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ABSTRACT

This paper focuses on the analysis of efficiency, peakedness and majorization properties of linear estimators un-

der heavy-tailedness assumptions. We demonstrate that peakedness and majorization properties of log-concavely

distributed random samples continue to hold for convolutions of α−symmetric distributions with α > 1. However,

these properties are reversed in the case of convolutions of α−symmetric distributions with α < 1.

We show that the sample mean is the best linear unbiased estimator of the population mean for not extremely

heavy-tailed populations in the sense of its peakedness. In such a case, the sample mean exhibits monotone

consistency and an increase in the sample size always improves its performance. However, efficiency of the sample

mean in the sense of peakedness decreases with the sample size if it is used to estimate the location parameter under

extreme heavy-tailedness. We also present applications of the results in the study of concentration inequalities

for linear estimators.
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1 Introduction and discussion of the results

1.1 Efficiency and peakedness of estimators

A number of problems in econometrics and statistics involve comparisons of estimators’ performance. The present

paper focuses on comparisons of linear estimators under heavy-tailedness and obtains characterizations of optimal

linear estimators for heavy-tailed data.

Let θ̂(1) and θ̂(2) be two estimators of a population parameter θ ∈ R. In the case when θ̂(i), i = 1, 2, are unbiased

for θ and have finite second moments, their comparisons are traditionally based on quadratic loss functions leading

to comparisons of the variances V ar(θ̂(i)), i = 1, 2 : θ̂(1) is preferred to θ̂(2) if V ar(θ̂(1)) < V ar(θ̂(2)) (in other

words, if θ̂(1) is more efficient than θ̂(2)).

This approach breaks down, however, in the case of heavy-tailed estimators θ̂(i) for which variances do not

exist and one has to rely on loss functions more general than quadratic ones. In the case of an increasing loss

function U : R+ = [0,∞) → R, θ̂(1) is preferred to θ̂(2) if (provided that the expectations exist)

EU(|θ̂(1) − θ|) < EU(|θ̂(2) − θ|) (1.1)

(in the efficiency literature, it is common to consider loss functions that satisfy additional assumptions of bound-

edness). Orderings of estimators based on comparisons (1.1) are, of course, dependent on the choice of the loss

functions U.

A natural approach to comparison of performance of estimators is to order them by the likelihood of observing

their large deviations from the true parameter (see, e.g., Hwang, 1985, and Andrews and Phillips, 1987, and

references therein). This approach corresponds to the choice of indicator functions Uε(x) = I(x > ε), ε > 0, in

(1.1) and is closely related to the concept of peakedness of random variables (r.v.’s) introduced by Birnbaum

(1948).

Definition 1.1 (Birnbaum, 1948). A r.v. X is more peaked about θ ∈ R than is Y if P (|X − θ| > ε) ≤
P (|Y − θ| > ε) for all ε ≥ 0. If this inequality is strict whenever the two probabilities are not both zero or both

one, then the r.v. X is said to be strictly more peaked about θ than is Y. In case θ = 0, X is simply said to be

(strictly) more peaked than Y.

The following definition provides a peakedness-based analogue of the concept of efficiency for estimators that

will be explored throughout the paper.
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Definition 1.2 The estimator θ̂(1) is said to be more efficient than θ̂(2) in the sense of peakedness (P-more

efficient than θ̂(2) for short) if θ̂(1) is strictly more peaked about θ than is θ̂(2).

The property of being P-less efficient is defined in a similar way. Roughly speaking, θ̂(1) is P-more efficient

than θ̂(2) if the distribution of θ̂(1) is more concentrated about the true parameter θ than is that of θ̂(2). As follows

from well-known properties of first-order stochastic dominance (see Shaked and Shanthikumar, 1994, pp. 3-4,

and Remark 3.2 in this paper), if θ̂(1) is P-more efficient than θ̂(2), then comparisons (1.1) are independent of the

choice of U and hold for any increasing loss function.

Comparisons of estimators are closely related to the analysis of the problem of whether having more data

improves performance of an estimator of a population parameter. Indeed, obviously, an increase in the sample

size always improves performance of the estimator θ̂n of a population parameter θ if θ̂n+1 is P-more efficient

than θ̂n for all n ≥ 1. In contrast, having larger samples is disadvantageous for performance of the estimator if

P-efficiency of θ̂n decreases with n. Increasing P-efficiency is the basis for the following definition of monotone

consistency, the concept studied by, e.g., Proschan (1965), Tong (1994) and Jensen (1997).

Definition 1.3 A weakly consistent estimator θ̂n of a population parameter θ is said to exhibit monotone con-

sistency for θ if θ̂n+1 is P-more efficient than θ̂n for all n ≥ 1 and, thus, P (|θ̂n − θ| > ε) converges to zero

monotonically in n for all ε > 0.

1.2 Objectives and key results

The present paper focuses on the analysis of efficiency and peakedness properties of linear estimators under

heavy-tailedness assumptions and on the study of efficiency and monotone consistency properties of the sample

mean for heavy-tailed data. The main results show that peakedness and majorization properties of log-concavely

distributed random variables established by Proschan (1965) continue to hold for convolutions of α−symmetric

distributions with α > 1 (Theorem 3.1 and 3.3). However, these properties are reversed in the case of convolutions

of α−symmetric distributions with α < 1 (Theorem 3.2 and 3.4).

Consider the model

Xi = µ + εi, i = 1, 2, ..., (1.2)

where µ is the location parameter, and εi, i = 1, 2, ..., are possibly heavy-tailed and not necessarily independent

r.v.’s (specifically, (1.2) is assumed to satisfy one of conditions (A1)-(A4), (A2’) or (B1)-(B4) introduced in Section

2 below; µ is the mode of
∑n

i=1 Xi,
∑n

i=1 ai, for linearly unimodal distributions satisfying (A1)-(A3), (A2’) or
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(B1)-(B3) and is the population mean in the case of finite first moments: EXi = µ, i = 1, 2, ...).

