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Abstract

Using simple symmetry arguments we classify the ungauged D = 4, N = 2 supergravity theories, cou-
pled to both vector and hyper multiplets through homogeneous scalar manifolds, that can be built as the 
product of N = 2 and N = 0 matter-coupled Yang–Mills gauge theories. This includes all such supergrav-
ities with two isolated exceptions: pure supergravity and the T 3 model.
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1. Introduction

A field theoretic incarnation of “gravity = gauge × gauge” theory was developed in [1–7]. In 
particular, one can form the product of fields belonging to two independent (super) Yang–Mills 
gauge theories, which we will refer to as the Left and Right factors. Importantly, the product 
maps the content, symmetries and field equations of the factors into those of a (super) gravity 
theory. We will refer to this construction here as squaring Yang–Mills. In the present contribution 
we use this framework to classify the ungauged D = 4, N = 2 supergravity theories, coupled to 
both vector and hyper multiplets through homogeneous scalar manifolds, that can be built as the 
square of Yang–Mills.

A prior, related but distinct, realisation of the gravity = gauge × gauge picture is given by 
the Bern–Carrasco–Johansson (BCJ) double-copy construction of scattering amplitudes. It has 
been conjectured [8,9], with substantial evidence [10–16], that the scattering amplitudes of cer-
tain gravity theories are the double-copy, in a precise sense, of amplitudes belonging to two 
independent Yang–Mills theories. The paradigmatic example is given by N = 8 supergravity 
as the product of two N = 4 Yang–Mills theories, which due to the high degree of symmetry 
is also the simplest possible case. These remarkable amplitude relations rely crucially on the 
Bern–Carrasco–Johansson (BCJ) colour-kinematic duality [17], which has been established at 
tree-level but remains conjectural for arbitrary loops, and have been used to demonstrate the ex-
istence of unexpected cancellations throwing open the possibility that N = 8 supergravity may 
be perturbatively finite [11,16]. There is now a growing list of double-copy constructible theories 
in diverse dimensions [18–27], conformal gravity being the latest addition [28,29]. Moreover, the 
BCJ amplitude prescription has recently been generalised to include certain curved background 
spacetimes [30]. At the same time, the paradigm has been extended beyond amplitudes in a va-
riety of directions [1–4,6,7,31–40]. These remarkable and continually developing relations raise 
three natural questions:

i) Why does the correspondence work? Can we prove the BCJ colour-kinematic conjecture and 
pinpoint its origins?

ii) How deep is the correspondence? That is, how far beyond amplitude relations can it be 
taken?

iii) How general is the correspondence? What gravitational theories admit a Yang–Mills squared 
origin; are the factorisable theories special in some regard?

Here we address a corner of (iii), by significantly extending the domain of ungauged D = 4, 
N = 2 supergravity theories that are the square of Yang–Mills and hence may be in principle 
double-copy constructible.

We should be clear about our definition of squaring: the gravitational theory is defined by the 
totality generated by the two gauge factors.1 In terms of the double-copy this implies: (1) all grav-
ity scattering amplitudes can be factorised, in the BCJ sense, into the product of amplitudes of 
the two gauge theories and (2) all double-copies of the gauge theory amplitudes generate an am-

1 Totality here includes everything generated by the product of adjoint multiplets with adjoint multiplets and fundamen-
tal multiplets with fundamental multiplets, but we exclude the product of adjoint multiplets with fundamental multiplets. 
This is reflected by the block diagonal spectator scalar in (43). Although a choice, since we seek generic statements and 
the adjoint-fundamental products are only consistent in very special circumstances (both in terms of our “square” and the 
BCJ double-copy) it is actually imposed on us.
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plitude belonging to the corresponding gravitational theory.2 For example, pure Einstein gravity 
is not double-copy constructible in this sense. Although all its amplitudes may be systematically 
double-copy constructed by consistently cancelling the would-be axion-dilaton sector with the 
product of “ghost” chiral fermion amplitudes [22], thus satisfying (1), the spin-1 states arising in 
the ghost × ghost sector must be explicitly (but consistently) excluded, thus failing (2).

In the attempt to classify all supergravity theories with a Yang–Mills origin, the squaring and 
double-copy approaches are complementary in the following sense: starting with the double-
copy, one finds the most general BCJ-friendly Yang–Mills candidate factors, then double-copies 
the amplitudes and lists the supergravity theories generated. Demanding BCJ duality constrains 
the couplings and symmetries of the gauge factors and one should be able to check that the re-
sulting supergravities have the expected symmetries in the squaring sense. Alternatively, starting 
with squaring, one studies case-by-case whether or not each known supergravity theory admits 
a factorisation using symmetry principles, and only then checks for BCJ compatibility. These 
complementary pictures have led to a good understanding of a large subset of gravity theo-
ries: for pure super Yang–Mills factors we have a complete classification of all supergravity 
theories generated for spacetime dimensions 3 ≤ D ≤ 10 [3,19,41,42]; using a factorisable orb-
ifold construction and an N = 0 Yang–Mills factor, this was generalised to include a number 
of additional N = 4, 2, 1 matter-coupled supergravity theories [18]; in [22] the colour-kinematic 
duality was generalised to include non-adjoint representations of the gauge group, allowing for 
fundamental matter-coupled Yang–Mills factors and a broader class of matter-coupled gravity 
theories; this was subsequently used to double-copy construct all ungauged D = 5, 4, N = 2
supergravity theories coupled to vector multiplets through a homogeneous scalar manifold, us-
ing half-hyper multiplets carrying a pseudo-real gauge group representation [25]. Building on 
such principles, the symmetry arguments used in the present work were developed to construct 
all twin supergravities in [5]. In summary, so far the classification includes all greater than half-
maximal supergravities, all the half-maximal supergravities coupled to vector multiplets, some of 
the quarter maximal supergravities coupled to vector multiplets and a small set of simple theories 
outside these classes. Note, in all cases treated thus far the scalars parametrise a homogeneous 
manifold, however, for N ≤ 2, supergravity theories with non-homogeneous scalar manifolds 
are also possible. The square or double-copy origin of such theories remains a compelling open 
question.

