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A multimodal approach to 
cardiovascular risk stratification 
in patients with type 2 diabetes 
incorporating retinal, genomic and 
clinical features
Ahmed E. Fetit   1, Alexander S. Doney2, Stephen Hogg1, Ruixuan Wang1, Tom MacGillivray   3,  
Joanna M. Wardlaw   4, Fergus N. Doubal4, Gareth J. McKay   5, Stephen McKenna   1 & 
Emanuele Trucco   1

Cardiovascular diseases are a public health concern; they remain the leading cause of morbidity and 
mortality in patients with type 2 diabetes. Phenotypic information available from retinal fundus 
images and clinical measurements, in addition to genomic data, can identify relevant biomarkers 
of cardiovascular health. In this study, we assessed whether such biomarkers stratified risks of 
major adverse cardiac events (MACE). A retrospective analysis was carried out on an extract from 
the Tayside GoDARTS bioresource of participants with type 2 diabetes (n = 3,891). A total of 519 
features were incorporated, summarising morphometric properties of the retinal vasculature, various 
single nucleotide polymorphisms (SNPs), as well as routine clinical measurements. After imputing 
missing features, a predictive model was developed on a randomly sampled set (n = 2,918) using L1-
regularised logistic regression (lasso). The model was evaluated on an independent set (n = 973) and its 
performance associated with overall hazard rate after censoring (log-rank p < 0.0001), suggesting that 
multimodal features were able to capture important knowledge for MACE risk assessment. We further 
showed through a bootstrap analysis that all three sources of information (retinal, genetic, routine 
clinical) offer robust signal. Particularly robust features included: tortuousity, width gradient, and 
branching point retinal groupings; SNPs known to be associated with blood pressure and cardiovascular 
phenotypic traits; age at imaging; clinical measurements such as blood pressure and high density 
lipoprotein. This novel approach could be used for fast and sensitive determination of future risks 
associated with MACE.

Cardiovascular diseases (CVD) remain the leading cause of morbidity and mortality in patients with type 2 
diabetes and are largely preventable. A key step towards prevention is accurate stratification of risk, allowing 
appropriate targeting of maximally effective intervention strategies. Patients with type 2 diabetes undergo regular 
eye screening to manage risk of sight-threatening diabetic retinopathy. The retina may also represent a source 
of information indicative of global vascular health; a wide range of studies report associations between retinal 
features and cardiovascular risk factors. These include the Rotterdam Study1, the Cardiovascular Health Study2 
and the meta-analysis by McGeechan et al.3 on over 22,000 participants from 6 population-based studies. This 
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motivates the study of standard retinal photographs obtained through eye screening as a source of phenotypic 
biomarkers of risk of cardiovascular disease.

Recently, Poplin et al.4 analysed datasets from the UK Biobank5 and EyePACS6 cohorts using deep learn-
ing methods. They trained neural networks to predict known risk factors such as smoking status and systolic 
blood pressure from retinal images. Additionally, the study revealed that it is possible to predict Major Adverse 
Cardiovascular Events (MACE) from retinal images using deep learning models, achieving a 0.7 area under the 
receiver operating characteristic curve. Whilst the analysis was carried out on large cohorts (>48,000 patients, 
UK Biobank; >236,000 patients, EyePACS), the number of patients known to have experienced MACE events 
was relatively small (631 events, UK Biobank) and MACE information was not available for the EyePACS data. 
Furthermore, while deep neural networks can improve prediction through the use of non-linear feature hierar-
chies and very large cohorts where available, the clinical interpretability of such models remains uncertain.

With the currently increasing emphasis on interpretability of artificial intelligence systems7, studying the role 
of clinically interpretable retinal features such as vessel calibre and tortuosity is essential. In contrast to pre-
diction via deep learning, our approach yields features with direct clinical interpretability while still achieving 
significant risk stratification. Phenotypic information available from retinal fundus images and routine clinical 
measurements, in addition to genomic data offer complementary perspectives on disease risks8; incorporating 
them in a multimodal approach may provide a more nuanced assessment of disease risk and stratified therapeutic 
approaches to reduce risk. We thus describe a computational approach combining measurements from retinal 
fundus images, genomic and clinical data to generate a multimodal classifier for MACE in patients with type 2 
diabetes from Tayside, Scotland.

