM∗, proved to be the least accurate out of all the surrogate models.

Figure 6: The reciprocal ratio of each model’s average MAPE when calculating PF to the average MAPE of the LFM for FORM,
SORM, and MCS. The reciprocal relative error can be thought of as how many times smaller a model’s error is compared to that

of the LFM. For instance, the error of MF1 for FORM is about 2200 times smaller than that for the LFM.

From the first-order stress derivatives in table 8 it is clear that the direct MFMs are the most accurate,

reflecting their good performance with FORM and SORM seen in figure 6. The comparatively worse performance

of MF3, MF4, and HFM∗ for FORM and SORM is due to the fact that they are pure surrogate models with

linear regression functions, therefore the first-order derivatives and second-order derivatives of their regression
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functions are constant and zero respectively. All of the surrogate models did a poor job in approximating the

sensitivity for tflange. This indicates that the relationship between tflange and the maximum stress is highly

non-linear. The linear regression functions used for the Kriging models in this example might not be able to

accurately model this highly non-linear relationship. Therefore, higher-order regression functions might be more

suitable in this case. The fact that it is the smallest sensitivity, and therefore difficult to accurately model, is

also a factor.

First-order derivative ∂σA/∂Xi

Xi LFM HFM MF1 MF2 MF3 MF4 HFM∗ Sensitivity units

tflange -11.9 -14.1 -8.5 -3.9 61.3 62.9 -78.0 kPa/cm
wflange 750.7 797.9 798.1 799.6 792.8 794.6 810.6 MPa/cm
tweb -3.3 -3.8 -3.8 -3.8 -3.7 -3.8 -3.8 GPa/cm
lweb -70.5 -44.2 -45.8 -44.1 -57.2 -55.1 -41.0 kPa/cm
rfillet -1.5 -22.4 -20.7 -45.4 -36.3 -60.4 -14.5 kPa/cm
rhole 4.9 6.4 6.4 6.4 7.0 7.0 6.6 GPa/cm
σapp 11.9 12.5 12.5 12.5 12.4 12.5 12.4 -
ν 145.9 123.3 127.9 87.7 -197.3 -223.2 119.9 MPa

Table 8: First-order derivatives of σA with respect to the random variables in X for each of the seven models investigated. The
derivatives are evaluated at the mean values shown in table 5.

To compliment the sensitivities seen in Table 8, the sensibility of each variable was calculated and is shown

in Table 9. It can be seen that the FDM and the IDM compare very well. The most important variables were

found to be σc, σapp, and tweb. This compares well with the sensitivities seen in Table 8.

Sensibility U∗i /|U
∗|

Notation Symbol FDM IDM
U1 tflange -6.08180×10−4 -6.08184×10−4

U2 wflange 2.09150×10−1 2.09149×10−1

U3 tweb -3.07861×10−1 -3.07865×10−1

U4 lweb -9.56888×10−3 -9.56894×10−3

U5 rfillet -4.92136×10−4 -4.92136×10−4

U6 rhole 1.09372×10−1 1.09371×10−1

U7 σapp 4.16486×10−1 4.16486×10−1

U8 ν 1.00179×10−3 1.00179×10−3

U9 σc(T) -8.22169×10−1 -8.22169×10−1

Table 9: Sensibilities calculated for the final iteration of FORM for the FDM and the IDM for the variables in example 2 using
the HFM.

It is worth noting that the response of a Kriging model is composed of two parts, as can be seen in equation

(37). Even though the second-order derivatives of the regression function f(x)Tβ∗ will equal zero in the case

of it being linear, the second-order derivatives of the right-hand side z(x) will be non-zero since the spatial

correlation function (SCF) R used is Gaussian which is infinitely differentiable. Therefore, the second-order

derivatives of the response of a Kriging model will be non-zero even if it has a linear regression function. If

the Kriging model had been constructed with a regression function of a higher order, then it is likely that its

derivatives would be more accurate.