Here, we adopt the squaring methodology to extend the domain of [3,5,18,19,22,25,41,42]
to include N = 2 ungauged supergravity theories coupled to both vector and hyper multiplets 
with homogeneous scalar manifolds using an NL = 2 Yang–Mills theory coupled to a single 
half-hyper multiplet and a unique class of NR = 0 Yang–Mills gauge theories parametrised by six 
integers. It is shown that, with the single exception of the T 3 model and pure N = 2 supergravity, 
the classification includes all such supergravity theories with symmetric scalar cosets. For the 
non-symmetric theories including hyper multiplets, we propose a candidate squaring procedure; 
there is a seemingly unique possibility involving a restriction to a diagonal subgroup of the 
Left and Right global symmetries. Although the origin of such a restriction remains unclear, 
our analysis suggests that any [NL = 2] × [NR = 0] double-copy amplitude construction will 
reflect this requirement. Note, since the hyper multiplets are insensitive to dimensional reduction 

2 As it stands this can of course only be established in general at tree-level, with supporting evidence from case-by-case 
examples of loop-level amplitudes. Our present analysis is explicitly tree-level only.
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Table 1
On-shell helicity states of all D = 4 supermultiplets. Here Q counts the number of supercharges, R denotes the global 
R-symmetry group, TypeN the class of N -extended supermultiplet and f is number of degrees of freedom. The 
N -extended gravity, vector and spinor multiplets are denoted by GN , VN and CN , respectively. Note, C2 and H2
are used to distinguish half-hyper and full-hyper multiplets, respectively. Although V3 and V4 are identical as isolated 
gauge multiplets, when coupled to supergravity they must be distinguished. Similarly, G7 and G8 have identical content 
and as interacting theories are identical despite having a priori distinct symmetries. Finally, we use A, λ and φ to denote 
the smallest N = 0 vector, spinor and scalar multiplets, respectively. Sub/superscripts in the final column refer to the 
U(1) charges carried by the representations. The subscripts refer to the U(1)st helicities, which we uniformly multiply 
by a factor of two for notational clarity. The superscripts refer to the internal U(1) charges. When the symmetry has no 
semi-simple part (i.e. for Q ≤ 4) we use tuplets (a, b, c, . . .) to label the U(1) charges, with the first slot reserved for 
U(1)st .

Q R TypeN f Content under U(1)st × R

32 SU(8) G8 256 1−4 + 8−3 + 28−2 + 56−1 + 700 + 561 + 282 + 83 + 14

28 U(7) G7 256 10−4 + 71−3 + 1−7
−3 + 212−2 + 7−6

−2 + 353−1 + 21−5
−1 + 35

4
0 + c.c.

24 U(6) G6 128 10−4 + 61−3 + 152−2 + 1−6
−2 + 203−1 + 6−5

−1 + 15
4
0 + c.c.

20 U(5) G5 64 10−4 + 51−3 + 102−2 + 10
3
−1 + 1−5

−1 + 54
0 + c.c.

16 U(4) G4 32 10−4 + 41−3 + 62−2 + 4
3
−1 + 14

0 + c.c.
16 SU(4) V4 16 1−2 + 4−1 + 60 + 41 + 12

12 U(3) G3 16 10−4 + 31−3 + 3
2
−2 + 13−1 + c.c.

12 U(3) V3 16 10−2 + 31−1 + 1−3
−1 + 3

2
0 + c.c.

8 U(2) G2 8 10−4 + 21−3 + 12−2 + c.c.
8 U(2) V2 8 10−2 + 21−1 + 12

0 + c.c.

8 U(2) H2 8 1r−1 + 2r+1
0 + 1r+2

1 + c.c.

8 U(2) C2 4 1−1
−1 + 20

0 + 11
1

4 U(1) G1 4 (−4,0) + (−3,1) + c.c.
4 U(1) V1 4 (−2,0) + (−1,1) + c.c.
4 U(1) C1 4 (−1, r) + (0, r + 1) + c.c.
0 -//- A 2 (−2) + c.c.
0 -//- λ 2 (−1) + c.c.
0 -//- φ 2 (0)

and it is only the scalar fields of the Right theory that contribute to this sector, our construction 
generalises trivially in all cases to D = 6, 5, 4, 3.

The remaining sections are organised as follows. In section 2 we summarise the class of su-
pergravity theories considered here. In section 3 we consider the Yang–Mills origin of these 
theories. We first outline the general principles in section 3.1. Then we include only vector mul-
tiplet couplings in section 3.3.1, which builds on the set of supergravities derived in [25] by 
including a detailed analysis of the minimally coupled sequence and the T 3 model. Finally, in 
section 3.3.2 we include the most general hyper multiplet couplings by allowing for two indepen-
dent fundamental scalars in the Right gauge theory factor. Before moving on, to fix our notation 
we summarise in Table 1 the on-shell helicity states of all D = 4 supermultiplets.

2. N = 2 supergravity

In this section we itemise the D = 4, N = 2 supergravity theories under consideration, specif-
ically those with scalar fields parametrising a homogeneous manifold, highlighting their field 
content and symmetries as required for the Yang–Mills squared construction given in section 3. 
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We consider both vector and hyper multiplets; the total homogeneous scalar manifold M factors 
into a special Kähler (SK) manifold G/H , parametrised by the scalars belonging to the vector 
multiplets, and a quaternionic (Q) manifold G/H, parametrised by the scalars belonging to the 
hyper multiplets,

M ∼= G

H
× G

H . (1)

In section 2.1 and section 2.2 we present the possible couplings to vector and hyper multiplets, 
respectively, under the assumption that the scalar manifold is homogeneous.

2.1. Vector multiplets

When coupling N = 2 supergravity to vector multiplets the scalar manifold must be projective 
SK [43–45]. In the non-symmetric case the possible classes of scalar manifolds are indexed by 
three integers (q, P, Ṗ ) as described in section 2.1.1. If the scalar manifold is symmetric there are 
three classes: (i) the generic Jordan sequence indexed by a single integer, (q, P, Ṗ ) = (q, 0, 0), 
(ii) the four magic supergravities [46–48] for which (q, P, Ṗ ) = (n, 1, 0), where n = dimA =
1, 2, 4, 8, and (iii) the minimally coupled sequence indexed by a single integer, (q, P, Ṗ ) =
(−2, P, 0). In addition to these classes, we have the isolated case of the T 3 model [49,50], 
which although underpinned by a Jordan algebra is not a part of the generic Jordan sequence 
[51,52]. In the absence of hyper scalars G/H reduces to a trivial SU(2)/SU(2) factor, where the 
denominator corresponds to the global R-symmetry.