Among other results, we show that the sample mean Xn = (1/n)
∑n

i=1 Xi is the best linear unbiased estimator

of the population mean µ in the sense of P-efficiency for not extremely heavy-tailed populations (see Theorem

3.1). However, according to our results, P-efficiency of the sample mean is smallest among all linear estimators

θ̂(a) =
∑n

i=1 aiXi with weights ai ≥ 0, i = 1, ..., n,
∑n

i=1 ai = 1, of the location parameter µ in the case of

extremely heavy-tailed data (Theorem 3.2). The above results imply that P-efficiency of Xn is increasing in n for

not extremely heavy-tailed populations and, thus, an increase in the sample size always improves performance of

the sample mean in such a case. In the case of data from extremely heavy-tailed populations, P-efficiency of the

sample mean is, however, decreasing in the sample size n.

Convolutions of α−symmetric distributions considered in the paper exhibit both heavy-tailedness and depen-

dence (see Section 2). In particular, they contain, as subclasses, convolutions of certain models with common

shocks affecting all heavy-tailed risks as well as spherical distributions which are α−symmetric with α = 2. Spher-

ical distributions, in turn, include such examples as Kotz type, multinormal, logistic and multivariate α−stable

distributions. In addition, they include a subclass of mixtures of normal distributions as well as multivariate

t−distributions that were used in the literature to model heavy-tailedness phenomena with dependence and finite

moments up to a certain order. The results in the paper are also obtained for skewed stable distributions (such

as, for instance, extremely heavy-tailed Lévy distributions with α = 1/2 concentrated on the positive semi-axis)

as well as for r.v.’s with non-identical one-dimensional distributions.

The law of large numbers (LLN) provides conditions (such as existence of first moments) under which the

sample mean Xn converges in probability to the population mean µ: P (|Xn−µ| > ε) → 0 for all ε > 0. However,

as discussed in, e.g., Proschan (1965), the LLN does not imply that P (|Xn − µ| > ε) decreases monotonically as

the sample size n increases. From the results in Proschan (1965) (see Remark 3.1) it follows that P (|Xn−µ| > ε)

converges to zero monotonically in the case of i.i.d. symmetric r.v.’s Xi with log-concave distributions which are,

as discussed in the next section, extremely light-tailed. The results in the present paper imply that monotone

decrease of P (|Xn − µ| > ε), where µ is the location parameter, continues to hold in the case of convolutions

of α−symmetric distributions with α > 1. On the other hand, according to the results in this paper, the tail

probabilities P (|Xn − µ| > ε), where µ is the location parameter, monotonically diverge from zero in the case of

convolutions of α−symmetric distributions with α < 1 that have infinite first moments. According to these results

and their more general analogues established in the paper, the sample mean and other linear estimators of the

location parameter perform poorly under extreme heavy-tailedness. Therefore, more robust statistical procedures,

such as those based on sample medians, must be employed in such a setting.

The results obtained in the paper have applications in the study of robustness of model of firm growth theory
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for firms that can invest into information about their markets, value at risk analysis, optimal strategies for a

multiproduct monopolist as well that of inheritance models in mathematical evolutionary theory (see Ibragimov,

2004a, b, c, d, 2005).

1.3 Organization of the paper

The paper is organized as follows. Section 2 introduces the classes of distributions considered throughout the

paper and discusses their structure and the main properties. Section 3 presents the main results of the paper on

efficiency properties of linear estimators for convolutions of α−symmetric distributions. Section 4 contains the

proofs of the results obtained.

2 Notations and distributional assumptions

A r.v. X with density f : R → R and the convex distribution support Ω = {x ∈ R : f(x) > 0} is said to

be log-concavely distributed if log f(x) is concave in x ∈ Ω, that is, if for all x1, x2 ∈ Ω, and any λ ∈ [0, 1],

f(λx1 + (1 − λ)x2) ≥ (f(x1))λ(f(x2))1−λ (see An, 1998). A distribution is called log-concave if its density

f satisfies the above inequalities. Examples of log-concave distributions include the normal distribution, the

uniform density, the exponential density, the Gamma distribution Γ(α, β) with the shape parameter α ≥ 1, the

Beta distribution B(a, b) with a ≥ 1 and b ≥ 1; the Weibull distribution W(γ, α) with the shape parameter α ≥ 1.

If a r.v. X is log-concavely distributed, then its density has at most an exponential tail, that is, f(x) =

O(exp(−λx)) for some λ > 0, as x →∞ and all the power moments E|X|γ , γ > 0, of the r.v. exist (see Corollary

1 in An, 1998). The reader is referred to Karlin (1968), Marshall and Olkin (1979) and An (1998) for a survey of

many other properties of log-concave distributions.

For 0 < α ≤ 2, σ > 0, β ∈ [−1, 1] and µ ∈ R, we denote by Sα(σ, β, µ) the stable distribution with the

characteristic exponent (index of stability) α, the scale parameter σ, the symmetry index (skewness parameter) β

and the location parameter µ. That is, Sα(σ, β, µ) is the distribution of a r.v. X with the characteristic function

E(eixX) =





exp {iµx− σα|x|α(1− iβsign(x)tan(πα/2))} , α 6= 1,

exp {iµx− σ|x|(1 + (2/π)iβsign(x)ln|x|} , α = 1,

x ∈ R, where i2 = −1 and sign(x) is the sign of x defined by sign(x) = 1 if x > 0, sign(0) = 0 and sign(x) = −1

otherwise. In what follows, we write X ∼ Sα(σ, β, µ), if the r.v. X has the stable distribution Sα(σ, β, µ) and

write X ∼ LC if the distribution of X is symmetric and log-concave (LC stands for “log-concave”).
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A closed form expression for the density f(x) of the distribution Sα(σ, β, µ) is available in the following

cases (and only in those cases): α = 2 (Gaussian distributions); α = 1 and β = 0 (Cauchy distributions with

densities f(x) = σ/(π(σ2 + (x − µ)2))); α = 1/2 and β ± 1 (Lévy distributions that have densities f(x) =

(σ/(2π))1/2exp(−σ/(2x))x−3/2, x ≥ 0; f(x) = 0, x < 0, where σ > 0, and their shifted versions). Degenerate

distributions correspond to the limiting case α = 0.