Methods
Analysis dataset.  Data from 3,891 individuals with type 2 diabetes were selected from the GoDARTS 
bioresource9. Participants underwent regular diabetic retinopathy screening and had digital fundus images that 
matched our quality criteria for semi-automated analysis of retinal vascular features with several clinical out-
comes10. VAMPIRE 3.1 software (Vascular Assessment and Measurement Platform for Images of the Retina, 
Universities of Dundee and Edinburgh, Scotland, UK)11–13 was used to semi-automatically measure features 
with a direct clinical interpretation. Features were measured from standard pre-defined annular zones, following 
well-established protocols11, and included optic disc (OD) radius, central retinal arteriolar equivalent (CRAE), 
central retinal venular equivalent (CRVE), retinal arterio-venule-ratio (AVR), tortuosity of arteries (tortA) and 
veins (tortV), by retinal zone, quadrant, vessel generation and vessel type (artery or vein). A total of 157 retinal 
features were available per image. Readers are referred to Supplementary Material for a detailed explanation of 
the different retinal feature sub-categories. Two trained operators (SH and RW) performed the measurements 
following a standard, validated protocol for VAMPIRE. Training for each operator was carried out over two 
sessions:11 an introductory session where the protocols and software were presented and familiarity with them 
gained through practice on a demonstration image set (n = 20, one day); and an assessment session where com-
petency in operation was assessed on a testing image set (n = 20, one day). Training lasted for approximately two 
days in total and was followed by periodic re-validation sessions.

We used a validated data linkage algorithm on anonymised electronic medical records of GoDARTS partic-
ipants. The median of each clinical measure for a 3-year period prior to the date of the fundus photograph was 
obtained. Clinical measures were diastolic and systolic blood pressures adjusted for blood pressure lowering 
drugs, total cholesterol, high density lipoprotein (HDL) cholesterol, triglycerides levels and glycated haemoglobin 
(Table 1). Additionally, we incorporated information on the median number of blood pressure lowering drugs, 
smoking history, cardiovascular disease history, duration of diabetes, age at imaging, and sex. A total of 343 single 
nucleotide polymorphisms (SNPs) were also included. These were selected from the GoDARTS genotype data-
base and consisted of available SNPs that had been identified in previous genome-wide association studies for 
cardiovascular disease14, blood pressure15 and Alzheimer’s disease16. Weighted genetic risk scores for each phe-
notype were constructed using the relevant SNPs. These risk scores were all included in the analysis, in addition 
to the entire set of individual SNPs. MACE was defined as hospitalisation for myocardial infarction or stroke, or 
cardiovascular death. This was determined through linkage with hospital admission and cause of death records 
similar to previously reported studies10. Participants were censored at date of non-cardiovascular death or last 
available date of follow-up.

Analysis pipeline.  Sampling and imputation of data.  The dataset was rather heterogeneous as only 239 
participants had no missing features. A total of 2,893 participants had between 1 and 61 missing features each 
(median missing retinal features = 0; genomic = 2; clinical = 0). This was higher in the remaining 759 partici-
pants, who each had between 270 and 384 missing features (median missing retinal features = 0; genomic = 347; 
clinical = 0). Following concatenation of retinal, genomic and clinical data, 75% of the cohort was sampled at 
random and used to build and fine-tune the model (model development set). The remaining 25% was retained for 
model validation (clinical validation set). A k-nearest neighbour algorithm (k = 10) was used to impute missing 
features using the knn.impute function of the bnstruct package in R17. In essence, the algorithm obtains imputed 
values from similar participant profiles; all available features were used to search for the neighbours. For con-
tinuous features, the neighbours’ median value over the set of similar profiles was used, whilst for categorical 
features the mode was used. This step was blinded to the participant’s MACE outcome to avoid leakage of class 
information into the predictive model. Imputation was undertaken separately for the development and clinical 
validation sets.