2.1.1. Non-symmetric
In the non-symmetric homogeneous cases the scalar manifold is:

G

H
× SU(2)

SU(2)
= SO(1,1) × SO(q + 2,2)

SO(q + 2) × U(1)
× Sq(P, Ṗ )

Sq(P, Ṗ )
× SU(2)

SU(2)

�

[
(spin,def,1)1

� (1,1,1)2
]
, (2)

where spin indicates the spinor representation of SO(q + 2, 2) and def the defining representa-
tion of Sq(P, Ṗ ). Here, (q, P, Ṗ ) are integers, which fix the number of vector multiplets present, 
the symmetry groups and representations carried by the field content, as described in Table 2.

The content is G2 ⊕ (1 + q + 2 + r)V2, where r is fixed by P, Ṗ as in Table 2. Under the 
maximal reductive global compact symmetry group

U(1)st × H × SU(2) = U(1)st × SO(q + 2) × Sq(P, Ṗ ) × SU(2) × U(1), (3)

where U(1)st is the spacetime little group, the content carries the representations:

(1,1,1)0
−4 + (1,1,1)0

4 (4)

+ (1,1,2)1−3 + (1,1,2)−1
3

+ (1,1,1)2−2 + (1,1,1)−2
2 + (1,1,1)−2

−2 + (1,1,1)2
2

+ (q + 2,1,1)0−2 + (q + 2,1,1)0
2

+ (r,1)−1 + (r,1)1

−2 2
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Table 2
The groups SO(q + 2) × Sq(P, Ṗ ) and their representations r for the various allowed values of (q, P, Ṗ ). The x, y
superscripts refer to the U(1) charges, which we leave unfixed.

q SO(q + 2) Sq (P, Ṗ ) r r r(q,P, Ṗ )

−1 -//- SO(P ) P P P

0 U(1) SO(P ) × SO(Ṗ ) (P,1)−x + (1, Ṗ)−y (P,1)x + (1, Ṗ)y P + Ṗ

1 SU(2) SO(P ) (2,P) (2,P) 2P

2 SU(2)2 U(P ) (2,1,P)−x + (1,2,P)−y (2,1,P)x + (1,2,P)y 4P

3 Sp(2) Sp(P ) (4,2P) (4,2P) 8P

4 SU(4) Sp(P ) × Sp(Ṗ ) (4,2P) + (4,2Ṗ) (4,2P) + (4,2Ṗ) 8P + 8Ṗ

5 SO(7) Sp(P ) (8,2P) (8,2P) 16P

6 SO(8) U(P ) (8s ,P) + (8c,P) (8s ,P) + (8c,P) 16P

7 SO(9) SO(P ) (16,P) (16,P) 16P

8 SO(10) SO(P ) × SO(Ṗ ) (16,P,1) + (16,1, Ṗ) (16,P,1) + (16,1, Ṗ) 16P + 16Ṗ

+ (1,1,2)−1
−1 + (1,1,2)1

1

+ (q + 2,1,2)1−1 + (q + 2,1,2)−1
1

+ (r,2)0−1 + (r,2)0
1

+ (1,1,1)0
0 + (1,1,1)0

0

+ (q + 2,1,1)2
0 + (q + 2,1,1)−2

0

+ (r,1)1
0 + (r,1)−1

0 .

Note that the 1, q + 2 and r vector multiplets fall into three distinct sectors with different rep-
resentation theoretic properties. As we shall see, this observation follows from the squaring 
construction; the three sets come from three different terms appearing in the product of the 
Left and Right theories. Here, r = 2[(q+1)/2] dim def, where the square parentheses denote the 
integer part. The SO(q + 2) × Sq(P, Ṗ ) representations r are summarised in Table 2 for the 
various values of (q, P, Ṗ ). See also Table 3 of [53], where for q = 3 and 5 the group Sq(P, Ṗ )

is also identified with U(P, H). Note, Sq(P, Ṗ ) enjoys mod 8 Bott periodicity in q , follow-
ing the standard R, R ⊕R, R, C, H, H ⊕H, H, C . . . pattern, and is symmetric in P and Ṗ . For 
Sq(P, Ṗ ) ∼= U(P ), the defining representation together with its conjugate representation, P ⊕ P, 
admits both a symplectic and a symmetric real quadratic form that should be used for a pseudo-
real or real gauge group representation respectively, where in the latter case the Sp and SO

groups of Table 2 are interchanged.

2.1.2. Generic Jordan
There are particular choices of (q, P, Ṗ ) for which the non-reductive terms of (2) are ac-

companied by their oppositely charged, under the global SO(1, 1), counterparts. As described in 
section 3.3, see in particular the discussion around (72), this implies the so-called 1st enhance-
ment to SL(2, R). In these cases, the resulting coset spaces are symmetric. The simplest example 
occurs for (q, P, Ṗ ) = (q, 0, 0), implying that r = 0, which yields the generic Jordan series. Al-
ternatively, the generic Jordan series is also given by (q, P, Ṗ ) = (0, P, 0) or (0, 0, Ṗ ) [53]. In 
this case, the scalar coset is:

G

H
× SU(2)

SU(2)
= SU(1,1)

U(1)g
× SO(q + 2,2)

SO(q + 2) × U(1)
× SU(2)

SU(2)
. (5)

The content is G2 ⊕ (1 + q + 2)V2 and under
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U(1)st × H × SU(2) = U(1)st × SO(q + 2) × SU(2) × U(1)g × U(1) (6)

carries the following representations:

(1,1)
(0,0)
−4 + (1,1)

(0,0)
4

+ (1,2)
(1,1)
−3 + (1,2)

(−1,−1)
3

+ (1,1)
(2,2)
−2 + (1,1)

(−2,−2)
2 + (1,1)

(2,−2)
−2 + (1,1)

(−2,2)
2

+ (q + 2,1)
(−2,0)
−2 + (q + 2,1)

(2,0)
2

+ (1,2)
(3,−1)
−1 + (1,2)

(−3,1)
1

+ (q + 2,2)
(−1,1)
−1 + (q + 2,2)

(1,−1)
1

+ (1,1)
(4,0)
0 + (1,1)

(−4,0)
0

+ (q + 2,1)
(0,2)
0 + (q + 2,1)

(0,−2)
0 .

Again, from the content it is obvious that the 1 and q + 2 vector multiplets enjoy a different 
status. As we shall see in section 3 the vector multiplets of this theory follow from two different 
terms appearing in the product of the Left and Right Yang–Mills factors, which implies that this 
1st enhancement will happen before squaring.