The index of stability α characterizes the heaviness (the rate of decay) of the tails of stable distributions

Sα(σ, β, µ). The distribution of a stable r.v. X ∼ Sα(σ, β, µ) with α ∈ (0, 2) obeys power law P (|X| > x) ∼ x−α

and thus the p−th absolute moments E|X|p of X are finite if p < α and are infinite otherwise. The symmetry

index β characterizes the skewness of the distribution. The stable distributions with β = 0 are symmetric about

the location parameter µ. The stable distributions with β = ±1 and α ∈ (0, 1) (and only they) are one-sided, the

support of these distributions is the semi-axis [µ,∞) for β = 1 and is (−∞, µ] (in particular, the Lévy distribution

with µ = 0 is concentrated on the positive semi-axis for β = 1 and on the negative semi-axis for β = −1). In

the case α > 1 the location parameter µ is the mean of the distribution Sα(σ, β, µ). The scale parameter σ is a

generalization of the concept of standard deviation; it coincides with the latter in the special case of Gaussian

distributions (α = 2).

Distributions Sα(σ, β, µ) with µ = 0 for α 6= 1 and β 6= 0 for α = 1 are called strictly stable. If Xi ∼ Sα(σ, β, µ),

α ∈ (0, 2], are i.i.d. strictly stable r.v.’s, then, for all ai ≥ 0, i = 1, ..., n, such that
∑n

i=1 ai 6= 0, one has

n∑

i=1

aiXi/
( n∑

i=1

aα
i

)1/α

∼ X1. (2.1)

For a detailed review of properties of stable distributions the reader is referred to, e.g., the monographs by

Zolotarev (1986) and Uchaikin and Zolotarev (1999).

According to the definition introduced by Cambanis, Keener and Simons (1983), an n−dimensional distribution

is called α−symmetric if its characteristic function (c.f.) can be written as φ((
∑n

i=1 |ti|α)1/α), where φ : R+ → R

is a continuous function (with φ(0) = 1) and α > 0. An important property of α−symmetric distributions is that,

similar to strictly stable laws, they satisfy property (2.1). The number α is called the index and the function φ is

called the c.f. generator of the α−symmetric distribution. The class of α−symmetric distributions contains, as a

subclass, spherical distributions corresponding to the case α = 2 (see Fang, Kotz and Ng, 1990, p. 184). Spherical

distributions, in turn, include such examples as Kotz type, multinormal, multivariate t and multivariate spherically

symmetric α−stable distributions (Fang et. al., 1990, Ch. 3). Spherically symmetric stable distributions have

characteristic functions exp
[−λ

(∑n
i=1 t2i

)γ/2]
, 0 < γ ≤ 2, and are, thus, examples of α−symmetric distributions

with α = 2 and the c.f. generator φ(x) = exp(−xγ).

5



For any 0 < α ≤ 2, the class of α−symmetric distributions includes distributions of risks X1, ..., Xn that have

the common factor representation

(X1, ..., Xn) = (ZY1, ..., ZYn), (2.2)

where Yi ∼ Sα(σ, 0, 0) are i.i.d. symmetric stable r.v.’s with σ > 0 and the index of stability α and Z ≥ 0

is a nonnegative r.v. independent of Y ′
i s (see Bretagnolle, Dacuhna-Castelle and Krivine, 1966, and Fang et.

al., 1990, p. 197). Although the dependence structure in model (2.2) alone is restrictive, convolutions of such

vectors provide a natural framework for modeling of random environments with different common shocks Z, such

as macroeconomic or political ones, that affect all risks Xi (see Andrews, 2003). In the case Z = 1 (a.s.), model

(2.2) represents vectors with i.i.d. symmetric stable components that have c.f.’s exp
[ − λ

∑n
i=1 |ti|α

]
which are

particular cases of c.f.’s of α−symmetric distributions with the generator φ(x) = exp(−λxα).

According to the results in Bretagnolle et. al. (1966) and Kuritsyn and Shestakov (1984), the function

exp
( − (|t1|α + |t2|α

)1/α)
is a c.f. of two α−symmetric r.v.’s for all α ≥ 1 (the generator of the function is

φ(u) = exp(−u)). Zastavnyi (1993) demonstrates that the class of more than two α−symmetric r.v.’s with α > 2

consists of degenerate variables (so that their c.f. generator φ(u) = 1). For further review of properties and

examples of α−symmetric distributions the reader is referred to Fang et. al. (1990, Ch. 7) and Gneiting (1998).

Convolutions of α−symmetric distributions exhibit both heavy-tailedness in marginals and dependence among

them. Both the classes of convolutions of α−symmetric distributions with α < 1 and those with α > 1 can be

used to model heavy-tailedness of an arbitrary order in marginals. For instance, the class of convolutions of

models (2.2) with α < 1 has extremely heavy-tailed marginal distributions with infinite means. On the other

hand, convolutions of such models with 1 < α ≤ 2 can have marginals with power moments finite up to a certain

positive order (or finite exponential moments) depending on the choice of the r.v.’s Z. For instance, convolutions

of models (2.2) with 1 < α < 2 and E|Z| < ∞ have finite means but infinite variances, however, marginals of

such convolutions have infinite means if the r.v.’s Z satisfy E|Z| = ∞. Moments E|ZYi|p, p > 0, of marginals in

models (2.2) with α = 2 (that correspond to Gaussian r.v.’s Yi) are finite if and only if E|Z|p < ∞. In particular,

all marginal power moments in models (2.2) with α = 2 are finite if E|Z|p < ∞ for all p > 0. Similarly, marginals

of spherically symmetric (that is, 2-symmetric) distributions range from extremely heavy-tailed to extremely

light-tailed ones. For example, marginal moments of spherically symmetric α−stable distributions with c.f.’s

exp
[ − λ

(∑n
i=1 t2i

)γ/2]
, 0 < γ < 2, are finite if and only if their order is less than γ. Marginal moments of a

multivariate t−distribution with k degrees of freedom which is a an example of a spherical distribution are finite

if and only if the order of the moments is less than k.
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Let Φ stand for the class of c.f. generators φ such that φ(0) = 1, limt→∞ φ(t) = 0, and the function φ′(t) is

concave. In what follows, we consider the following distributional assumptions (A1)-(A4) and (B1)-(B4).

Let r ∈ (0, 2).

