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Abstract

This paper introduces a new code “QuasIncompact3D” for solving the variable-

density Navier-Stokes equations in the low-Mach number limit. It is derived

from the Incompact3D framework which is designed for incompressible flows [1].

QuasIncompact3D is based on high-order accurate compact finite-differences [2],

an efficient 2D domain decomposition [3] and a spectral Poisson solver. The first

half of the paper focuses on introducing the low-Mach number governing equa-

tions, the numerical methods and the algorithm employed by QuasIncompact3D

to solve them. Two approaches to forming the pressure-Poisson equation are pre-

sented: one based on an extrapolation that is efficient but limited to low density

ratios and another one using an iterative approach suitable for higher density ra-

tios. The scalability of QuasIncompact3D is demonstrated on several TIER-1/0

supercomputers using both approaches, showing good scaling up to 65k cores.

Validations for incompressible and variable-density low-Mach number flows us-
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ing the Taylor-Green vortex and a non-isothermal mixing layer, respectively, as

test cases are then presented, followed by simulations of non-Boussinesq gravity

currents in two- and three-dimensions. To the authors’ knowledge this is the

first investigation of 3D non-Boussinesq gravity currents by means of Direct

Numerical Simulation over a relatively long time evolution. It is found that 2D

and 3D simulations of gravity currents show differences in the locations of the

fronts, specifically that the fronts travel faster in three dimensions, but that

it only becomes apparent after the initial stages. Our results also show that

the difference in terms of front location decreases the further the flow is from

Boussinesq conditions.

Keywords: Numerical simulation, Finite difference methods, Spectral

methods, Buoyancy-driven flows

1. Introduction

A gravity, or density, current occurs when gravity acts upon a fluid with

horizontal variations in density - creating a pressure field which gives rise to

predominantly lateral flow [4]. These density differences may be caused by,

for example: temperature or moisture content in atmospheric flows [5]; differ-

ences in salinity [6], or suspensions of particles in turbidity currents, avalanches

and pyroclastic flows [4]. Clearly the ability to predict such flows is of wide

applicability, leading to much interest in their study.

When studying buoyancy driven flows, such as gravity currents, the Boussi-

nesq approximation is frequently used. It assumes that for small density vari-

ations, their effect is felt only through the buoyancy term, allowing existing

incompressible solvers to be used to simulate these flows as done previously

by Härtel et al. [7], Necker et al. [8], Espath et al. [9], Dai [10], Dai and Wu

[11], Inghilesi et al. [12], Ottolenghi et al. [13, 14] using Direct and Large Eddy

simulations. This assumption is inherently limited in scope to cases for which
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density variations are of the order ∆ρ . O (1%). For larger density variations

the variable-density Navier-Stokes equations must be used.

Previous numerical studies of gravity currents in the Boussinesq limit have

shown that as the flow develops, discrepancies arise between 2D and 3D simula-

tions [9, 8]. This is in contrast with what has been reported for non-Boussinesq

lock-exchange flows, namely that 3D effects might be ignored [15]. Bonometti

et al. [16] and Rotunno et al. [17] show comparison of their results for 2D

non-Boussinesq lock-exchange flows with 3D simulations, reporting that the

effect of the 2D simplification on the ability to predict the front speeds is min-

imal. They do not, however, report on the effect upon other flow statistics

such as dissipation rates which, as reported by Espath et al. [9], develop dif-

ferences between 2D and 3D simulations over longer times in the Boussinesq

limit. Whilst Rotunno et al. [17] presented DNS results for non-Boussinesq

lock-exchange flows, they appear to be only up to non-dimensional time unit

t = 16 which, as our results show is in the time-frame when differences become

apparent in the 2D and 3D simulations. A numerical investigation of high-

Reynolds-number constant-volume non-Boussinesq density currents in deep am-

bient was performed in Bonometti et al. [18] for 2D cases and comparisons were

made between the Navier-Stokes equations and a shallow-water one-layer model.

High-resolution simulations of non-Boussinesq downslope gravity currents in the

acceleration phase have been performed more recently in Dai and Huang [19]

but only in a 2D set-up. To the authors’ knowledge, to date, no 3D simula-

tions of non-Boussinesq gravity currents have been performed using high-order

methods and studied for relatively long-term evolutions.

In this paper we introduce a new code “QuasIncompact3D” for solving the

variable-density Navier-Stokes equations built upon the Incompact3D frame-

work [1, 3]. The initial focus is to solving flows subject to the Low Mach
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Number (LMN) approximation [20], however as demonstrated in this paper

the solver is applicable more generally to variable density flows and is used to

study the evolution of a gravity current in 3D lock-exchange set-up beyond the

Boussinesq limit over relatively long periods. The Incompact3D framework is

based on high-order compact finite-differences [2] for approximation of spatial

derivatives and a spectral solver for the direct solution of the Poisson equation.

It is combined with a domain decomposition strategy enabling efficient, scal-

able simulations with billions of mesh nodes using up to O
(
105
)

computational

cores [3]. The newly implemented solver is benchmarked for the incompressible

Taylor-Green vortex [21, 22] and the non-isothermal mixing layer of Golanski

et al. [23]. Its scaling is tested on the TIER-1/0 supercomputers ARCHER, HAZEL

HEN and MARCONI. Following these tests, validation for both Boussinesq and non-

Boussinesq gravity currents is presented and finally, fully resolved, high-order

studies of 3D non-Boussinesq gravity currents.

The paper is laid out as follows: the governing equations and numerical

method used in this study are summarised in §2, followed by a validation of

the implementation and a scalability study in §3; the study of gravity currents

is presented in §4 with further validation of the code for 2D non-Boussinesq

lock exchange flows and gravity currents in the Boussinesq limit; conclusions

are drawn in §5.