Computation of the multimodal MACE classifier.  The model development set was used to build classifiers for 
predicting the binary outcome of MACE onset before censoring. The well-established L1-regularised logistic 
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regression (lasso)18 performed simultaneous feature selection and model estimation. Implementation used the R 
glmnet package19. No-MACE participants occurred 2.2 times as often as MACE participants in the dataset (see 
Table 1). To account for this class imbalance, weights were assigned to each observation (the MACE: no-MACE 
assigned observation weights were 2.2:1). The λ parameter, which controls the strength of regularisation and 
hence model sparsity, was fine-tuned using 10-fold cross-validation. The value resulting in the lowest binomial 
deviance, λmin, was identified and used to train a model on the entire development set. A second value, λ1SE, is also 
of interest as it corresponds to the most regularised model leading to a binomial deviance within one standard 
error of that obtained at λmin, usually involving fewer features (given the less strict requirement on the binomial 
deviance). We performed risk stratification using a λmin-based model’s prediction of an individual’s probability of 
MACE before censoring. We further explored whether a more compact λ1SE-based model could achieve similar 
performance outcomes.

Evaluation of performance on the clinical validation set.  A tuned λmin-based model was validated on the clinical 
validation set (random 25% retained subset from the original cohort). The output probability predicted by the 
model was used to stratify patients into two groups, high-risk and low-risk, and to generate Kaplan-Meier plots. 
Stratification was undertaken using a predefined threshold identified by a 10-fold cross-validation stage, specif-
ically the mean of the model output probabilities across participants. To assess statistical significance between 
both groups, a log-rank p value was computed using the survival package in R20. This process was repeated using 
a λ1SE -based model21.

Evaluation of feature robustness using bootstrap.  Different data samples give rise to different feature sets being 
selected when computing the classifier. We performed a bootstrap analysis to assess how likely features were to be 
selected over a large number of randomly selected training sets22. The frequency with which a feature or feature 
set was selected across the bootstraps was used as a proxy measure of feature robustness. A total of 500 bootstrap 
trials was carried out on the development set using λmin, and the proportion of times each feature had a non-zero 
weight was recorded, providing a measure of how likely each feature is to be selected. Binomial deviance was cal-
culated across the 500 bootstraps, together with the corresponding 95% confidence intervals (CI). A total of 910 
samples from each class was included in every trial to ensure class balancing.

In addition to individual feature occurrence, we computed the frequencies with which at least one retinal, 
genomic and clinical feature was selected across the bootstraps. Retinal features can be broadly divided into six 
sub-categories: tortuosity (108 features), width gradient (16), branching point (18), fractal analysis (6), OD-based 
(2), and Zone B width (5) features. Features within each sub-category may be highly correlated, and as such we 
were interested in the frequencies with which at least one feature from each retinal sub-category was selected 

Characteristics

Model development set Clinical validation set

MACE No MACE MACE No MACE

Number of patients 910 2,008 309 664

Age at imaging (years) 72.45 68.13 72.38 68.32

Sex (% female) 43 48 45 48

Time to event or censoring 
(years) 3.37 7.38 3.69 7.42

OD radius (pixels) 198.7 195.5 199.1 196.2

CRAE (pixels) 32.4 32.3 32.6 32.3

CRVE (pixels) 42.7 42.7 43.0 42.7

Log of tortA 10.2 × 10−5 10.3 × 10−5 10.1 × 10−5 9.92 × 10−5

Log of tortV 6.9 × 10−5 6.4 × 10−5 7.14 × 10−5 6.4 × 10-5

AVR 0.76 0.76 0.76 0.76

CVD gene score 4.47 4.38 4.44 4.41

Corrected systolic blood 
pressure (mmHg) 141.05 141.30 141.79 142.47

Corrected diastolic blood 
pressure (mmHg) 76.54 78.95 77.29 79.43

Cholesterol levels (mmol/L) 4.25 4.36 4.25 4.36

High density lipoproteins 
(mmol/L) 1.30 1.36 1.32 1.38

Log Triglycerides (mmol/L) 2.19 2.10 2.14 2.08

History of CVD (% yes) 52 23 51 20

History of smoking (%yes) 81 72 79 73

Table 1.  Participant characteristics (mean values) in the development and clinical validation sets. Retinal 
length measurements are in pixels to avoid the uncertainty introduced by commonly used pixel-micron 
conversion factors30. Differences in image size and resolution are taken into account by VAMPIRE11–13. 
OD: optic disc; CRAE: central retinal arteriolar equivalent; CRVE: central retinal venular equivalent; tortA: 
tortuosity of arteries, tortV: tortuosity of veins, AVR: retinal arterio-venule-ratio; CVD: cardiovascular disease.
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across the bootstraps. Readers are referred to Supplementary Material for a detailed explanation of the different 
retinal feature sub-categories.