(A1) The random vector (X1−µ, ..., Xn−µ) is a sum of i.i.d. random vectors (Y1j , ..., Ynj), j = 1, ..., k, where

(Y1j , ..., Ynj) has an absolutely continuous α−symmetric distribution with the c.f. generator φj ∈ Φ and the index

αj ∈ (r, 2];

(A2) The random vector (X1−µ, ..., Xn−µ) is a sum of i.i.d. random vectors (Y1j , ..., Ynj) = (ZjV1j , ..., ZjVnj),

j = 1, ..., k, where Vij ∼ Sαj (σj , 0, 0), i = 1, ..., n, j = 1, ..., k, with σj > 0 and αj ∈ (r, 2] and Zj are positive

absolutely continuous r.v.’s independent of Vij .

(A3) The random vector (X1−µ, ..., Xn−µ) has an α−symmetric distribution with a continuous c.f. generator

φ : R+ → R and the index α ∈ (r, 2].

(A4) (X1, ..., Xn) = (ZV1, ..., ZVn), where Vi, i = 1, ..., n, are i.i.d. r.v.’s such that V1 ∼ Sα(σ, β, µ) for some

σ > 0, β ∈ [−1, 1], and α ∈ (r, 2], with β = 0 for α = 1, and Z is a positive r.v. independent of Vi’s.

We will also need the following assumption (A2’) which is more general than assumption (A2) with r = 1.

(A2’) The random vector (X1−µ, ..., Xn−µ) is a sum of i.i.d. random vectors (Y1j , ..., Ynj) = (ZjV1j , ..., ZjVnj),

j = 1, ..., k, where Vij ∼ LC or Vij ∼ Sαj (σj , 0, 0), i = 1, ..., n, j = 1, ..., k, with σj > 0 and αj ∈ (1, 2] and Zj are

positive absolutely continuous r.v.’s independent of Vij .

The following distributional assumptions (B1)-(B4) involve conditions which are the opposite of those in

(A1)-(A4). Let r ∈ (0, 2].

(B1) The random vector (X1−µ, ..., Xn−µ) is a sum of i.i.d. random vectors (Y1j , ..., Ynj), j = 1, ..., k, where

(Y1j , ..., Ynj) has an absolutely continuous α−symmetric distribution with the c.f. generator φj ∈ Φ and the index

αj ∈ (0, r);

(B2) The random vector (X1−µ, ...,Xn−µ) is a sum of i.i.d. random vectors (Y1j , ..., Ynj) = (ZjV1j , ..., ZjVnj),

j = 1, ..., k, where Vij ∼ Sαj (σj , 0, 0), i = 1, ..., n, j = 1, ..., k, with σj > 0 and αj ∈ (0, r) and Zj are positive

absolutely continuous r.v.’s independent of Vij .

(B3) The random vector (X1−µ, ..., Xn−µ) has an α−symmetric distribution with a continuous c.f. generator

φ : R+ → R and the index α ∈ (0, r).

(B4) (X1, ..., Xn) = (ZV1, ..., ZVn), where Vi, i = 1, ..., n, are i.i.d. r.v.’s such that V1 ∼ Sα(σ, β, µ) for some

σ > 0, β ∈ [−1, 1] and α ∈ (0, r), with β = 0 for α = 1, and Z is a positive r.v. independent of Vi’s.

If a random vector (X1, ..., Xn) satisfies one of assumptions (A1), (A2), (A2’), (A3) or (B1)-(B3), then (X1 −
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µ, ...,Xn − µ) is linearly unimodal about 0 = (0, ..., 0), that is, the linear combinations
∑n

i=1 ai(Xi − µ) are

symmetric and unimodal about zero for all (a1, ..., an) ∈ Rn and, thus, µ is the mode of
∑n

i=1 aiXi in the case
∑n

i=1 ai = 1 (see Definition 2.3 in Dharmadhikari and Joag-Dev, 1988, and the proof of the results in the next

section). Similarly, linear unimodality (not necessarily about 0) also holds for random vectors (X1, ..., Xn) that

satisfy assumptions (A4) or (B4).1

It is easy to see that if X1, ..., Xn satisfy (2.1) with α < 1, then E|Xn| > E|X1| that, evidently, cannot hold

in the case E|X1| < ∞. Consequently, first moments of such r.v.’s are infinite. It is not difficult to see that this

implies that marginal first moments of r.v.’s X1, ..., Xn satisfying one of assumptions (B1)-(B4) with r ≤ 1 are

infinite.

The indices of stability αj and the scale parameters σj in assumptions (A2) and (B2) are different among

the vectors (Y1j , ..., Ynj). A linear combination of independent stable r.v.’s with the same characteristic exponent

α also has a stable distribution with the same α. However, in general, this does not hold true in the case of

convolutions of stable distributions with different indices of stability. Therefore, the class of random vectors

(X1, ..., Xn) satisfying assumption (A2) (resp., assumption (B2)) with Zj = Z, where Z is a positive absolutely

continuous r.v. independent of symmetric stable r.v.’s Vij , is wider than the class of random vectors (X1, ..., Xn)

satisfying assumption (A4) (resp., assumption (B4)) with β = 0.

3 Main results: efficiency properties of linear estimators under

heavy-tailedness and dependence

In what follows, for a vector c ∈ Rn, we denote by c[1] ≥ . . . ≥ c[n] its components in decreasing order. A vector

a ∈ Rn is said to be majorized by a vector b ∈ Rn, written a ≺ b, if
∑k

i=1 a[i] ≤
∑k

i=1 b[i], k = 1, ..., n − 1, and
∑n

i=1 a[i] =
∑n

i=1 b[i]. The relation a ≺ b implies that the components of the vector a are more diverse than those

of b (see Marshall and Olkin, 1979). In this context, it is easy to see that the following relations hold:

( n∑

i=1

ai/n, ...,

n∑

i=1

ai/n
)
≺ (a1, ..., an) ≺

( n∑

i=1

ai, 0, ..., 0
)
, a ∈ Rn

+, (3.1)

for all a ∈ Rn
+. In particular,

(1/(n + 1), ..., 1/(n + 1), 1/(n + 1)) ≺ (1/n, ..., 1/n, 0), n ≥ 1. (3.2)