2. Governing equations and numerical method

When variations in fluid density become appreciable (O (1%) or more), driv-

ing variations in the flow field through dilatational effects from thermal expan-

sion, mass diffusivity etc., the Boussinesq approximation is no longer valid and

the variable-density Navier-Stokes equations must be considered. However, this

condition states nothing about the flow speed which may still be low such that
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γM2 � 1, where γ is the ratio of specific heats and M = u/a is the Mach

number with u and a defined as the local flow velocity and speed of sound,

respectively. Under these LMN conditions, the equations for compressible flows

become ill-conditioned and their numerical solution inefficient due to restrictive

timestep requirements. This inefficiency can be seen as arising from the need to

resolve processes occurring on acoustic timescales which, due to the significant

difference in speed of sound and flow speed, might be considered as essentially

instantaneous. The LMN approximation, obtained by taking the asymptotic

limit of the compressible flow equations as M → 0 [20] yields a set of equations

without the ill-conditioning due to γM2 � 1. Derivation of the LMN governing

equations proceeds by expanding variables in terms of ε = γM2, for example

the variable φ is expanded as:

φ = φ(0) + εφ(1) + ε2φ(2) + . . . . (1)

Substituting the expanded variables into the governing equations and taking

the lowest order terms in ε yields the LMN governing equations. These are pre-

sented below in non-dimensional form with superscripts (0) , (1) , . . . dropped

where the variable is unambiguous (for a detailed derivation see, for example,

McMurtry et al. [20])

Dρ

Dt
= −ρ∇ · u , (2)

0 = −∇p(0) , (3)

∂ρu

∂t
+

1

2
(∇ · ρuu+ ρu ·∇u + u (ρ∇ · u+ u ·∇u)) =

= −∇p(1) +
1

Re
∇ · τ +

1

Fr2
ρg ,

(4)

ρ
DT

Dt
=

1

RePr
∇2T , (5)
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where D (·) /Dt is the material derivative, g is the unit gravity vector, t is time,

T is temperature, u the velocity vector, ρ is density and τ the viscous stress

tensor given as

τ = µ
(
∇u+ ∇Tu

)
− 2

3
µ (∇ · u) I . (6)

Note that whilst in Eq.(4), the divergence of the viscous stress term is written

in conservative form, it is in fact implemented non-conservatively as

∇ · τ =µ

[
∇2u+ ∇ ·

(
∇Tu

)
− 2

3
∇ (∇ · u)

]
+ (∇µ) ·

[
∇u+ ∇Tu− 2

3
(∇ · u) I

]
,

(7)

which is done to prevent oscillations in the velocity field if µ is varying in

space [24]. In non-dimensionalising the governing equations the Prandtl, Reynolds

and Froude numbers naturally arise, given as Pr = cp
∗µ∗/k∗, Re = ρ∗U∗L∗/µ∗

and Fr = U∗/√g∗L∗, respectively, with cp defined as the specific heat capac-

ity at constant pressure, k the thermal conductivity, U and L the velocity and

length scales used in non-dimensionalising the equations from which the refer-

ence time scale t∗ = L∗/U∗ follows. Here, and throughout the rest of this work,

the nomenclature of “bare” symbols are used to indicate dimensionless variables

whilst superscript ∗ represents a dimensional value.

Perhaps the major stand-out of the LMN governing equations is the split of

the pressure field into two fields: p(0) and p(1). To see how this occurs, consider

the non-dimensional momentum equations for compressible flows

ρ
Du

Dt
= − 1

γM2
∇p+

1

Re
∇ · τ , (8)

which highlights the issues experienced when solving the compressible flow equa-

tions as γM2 → 0 with Eq.(8) tending to 0 = −∇p and the governing system
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of equations becomes ill-conditioned. Expressing the non-dimensional pressure

using the ideal gas law p = ρT and expanding the density and temperature in

terms of ε following Eq.(1), we obtain

p = ρ(0)T (0) + ε
(
ρ(0)T (1) + ρ(1)T (0)

)
+ ε2ρ(1)T (1) + . . . , (9)

in which we identify the zeroth and first order terms as the thermodynamic

(p(0)) and mechanical/dynamic (p(1)) pressures, respectively. Substituting this

expansion into the momentum equations and expanding all other variables, the

lowest order expansion yields the condition that thermodynamic pressure is

constant in space Eq.(3) whilst the first order expansion yields the LMN mo-

mentum equations Eq.(4) driven by the mechanical pressure, for further details

see [25, 23, 20].

2.1. Solution algorithm

QuasIncompact3D uses a variation of the fractional step method introduced

by Chorin [26] to integrate the governing equations in time, similar applications

of this approach to the LMN equations can be found in Golanski et al. [23], Mc-

Murtry et al. [20], Motheau and Abraham [24], Nicoud [27, 28]. The algorithm

will be presented in semi-discrete form, with the variables discretised in time

where the superscript n represents a variable evaluated at time tn = t0 + n∆t

and casting all transport equations in the form:

∂φ

∂t

∣∣∣∣n+1

n

= fnφ , (10)

to express the transient from state n to n + 1 and fnφ is the “forcing term”

collecting advection, diffusion and source terms evaluated at tn.

The algorithm proceeds by, with the exception of the momentum equations,

integrating all transport equations to time n+1, noting that only one of density
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or temperature need be advanced in time, the other being obtainable via the

equation of state:

p(0) = ρT . (11)

Following Golanski et al. [23], the density is advanced in time in the present

study. Instead of the full timestep, the momentum transient is split into two

steps (hence the name fractional step):

∂ρu

∂t

∣∣∣∣n+1

n

=
∂ρu

∂t

∣∣∣∣?
n

+
∂ρu

∂t

∣∣∣∣n+1

?

, (12)

∂ρu

∂t

∣∣∣∣?
n

= fnu , (13)

∂ρu

∂t

∣∣∣∣n+1

?