Results
Participant baseline characteristics.  A total of 1,219 individuals were recorded as undergoing MACE 
during the follow-up period. The mean and median times to MACE following retinal imaging were 3.45 and 2.99 
years respectively with a standard deviation of 2.48 years. The mean and median ages for these participants at 
imaging were 72.43 and 73.54 years respectively; 528 participants were female and 691 were male.

For the remaining participants (no-MACE), points of right censoring ranged from 0.05 years to 10.95 years 
post image-capture. The mean and median times to censoring were 7.39 and 8.81 years, respectively; standard 
deviation was 2.65 years. For no-MACE participants, the mean and median age at imaging were 68.17 and 69.20 
years respectively; 1,293 participants were female and 1,379 were male. A breakdown of participant demographics 
for the development and clinical validation sets is shown in Table 1.

Model development and tuning.  The cross-validation curve for the development set is indicated by the 
red dotted line in Fig. 1. Upper and lower standard deviation curves (error bars) are also plotted. Increasing the 
extent of regularisation reduced binomial deviance until a model that retained 51 features was reached; beyond 
that point, regularisation resulted in increased binomial deviance. Two selected λ values are indicated by the ver-
tical dotted lines: λmin (minimum binomial deviance) and λ1SE (binomial deviance within 1 SE of the minimum).

As can be seen in Table 2, the λmin-based model had 51 features from all three categories: retinal, genetic and 
clinical. Selected retinal features comprised optic disc radius, venular gradient width, venular fractal dimen-
sion, as well as various tortuosity measures. Of the genetic features included, 34 SNPs were selected. As per 
the Ensembl genome browser (Human GRCh38.p12 assembly), these variants had been previously shown to be 
associated with a variety of phenotypic traits that include cardiovascular disease, blood pressure, and Alzheimer’s 
disease. Examples of selected SNPs and their known phenotypic associations include rs34923683: pulse pressure 
measurement; rs9549328: systolic blood pressure; rs687621: cholesterol; rs12921187: diastolic blood pressure; 
rs12413409: coronary heart disease; rs2048327: coronary heart disease; and rs11218343: Alzheimer’s disease; 
(refer to Table 2 for a complete list of SNPs selected by the λmin-based model). Noteworthy, of the 3 composite 
scores analysed, only the cardiovascular gene score was selected. Finally, age at imaging and a variety of clinical 
measurements were selected by the model, namely: number of blood pressure lowering drugs taken, history of 

Figure 1.  The results of repeated 10-fold cross-validation (CV) experiments on the development set, showing 
how variation in λ affects binomial deviance. The numbers at the top of the figure indicate numbers of features 
retained within the regularised models. Interval bars represent standard deviation. The vertical line to the left 
represents λmin, whereas the one to the right represents λ1SE.
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smoking, evidence of CVD before imaging, diastolic blood pressure, high density lipoprotein, glycated haemo-
globin, triglycerides, and duration of diabetes.

Notably, whilst the λmin-based model had 51 features, λ1SE was based on the selection of 7 features, indicative 
of a more compact, yet comparably effective classifier. 6 of the 7 λ1SE features were routine clinical measurements 
and the features retained in the regularised model are also listed in Table 2 for λ1SE.

Model Evaluation on retained clinical validation data.  The clinical validation set was evaluated using 
the regularised models based on the development set features. Figure 2 shows Kaplan-Meier curves for λmin-based 
model predictions and overall time-to-event (censoring point) of the clinical validation set. The time scale used 
was age; left-truncation was ensured by subtracting the age at imaging from age at event (or censoring). Cases 
were stratified into two groups, high-risk and low-risk, using a pre-defined threshold (0.47) in the model develop-
ment stage. The numbers of participants in each risk category are listed beneath the curves. Figure 3 shows plots 
from the same procedure carried out using a λ1SE-based model.