1As follows from the proof of the results in the paper, the assumption φj ∈ Φ in conditions (A1) and (B1) can be replaced by
the assumption that the vectors (Y1j , ..., Ynj), j = 1, ..., k, are linearly unimodal about 0. The latter assumption is equivalent to the

condition that φj

`P3
i=1 x2

i

´1/2
, j = 1, ..., k, are c.f.’s of three-dimensional spherically symmetric distributions, see Theorem 4.3 in

Gneiting, 1998.
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A function φ : A → R defined on A ⊆ Rn is called Schur-convex (resp., Schur-concave) on A if (a ≺ b) =⇒
(φ(a) ≤ φ(b)) (resp. (a ≺ b) =⇒ (φ(a) ≥ φ(b)) for all a, b ∈ A. If, in addition, φ(a) < φ(b) (resp., φ(a) > φ(b))

whenever a ≺ b and a is not a permutation of b, then φ is said to be strictly Schur-convex (resp., strictly

Schur-concave) on A.

In what follows, given r.v.’s X1, ..., Xn satisfying (1.2) with the location parameter µ, and weights a =

(a1, ..., an) ∈ Rn
+, we denote by θ̂n(a) the linear estimator θ̂n(a) =

∑n
i=1 aiXi of µ and by ψ(a, ε), ε > 0, its

tail probability ψ(a, ε) = P (|θ̂n(a) − µ| > ε). We also denote by In the simplex In = {a = (a1, ..., an) ∈ Rn
+ :

∑n
i=1 ai = 1}.

Theorem 3.1 concerns efficiency comparisons for linear estimators in the case of convolutions of α−symmetric

distributions with α > 1. It shows that, for convolutions of α−symmetric distributions with α > 1, the sample

mean is the best linear unbiased estimator of the population mean in the sense of P-efficiency. In addition,

according to the theorem, the sample mean exhibits monotone consistency under such distributional assumptions.

Theorem 3.1 Let µ ∈ R. Suppose that, for n ≥ 1, the r.v.’s X1, ..., Xn satisfy assumption (A2’) or one of

assumptions (A1), (A3) or (A4) with r = 1. Then the following conclusions hold.

(i) Let a, b ∈ In. The linear estimator θ̂n(a) is P-more efficient than θ̂n(b) if a ≺ b and a is not a permutation

of b (equivalently, ψ(a, ε) is strictly Schur-convex in a = (a1, ..., an) ∈ Rn
+ for all ε > 0).

(ii) The sample mean Xn = (1/n)
∑n

i=1 Xi is P-more efficient than any other linear unbiased estimator

θ̂n(a) =
∑n

i=1 aiXi, a ∈ In. In particular, Xn exhibits monotone consistency for µ and P (|Xn−µ| > ε) converges

to zero strictly monotonically in n for all ε > 0.

According to the following theorem, the conclusions of Theorem 3.1 are reversed for convolutions of α−
symmetric distributions with α < 1. In this case, peakedness of the sample mean about the location parameter

decreases with the sample size. In addition, under the above distributional assumptions, P-efficiency of the sample

mean is smallest among all linear estimators θ̂n(a) with a ∈ In.

Theorem 3.2 Let µ ∈ R. Suppose that, for n ≥ 1, the r.v.’s X1, ..., Xn satisfy one of assumptions (B1)-(B4)

with r = 1. Then the following conclusions hold.

(i) Let a, b ∈ In. The linear estimator θ̂n(a) is P-less efficient than θ̂n(b) if a ≺ b and a is not a permutation

of b (equivalently, ψ(a, ε) is strictly Schur-concave in a = (a1, ..., an) ∈ Rn
+ for all ε > 0).

(ii) The sample mean Xn = (1/n)
∑n

i=1 Xi is P-less efficient than any other linear estimator θ̂n(a) =
∑n

i=1 aiXi with a ∈ In. In particular, P-efficiency of Xn decreases with n, that is, P (|Xn+1 − µ| > ε) >

P (|Xn − µ| > ε) > P (|X1 − µ| > ε) for all n ≥ 1 and all ε > 0.
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The following Theorem 3.3 shows that efficiency comparisons for linear estimators for population with dis-

tributions satisfying one of assumptions (A1)-(A4) are of the same type as in Theorem 3.1 with respect to the

comparisons between the powers of the components of the vectors of weights of the combinations. Theorem

3.3 also provides concentration inequalities for linear estimators in the case of such distributions that refine and

complement the efficiency and peakedness comparisons implied by Theorem 3.1.

Theorem 3.3 Suppose that, for n ≥ 1, the r.v.’s X1, ..., Xn satisfy one of assumptions (A1)-(A4) with r ∈ (0, 2).

Then the following conclusions hold.

(i) Let µ = 0 and a, b ∈ Rn
+. Then θ̂n(a) is strictly more peaked than θ̂n(b) if (ar

1, ..., a
r
n) ≺ (br

1, ..., b
r
n) and

(ar
1, ..., a

r
n) is not a permutation of (br

1, ..., b
r
n) (equivalently, ψ(a, ε) is strictly Schur-convex in (ar

1, ..., a
r
n) ∈ Rn

+

for all ε > 0).

(ii) Let µ ∈ R. The linear estimators θ̂n(a) =
∑n

i=1 aiXi, a ∈ In, satisfy the following concentration inequali-

ties for all ε > 0 : P
(
|Xn− µ| > n1/r−1ε/

(∑n
i=1 ar

i

)1/r
)
≤ P (|θ̂n(a)− µ| > ε) ≤ P

(
|X1− µ| > ε/

(∑n
i=1 ar

i

)1/r
)
,

with strict right-hand side inequality if a = (a1, a2, ..., an) is not a permutation of (1, 0, ..., 0) and strict left-hand

side inequality if a 6= (1/n, 1/n, ..., 1/n).

As follows from Theorem 3.4 below, the efficiency properties of linear estimators in Theorem 3.3 are reversed in

the case of populations with distributions satisfying one of assumptions (B1)-(B4), in particular, for convolutions

of α−symmetric distributions with α < r. The concentration inequalities in Theorem 3.4 refine and complement

the efficiency orderings for linear estimators given by Theorem 3.2.