= −∇p(1)n+1
, (14)

where the first term accounts for only advection, viscous stress and body force

terms to obtain an intermediate state ? and the second transient completes the

timestep by “correcting” the velocity field with the new pressure field.

The obvious approach to construct an equation for pressure is to take the

divergence of Eq.(14) resulting in a pressure-Poisson equation of the form:

∇2p(1)n+1
=

1

∆t

(
∇ · (ρu)

? −∇ · (ρu)
n+1
)
. (15)

This approach is attractive as it results in a constant-coefficient Poisson equa-

tion, suitable for fast Poisson solvers, however the term ∇ · (ρu)
n+1

requires

knowing the velocity field at time tn+1 and must be estimated. Using backward

finite-differences in time, ∇ · (ρu)
n+1

is approximated as Golanski et al. [23]:

∇ · (ρu)
n+1

= − ∂ρ

∂t

∣∣∣∣n+1

≈ −ρ
n+1 − ρn

∆t
, (16)
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where the backward finite-difference scheme must be chosen consistently with

the rest of the discretisation [23, 28]. Whilst the ability to use fast Poisson

solvers makes this an efficient approach, Nicoud [28] showed that it does not

enforce the velocity divergence criterion given by Eq.(17). However it is found

to be applicable for density ratios in the range O (3)−O (5). Whilst the diver-

gence of momentum at time tn+1 is unknown, the divergence of velocity can be

obtained with a combination of Eq.(2), Eq.(3) and Eq.(5), giving

∇̂ · u
n+1

=
1

p(0)RePr
∇2Tn+1 , (17)

where Tn+1 is already known via ρn+1 and the equation of state. The hat

notation is introduced to differentiate the divergence of velocity constraint from

the divergence of the velocity field. By dividing Eq.(14) by ρn+1 in advance

of taking the divergence, the following variable-coefficient Poisson equation for

pressure is obtained

∇ · 1

ρn+1
∇p(1)n+1

=
1

∆t

(
∇ · u? −∇ · un+1

)
, (18)

which enforces the velocity divergence constraint exactly. To use a fast Poisson

solver, Eq.(18) is rearranged as a constant-coefficient Poisson equation with a

correction term

∇2p(1)ν+1
= ∇2p(1)ν+ρ̃

[
1

∆t

(
∇ · u? − ∇̂ · u

n+1
)

− ∇ · 1

ρn+1
∇p(1)ν

]
,

(19)

which is solved iteratively in an inner loop as shown in algorithm 1 which sum-

marises the method described above. In Eq.(19) the superscript ν is an iter-

ation counter and ρ̃ is a density scale, typically taken as the global minimum

of density [24], indicated here by ρ̃ = ρ0, or an average in homogeneous direc-
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tions [27, 28]. This choice (in particular ρ̃ = ρ0) is based on stability of the

algorithm [24], however examination of Eq.(19) shows that the value of ρ̃ does

not affect the converged solution and we are thus theoretically free to take any

value for this quantity. As the Incompact3D framework is based on a partial

staggering of the variables (see §2.2 for details), Eq.(19) is evaluated at the

pressure nodes, therefore ρ̃ must be evaluated also at the pressure nodes. The

constant values for ρ̃ discussed above are by definition valid at all nodes of the

mesh, an alternative strategy investigated here is to interpolate the density to

the pressure nodes using harmonic averages, indicated here by ρ̃ = ρh. The

harmonic average has the behaviour of tending to the local value of ρ when

density is locally uniform and the minimum value in the stencil when density is

varying, as a result the algorithm should be stabilised in variable density areas

similarly to the use of ρ̃ = ρ0 and better scaled where density is approximately

constant which should lead to better convergence.

2.2. Numerical methods

For clarity, the governing equations have been presented in semi-discrete

form with first-order forward Euler approximation of the transient terms. The

implementation in fact uses either multi-step Adams-Bashforth or multi-stage

Runge-Kutta methods for time integration so that the density term would be

written as:

∂ρ

∂t

∣∣∣∣n =

n∑
m=1

αmfmρ (20)

where superscript m represents either time step or stage as appropriate and αm

are coefficients for the chosen scheme, all other transient terms in algorithm 1

are treated accordingly.

The approximation of spatial derivatives is achieved by compact finite-differences [2],

giving for the first- and second-order derivatives the following expressions
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while tn < tend do
Integrate Eq.(10) to obtain ρn+1;
Integrate Eq.(13) to obtain (ρu)

?
;

Compute ∇̂ · u
n+1

using Eq.(17);
if Constant-coefficient Poisson equation then

Approximate ∇ · (ρu)
n+1

using Eq.(16);

Solve Eq.(15) for p(1)n+1
;

else

while
∣∣∣∣∣∣p(1)ν − p(1)ν−1

∣∣∣∣∣∣ > tol do

Solve Eq.(19) for pν+1;
end

Set p(1)n+1
= p(1)ν ;

end

Correct velocity un+1 = u? − ∆t

ρn+1
∇p(1)n+1

;

Set n+ = 1;

end
Algorithm 1: QuasIncompact3D algorithm for solving the LMN governing
equations. Starred variables indicate intermediate states arising as part of
the fractional-step method [26] with the intermediate velocity and momentum
related as u? = (ρu)

?
/ρn+1. The superscript n represents a variable evaluated

at time t0 + n∆t. The parameter tol and superscript ν are the absolute
tolerance and iteration counter for the inner loop of the variable-coefficient
Poisson solver, respectively.