The Kaplan-Meier curves generated using both models showed very similar patterns, whereby the number 
of individuals that belonged to the predicted high-risk group was consistently lower than half of those in the 
low-risk group, when observed at 2.5, 5, 7.5 and 10 years time points. In both cases, model predictions were 

Category

Non-zero coefficient features

Using λmin Using λ1se

Retinal

• odradiuspx
• tortq4g1vstd
• tortq2g1vmed
• tortq2g1a
• tortq1g1vmed
• gradq4vhermite
• d1v

• None selected

SNPs

• rs34923683
• rs3752728
• rs9549328
• rs687621
• rs12921187
• rs11218343
• rs12413409
• rs2048327
• rs2014408
• rs1878406
• rs13359291
• rs2493292
• rs7136259
• rs79089478
• rs8258
• rs7248104
• rs419076
• rs2895811
• rs983392
• rs11203042
• rs1530440
• rs1563788
• rs2240736
• rs12941318
• rs6686889
• rs7126805
• rs12906962
• rs10850411
• rs10792832
• rs7515635
• rs2291435
• rs449789
• rs4308
• rs200999181

• None selected

Gene scores • CVD gene score • CVD gene score

Clinical

• Number of blood pressure 
lowering drugs taken
• History of smoking
• Evidence of CVD before 
imaging
• Diastolic blood pressure
• High density lipoprotein
• Age at imaging
• Glycated Haemoglobin
• Triglycerides
• Duration of diabetes

• Number of 
blood pressure 
lowering drugs 
taken
• History of 
smoking
• Evidence of 
CVD before 
imaging
• Diastolic blood 
pressure
• High density 
lipoprotein
• Age at imaging

Table 2.  51 features assigned non-zero coefficients; these constitute a regularised model using λmin on the entire 
development set. For the λ1SE -based model, only 7 features were retained. CVD: cardiovascular disease. Readers 
are referred to Supplementary Material for a detailed explanation of retinal features computed by VAMPIRE.
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highly associated with the MACE event (log rank p < 0.0001), indicating that the feature-sets used to train them 
captured strong signal for cardiovascular risk stratification.

Readers are referred to Supplementary material for a further analysis using only routine clinical measure-
ments, age at imaging and sex.

Bootstrap Analysis.  In all 500 bootstrap trials, the model selected age at imaging, along with various group-
ings that always included features from each of the three main feature categories: retinal, genomic, and clinical 
(Table 3).

All clinical features are listed with their corresponding frequencies. Those selected at high frequencies across 
the trials (greater than 75%) were evidence of CVD before imaging, diastolic blood pressure, smoking history, 
high-density lipoprotein and glycated haemoglobin.

Genomic features included 343 SNPs and 3 composite gene scores. Of the 3 composite scores analysed, only 
the cardiovascular gene score was selected at a frequency greater than the defined threshold (>75%). Given 
the number of SNPs considered, only those exceeding the defined frequency threshold of 75% are highlighted 
(Table 4). Only 11 of the analysed SNPs exceeded the threshold. An interesting observation is that all 11 SNPs 
identified by bootstrap were also present in the list of 34 SNPs previously selected when building the model once 
using λmin. The 11 SNPs and their known phenotypic trait associations, as per the Ensembl genome browser, 
were rs12921187: diastolic blood pressure; rs4308: diastolic blood pressure; rs2048327: coronary heart disease; 
rs9549328: systolic blood pressure; rs34923683: pulse pressure; rs687621: cholesterol; rs2014408: depressive 
symptoms; rs7136259: coronary heart disease; as well as rs3752728, rs2291435, and rs200999181.