Theorem 3.4 Suppose that, for n ≥ 1, the r.v.’s X1, ..., Xn satisfy one of assumptions (B1)-(B4) with r ∈ (0, 2].

Then the following conclusions hold.

(i) Let µ = 0 and a, b ∈ Rn
+. Then θ̂n(a) is strictly more peaked than θ̂n(b) if (ar

1, ..., a
r
n) ≺ (br

1, ..., b
r
n) and

(ar
1, ..., a

r
n) is not a permutation of (br

1, ..., b
r
n) (equivalently, ψ(a, ε) is strictly Schur-concave in (ar

1, ..., a
r
n) ∈ Rn

+

for all ε > 0).

(ii) Let µ ∈ R. The linear estimators θ̂n(a) =
∑n

i=1 aiXi, a ∈ In, satisfy the following concentration inequali-

ties for all ε > 0 : P
(
|X1− µ| > ε/

(∑n
i=1 ar

i

)1/r
)
≤ P (|θ̂n(a)− µ| > ε) ≤ P

(
|Xn− µ| > n1/r−1ε/

(∑n
i=1 ar

i

)1/r
)
,

with strict left-hand side inequality if a = (a1, ..., an) is not a permutation of (1, 0, ..., 0) and strict right-hand side

inequality if a 6= (1/n, 1/n, ..., 1/n).

The following Proposition 3.1 provides analogues of the results in this section for linear estimators τ̂n(a) =
∑n

i=1 a[i]Wi for not necessarily identically distributed r.v.’s Wi (a certain ordering in the components of the vector

10



a is necessary for the extensions of the majorization results in this section to the case of non-identically distributed

r.v.’s Wi since Schur-convexity and Schur-concavity of a function f(a) in a imply its symmetry in the components

of a). Let σ1, ..., σn > 0 and µ1, ..., µn < 0.

Proposition 3.1 Let Wi ∼ Sα(σi, β, µi), α ∈ (0, 2], β ∈ [−1, 1], β = 0 for α = 1, be independent non-identically

distributed stable r.v.’s. Then the following conclusions hold.

(i) The function ϑ(a, ε) = P (τ̂n(a) > ε) is strictly Schur-concave in a = (a1, ..., an) ∈ Rn if α > 1, σ1 ≥ ... ≥
σn > 0 and µ1 ≤ ... ≤ µn ≤ 0 and is strictly Schur-convex in a = (a1, ..., an) ∈ Rn if α < 1, σn ≥ ... ≥ σ1 > 0

and 0 ≥ µ1 ≥ ... ≥ µn.

(ii) Let µi = µ, i = 1, ..., n. Theorems 3.1 and 3.3 hold (in the same range of parameters r and α) for τ̂n(a)

if σ1 ≥ ... ≥ σn > 0. Theorems 3.2 and 3.4 hold for τ̂n(a) if σn ≥ ... ≥ σ1 > 0.

The following corollary provides analogues of the results in the paper for convolutions of stable distributions

with different location (and scale) parameters.

Corollary 3.1 Let X1, ..., Xn be i.i.d. r.v.’s with a common distribution which is a convolution of stable dis-

tributions Sαj (σj , 0, µj), j = 1, ..., k, with different scale parameters σj > 0 and different location parameters

µj ∈ R such that
∑k

j=1 µj < 0: Xi =
∑k

j=1 Yij, where Yij ∼ Sαj (σj , 0, µj), are independent stable r.v.’s. Then

the function ψ̃(a, ε) = P
( ∑n

i=1 aiXi > ε
)

is strictly Schur-convex in a = (a1, ..., an) ∈ Rn
+ for all ε > 0.

Remark 3.1 Theorem 3.1 provides generalizations of the results in Proschan (1965) who showed that the tail

probabilities ψ(a, ε) = P (|∑n
i=1 aiXi − µ| > ε) are Schur-convex in a = (a1, ..., an) ∈ Rn

+ for all ε > 0 for

random samples X1, ..., Xn from symmetric log-concavely distributed populations (X1 − µ ∼ LC).2 Proschan’s

(1965) results and their extensions have been applied to the analysis of many problems in statistics, econometrics,

economic theory, mathematical evolutionary theory and other fields (see the review in Ibragimov, 2004a, b, c,

d, 2005, and references therein). A number of papers in probability and statistics have focused on extension of

Proschan’s results (see, among others, the review in Tong, 1994, Jensen, 1997, and Ma, 1998). However, in all

the studies that dealt with generalizations of the results, the majorization properties of the tail probabilities were

of the same type as in Proschan (1965). Namely, the results gave extensions of Proschan’s results concerning

Schur−convexity of the tail probabilities ψ(a, ε), ε > 0, to classes of r.v.’s more general than those considered in

Proschan (1965). We are not aware of any general results concerning Schur−concavity of the tail probabilities

ψ(a, ε), ε > 0. Such general results are provided by Theorems 3.2 and 3.4. We also note that Theorem 3.1

2Proschan (1965) notes that similar majorization orderings also hold for (two-fold) convolutions of log-concave distributions
with symmetric Cauchy distributions and shows that peakedness comparisons implied by them are reversed for n = 2k, vectors
a = (1/n, 1/n, ..., 1/n) ∈ Rn with identical components and certain transforms of symmetric Cauchy r.v.’s.
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complements and extends, for location models (1.2), the results on the Gauss-Markov theorem under spherically

symmetric errors available in the literature (see, among others, Hwang, 1985) to wider classes of distributions,

including arbitrary α−symmetric ones with α > 1.