α
∂φ

∂x

∣∣∣∣
i−1

+
∂φ

∂x

∣∣∣∣
i

+ α
∂φ

∂x

∣∣∣∣
i+1

= a
φi+1 − φi−1

2∆x
+ b

φi+2 − φi−2

4∆x
(21)

and

α
∂2φ

∂x2

∣∣∣∣
i−1

+
∂2φ

∂x2

∣∣∣∣
i

+ α
∂2φ

∂x2

∣∣∣∣
i+1

= a
φi+1 − 2φi + φi−1

∆x2
+ b

φi+2 − 2φi + φi−2

4∆x2

+ c
φi+3 − 2φi + φi−3

9∆x2

(22)

respectively with similar expressions for the y and z coordinate axes.
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By choosing α = 1/3, a = 14/9 and b = 1/9, Eq.(21) is sixth-order accurate

while having a so-called “quasi-spectral behaviour” [2] due to its capabilities

to represent accurately a wide range of scales. The compromise of the sixth-

order accuracy has been chosen to maintain a compact formulation (a three-

and five-node stencil for ∂φ/∂x|i and ∂2φ/∂x2
∣∣
i

, respectively) via the use of a

Hermitian structure of the scheme with α 6= 0. Note however that the present

approach can be straightforwardly adapted to centred finite-difference schemes

of higher order if necessary.

Similarly, by choosing α = 2/11, a = 12/11, b = 3/11 and c = 0, Eq.(22) is

sixth-order accurate with the same favourable properties of the first derivative

in terms of “spectral-like” resolution [2]. To control the aliasing errors via the

viscous term, this type of schemes can be modified by adjusting their spectral

property near the mesh cutoff, through the use of a less compact formulation,

with for instance α = 0.47959871686180711, a = 0.42090288706093404, b =

1.7020738409366740 and c = 0.16377929427399390 that preserves the sixth-

order accuracy of the scheme.

To prevent pressure-velocity decoupling the pressure mesh is staggered by

half a mesh with respect to the velocity mesh, as described in detail in Laizet and

Lamballais [1]. First derivatives and interpolations for this midpoint staggered

arrangement are performed using the following expressions

αf ′i−1/2 + f ′i+1/2 + αf ′i+3/2 = a
fi+1 − fi

∆x
+ b

fi+2 − fi−1

3∆x
(23)

with α = 9/62, a = 63/62 and b = 17/62 and

αf Ii−1/2 + f Ii+1/2 + αf Ii+3/2 = a
fi+1 + fi

2
+ b

fi+2 + fi−1

2
(24)

with α = 3/10, a = 3/4 and b = 1/20.
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The pressure-Poisson equation is solved in spectral space using the modified

wave number k′ associated with the scheme (23), defined as

k′x∆x =
2a sin (kx∆x/2) + 2b/3 sin (3kx∆x/2)

1 + 2α cos (kx∆x)
, (25)

where kx is the actual wavenumber, and the the transfer function associated

with the midpoint interpolation scheme (24), expressed as

Tx(kx∆x) =
2a cos(kx∆x/2) + (2b/3) cos(3kx∆x/2)

1 + 2α cos(kx∆x)
(26)

The use of modified wave numbers and transfer functions lead to the spectral

equivalence with the sixth-order accurate compact finite-difference approxima-

tions [1]. For additional details about the numerical methods used in this work,

including extension of the spectral solver to non-periodic and non-symmetric

boundary conditions, the interested reader is directed to Laizet and Lamballais

[1].

2.3. Scalability

The high level of parallelisation in QuasIncompact3D is achieved thanks

to a highly scalable 2D domain decomposition library and a distributed Fast

Fourier Transform (FFT) interface [3]. This open-source library is available

at http://www.2decomp.org/. The 3D computational domain is divided into

pencils with three different orientations referred to as X-pencil, Y-pencil and

Z-pencil (fig. 1 from left to right). The derivatives and interpolations in the

x-direction (y-direction, z-direction) are performed in X-pencil (Y-pencil, Z-

pencil), respectively. The 3D FFTs required by the Poisson solver are also

broken down as series of one-dimensional FFTs computed in one direction at

a time. The global transpositions to switch from one pencil decomposition to

another are performed with the MPI command MPI ALLTOALL(V).
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The scalability of QuasIncompact3D is tested on the TIER-1/0 supercom-

puters ARCHER [29], MARCONI [30] and HAZEL HEN [31] supercomputers for both

the constant- and variable-coefficient Poisson equation approaches. For the in-

terested reader, the system architectures follow: ARCHER and HAZEL HEN are

Cray XC30 and XC40 systems based on 2 × 12 core Intel R© Xeon R© proces-

sors running at 2.7 GHz and 2.5 GHz respectively using the Aries interconnect

(dragonfly topology [32]) and are thus expected to show similar performance;

MARCONI meanwhile is based on the Intel R© Xeon R© Phi architecture with 1× 68

cores per node running at 1.4 GHz using an Intel R© Omnipath R© interconnect in

a fat tree 2:1 topology.

The problem considered is triply periodic, similar to the Taylor-Green vor-

tex presented in §3.1. For the purposes of these scaling tests, the number of

iterations in the variable-coefficient Poisson solver is fixed at 5 per timestep, this

choice is a balance between typically observed number of iterations to achieve a

very high level of accuracy and computational time. As seen in table 2, the aver-

age number of iterations, which is of course problem dependent, could be of order

10. To cover the full range of core counts available to users on MARCONI whilst

keeping the number of mesh nodes n per core in the approximate range 50k <

n/CPU < 1M , the strong scaling tests were split into two sets: one covering 1

to 16 nodes and one covering 16 to 93 nodes; representing 64 ≤ NCPU ≤ 1024

and 1024 ≤ NCPU ≤ 5952. A similar approach is taken on HAZEL HEN with

scaling tests performed on 2048 ≤ NCPU ≤ 32768 and 4096 ≤ NCPU ≤ 65536

cores for 2048 × 1024 × 1024 and 20483 mesh nodes respectively. The scaling

tests on ARCHER are performed on 1008 ≤ NCPU ≤ 16128 cores. Timing data

for the strong scaling tests are plotted in fig. 1.