2.1.3. Magic
A 1st enhancement analogous to the previous one occurs also for (q, P, Ṗ ) = (n, 1, 0) where 

n = dimA = 1, 2, 4, 8, for A = R, C, H, O respectively, which implies that r = 2n. In these 
cases there is an accidental 2nd enhancement due to the maximal embedding [Str0(J

AC

3 )]c ⊃
SO(n + 2) × Sn(1, 0) × U(1)′′ such that the resulting coset is:

G

H
× SU(2)

SU(2)
= Conf (JA3 )

[Str0(J
AC

3 )]c × U(1)′
× SU(2)

SU(2)
, (7)

where AC
∼= C ⊗ A, JA3 is the cubic Jordan algebra of 3 × 3 Hermitian matrices over A and 

J
AC

3
∼= C ⊗ JA3 its complexification, Conf (J) is the conformal group of the cubic Jordan alge-

bra J, Str0(J) is the reduced structure group and [G]c denotes the compact real form of the 
complexified group G. The content is G2 ⊕ dV2 where d = 1 + n + 2 + 2n = 3(n + 1), which 
under

U(1)st × H × SU(2) = U(1)st × [Str0(J
AC

3 )]c × SU(2) × U(1)′ (8)

transforms as

(1,1)0−4 + (1,1)0
4

+ (1,2)3
−3 + (1,2)−3

3

+ (1,1)6
−2 + (1,1)−6

2 + (d,1)−2
−2 + (d,1)2

2

+ (d,2)1−1 + (d,2)−1
1

+ (d,1)4
0 + (d,1)−4

0 , (9)

where the representations d are given in Table 3.
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Table 3
Groups and representations appearing the in the 2nd enhancement for the magic supergravities.

n Conf (JA3 ) [Str0(J
AC

3 )]c d SO(n + 2) × Sn(1,0) r

1 Sp(6;R) SU(3) 6 SU(2) 2
2 SU(3,3) SU(3)2 (3,3) SU(2)2 × U(1) (2,1)−x + (1,2)−y

4 SO�(12) SU(6) 15 SU(4) × Sp(1) (4,2)

8 E7(−25) E6 27 SO(10) 16

The 2nd enhancement is possible because in all four cases there is a representation d, which 
under [Str0(J

AC

3 )]c ⊃ SO(n + 2) × Sn(1, 0) × U(1)′′ branches to:

d → (1,1)−4 + (q + 2,1)2 + r−1, (10)

where the groups and corresponding representations are given in Table 3.
Note, there is a unified description of the 2nd enhancement for magic theories: they lie in the 

“complexified projective planes” (C ⊗A)P2. Namely, the enhancement terms lie in the compact 
symmetric coset

[Str0(J
AC

3 )]c
[Str0(C⊕ J

AC

2 )]c × Sn(1,0)
, (11)

where [Str0(C ⊕ J
AC

2 )]c × Sn(1, 0) = SO(q + 2) × Sn(1, 0) × U(1)′′ and Sn(1, 0) = Sq(1, 0). 
Note that Sq(1, 0) = Sq(0, 1) = Id, U(1), Sp(1), Id for q = 1, 2, 4, 8 (or, equivalently, Sq(1, 0) =
Sq(0, 1) = tri(A)/so(A), where tri(A) and so(A) respectively denote the triality and orthogo-

nal symmetries of A = R, C, H, O [54]) and the symmetric embedding [Str0(C ⊕ J
AC

2 )]c ×
Sn(1, 0) ⊂ [Str0(J

AC

3 )]c follows from the maximal Jordan algebra embedding, C ⊕ J
AC

2 ⊂ J
AC

3 . 
The tangent space of (11) can be represented as AC ⊕ AC, where the summands carry equal 
and opposite U(1)′′ charges (specifically 3 vs. −3). Namely, they are a pair of chiral spinors in 
D = q + 2 critical dimensions; for q = 1 there is no chiral splitting. Note, these groups are the 
compact analogs of the SO(1, q + 1) × Sn(1, 0) U-duality groups of the corresponding D = 6
magic supergravity theories and the U(1)′′ appearing in the stabiliser of (11) is the compact 
version of the Kaluza–Klein SO(1, 1) of the compactification from D = 6 to D = 5.

The vector multiplets 1, q + 2 and r come from three different terms appearing in the product 
of the Left and Right Yang–Mills factors, which implies that the 2nd enhancement only appears 
after squaring. Hence, for the purpose of matching the content to that obtained from the Left and 
Right Yang–Mills factors, we should first decompose under U(1)st × SO(n + 2) × Sn(1, 0) ×
SU(2) × U(1)′ × U(1)′′:

(1,1,1)
(0,0)
−4 + (1,1,1)

(0,0)
4 (12)

+ (1,1,2)
(3,0)
−3 + (1,1,2)

(−3,0)
3

+ (1,1,1)
(6,0)
−2 + (1,1,1)

(−6,0)
2 + (1,1,1)

(−2,4)
−2 + (1,1,1)

(2,−4)
2

+ (q + 2,1,1)
(−2,−2)
−2 + (q + 2,1,1)

(2,2)
2

+ (r,1)
(−2,1) + (r,1)

(2,−1)

−2 2
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+ (1,1,2)
(1,4)
−1 + (1,1,2)

(−1,−4)
1

+ (q + 2,1,2)
(1,−2)
−1 + (q + 2,1,2)

(−1,2)
1

+ (r,2)
(1,1)
−1 + (r,2)

(−1,−1)
1

+ (1,1,1)
(4,4)
0 + (1,1,1)

(−4,−4)
0

+ (q + 2,1,1)
(4,−2)
0 + (q + 2,1,1)

(−4,2)
0

+ (r,1)
(4,1)
0 + (r,1)

(−4,−1)
0 .