Retinal features were grouped into the sub-categories described in Section 2.3.4. Features within each 
sub-category are highly correlated, and as such no individual retinal measurements were selected at high fre-
quencies. We computed the frequencies with which the feature-set selected included at least one feature from each 
sub-category, and observed that all retinal sub-categories offered a highly robust signal: tortuousity sub-category 
(100%), width-gradient (100%), branching point (100%), OD-based (83%), fractal analysis (82%), and Zone B 
width (71%).

We finally computed the mean, median and standard deviation values of feature coefficients (β) across the 
500 regularised models for individual features selected at highest frequencies (Table 4). This was carried out in an 
effort to illustrate the interpretability of our proposed approach. Whilst each bootstrap trial may offer a slightly 
different coefficient value, the coefficient sign is unlikely to change; utilising the coefficients of highly robust 

Figure 2.  Kaplan-Meier curves for λmin-based model predictions and overall time-to-event analysis of the 
clinical validation set. Cases were stratified into two groups, high-risk and low-risk, using a pre-defined 
threshold (i.e., the mean predicted probability for the model-development set when λmin was used in a 10 fold 
cross-validation).
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features can aid the answering of questions such as ‘how does a one year increase in age affect the odds of an indi-
vidual developing a MACE outcome?’.

Discussion
A cost-effective, non-invasive means of identifying high-risk individuals for MACE would be of tremendous 
value. In recent years, routine investigation of observable retinal characteristics has improved through advances 
in digital imaging, software capabilities, eye screening programmes, and wider availability through improved 
infrastructure at high street opticians. Previous evaluation of retinal features and cardiovascular risk has been 
limited. The cross-sectional, population-based Rotterdam study (n = 5,674) reported associations between wider 
venular diameter and atherosclerosis, inflammation and cholesterol1.

However, several studies have reported conflicting findings. The Cardiovascular Health Study reported 
associations between wide retinal venular calibre and high incidence of coronary heart disease (CHD) in both 
elderly women and men2, while other studies have found associations only in younger populations but not in 
elderly ones23. In light of these inconsistent findings, McGeechan and colleagues undertook a participant-level 
meta-analysis of over 22,000 participants from 6 studies3 and concluded that retinal vessel calibre changes (wider 
venules and narrower arterioles) associated with an increased risk of CHD in women but not men. However, that 
meta-analysis excluded studies on diabetic populations.

Other studies have also sought to improve the prediction of MACE, based on non-retinal data. McCarthy 
and colleagues24 developed linear models based on a 649 participants from the CASABLANCA study, incorpo-
rating a range of information on plaque erosion, acute phase reactants, inflammatory markers, and biomarkers 
of atherosclerosis. Model validation in an independent cohort illustrated the benefits and utility of integrating 
complementary clinical measurements from multiple sources to improve the prediction of individual MACE risk.

In this study, we investigated the combined potential of retinal parameters, genetic data and routinely col-
lected clinical information for risk assessment of MACE in patients with type 2 diabetes. We used a regularisation 
approach in a supervised classification framework to develop a lasso-based predictive model. The model was 
developed and trained on a set of 2,918 participants and validated on an independent set of 973 participants. 
Lasso was similarly used to identify novel cancer biomarkers by Beck and colleagues25. The feature selection that 
underpins this approach is advantageous in that it summarises the multimodal features used into a single score 
(retinal vascular morphology, genetic data, clinical features). Additionally, the coefficients (β) associated with 
selected features can be used for interpreting the model and are relative to features’ original scales e.g. If the β 

Figure 3.  Kaplan-Meier curves for λ1SE-based model predictions and overall time-to-event analysis of the 
clinical validation set. Cases were stratified into two groups, high-risk and low-risk, using a pre-defined 
threshold (i.e., the mean predicted probability for the model-development set when λ1SE was used in a 10 fold 
cross-validation).
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coefficient associated with age at scan is 0.03, this means that a one year increase in age at scan corresponds to 
exp(0.03) increase in odds of developing a MACE outcome.