The strong scaling results demonstrate that QuasIncompact3D is scalable up

to O
(
104
)

cores and maintains scalability across architectures, future bench-
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Figure 1: Schematic of the 2D domain decomposition used for parallelisation (top) where
colours represent a pencil allocated to one computational core (1 MPI process) in X-, Y-
and Z-pencils from left to right. The bottom subfigure shows the strong scaling results for
QuasIncompact3D where solid lines with symbols indicate recorded data whilst dashed lines
indicate the mean ideal scaling behaviour.

marks on more cores should be as good as Incompact3D. Comparison of the

scaling results for the constant- and variable-coefficient Poisson solvers shows

that similar scalability is obtained by both, the use of the variable-coefficient

Poisson solver simply adds to the per-timestep cost due to the additional cost
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of the iterative method.

3. Code validation

To validate the implementation of the code two cases are considered: the 3D

Taylor-Green vortex and the 2D non-isothermal mixing layer studied by Golan-

ski et al. [23] to test the LMN solver itself.

3.1. Three-dimensional Taylor-Green vortex

The Taylor-Green vortex is a classical test case for fluid dynamics codes.

Given an initial velocity field [21, 22]

u (x, y, z) =


U sin (x) cos (y) cos (z)

−U cos (x) sin (y) cos (z)

0

 (27)

in the periodic box −π ≤ x, y, z ≤ π, the flow is evolved in time for 0 ≤ t ≤ 20

and the volume integrals of kinetic energy and enstrophy computed. For an

overview of the flow features the interested reader is directed to Brachet et al.

[33]. As an incompressible flow the density is set as uniformly 1 through-

out the domain. No initial perturbation is added to the flow. The non-

dimensionalisation is based on the velocity U and the domain size.

The evolution of kinetic energy and enstrophy in the domain are plotted

in fig. 2a and fig. 2b respectively. The flow was simulated at Re = 1, 600, P r =

14 using both Incompact3D and QuasIncompact3D using the constant- and

variable-coefficient Poisson solvers on a 1283 mesh and compared with the data

of Jammy et al. [21] and Dairay et al. [34] obtained with a 5123 mesh.

4As an incompressible flow, the Prandtl number has no bearing on the results, this test is
to confirm the correct behaviour of QuasIncompact3D in the incompressible regime.
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Figure 2: Time evolution of integrals of kinetic energy and enstrophy for the 3D Taylor-Green
vortex. The keys I3D, LMN-CC and LMN-VC correspond to: Incompact3D and QuasIncom-
pact3D using the constant- and variable-coefficient Poisson formulations respectively whilst
the reference data of Jammy et al. [21] and Dairay et al. [34] are plotted with continuous lines.

17



Despite a lower resolution, the present results show good agreement with the

reference data of Jammy et al. [21] and Dairay et al. [34]. Most importantly, the

results obtained using Incompact3D and QuasIncompact3D are indistinguish-

able for both the constant- and variable-coefficient Poisson solvers. As the case is

incompressible, Incompact3D and QuasIncompact3D should produce the same

results, the underlying code being essentially the same for constant densities.

3.2. Two-dimensional non-isothermal mixing layer

The implementation of QuasIncompact3D is validated for variable-density

flow against the 2D, non-isothermal mixing layer of Golanski et al. [23]. The flow

initially consists of two streams (a “hot” and “cold” stream, denoted streams 1

and 2) with x velocities u1 and u2 and temperatures T1 and T2 respectively.

The initial velocity profile is given by the hyper-tangent velocity profile

u =
u1 + u2

2
+
u1 − u2

2
tanh 2y , (28)

where y is the vertical direction, streams 1 and 2 being above and below the

centreline (y = 0) respectively. The velocities of the hot and cold streams are

constrained by the condition

uc =

√
T1u2 +

√
T2u1√

T1 +
√
T2

= 0 . (29)

To promote the transition to mixing [35, 23] the initial velocity field is perturbed

by

u′ = Ae−σy
2 σ

π
Lxy

(
sin

(
8π

x

Lx

)
+

1

8
sin

(
4π

x

Lx

)
+

1

16
sin

(
2π

x

Lx

))
,

v′ = Ae−σy
2

(
cos

(
8π

x

Lx

)
+

1

8
cos

(
4π

x

Lx

)
+

1

16
cos

(
2π

x

Lx

))
,

(30)
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where δ is the initial mixing layer thickness and A and σ are parameters control-

ling the strength of the perturbation and its rate of decay from the centreline.

The parameters describing the case are given in table 1 in addition to the

domain dimensions L, boundary conditions BC and number of mesh nodes n in

each direction. For non-dimensionalisation the velocity difference u1
∗−u2

∗, the

density and temperature of the cold stream (stream 2) are used with all other

fluid properties assumed constant and δ∗ is taken as the length scale.

Table 1: Setup for 2D non-isothermal mixing layer.

Quantity Value Quantity Value

Lx 30.7 Ly 60.0
BCx Periodic BCy Free slip
nx 256 ny 501
T1 2 T2 1
Re 400 Pr 0.75
A 0.025 (u1 − u2) σ 0.05

The flow is simulated until non-dimensional time t = 200 using both the

constant- and variable-coefficient Poisson solvers, and contours of density com-

pared with those presented by [23] in fig. 3.

As fig. 3 shows, a good agreement is found between all three variants of the

Poisson equation implemented in QuasIncompact3D and the solutions of Golan-

ski et al. [23]. Similar agreement can be found for the comparison of contours

of vorticity in the x−y plane, indicating that the underlying implementation of

the LMN approximation and different Poisson solvers is working as expected.