2.1.4. Minimally coupled
The three classes of theories summarised above relied on the method of classifying SK man-

ifolds through their dimensional reduction from D = 5 and are thus unified in their description. 
The minimally coupled supergravities, however, do not in general admit an oxidation to D = 5
and so stand on their own, not fitting the general analysis of the previous three classes. Note, 
however, the Yang–Mills squared description unifies them all, as we shall see. The minimally 
coupled symmetric scalar coset is:

G

H
× SU(2)

SU(2)
= SU(1,P + 1)

U(1)min × SU(P + 1)
× U(1)

U(1)
× SU(2)

SU(2)
, (13)

which is isomorphic to the hyperbolic projective space CP
P+1

. For more details, see Table 9 of 
[49] and the associated comments. Their content is given by G2 ⊕ (P + 1)V2, which under

U(1)st × H × SU(2) = U(1)st × SU(P + 1) × SU(2) × U(1)min × U(1) (14)

transforms as

(1,1)
(0,0)
−4 + (1,1)

(0,0)
4 (15)

+ (1,2)
(P+1,1)
−3 + (1,2)

(−P−1,−1)
3

+ (1,1)
(2P+2,2)
−2 + (1,1)

(−2P−2,−2)
2 + (P + 1,1)

(2,−2)
−2 + (P + 1,1)

(−2,2)
2

+ (P + 1,2)
(P+3,−1)
−1 + (P + 1,2)

(−3−3,1)
1

+ (P + 1,1)
(2P+4,0)
0 + (P + 1,1)

(−2P−4,0)
0 .

Anticipating the Yang–Mills squared construction, the 1 and P vector multiplets will necessarily 
come from two distinct terms in the product. Consequently, in order to match the content with 
that obtained by squaring we need to further decompose SU(P + 1) ⊃ SU(P ) × U(1)P . Under 
the resulting

U(1)st × SU(P ) × SU(2) × U(1)min × U(1) × U(1)P (16)

the content transforms as:

(1,1)
(0,0,0)
−4 + (1,1)

(0,0,0)
4 (17)

+ (1,2)
(P+1,1,0)
−3 + (1,2)

(−P−1,−1,0)
3

+ (1,1)
(2P+2,2,0)
−2 + (1,1)

(−2P−2,−2,0)
2 + (1,1)

(2,−2,−P)
−2 + (1,1)

(−2,2,P )
2

+ (P,1)
(2,−2,1) + (P,1)

(−2,2,−1)

−2 2
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+ (1,2)
(P+3,−1,−P)
−1 + (1,2)

(−P−3,1,P )
1

+ (P,2)
(P+3,−1,1)
−1 + (P,2)

(−P−3,1,−1)
1

+ (1,1)
(2P+4,0,−P)
0 + (1,1)

(−2P−4,0,P )
0

+ (P,1)
(2P+4,0,1)
0 + (P,1)

(−2P−4,0,−1)
0 .

Naively, this can be regarded as the extension of Table 2 to (q, P, Ṗ ) = (−2, P, 0) with r =
P−1 + P

1
of U(P ) [49].

2.1.5. T 3 model
Like the generic Jordan and magic supergravities, the T 3 model can be constructed using 

a cubic Jordan algebra, namely J3 ∼= R. However, it does not strictly sit in the generic Jordan 
sequence, rather it should be considered as the “symmetrization” of the q = 0 generic Jordan 
supergravity (otherwise known as the ST U model [55]). This is reflected by the fact that it 
follows from the dimensional reduction of “pure” N = 2, D = 5 supergravity. The T 3 scalar 
coset is:

G

H
× SU(2)

SU(2)
= SU(1,1)

U(1)T
× SU(2)

SU(2)
. (18)

The content G2 ⊕ V2 transforms under

U(1)st × H × SU(2) = U(1)st × SU(2) × U(1)T (19)

as

10−4 + 10
4 (20)

+ 21−3 + 2−1
3

+ 12−2 + 1−2
2 + 1−6

−2 + 16
2 (21)

+ 2−5
−1 + 25

1

+ 1−4
0 + 14

0.

It is not possible to generate the T 3 model from Yang–Mills squared, at least not straight-
forwardly, although the content and representations presented above can be reproduced by the 
product of NL = 2 and NR = 0 Yang–Mills theories. We will address these two comments prop-
erly in section 3.3.1.

2.2. Hyper multiplets

Here we consider the inclusion of hyper multiplets. The coset manifold parametrised by the 
hyper scalars must be quaternionic [53,56,57]. In the previous subsection the SU(2) R-symmetry 
was included as an additional factor commuting with isometries of the SK scalar manifolds. 
When hyper multiplets are included this SU(2) factor is absorbed by the Q manifold of the hyper 
scalars. Specifically, it becomes part of the Q manifold holonomy group, which for homogeneous 
manifolds is in turn part of the isotropy group.
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Table 4
Groups and representations appearing in (22) and (24). Note, the q = −2 case corresponds to the c-map of the minimally 
coupled vector multiplet series (13), see Table 9 of [49]. Again, Sq(P, Ṗ ) enjoys the standard mod 8 Bott periodic pattern 
in q .

q SO(q + 3) Sq(P, Ṗ ) s s(q,P, Ṗ )

−2 -//- U(P ) P−x + Px
2P

−1 U(1) SO(P ) P−x + Px 2P

0 SU(2) SO(P ) × SO(Ṗ ) (2,P) + (2, Ṗ) 2P + 2Ṗ

1 SU(2)2 SO(P ) (2,1,P) + (1,2,P) 4P

2 Sp(2) U(P ) (4,P)−x + (4,P)x 8P

3 SU(4) Sp(P ) (4,2P) + (4,2P) 16P

4 SO(7) Sp(P ) × Sp(Ṗ ) (8,2P) + (8,2Ṗ) 16P + 16Ṗ

5 SO(8) Sp(P ) (8s ,2P) + (8c,2P) 32P

6 SO(9) U(P ) (16,P)−x + (16,P)x 32P

7 SO(10) SO(P ) (16,P) + (16,P) 32P

8 SO(11) SO(P ) × SO(Ṗ ) (32,P) + (32, Ṗ) 32P + 32Ṗ

2.2.1. Non-symmetric
The non-symmetric hyper scalar Q manifold is the c-map [49] of the non-symmetric SK man-

ifold given in (2),

G
H = SO(1,1) × SO(q + 3,3)

SO(q + 3) × SU(2)ns

× Sq(P, Ṗ )

Sq(P, Ṗ )
�

[
(spin,def)1

� (q + 6,1)2
]

(22)

Note, the (q, P, Ṗ ) used here are independent of those appearing in the SK manifold (2). The 
additional content is (q + 4 + s/2)H2, which under

U(1)st ×H = U(1)st × SO(q + 3) × Sq(P, Ṗ ) × SU(2)ns (23)

transforms as

(q + 3,1,2)−1 + (q + 3,1,2)1 + (1,1,2)−1 + (1,1,2)1 (24)

+ (s,1)−1 + (s,1)1

+ (q + 3,1,3)0 + (q + 3,1,1)0 + (1,1,3)0 + (1,1,1)0

+ (s,2)0,

where s is a not necessarily irreducible representation of SO(q + 3) × Sq(P, Ṗ ), as given in 
Table 4, of dimension s = 2[(q+3)/2] dim def.