It can be seen from figure 7 that the LFM was around 9-24 times faster in terms of CPU-time than the HFM

for each of the three reliability analysis methods. Of the MFMs, the direct MFMs proved to be the slowest, with

average CPU times 5% higher than the LFM across the three methods. The indirect MFMs were less accurate,

but 80-700 times faster than the LFM. The indirect models show a great deal of potential to be used with MCS
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due to their low computational cost and good accuracy. Obtaining a reliability index from MCS for the HFM

required, on average, a CPU time of 70 hours for 5×108 simulations. For MF3 or MF4 this was reduced to just

40 seconds with an average error of 0.08%, this reflects a significant improvement in efficiency. The surrogate

model of the high-fidelity model, HFM∗, proved to be the fastest model, but the least accurate. It proved to be

130-1400 times faster than the LFM. When used with MCS it could complete 2.5×108 simulations in 20 seconds

with an average error of 0.3%, this is faster but less accurate than the indirect MFMs.

Figure 7: The CPU time speed-up ratio for each model to obtain a reliability index from FORM, SORM, and MCS. The reference
CPU time is the CPU time required by the HFM for MCS. The times shown for SORM exclude the time for FORM.

Overall, the multi-fidelity models proved to be much more efficient than the HFM when run with FORM,

SORM, and MCS. The multi-fidelity models were able to achieve similar levels of accuracy to the HFM, but

with significantly less computational cost, even when there was a large disparity in terms of the number of

elements between the low-fidelity and high-fidelity models. The IDM proved to be highly accurate when used

with FORM and SORM, obtaining reliability indices that matched well with MCS.

4.3. Example 3: Triangular support bracket

To demonstrate the efficiency and robustness of the proposed IDM when used for reliability analysis with

FORM and SORM, a significantly more complex example is investigated. For this example, a very low proba-

bility of failure (around 1× 10−4%) is expected. A study is also carried out to compare the computation time

of FDM with the IDM.

In this example, the triangular support bracket seen in figure 8 is considered. The LSF in this case is:

g(Z) = σc − σA(X) (54)

where Z=(h1, h2, w1, w2, l1, l2, t1, t2, r1, r2, r3, r4, r5, σapp, ν, σc) and X=(h1, h2, w1, w2, l1, l2, t1, t2, r1, r2, r3, r4,

r5, σapp, ν), the definitions of which can be seen in Figure 8. The probability distributions of these variables can

be seen in Table 10. The bracket is subjected to a compressive load along its top edge of magnitude σapp, it is

fixed to a wall on its left edge. The bracket is composed of steel ASTM-A36, the Poisson’s ratio and compressive

strength of which can be seen in Table 10. In this example, the von Mises yield criterion is used (equation 52).
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Figure 8: The triangular support used for example 3.

Notation Symbol Description Probability distribution Mean Coefficient of variation

Z1 h1 See Figure 8 Normal 84 cm 0.05
Z2 h2 See Figure 8 Normal 20 cm 0.05
Z3 w1 See Figure 8 Lognormal 175 cm 0.05
Z4 w2 See Figure 8 Lognormal 30 cm 0.05
Z5 l1 See Figure 8 Normal 50 cm 0.05
Z6 l2 See Figure 8 Lognormal 110 cm 0.05
Z7 t1 See Figure 8 Normal 15 cm 0.05
Z8 t2 See Figure 8 Normal 25 cm 0.05
Z9 r1 See Figure 8 Lognormal 30 cm 0.05
Z10 r2 See Figure 8 Lognormal 10 cm 0.05
Z11 r3 See Figure 8 Normal 2 cm 0.05
Z12 r4 See Figure 8 Lognormal 3 cm 0.05
Z13 r5 See Figure 8 Lognormal 3 cm 0.05
Z14 σapp Applied stress Normal 700 kPa 0.2
Z15 ν Poisson’s ratio Normal 0.26 0.1
Z16 σc(C) Material strength Lognormal 152 MPa 0.1

Table 10: The 16 variables investigated in example 3 and their probability distributions

The boundaries of the triangular support bracket were discretised into quadratic elements. A high-fidelity

model of 80 elements was created. The number of elements in this model was determined in a similar manner

as in section 4.2. All the analyses in this example were conducted with this high-fidelity model.