An analysis of the performance of the algorithms is presented in table 2

showing the time spent solving the Poisson equation in terms of wall clock time

(normalised with respect to the constant-coefficient solver), average number of

iterations per (sub) timestep to achieve a very high level of accuracy (for the

variable-coefficient solvers, defined as 10−11 − 10−12 in the present study) and

the proportion of the simulation time spent in the Poisson solver. As can clearly
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Figure 3: Comparison of density contours obtained with QuasIncompact3D (in black) and
those of Golanski et al. [23] (in red) at times t = 24, 82, 182 from top to bottom and from left
to right using the constant-coefficient Poisson equation, variable-coefficient Poisson equation
with ρ̃ = ρ0 and ρ̃ = ρh respectively and the results of Golanski et al. [23].

be seen in table 2, the constant-coefficient solver is significantly faster than the

variable-coefficient solver due to the fixed amount of computational effort per

timestep whilst the iteration approach in the variable-coefficient solvers leads to

an increase in computational effort as shown in the increased wall clock time and

the time spent in the Poisson equation. However, this increased cost is offset

by the fact that the corrected velocity field satisfies the divergence criterion up

to a very high level of accuracy (up to 5-6 orders of magnitude more accurate

than the accuracy for the constant-coefficient solver). Note that for the data

presented in table 2, the constant-coefficient solver has an error of the order of

10−6 while the error is of the order 10−11 − 10−12 for the variable-coefficient

solver. Whilst in the case considered here it does not show any significant effect

in the results, this error in the velocity field could potentially place a limit
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Table 2: Comparison of algorithm performance showing: wall clock time, normalised by
constant-coefficient wall clock time; average number of iterations to converge the Poisson
equation at each step; and the cost of the Poisson equation in terms of total runtime. The
different solvers are indicated by CC and VC to represent constant- and variable-coefficient
Poisson solvers respectively where the choice of ρ̃ and stopping criterion are given in brackets.

Algorithm Wall Clock Avg. Iterations Poisson Cost [%]

CC 1 1 18.5
VC (ρ0, CC err) 4.19 11.7 80.52
VC (ρh, CC err) 2.76 6.57 69.48
VC (ρ0) 12.49 38.2 93.28
VC (ρh) 7.04 20.5 88.13

on the applicability of the constant-coefficient solver. It can also be noted that

around 10 iterations would be needed for the variable-coefficient solver to match

the error of the constant-coefficient solver. Finally, it is important to point out

that the good scalability of the variable-coefficient solver is not impacted by the

number of iterations.

4. Gravity current study

The code is further validated for 2D gravity currents both in and beyond

the Boussinesq limit. For these flows, following Birman et al. [36] and Espath

et al. [9, 37], incompressibility is enforced and the density field is determined by

a concentration as

ρ (x) = (ρ2 − ρ1) c (x) + ρ1 , (31)

where 0 ≤ c ≤ 1 is the concentration and ρ1 ≥ ρ2 are the (constant) fluid

densities. As density is a function of concentration the continuity equation

becomes

Dρ

Dt
=

1

ReSc
∇2ρ , (32)
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where Sc = µ/ρ/D is the Schmidt number, set at a fixed value Sc = 1 for

the present simulations, reflecting the value used in the reference data of Bir-

man et al. [36] and Espath et al. [9, 37]. This necessitates modification of the

extrapolation step of the constant-coefficient Poisson solver as

∇ · (ρu)
n+1

= un+1 ·∇ρn+1 = − ∂ρ

∂t

∣∣∣∣n+1

+
1

ReSc
∇2ρn+1 , (33)

to account for the changed continuity equation; the variable-coefficient Poisson

solver is unchanged, requiring only ∇̂ · u
n+1

= 0 as input. It should be noted

that this assumption is only used here in order to make comparisons with the

reference data of Birman et al. [36] and Espath et al. [9, 37].

In all the cases that follow, the variables are non-dimensionalised using a

combination of the heavy fluid density ρ1, the buoyancy velocity defined as

ub =
√
g′H , (34)

where g′ = (ρ1 − ρ2) |g| is the reduced gravity, and a length scale H. The

kinematic viscosity ν is constant, yielding a constant Reynolds number within

each fluid.

Initially the fluid is quiescent and the initial density field is specified as

ρ (x) =
1

2

(
ρ2

ρ1
+ 1

)
− 1

2

(
1− ρ2

ρ1

)
erf
(
x′
√
ReSc

)
, (35)

where

x′ = x− x0
f , (36)

and x0
f is a problem-dependent parameter defining the initial location of the

density discontinuity.
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4.1. Validation with 2D gravity currents

The lock-exchange flows with density ratios in the range 0.4 ≤ ρ2/ρ1 ≤ 0.998,

previously studied by Birman et al. [36], are used to validate the solver for both

Boussinesq and non-Boussinesq flows at Re = 4000. The domain is the rectangle

given by 0 ≤ x ≤ 32H, −H/2 ≤ y ≤ H/2 meshed with 4097× 257 mesh nodes

and at each boundary a free-slip condition is applied.

Figure 4 shows snapshots of the density field at t = 10 and as it can be

seen, an asymmetry develops in the flow the further the density ratio is from

Boussinesq conditions. The location of the left travelling light front is nearly

independent of density ratio whilst the right travelling dense front shows signif-

icantly greater penetration with increasing density ratio - the same behaviour

was found by Birman et al. [36]. The subplot of fig. 4 corresponding to den-

sity ratio ρ2/ρ1 = 0.7 shows generally good qualitative agreement with fig. 3b

of Birman et al. [36] (included for comparison). The small differences can be

attributed to the use of different flow solvers with different accuracy for the

numerical methods.