2.2.2. Generic Jordan
As for the vector multiplet sector, there are particular choices of (q, P, Ṗ ) for which the 

non-reductive terms appearing in (22) carry representations that allow for the so-called 1st en-
hancement SO(1, 1) × SO(q + 3, 3) ⊂ SO(q + 4, 4). In this case the representations s enhance 
to t as given in Table 5, and the resulting coset spaces are symmetric. The simplest example is 
the c-map of the generic Jordan series (5), which occurs for (q, P, Ṗ ) = (q, 0, 0), implying that 
s = 0, or alternatively, for (q, P, Ṗ ) = (0, P, 0) or (0, 0, Ṗ ) [53]. The resulting symmetric hyper 
scalar coset is given by,

G = SO(q + 4,4)

′ . (25)
H SO(q + 4) × SU(2) × SU(2)
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Table 5
Groups and representations for hyper scalar Q manifolds with the 1st enhancement s → t. The case q = −3 is given in 
Table 9 of [49] and it is nothing but the series of hyperbolic quaternionic projective spaces HP

P+1
, which are not in the 

c-map image of any (projective) special Kähler manifold.

q SO(q + 4) Sq(P, Ṗ ) t t (q,P, Ṗ )

−3 -//- Sp(P ) 2P 2P

−2 U(1) U(P ) P(−x,a) + P(x,−a)
2P

−1 SU(2) SO(P ) (2,P) 2P

0 SU(2)2 SO(P ) × SO(Ṗ ) (2,1,P,1) + (1,2,1, Ṗ) 2P + 2Ṗ

1 Sp(2) SO(P ) (4,P) 4P

2 SU(4) U(P ) (4,P)−x + (4,P)x 8P

3 SO(7) Sp(P ) (8,2P) 16P

4 SO(8) Sp(P ) × Sp(Ṗ ) (8s ,2P) + (8c,2Ṗ) 16P + 16Ṗ

5 SO(9) Sp(P ) (16,2P) 32P

6 SO(10) U(P ) (16,P)−x + (16,P)x 32P

7 SO(11) SO(P ) (32,P) 32P

8 SO(12) SO(P ) × SO(Ṗ ) (32,P,1) + (32,1, Ṗ) 32P + 32Ṗ

The additional content is (q + 4)H2 which under

U(1)st ×H = U(1)st × SO(q + 4) × SU(2) × SU(2)′ (26)

transforms as,

(q + 4,1,2)−1 + (q + 4,2,2)0 + (q + 4,1,2)1. (27)

As we shall see in section 3 this 1st enhancement will happen before squaring, in the sense that 
the Right Yang–Mills theory itself has a global SO(q+4) symmetry that becomes the SO(q +4)

of (25).

2.2.3. Magic
A 1st enhancement analogous to the previous one occurs also for (q, P, Ṗ ) = (n, 1, 0) where 

n = dimA = 1, 2, 4, 8 which implies that t = 4n. In these cases there is an accidental 2nd en-
hancement due to the maximal embedding [Conf (J

AC

3 )]c ⊃ SO(n + 4) × Sn(1, 0) × SU(2)′
such that the resulting coset is

G
H = QConf (JA3 )

[Conf (J
AC

3 )]c × SU(2)
, (28)

where QConf (J) is the quasi-conformal group of the Jordan algebra J. The additional content 
is (f/2)H2 where f = 2(3n + 4), which under

U(1)st ×H = U(1)st × [Conf (J
AC

3 )]c × SU(2) (29)

transforms as

(f,1)1 + (f,2)0 + (f,1)−1. (30)

The 2nd enhancement is possible because in all four cases there is a symplectic representation f, 
which under [Conf (J

AC

3 )]c ⊃ SO(n + 4) × Sn(1, 0) × SU(2)′ decomposes as,

f → (q + 4,1,2) + (t,1), (31)
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Table 6
The H representations f carried by the magic hyper scalars and the representations t appearing in the breaking f →
(q + 4,1,2) + (t,1) under SO(n + 4) × Sn(1, 0) × SU(2)′ ⊂ [Conf (J

AC

3 )]c .

n QConf (JA
3 ) [Conf (J

AC

3 )]c f SO(n + 4) × Sn(1,0) t

1 F(4(4)) Sp(3) 14′ Sp(2) 4
2 E6(2) SU(6) 20 SU(4) × U(1) 4−x + 4

x

4 E7(−5) SO(12) 32 SO(8) × Sp(1) (8s ,2) or (8c,2)

8 E8(−24) E7 56 SO(12) 32

where f and t are given in Table 6. As we will see in section 3 the hyper multiplets come ex-
clusively from the product of Left factor half-hyper multiplets with Right factor scalars, so these 
enhancements happen before squaring.

Note, as for the magic vector multiplet case given in section 2.1.3, there is a unified description 
of the 2nd enhancement for magic theories: they lie in the “quaternionified projective planes” 
(H ⊗A)P2. Namely, the enhancement terms lie in the compact symmetric coset

[Conf (J
AC

3 )]c/[Conf (C⊕ J
AC

2 )]c × Sn(1,0), (32)

where [Conf (C ⊕ J
AC

2 )]c × Sn(1, 0) = SO(q + 4) × SU(2)′ × Sn(1, 0). The symmetric embed-

ding [Conf (C ⊕ J
AC

2 )]c × Sn(1, 0) ⊂ [Conf (J
AC

3 )]c follows from the maximal Jordan algebra 

embedding, C ⊕ J
AC

2 ⊂ J
AC

3 . The tangent space of (32) can be represented as H ⊗A ⊕ H ⊗ A, 
where the summands transform as a doublet under SU(2)′. Namely, they are a pair of chiral 
spinors in D = q + 4 dimensions; for q = 1 there is no chiral splitting.