A suitable value for the lasso λ parameter can be determined through optimisation on the model-development 
set. Two values of λ were considered: (a) one that corresponds to the lowest binomial deviance (λmin), and (b) one 
that gives deviance within one standard error of (a) (λ1SE), achieving a similar performance whilst using a more 
compact set of features. A λmin model selected 51 features whereas a λ1SE model selected 7. The λmin-based model 

Clinical features Genomic features Retinal features

Feature
Frequency 
(%) Feature

Frequency 
(%) SNP

Frequency 
(%) SNP Frequency (%) Subcategory

Frequency 
(%)

History of CVD 100 Duration of 
diabetes 54 rs3752728 95 rs687621 80 Tortuosity features 100

Diastolic blood 
pressure 99 Sex 44 rs12921187 89 rs2291435 78 Width gradient 

features 100
History of smoking 97 Cholesterol levels 31 rs4308 84 rs2014408 77

High density 
lipoprotein 89 Systolic blood 

pressure 14 rs2048327 83 rs7136259 75 Branching point 
features 100

Glycated hemoglobin 82 Corrected systolic 
blood pressure 9 rs9549328 82 Composite Score Frequency (%) OD radius and/or 

OD-to-fovea 83

Number of blood 
pressure lowering 
drugs taken

71 Corrected 
diastolic blood 
pressure

3

rs34923683 81 CVD gene score 84 Fractal analysis 
features 82

rs200999181 81

Alzheimer’s gene 
score 40

Zone B width 
features 71

Triglycerides 66 Blood pressure 
gene score 20

Table 3.  Summary of bootstrap analyses. All clinical features are listed with their corresponding frequencies. 
The three composite gene scores evaluated are included with their frequency distribution. Given the large 
number of SNPs included, only those selected with a frequency >75% have been included. Retinal features 
were evaluated as sub-categories given features within each sub-category were highly correlated. OD: optic 
disc; CVD: cardiovascular disease. Readers are referred to Supplementary Material for a detailed explanation of 
retinal features computed by VAMPIRE.

Feature
Original 
scale Mean β Median β Std. Dev. β

Age at imaging years 0.03 0.03 0.01

History of smoking [0, 1] 0.23 0.23 0.13

History of CVD [0, 1] 1.05 1.05 0.14

Diastolic blood pressure mmHg −0.02 −0.02 0.01

High density lipoprotein mmol/L −0.23 −0.23 0.16

Glycated haemoglobin mmol/mol 0.04 0.04 0.04

CVD gene score raw scores 0.15 0.13 0.12

rs3752728 [0, 1, 2] 0.15 0.14 0.09

rs12921187 [0, 1, 2] 0.12 0.12 0.08

rs4308 [0, 1, 2] −0.09 −0.08 0.07

rs2048327 [0, 1, 2] 0.08 0.07 0.07

rs9549328 [0, 1, 2] 0.10 0.09 0.08

rs34923683 [0, 1, 2] 0.27 0.24 0.23

rs200999181 [0, 1, 2] −0.85 −0.90 0.65

rs687621 [0, 1, 2] 0.09 0.08 0.08

rs2291435 [0, 1, 2] −0.07 −0.06 0.07

rs2014408 [0, 1, 2] 0.09 0.08 0.08

rs7136259 [0, 1, 2] 0.07 0.06 0.06

Table 4.  Mean, median and standard deviation values of feature coefficients across the 500 regularised models. 
Individual features occurring at high frequencies (>75% threshold) are listed here. Note that the reported 
coefficients are relative to their corresponding features’ original scales e.g. one year increase in age at imaging 
corresponds to exp(0.03 +/− 0.01) increase in odds of developing a MACE outcome. Original scales are 
included in the table for reference. Gene variants are coded as 0, 1 or 2 representing the number of alternate 
alleles for the particular SNP the individual has inherited; coefficients are therefore the average per step going 
from 0 to 1 and 1 to 2. CVD: Cardiovascular disease. The CVD gene scores were included as raw values; 
coefficients are interpreted per unit step in the score.
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provides evidence for the utility of including retinal parameters, genetic data and clinical information to improve 
the accuracy associated with MACE risk stratification. However, comparable performance was achieved using 
mostly clinical information as identified by the λ1SE–based model (Fig. 1). These observations support previous 
findings from UK Biobank and EyePACS cohorts4.