The reliability indices and probabilities of failure obtained from the FDM and the IDM for both FORM

and SORM can be seen in Table 11. It can be seen that the FDM and the IDM compare very well with both

FORM and SORM even though the probability of failure is very low. The difference between FDM and the

IDM for FORM was about 1.2 × 10−5%, while for SORM it was about 2.4 × 10−2%. The greater difference

between FORM and SORM in this example can be attributed to the fact that the triangular support bracket

has a much more complex geometry when compared to the thin ring or the I-beam investigated previously, and
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so the limit state function is more non-linear.

β PF (×10−4 %)

Model FORM SORM FORM SORM

FDM 4.712 4.742 1.228 1.060
IDM 4.712 4.743 1.228 1.054

Table 11: Reliability indices and probabilities of failure obtained from FDM and the IDM using FORM and SORM.

A study was carried out to determine the variables which contribute the most to the reliability indexes seen

in Table 11 for FORM. To achieve this, each variable’s sensibility Ui/|U| was calculated with FDM and the

IDM. The results can be seen in Table 12. It can be seen that the sensibilities from FDM and IDM compare

very well. The most important variables are σapp, l2, and σc.

Sensibility U∗i /|U
∗|

Notation Symbol FDM IDM
U1 h1 -3.46363×10−1 -3.46372×10−1

U2 h2 -3.54233×10−2 -3.54226×10−2

U3 w1 -9.01558×10−2 -9.01491×10−2

U4 w2 -3.22386×10−2 -3.22389×10−2

U5 l1 1.40243×10−1 1.40244×10−1

U6 l2 5.14653×10−1 5.14654×10−1

U7 t1 -1.31078×10−1 -1.31075×10−1

U8 t2 3.50662×10−2 3.50666×10−2

U9 r1 -1.03602×10−4 -1.03613×10−4

U10 r2 9.26508×10−3 9.26509×10−3

U11 r3 -8.05146×10−3 -8.05147×10−3

U12 r4 -9.19377×10−2 -9.19378×10−2

U13 r5 -1.29018×10−3 -1.29022×10−3

U14 σapp 5.89213×10−1 5.89210×10−1

U15 ν 1.13206×10−3 1.13206×10−3

U16 σc(C) -4.59223×10−1 -4.59221×10−1

Table 12: Sensibilities calculated for the final iteration of FORM for the FDM and the IDM for the variables in example 3.

To compare the computation time of the FDM and the IDM, both the FDM and the IDM were used to

calculate the reliability index for FORM and SORM for the triangular support bracket shown in Figure 8 with

the variables seen in Table 10. This reliability index was calculated 200 times for each combination of FDM &

IDM and FORM & SORM, and the average CPU time for each combination was calculated. The results can be

seen in Table 13. It can be seen that the IDM requires about 0.30% and 1.32% more CPU time respectively for

FORM and SORM on average than the FDM to calculate the reliability index. This indicates that, once the

optimal stepsize for the FDM has been found, there is very little difference in the computation time between

the FDM and the IDM when used to calculate the reliability index.

CPU time (s)

Model FORM SORM

FDM 82.55 92.35
IDM 82.30 91.15

Table 13: Average CPU time required by the FDM and the IDM when calculating the reliability index for the triangular support
bracket with FORM and SORM. 200 runs were used to obtain the averages.

The main disadvantage of the FDM is that its accuracy is highly dependent on the stepsize used. Therefore,

a trial-and-error approach is required to determine the optimal stepsize. This can be time-consuming, especially
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for complex problems. Although a finite-difference scheme is used at the very beginning of the IDM in order to

obtain the sensitivities of the nodal coordinates, the stepsize in this case has very little influence on the accuracy

of these nodal sensitivities. The IDM thereby avoids the need for a time-consuming trial-and-error approach.

As a result, it is expected that the overall time required by the IDM, including set-up and use, is significantly

less than that required by the FDM. This difference is expected to be magnified for more complex problems.