Remark 3.2 It is well-known that if r.v.’s X and Y are such that P (X > x) ≤ P (Y > x) for all x ∈ R, then

EU(X) ≤ EU(Y ) for all increasing functions U : R → R for which the expectations exist (see, e.g., Shaked

and Shanthikumar, 1994, pp. 3-4). This fact and Theorems 3.1-3.4 imply corresponding results concerning

majorization properties of expectations of loss functions of linear estimators under heavy-tailedness. For instance,

we get that if U : R+ → R is an increasing function, then, assuming existence of the expectations, the function

ϕ(a) = EU(|θ̂n(a) − µ|), a ∈ Rn
+ is Schur-convex in (ar

1, ..., a
r
n) under the assumptions of Theorem 3.3 and is

Schur-concave in (ar
1, ..., a

r
n) under the assumptions of Theorem 3.4. We also get that the function ϕ(a), a ∈ Rn

+

is Schur-concave in (a2
1, ..., a

2
n) under assumptions (B1)-(B4) with r = 2. These results complement those in

Efron (1969) and Eaton (1970) (see also Marshall and Olkin, 1979, pp. 361-365) who studied classes of functions

U : R → R and r.v.’s X1, ..., Xn for which Schur-concavity of ϕ(a), a ∈ Rn
+ in (a2

1, ..., a
2
n) holds. Further, we

obtain that ϕ(a) is Schur-convex in a ∈ Rn
+ under the assumptions of Theorem 3.1 and is Schur-concave in

a ∈ Rn
+ under the assumptions of Theorem 3.2. Since E|Xi| = ∞ for r.v.’s X1, ..., Xn satisfying the assumptions

of Theorem 3.2 (see Section 2), we get that, in the case of such r.v.’s and increasing convex loss functions

U : R+ → R, the expectations EU(|θ̂n(a)−µ|) are infinite for all a ∈ Rn
+,

∑n
i=1 ai 6= 0. Therefore, the last result

does not contradict the well-known fact that (see Marshall and Olkin, 1979, p. 361) the function Ef(
∑n

i=1 aiYi)

is Schur-convex in (a1, ..., an) ∈ R for all i.i.d. r.v.’s Y1, ..., Yn and convex functions f : R → R as it might seem

on the first sight.

Remark 3.3 Similar to the proof of Proposition 3.1, one can also obtain analogues of the results in the present

section in the case of distributions with dependent and not necessarily identically distributed marginals, including

convolutions of shifted and scaled α−symmetric distributions.

4 Proofs

In the proofs below, we provide the complete argument for the main majorizations results that provide a reversal

of those available in the literature, namely for Theorems 3.2 and 3.4. The proof of Theorem 3.3 that gives the

results on Schur-convexity of the tail probabilities of linear combinations of r.v.’s follows the same lines as that of

Theorem 3.4, with respective changes in the signs of inequalities. We also provide the complete proof of Theorem

3.2 in the case of assumption (A2’) since, in this case, it is not implied by Theorem 3.3 alone, but needs to combine

the results in that theorem with those for log-concave distributions in Proschan (1965).
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Proof of Theorems 3.3 and 3.4. Let r, α ∈ (0, 2], σ > 0, β ∈ [−1, 1], β = 0 for α = 1, and let a =

(a1, ..., an) ∈ Rn
+ and b = (b1, ..., bn) ∈ Rn

+ be such that (ar
1, ..., a

r
n) ≺ (br

1, ..., b
r
n) and (ar

1, ..., a
r
n) is not a

permutation of (br
1, ..., b

r
n) (clearly,

∑n
i=1 ai 6= 0 and

∑n
i=1 bi 6= 0). Let (X1, ..., Xn) be a random vector satisfying

one of the assumptions (A3), (A4), (B3) or (B4) with µ = 0. As follows from the discussion in Section 2, property

(2.1) holds for Xi, i = 1, ..., n. Consequently, if c = (c1, ..., cn) ∈ Rn
+,

∑n
i=1 ci 6= 0, and ε > 0, then

ψ(c, ε) = P
(
|X1| > ε/

( n∑

i=1

cα
i

)1/α)
. (4.3)

According to Proposition 3.C.1.a in Marshall and Olkin (1979), the function φ(c1, ..., cn) =
∑n

i=1 cα
i is strictly

Schur-convex in (c1, ..., cn) ∈ Rn
+ if α > 1 and is strictly Schur-concave in (c1, ..., cn) ∈ Rn

+ if α < 1. There-

fore, we have
∑n

i=1 aα
i =

∑n
i=1(a

r
i )

α/r <
∑n

i=1(b
r
i )

α/r =
∑n

i=1 bα
i , if α/r > 1 and

∑n
i=1 bα

i =
∑n

i=1(b
r
i )

α/r <

∑n
i=1(a

r
i )

α/r =
∑n

i=1 aα
i , if α/r < 1. This, together with (4.3), implies that ψ(a, ε) < ψ(b, ε) if either (A3) or (A4)

is satisfied, and ψ(a, ε) > ψ(b, ε) if either (B3) or (B4) is satisfied. Consequently, part (i) of Theorem 3.3 holds if

(X1, ..., Xn) satisfies (A3) or (A4) and part (i) of Theorem 3.4 holds for (X1, ..., Xn) satisfying (B3) or (B4).

Let now µ ∈ R and suppose that the random vector (X1 − µ, ..., Xn − µ) is a sum of i.i.d. random vectors

(Y1j , ..., Ynj), j = 1, ..., k, satisfying the assumptions in (B1) or (B2). By Theorem 3.4 for distributions satisfying

(B3) or (B4), for j = 1, ..., k, the r.v.
∑n

i=1 biYij is strictly more peaked than
∑n

i=1 aiYij , that is, for all ε > 0

and all j = 1, ..., k,

P
(∣∣∣

n∑

i=1

aiYij

∣∣∣ > ε
)

> P
(∣∣∣

n∑

i=1

biYij

∣∣∣ > ε
)
. (4.4)

As indicated at the end of Section 2, the r.v.’s
∑n

i=1 aiYij , j = 1, ..., k, and
∑n

i=1 biYij , j = 1, ..., k, are

symmetric and unimodal if one of the conditions (A1), (A2), (B1) or (B2) is satisfied. In the case of (A1)

and (B1) this easily follows from a result due to R. Askey, see Theorem 4.1 in Gneiting, 1998. In the case of

assumptions (A2) and (B2), symmetry and unimodality of
∑n

i=1 aiYij , j = 1, ..., k, and
∑n

i=1 biYij follows from

symmetry and unimodality of
∑n

i=1 aiVij and
∑n

i=1 biVij implied by Theorem 2.7.6 in Zolotarev, 1986, p. 134,

and Theorem 1.6 in Dharmadhikari and Joag-Dev, 1988, p. 13, the definition of unimodality and conditioning

arguments.