For quantitative comparison with the results of Birman et al. [36], the fol-

lowing flow statistics are computed:

• The front locations, using the criterion of the dense/light front being the

maximum/minimum x of the c = 0.9 contour;

• The heavy and light front velocities, computed as:

u =
xk+1
f − xkf
tk+1 − tk (37)

where xk+1
f and xkf are the front locations at times tk+1 and tk respectively;

• Energy budgets, specifically the available potential energy, kinetic energy,

turbulent dissipated energy and energy dissipated due to mass diffusion,
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Figure 4: Density contours of 2D lock-exchange at t = 10 for density ratios: ρ2/ρ1 =
0.998, 0.7, 0.4 from top-to-bottom. The middle two figures show ρ2/ρ1 = 0.7 with the present
results above in red and those of Birman et al. [36] fig. 3b in black with blue vertical lines to
indicate the front locations.

defined as:

Ep = − 1

Fr2

∫
Ω

(ρ− ρ2) g · hdV , (38)

K =
1

2

∫
Ω

ρu2dV , (39)

Ed (t) =

∫ t

0

ε (τ) dτ, ε =
2

Re

∫
Ω

ρ|S|2dV , (40)

E∇2ρ (t) =

∫ t

0

εs (τ) dτ, εs = − 1

Fr2ReSc

∫
Ω

(g · h)∇2ρdV , (41)

Etot = Ep +K + Ed + E∇2ρ (42)

where Ω is the domain, h ≥ 0 the height vector, ε and εs the rates of
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turbulent dissipation and mass diffusion dissipation respectively and S is

the strain rate tensor. For derivations of the above quantities, see Birman

et al. [36] and Espath et al. [9]. Note that the energy budgets are evaluated

using the same sixth-order finite-difference schemes from the simulations.

Comparisons of front velocities and energy budgets are presented in fig. 5

and fig. 6, with the reference data of Birman et al. [36] in black and present

data in red.

As fig. 5 shows, there is a good agreement in the evolution of front veloc-

ity between the present work and the reference data of Birman et al. [36], as

expected from the qualitative agreement of instantaneous front locations. The

only noticeable difference is reported for the density ratio of 0.4, for t > 10,

and only for the heavy front. A slow reduction of the heavy front velocity can

be observed in the reference data of Birman et al. [36], whereas this velocity

is almost constant in the present data, in line with the trend observed for the

other density ratio. The origin of this difference is not clear but it could be

related to the accuracy of the numerical methods (the mesh resolution is very

similar). It was noted that the location of the light front was nearly indepen-

dent of density ratio and this is confirmed in fig. 5 with the light front velocity

converging to ur ' 0.5 for all density ratios. The dense front velocity however

shows a strong dependence on the density ratio as observed in the instantaneous

density contours.

The comparison of energy budgets also show a good agreement with the

reference data. In particular, it is important to notice that the total energy is

conserved for the present simulations. One key difference is that the present

results account for dissipation of energy by mass-diffusion (Eq.(41)) which was

discarded by Birman et al. [36]. The results show that its effect is small, how-
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Figure 5: Comparison of the evolution of front velocities of the 2D lock exchange flow. Each
figure shows the evolution of a front for density ratios: ρ2/ρ1 = 0.998, 0.7, 0.4 represented by
dash-dotted, dashed and dotted lines respectively. The numerical results of Birman et al. [36]
are presented in black whilst those of the present work are in red.

ever the present results show a maximum error in energy conservation of order

O (0.1%) whereas Birman et al. [36] report errors of order O (1%); without this

contribution the errors in energy conservation would be comparable.

4.2. Three-dimensional gravity currents

To further test QuasIncompact3D for application to gravity currents, 3D

simulations are performed for the same density ratios as in §4.1, namely ρ2/ρ1 =

0.998, 0.7, 0.4. With the exception of the density ratios, the problem definition
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Figure 6: Comparison of the evolution of energy budgets of the 2D lock exchange flow for
density ratios: ρ2/ρ1 = 0.998, 0.4. The figure legend indicates the different contributions to
the overall energy budget. The numerical results of Birman et al. [36] are presented in black
whilst those of the present work are in red.
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is the same as for the non-sedimenting case of Espath et al. [37]: a 3D domain

of dimensions −H ≤ x ≤ 17H, 0 ≤ y, z ≤ 2H containing an initially quiescent

fluid of density ρ1 in the subdomain −H ≤ x ≤ 0 and ρ2 elsewhere with

Reynolds number Re = 2236. Free-slip boundary conditions are applied in

the x direction whilst on the y-normal boundaries a no-slip condition is applied

for velocity and zero gradient for density; the problem is periodic in z. In this

configuration the ρ2/ρ1 = 0.998 case approximately corresponds to the non-

sedimenting Boussinesq simulation presented by Espath et al. [37].

To simulate the effect of removing a physical barrier between the subdomains

at time t = 0, an initial perturbation is added to the velocity field according to

u′ (x) = |u′| e−σ(x−x0
f)

2

ê , (43)

where u′ is the velocity perturbation, x0
f is the initial front location and ê is

the coordinate axis unit vector. The decay term is set to σ = 25 and the

perturbations scaled such that the kinetic energy of the perturbed velocity field

is 1% of the initially available potential energy, matching the approach taken

by Espath et al. [9].

4.2.1. Mesh convergence

A mesh convergence study is performed for each case on meshes of 257×33×

32, 513×65×64 and 1025×129×128 mesh nodes, the highest resolution being

approximately equivalent to that used by Espath et al. [9, 37]. To assess mesh

convergence the location of the dense front and conservation of total energy

are used as indicators. For brevity fig. 7 shows only the mesh convergence of

ρ2/ρ1 = 0.998 as, being in the Boussinesq limit, it also allows comparison with

the non-sedimenting results of Espath et al. [37].

As fig. 7a shows, there is good agreement with the Boussinesq simulation
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Figure 7: Mesh convergence study for 3D Boussinesq (ρ2/ρ1 = 0.998) case. The black line
indicates the data from Espath et al. [37], data from the present work are for meshes: 257 ×
33 × 32 (blue); 513 × 65 × 64 (green); and 1025 × 129 × 128 (red).

performed by Espath et al. [37] and the present results for the front location and

also that the front location is essentially mesh independent from the 513×65×64

mesh to the 1025 × 129 × 128 mesh. Using the conservation of total energy as

a further indicator of mesh quality, fig. 7b shows that by using the finest mesh

considered, the total energy is conserved to a high degree of accuracy with a

peak error ∆Etot ' O
(
10−6

)
. The finest mesh is therefore judged to be good

enough for fully resolved flows.
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4.2.2. Effect of density ratio and 2D comparison

The 2D and 3D simulations are first compared using visualisations of the

(a) Side view of 2D gravity currents.