In this example, the stepsizes used for the FDM were normalised with respect to the variables in X. A range

of normalised stepsizes from 1×10−7 to 1×10−1 were investigated. The first-order and second-order derivatives

of the limit state function with respect to the variables in X can be calculated for this range of stepsizes as part

of the trial-and-error procedure. The derivatives are expected to be unstable for very low stepsizes and also for

very high stepsizes due to rounding error and truncation error respectively. However, there will be a range of

stepsizes for which the derivatives are stable. The optimal stepsize is chosen from this range. For this example,

the optimal normalised stepsize for the first-order and second-order derivatives were found to be 1× 10−5 and

1×10−2 respectively. These normalised stepsizes were found to be optimal for all of the variables in X. However,

this may not be true in all cases. On average, it was found that the minimum CPU time required to obtain

the optimal stepsize for all the variables in this example was around 184.95 s for the first-order derivatives and

388.13 s for the second-order derivatives. These times do not include the set-up of the optimization procure nor

the analysis of the derivatives, which can contribute greatly to the overall computation time. Given that these

times are significantly larger than those shown in Table 13, and that optimal stepsizes should be recalculated

when the value of a variable is changed significantly and when another structure is being investigated, the

calculation of these optimal stepsizes can contribute significantly to the overall computation time associated

with the reliability analysis of structures.

In conclusion, the proposed IDM methodology was shown to provide a much more efficient alternative to

the FDM for the reliability analysis of complex structures. This is due to the fact that, unlike the FDM, the

IDM avoids the need to conduct a time-consuming trial-and-error approach to determine the optimal stepsizes

for the derivatives of the design variables.

5. Conclusions

In this work, a novel multi-fidelity modelling methodology for structural reliability analysis using the Bound-

ary Element Method (BEM) with an Implicit Differentiation Method (IDM) is presented. The higher-order

sensitivities of the elastostatic BEM equations to changes several geometric variables were derived for use with

SORM with the IDM, and results were compared to those obtained from MCS and FORM. Multi-fidelity models

in the form of Kriging models were created, and their performance, in terms of accuracy and computation time

was compared.

Three numerical examples were investigated: 1) a thin ring subjected to external pressure, 2) an I-beam

section, and 3) a triangular support bracket. Results from example 1 demonstrated the accuracy of the IDM in

the calculation of boundary displacement and stress derivatives for a problem for which the analytical solution

is known.

Example 2 featured the application of a variety of multi-fidelity models. Results showed that the direct multi-

fidelity models, those directly calling the low-fidelity model, were significantly more accurate for FORM, SORM,

and MCS than the Kriging surrogate model approximation of the high-fidelity model and the indirect models,

those which approximated the low-fidelity model with a Kriging surrogate model. It was found that the direct
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models provided more accurate response derivatives than the indirect models, and so provided more accurate

reliability indices when used with FORM and SORM. However, the indirect models and the Kriging surrogate

model approximation of the high-fidelity model, while providing less accurate response derivatives, provided

response values than were similar in accuracy to the direct models but with significantly less computational cost,

they therefore proved superior when used for MCS. This suggests that for complex problems, direct models are

best suited for use with FORM and SORM due to their ability to provide highly accurate response derivatives.

Since FORM and SORM are relatively cheap compared to MCS, the benefit of using the indirect models for

these methods is less clear. The indirect models proved to be best used with MCS, due to their ability to

provide responses of similar accuracy to the direct models but with significantly less computational cost. All of

the multi-fidelity models investigated offered a significant improvement in accuracy over the low-fidelity model.

As part of example 3 a study was carried out to compare the computation time of the FDM and the IDM

for a complex structure with many design variables. It was found that the IDM provides a much more efficient

alternative to the FDM for reliability analysis. This is because, unlike the FDM, the IDM avoids the need for

a time-consuming stepsize optimization procedure.

Compared to the low-fidelity model, the multi-fidelity models were able to provide probabilities of failure

that were up to 2225 times more accurate. And when compared to the high-fidelity model, they were able to

provide computational costs that were over 6000 times less. This represents a reduction in the computational

cost of MCS from 70 hours for the high-fidelity model to just 40 seconds for the indirect models with an average

error of 0.08 %. This is a significant improvement in efficiency and demonstrates the potential of the proposed

IDM/multi-fidelity modelling methodology for use in the reliability analysis of complex problems with many

design variables under high levels of uncertainty.
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Appendix A. IDM formulations

The first order derivatives of the displacement and traction fundamental solutions (equations 14 & 15

respectively) are:

Uij,m =
1 + ν

4πE(1− ν)r

[
(ri,mr,j + rj,mr,i)− ((3− 4ν)δij + 2r,ir,j)r,m

]
(A.1)

Tij,m =
−1

4π(1− ν)r2

[
2
∂r

∂n
{ri,mr,j + rj,mr,i − ((1− 2ν)δij + 4r,ir,j)r,m}+ (nkrk),m((1− 2ν)δij

+ 2r,ir,j) + (1− 2ν)(ni,mrj − nj,mri + nirj,m − njri,m)− 2(1− 2ν)(nir,j − njr,i)r,m
] (A.2)

The second order derivatives are:

Uij,mm =
1 + ν

4πE(1− ν)r2

[
(3− 4ν)(r2,m − r,mmr)δij + (6r2,m − 2r,mmr)r,ir,j

+ (ri,mmrj + 2ri,mrj,m + rirj,mm)− 4(ri,mr,j + r,irj,m)r,m

] (A.3)
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Tij,mm =
−1

4π(1− ν)r3

[
2(
∂r

∂n
),m[ri,mr,j + rj,mr,i − ((1− 2ν)δij + 4r,ir,j)r,m]

+ 2
∂r

∂n
[ri,mmr,j + 2ri,mrj,m + r,irj,mm − ((1− 2ν)δij + 4r,ir,j)r,mmr

− (4ri,mrj + 4rirj,m)r,mr − 2ri,mr,jr,m − 2r,irj,mr,m + 2((1− 2ν)δij + 4r,ir,j)r
2
,m]

+ (rknk),mm[(1− 2ν)δij + 2r,ir,j ] + 2(rknk),m(r,imr,j + r,ir,jm)

+ (1− 2ν)(rj,mmni + 2rj,mni,m + rjni,mm − ri,mmnj − 2ri,mnj,m − rinj,mm

+ 2(1− 2ν)[(njr,i − nir,j)r,mm + (njr,im + nj,mr,i − ni,mr,jnir,jm)r,m

]
(A.4)

The Jacobian is:

Jne(η) =

[(
dx1(η)

dη

)2

+

(
dx2(η)

dη

)2
]1/2

(A.5)

The first order derivative is:

Jne
,m(η) =

1

Jne(η)

[
dx1(η)

dη

dx1,m(η)

dη
+
dx2(η)

dη

dx2,m(η)

dη

]
(A.6)

The second order derivative is:

Jne
,mm(η) =

1

Jne(η)

[(
dx1,m(η)

dη

)2

+

(
dx2,m(η)

dη

)2

+
dx1(η)

dη

dx1,mm(η)

dη
+
dx2(η)

dη

dx2,mm(η)

dη

]

− 1

Jne(η)3

[
dx1(η)

dη

dx1,m(η)

dη
+
dx2(η)

dη

dx2,m(η)

dη

]2 (A.7)

The components of the unit outward normal vector are:

n1(η) =
1

Jne(η)

dx2(η)

dη
(A.8)

n2(η) = − 1

Jne(η)

dx1(η)

dη
(A.9)

The first order derivatives are:

n1,m(η) =
1

Jne(η)

[
dx2,m(η)

dη
− n1(η)Jne

,m(η)

]
(A.10)

n2,m(η) = − 1

Jne(η)

[
dx1,m(η)

dη
− n2(η)Jne

,m(η)

]
(A.11)

The second order derivatives are:

n1,mm(η) =
1

Jne(η)

dx2,mm(η)

dη
− 1

(Jne(η))2

[
2Jne
,m(η)

dx2,m(η)

dη

+ Jne
,mm(η)

dx2(η)

dη

]
+ 2

(Jne
,m(η))2

(Jne(η))3
dx2(η)

dη

(A.12)

n2,mm(η) = − 1

Jne(η)

dx1,mm(η)

dη
+

1

(Jne(η))2

[
2Jne
,m(η)

dx1,m(η)

dη

+ Jne
,mm(η)

dx1(η)

dη

]
− 2

(Jne
,m(η))2

(Jne(η))3
dx1(η)

dη

(A.13)
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