2.2.4. Minimally coupled
For the above cases the quaternionic manifolds of the hyper sector are insensitive to dimen-

sional reduction, and therefore are the same in D = 3, 4, 5, 6. These spaces can be constructed 
by composing the r-map and c-map into a map (termed the q-map in mathematical literature, 
cfr. e.g. [58]) from real special homogeneous manifolds. By contrast, for the addition of hyper 
multiplets to the minimally coupled model of section 2.1.4 there is no real special homogeneous 
starting point (i.e. there is no r-map and hence no q-map). However the scalar coset,

G
H = SU(P,2)

U(P ) × SU(2)
, (33)

is given by the c-map of the SK minimally coupled series (13), as one would anticipate. The 
additional content is P H2, which under

U(1)st ×H = U(1)st × U(P ) × SU(2) (34)

transforms as

(P,1)−1
−1 + (P,1)1−1 + (P,2)−1

0 + (P,2)1
0 + (P,1)−1

1 + (P,1)1
1. (35)

This can be regarded as the (q, P, Ṗ ) = (−4, P, 0) extension of Table 5, with t = P−1 + P
1

of 
U(P ), as given in Table 9 of [49].
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2.2.5. Projective quaternionic
A second possibility for minimally coupled hyper multiplets is given by

G
H = Sp(P,1)

Sp(P ) × SU(2)
. (36)

These are projective quaternionic symmetric spaces given by q = −3 of Table 5 (also cfr. table 9 
of [49]). Note, they are not in the c-map image of any (projective) special Kähler manifold and 
in this sense they are distinguished. The additional content is P H2, which under

U(1)st ×H = U(1)st × Sp(P ) × SU(2) (37)

transforms as

(2P,1)−1 + (2P,2)0 + (2P,1)1. (38)

This can be regarded as the (q, P, Ṗ ) = (−3, P, 0) entry of Table 5 with t = 2P of Sp(P ).

2.2.6. Exceptional T 3 model
The final case is given by the inclusion of hyper multiplets in the T 3 model. The coset is 

exceptional,

G
H = G2(2)

SU(2)E × SU(2)
, (39)

and is the c-map of (18) or the q-map of a point, reflecting the fact that dimensionally reducing 
pure D = 5 supergravity to D = 3 yields a scalar coset given by (39) once the 1-form potentials 
have been dualised to scalars. The additional content is 2H2, which under U(1)st ×H = U(1)st ×
SU(2)E × SU(2) transforms as,

(4,1)−1 + (4,2)0 + (4,1)1. (40)

3. Squaring

3.1. General principles

The field content generated by all products of Left and Right multiplets (excluding those 
generating gravitino multiplets) are given in Table 7. These are deduced using the tensor product 
of asymptotic on-shell helicity states, which we denote by ⊗. Of course, this does not fix the 
couplings or symmetries of the corresponding theory (unless they are fixed by supersymmetry). 
However, following [1] we can use the convolutive tensor product, ◦, of Left and Right spacetime 
fields to deduce the possible symmetries and hence couplings of the resulting theory. For Left 
and Right multiplets L, R, the product is defined by

L ◦ R := L� � ���̃ � R�̃, (41)

where

[f � g](x) =
∫

dDyf (y)g(x − y) (42)

for arbitrary spacetime fields f, g. The convolution reflects the fact that the amplitude relations 
are multiplicative in momentum space. It turns out to be essential for reproducing the local sym-
metries of (super)gravity from those of the two (super) Yang–Mills factors to linear order [1,4,5]. 
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Table 7
The content resulting from the product of the on-shell helicity states of Left and Right 
multiplets, as summarised in Table 1.

L ⊗ R Result

C1 ⊗ λ V1 ⊕ C1
C1 ⊗ C1 V2 ⊕ H2
C2 ⊗ λ V2
C2 ⊗ C1 V3
C2 ⊗ H2 V4
H2 ⊗ λ 2V2
H2 ⊗ C1 2V3
H2 ⊗ H2 4V4

L ⊗ R Result

V1 ⊗ A G1 ⊕ C1
V1 ⊗ V1 G2 ⊕ H2
V2 ⊗ A G2 ⊕ V2
V2 ⊗ V1 G3 ⊕ V3
V2 ⊗ V2 G4 ⊕ 2V4
V4 ⊗ A G4
V4 ⊗ V1 G5
V4 ⊗ V2 G6
V4 ⊗ V4 G8

The spectator field ���̃ allows for arbitrary and independent GL and GR at the level of space-
time fields. The indices �, �̃ run over the representations carried by the Left and Right multiplets 
under the Left and Right gauge groups GL and GR . The spectator takes a block-diagonal form,

� =
(

�
AÃ

0
0 �aã

)
, (43)

where A, Ã are adjoint3 and a, ã are “fundamental”4 indices of GL and GR , respectively. 
This enforces the fact that adjoint representations only double-copy with adjoint representations 
[5,22]. As discussed in detail in [1,3–5,41,42] this product allows us to reconstruct the symme-
tries of the resulting supergravity theory (under the assumption that the scalar coset manifold is 
homogeneous) in terms of its Yang–Mills-matter factors and we apply these same principles in 
the subsequent analysis. Note, the product of the global symmetries of the two factors yields a 
subset of the gravitational global symmetries, which are enhanced to the full set of generically 
non-compact global symmetries as described in appendix A.

3.2. The gauge theory factors

Here we summarise the Left and Right Yang–Mills-matter theories used subsequently to gen-
erate the supergravity theories described in the previous sections.

3.2.1. The Left NL = 2 gauge theory
The Left theory consists of one N = 2 vector multiplet VA

2 and one half-hyper multiplet Ca
2, 

which carries a pseudoreal fundamental representation5 of the Left gauge group GL. Note, we 
use A and a to distinguish fields carrying adjoint and fundamental representations, respectively, 
of the gauge group. The spacetime, global and gauge symmetries are given by

3 Note, the bi-adjoint scalar field �
AÃ

plays a crucial role in the Yang–Mills squared construction of classical 
(supersymmetric) single- and multi-centre black hole solutions [6,7] and also appears by very close analogy in the 
non-perturbative double-copy construction of Kerr-Schild solutions [35–38], although the precise relationship between 
the two pictures remains an intriguing open question.

4 Here we use “fundamental” to mean any (not necessarily irreducible) representations other than the adjoint.
5 We also always require that the adjoint of the gauge group is included in the symmetric tensor product of the pseu-

doreal fundamental.



A. Anastasiou et al. / Nuclear Physics B 934 (2018) 606–633 621
U(1)stL × SU(2)L × U(1)L × GL, (44)

under which the multiplets transform as follows:

VA
2 :

[
10
−2 + 10

2 + 21−1 + 2−1
1 + 12

0 + 1−2
0

]A

, (45)

Ca
2 :

[
1−1
−1 + 11

1 + 20
0

]a

, (46)

where the superscripts denote the R-symmetry U(1)L charges CL.