From Lemma in Birnbaum (1948) and its proof it follows that if X1, X2 and Y1, Y2 are independent ab-

solutely continuous symmetric unimodal r.v.’s such that, for i = 1, 2, Xi is more peaked than Yi, and one

of the two peakedness comparisons is strict, then X1 + X2 is strictly more peaked than Y1 + Y2. This, to-

gether with (4.4) and symmetry and unimodality of
∑n

i=1 aiYij and
∑n

i=1 biYij , j = 1, ..., k, imply, by induction

on k (see also Theorem 1 in Birnbaum, 1948, and Theorem 2.C.3 in Shaked and Shanthikumar, 1994), that
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ψ(a, ε) = P
(∣∣ ∑k

j=1

∑n
i=1 aiYij

∣∣ > ε
)

> P
(∣∣ ∑k

j=1

∑n
i=1 biYij

∣∣ > ε
)

= ψ(b, ε) for ε > 0. Therefore, part (i) of

Theorem 3.4 holds if either (B1) or (B2) is satisfied. Part (i) of Theorem 3.3 for random vectors (X1, ..., Xn)

satisfying one of conditions (A1) or (A2) with µ ∈ R might be proven in a completely similar way, with the

reversal of inequality signs in (4.4). Parts (ii) of Theorems 3.3 and 3.4 follow from their parts (i) and majorization

comparisons (3.1). ¥

Proof of Theorems 3.1 and 3.2. Theorems 3.3 and 3.4 imply that part (i) of Theorem 3.2 holds if one of

assumptions (B1)-(B4) with r = 1 is satisfied and part (i) of Theorem 3.1 holds if one of assumptions (A1)-(A4)

with r = 1 is satisfied. Let us prove that part (i) of Theorem 3.1 holds under assumption (A2’). Let vectors

a = (a1, ..., an) ∈ In and b = (b1, ..., bn) ∈ In be such that a ≺ b and a is not a permutation of b. Suppose that the

vector of r.v.’s (X1−µ, ..., Xn−µ) is a sum of i.i.d. random vectors (Y1j , ..., Ynj) = (ZjV1j , ..., ZjVnj), j = 1, ..., k,

such that, for i = 1, ..., n and j = 1, ..., k, Vij ∼ LC or Vij ∼ Sαj
(σj , 0, 0), where σj > 0 and αj ∈ (1, 2], and Zj are

absolutely continuous positive r.v.’s independent of Vij . From part (i) of Theorem 3.3 and the results in Proschan

(1965) it follows that, for j = 1, ..., k, the r.v.
∑n

i=1 aiYij is strictly more peaked than
∑n

i=1 biYij . Furthermore,

similar to the proof of Theorems 3.3 and 3.4, from Theorem 2.7.6 in Zolotarev (1986, p. 134) and Theorems 1.6

and 1.10 in Dharmadhikari and Joag-Dev (1988, pp. 13 and 20), together with the definition of unimodality and

conditioning arguments, it follows that the r.v.’s
∑n

i=1 aiVij and
∑n

i=1 biVij , j = 0, 1, ..., k, are symmetric and

unimodal. As in the proof of Theorems 3.3 and 3.4, by Lemma in Birnbaum (1948) and its proof and induction,

this implies that
∑n

i=1 aiXi =
∑k

j=1

∑n
i=1 aiVij is strictly more peaked than

∑n
i=1 biXi =

∑k
j=1

∑n
i=1 biYij . This

completes the proof of part (i) of Theorem 3.1.

As is easy to see, under assumptions of Theorem 3.1, the characteristic function E exp(itXn) of Xn converges

to E exp(itµ) as n → ∞ for all t ∈ R, that is, Xn is weakly consistent for µ. This, together with parts (i) of

Theorems 3.1 and 3.2 and majorization comparisons (3.1) and (3.2) imply parts (ii) of the theorems. ¥

Proof of Proposition 3.1 and Corollary 3.1. Under the assumptions of the Proposition 3.1, according

to (2.1),
∑n

i=1 a[i]Wi ∼
∑n

i=1 a[i]µi +
(∑n

i=1 σα
i aα

[i]

)1/α
Q1, where Q1 ∼ Sα(1, β, 0). Consequently, the function

ϑ(a, ε) in part (i) of the proposition satisfies ϑ(a, ε) = P
(
Q1 >

(
ε−∑n

i=1 a[i]µi

)
/
( ∑n

i=1 σα
i aα

[i]

)1/α
)

and, if µi = 0,

then P
(|τ̂n(a)| > ε

)
= P

(
|Q1| > ε/

(∑n
i=1 σα

i aα
[i]

)1/α
)
. By Theorem 3.A.4 in Marshall and Olkin (1979), the

function χ1(c1, ..., cn) =
n∑

i=1

σα
i cα

[i] is strictly Schur-convex in (c1, ..., cn) ∈ Rn
+ if α > 1 and σ1 ≥ ... ≥ σn > 0

and is strictly Schur-concave in (c1, ..., cn) ∈ Rn
+ if α < 1 and σn ≥ ... ≥ σ1 ≥ 0. In addition, by the same

theorem, χ2(c1, ..., cn) =
∑n

i=1 µic[i] is Schur-convex in (c1, ..., cn) ∈ Rn
+ if 0 ≥ µ1 ≥ ... ≥ µn and is Schur-concave

in (c1, ..., cn) ∈ Rn
+ if 0 ≥ µn ≥ ... ≥ µ1. Similar to the proof of Theorems 3.1 and 3.2, the above implies that

Proposition 3.1 holds. Since the sum
∑n

i=1 ai is fixed under majorization comparisons, the results in Theorems

3.1 and 3.2 imply that, under the assumptions of Proposition 3.1, the function ψ̃(a, ε) = P
[ ∑n

i=1 ai

( ∑k
j=1(Yij −
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µj)
)

> ε−
( ∑n

i=1 ai

)( ∑k
j=1 µj

)]
is strictly Schur-convex in a = (a1, ..., an) ∈ Rn

+ if αj < 1, j = 1, ..., k, and is

strictly Schur-concave in a = (a1, ..., an) ∈ Rn
+ if αj > 1, j = 1, ..., k. Consequently, Corollary 3.1 holds. ¥
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