0 3 6 9 12 15 18

(b) Side view of 3D gravity currents.

Figure 8: Instantaneous visualisations of the 2D and 3D gravity currents at t = 15 showing
the concentration field for density ratios ρ2/ρ1 = 0.998, 0.7, 0.4 from top-to-bottom.

concentration field for ρ1 at time t = 15 in fig. 8. In each case a head region can

be identified at the front of the gravity current which travels with increasing

velocity as the density ratio increases. As detailed by Espath et al. [9] and

references therein this development is driven by the fluid of the gravity current
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“overstepping” the light fluid near the no-slip boundary at the bottom of the

domain as visible in the curvature of the front. At the tail of the gravity current

the heavier fluid is nearly settled at the bottom of the domain, the extent of

this region increasing with density ratio as the current has travelled further.

In between the head and tail is a region of significant vorticity which leads to

significant mixing, in particular for the ρ2/ρ1 = 0.4 case where a large region

of mixed fluids at the interface between the gravity current tail and head can

be observed. Some important discrepancies between the 2D and 3D simulations

concerning mainly the development of the Kelvin-Helmholtz instability and the

resulting vorticity structures can be seen. In particular, very large scale coherent

structures are present in the 2D simulations at the interface between the current

and the ambient fluid. For the 3D simulations, lobe and cleft structures develop

at the front of the current, as seen in fig. 9. These structures do not seem to

be sensitive to the density ratio. A more detailed comparison between 2D
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Figure 9: Perspective view of 3D gravity currents at t = 15 showing the concentration field
for density ratios ρ2/ρ1 = 0.998m0.7, 0.4 from front-to-back. The colour scheme is the same
as in fig. 8.
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and 3D simulations can be achieved by looking at an arbitrary iso-contour (here

c = 0.9, for clarity) of the concentration field (averaged in the spanwise direction

for the 3D simulations) and at the temporal evolution of the front location.

The data are presented in fig. 10 and fig. 11. The large coherent structures

already reported in fig. 8 for the 2D simulations can also be seen in fig. 10. The

concentration field seems to be more irregular for the 3D simulations with very

little influence of the density ratio, except for the location of the front which is

slightly further downstream of the initial lock when the density ratio is increased.

As it can be seen in fig. 10, the 3D front always leads the 2D front, irrespective

of the density ratio. This is true across all times up to the point when the

fronts reach the end of the domain - after an initial period of almost matched

velocity, the 2D front begins to decelerate whereas the 3D front maintains a near

constant velocity until reaching the end of the domain. Figure 11 also shows

that there is a dependency upon density ratio of this effect with the Boussinesq

ρ2/ρ1 = 0.998 case showing the largest discrepancy between 2D and 3D front

evolution and ρ2/ρ1 = 0.4 the smallest. It can be extrapolated that for very

large density ratios, there would be no difference for the front location between

2D and 3D simulations.

5. Conclusion

A new variable-density Navier-Stokes solver has been implemented based

on the open-source Incompact3D framework using the LMN approximation.

The solver was validated for incompressible and LMN problems using the LMN

approximation and its scalability demonstrated on several TIER-1/0 supercom-

puters. Although presented in the context of a solver for the LMN equations,

in this work we demonstrate its general applicability to variable-density flows
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Figure 10: Comparison of 3D and 2D gravity currents by 3D (spanwise-averaged) and 2D
c = 0.9 contours in red and black at t = 15 shown for density ratios ρ2/ρ1 = 0.998, 0.7, 0.4
from top-to-bottom.

in studying the gravity currents - this requires only appropriate modification to

reflect changes to the continuity equation, the algorithm itself is unchanged.

The code was further validated for gravity currents in the lock-exchange

configuration over a range of density ratios and the finite release configuration

in the Boussinesq limit, demonstrating a good agreement with data from two

different studies and in two- and three-dimensions. In comparing with the 2D
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Figure 11: The evolution of the front location over time for 3D (solid line) and 2D (dashed
line) simulations for density ratios ρ2/ρ1 = 0.998, 0.7, 0.4 (black, red, green respectively).

results of Birman et al. [36] the necessity to properly account for all contribu-

tions of the energy budget was demonstrated. By doing so, the present results

are in good agreement with the reference data, but by including all sources of

energy dissipation the error in energy conservation is reduced, allowing greater

confidence in the present results.

For high-resolution simulations of 2D and 3D finite release gravity currents it

was observed that after an initial period differences develop. For times (t & 10)

the location of the dense front in the 3D simulations is ahead of the 2D one as

the front slows down more severely in the 2D results. A visual examination of

the instantaneous concentration contours shown in fig. 10 shows that the 2D

contours have a greater undulation than the 3D ones. This undulation would

indicate energy expenditure in the vertical direction and may explain the slowing
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of the front for the 2D flow simulations. An additional observation is that this

difference of behaviour appears to be inversely related to the density ratio with

the simulations performed within the Boussinesq limit in this work showing the

largest discrepancy between 2D and 3D results. These results may explain the

contrasting results of Bonometti et al. [16], Espath et al. [9], Étienne et al.

[15], Necker et al. [8], Rotunno et al. [17]. Based on these preliminary results,

further studies of non-Boussinesq gravity currents are required to determine the

physical mechanisms causing the differences between the 2D and 3D results and

investigate the reason for the observed difference being greater in the Boussinesq

limit. A further aspect of this future work is to investigate the effect of the

Reynolds and Schmidt numbers on non-Boussinesq gravity currents.
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