It is important with any statistical feature selection method, lasso included, to obtain estimates of the relative 
robustness of selected and discarded features. Evaluation of features using glmnet does not imply that unselected 
features are weak; they may simply be highly correlated with those retained in the model. Furthermore, feature 
selection is sensitive to data sampling effects. This highlights the need for estimation of feature robustness, an 
essential step in biomarker discovery. Therefore, we performed a bootstrap analysis and identified the features or 
feature-sets occurring at high frequencies, using selection frequency as a proxy measure of robustness. Bootstrap 
analysis has been similarly used as a measure of robustness to investigate gene interaction, albeit using a different 
feature selection method22.

One feature that appeared in each bootstrap trial was age at imaging. Routine clinical features selected with 
high frequency for inclusion in the model (defined as >75%) included history of CVD, diastolic blood pressure, 
smoking history, HDL, glycated haemoglobin and genetic features (11 SNPs and cardiovascular gene score). 
Furthermore, bootstrap analysis revealed that some retinal parameters were always included when building the 
model, although individual features were not selected with the highest frequencies. Further analysis of the meas-
ures of tortuosity, vessel width and branching point sub-categories identified similar patterns, whereby different 
combinations of feature-sets were always selected (i.e. in every bootstrap there was always at least one tortuousity 
feature, at least one vessel-width feature, and at least one branching point feature). Retinal features from the Zone 
B vessel width, fractal analysis and OD-based sub-categories were selected in 71%, 82% and 83% of the trials, 
respectively.

In conclusion, this study yielded three main findings. Firstly, a multimodal classifier that was trained on ret-
inal, genetic and routine clinical features was able to stratify risk of MACE in this cohort of patients with type 2 
diabetes. This offers exciting future possibilities, such as rapid and inexpensive population screening technologies 
for the early detection of cardiovascular diseases. Secondly, we showed that a classifier trained mostly on routine 
clinical features was similarly able to stratify risk of MACE in this cohort. This suggests that risk of developing 
cardiovascular disease can manifest in various forms, and whilst retinal and genetic data can unveil such infor-
mation on cardiovascular health, readily available clinical data can offer a complementary perspective. This is in 
line with state-of-the-art findings recently published on UK Biobank’s retinal and clinical data. Finally, we showed 
through a bootstrap analysis that all three sources of information (retinal, genetic, routine clinical) offer robust 
signal. In doing so, we also identified specific genetic variants that were selected at very high frequencies within 
each of the bootstrap models.

There are a number of limitations to our work. Firstly, we investigated only semantic retinal features, i.e. fea-
tures capturing directly interpretable quantities of the vasculature. Non-semantic features ought to be included 
in the future, as candidates emerge from replicated, large deep-learning studies4, but ideally after their compu-
tation and clinical meaning have been clarified. Secondly, VAMPIRE retinal measurements are semi-automatic. 
While this reduces overall errors, it limits the number of images that can be measured in a given time period. 
The trade-off between accuracy and automation is currently under debate in the retinal image analysis com-
munity26,27. Thirdly, GoDARTS is a diabetic cohort. Hence, our findings complement those of similar studies 
on non-diabetic cohorts like UK Biobank and EyePACS but remain specific to the characteristics of our cohort. 
Replication on further diabetic cohorts is necessary. Fourthly, using one eye only per participant assumes suffi-
ciently symmetric left-right measurements, an assumption sub judice in the recent literature28. Moreover, when 
carrying out missing feature imputation, the number of neighbours (k) used was set to 10. Investigating the 
optimal number of neighbours for use on this cohort using repeated cross-validation experiments, as well as 
investigating the optimal imputation strategy, would make interesting future work. Finally, longitudinal clinical 
information was represented by the median value of measurement across time; future work could use time series 
analysis to ensure more accurate data representation. In addition to the above, we plan to incorporate further 
retinal imaging modalities. Candidates being addressed in parallel studies including optical coherence tomogra-
phy (OCT), OCT-angiography and ultra-wide-field-of-view imaging. The work will certainly require prospective 
analyses in clinical trials, but a reduction in mortality from CVD through early detection of risk by only a small 
percentage would represent several hundreds of thousands of lives saved annually worldwide, given that CVD 
represents 31%29 of all global deaths.
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