3.2.2. The Right NR = 0 gauge theory
The Right theory consists of one N = 0 vector potential AA

μ and q + 2 scalars φA in the 
adjoint of the Right gauge group GR and r Majorana spinors λa and 2(q ′ + 4) + t scalars �a, ϕa

in a pseudoreal fundamental representation of GR . The spacetime, global and gauge symmetries 
are given by

U(1)stR × SO(q + 2) × Fq × SO(q ′ + 4) ×Fq ′ × SU(2)R × GR, (47)

under which the various fields transform as follows:

AA
μ :

[
(1,1;1,1,1)−2 + (1,1;1,1,1)2

]A

, (48)

(q + 2)φA :
[
(q + 2,1;1,1,1)0

]A

, (49)

(r)λa :
[
(r;1,1,1)−1 + (r;1,1,1)1

]a

, (50)

2(q ′ + 4)�a :
[
(1,1;q′ + 4,1,2)0

]a

, (51)

(t)ϕa :
[
(1,1; t,1)0

]a

. (52)

The groups Fq and Fq ′ will be determined by the reality conditions. The fermion λ representa-
tions r = (spinq+2, defFq ) are given by the spinor of SO(q + 2) and the defining representation 
of Fq . The overall reality conditions imply that for q ≥ −1 the flavour group is Fq = Sq(P, Ṗ ). 
For q = −2 the group SO(q + 2) disappears and the only possible flavour group consistent with 
overall reality is F−2 = U(P )F = SU(P )F × U(1)F , where the U(1)F charges carried by the 
fields will be denoted CF . The scalars ϕ are in the spinor of SO(q ′ + 4) and defining of Fq ′ , 
t = (spinq ′+4, defF ′

q
). The overall reality conditions imply that for q ′ ≥ −3 the flavour group 

is Fq ′ = Sq ′(P ′, Ṗ ′). For q ′ = −4 there are two options consistent with overall reality given by 
F−4 = Sp(P ) or U(P )F = SU(P )F × U(1)F , where the U(1)F charges carried by the fields 
will be denoted CF .

For the Right theory fields (see Table 8 for a summary of the various spacetime, global and 
gauge indices),

AA
μ, φA

m, λaI
αx, �aa

M , ϕai
X , (53)

the most general Lagrangian consistent with the symmetries (47) is given by,
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L = − 1

4
FμνAFA

μν + 1

2
DμφA

mDμφA
m − 1

2
λαx

aI (γ μ)α
βDμλaI

βx

+ 1

2
Dμ�aa

M Dμ�bb
M εab
ab + 1

2
DμϕaX

i Dμϕbi
X 
ab

− g

2
λaαx

I (T A)abφ
A
m(�m)x

y(γ5)α
βλbI

βy − g2

4
φA

mφB
mφC

n φD
n f EACf EBD

+ �aa
M �bb

M �cc
N �dd

N Pabcdabcd + ϕaX
i ϕbiY ϕcZ

j ϕdjWPXYZWabcd

+ �aa
M �bb

N ϕcX
i ϕdi

Y εabPY
XMNabcd ,

(54)

where the relative coefficients of the fields generating the vector multiplet sector (A, φ, λ) are 
fixed by regarding it as the dimensional reduction of a D = q + 6 Yang–Mills theory coupled to 
P + Ṗ spinors. The various invariant tensors are given explicitly by,

Pabcdabcd = h1T(ab)(cd)M(ab)(cd) + h2T[ab][cd]M[ab][cd], (55)

PXYZWabcd = k1T(XY)(ZW)M(ab)(cd) + k2T[XY ][ZW ]M[ab][cd]
+ k3T(XY)(ZW)M[ab][cd] + k4T[XY ][ZW ]M(ab)(cd), (56)

PY
XMNabcd = l1T

Y
(MN)XM[ab][cd] + l2T

Y[MN]XM(ab)(cd), (57)

where the free parameters hi, ki, li are real and

M(ab)(cd) = (T A)ab(T
A)cd = τ(−3f(abcd) + 
a(c
d)b), (58)

M[ab][cd] = 
ab
cd − 2
c[a
b]d , (59)

T(ab)(cd) = εa(cεd)b, (60)

T[ab][cd] = εabεcd − 2εc[aεb]d, (61)

T(XY)(ZW) = SXY SZW + 2SZ(XSY)W − 2AZ(XAY)W , (62)

T[XY ][ZW ] = AXY AZW − 2AZ[XAY ]W + 2SZ[XSY ]W, (63)

T Y
(MN)X = δMNδX

Y , (64)

T Y[MN]X = (�MN)X
Y , (65)

SXY SZW =
∑
p

vp(�M1...Mp )(XY)(�
M1...Mp )(ZW), (66)

AXY AZW =
∑
p

up(�M1...Mp)[XY ](�M1...Mp )[ZW ]. (67)

Here, τ := 2 dimGR/(dim2 fundGR
+ dim fundGR

). Note, f(abcd) is zero when the pseudoreal 
representation with index a is the defining of Sp(n). Examples of non-zero f(abcd) are given by 
groups “of type E7”, for instance the 56 of E7 [59–61].

3.3. The [NL = 2] × [NR = 0] product

The product of these two multiplets yields N = 2 supergravity coupled to (1 + q + 2 + r)

vector multiplets and (q ′ + 4 + t/2) hyper multiplets, whose origin can be traced through,
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Table 8
A summary of the representations/indices appearing in (54). Note, (sgn) indicates the sign picked up on raising/lowering 
a pair of contracted indices of that type.

Representation SO(1,3)st
R

SO(q + 2) Fq SO(q ′ + 4) Fq′ SU(2)R GR

Defining μ,ν, (+) m,n, (−t
q+2
1 ) I, J, (sq ) M,N, (+) i, j, (t

q′+4
0 ) a,b, (−) –

Fundamental – – – – – – a, b, (−)

Adjoint – – – – – – A,B, (+)

Spinor α,β, (−) x, y, (−t
q+2
0 ) – X,Y, (−t

q′+4
0 ) – – –

Left ⊗ Right =
[
VA

2 ⊕ Ca
2

]
⊗

[
V A ⊕ (q + 2)φA ⊕ (r)λa ⊕ 2(q ′ + 4)�a ⊕ (t)ϕa

]
= VA

2 ⊗
[
V A ⊕ (q + 2)φA

]
⊕ Ca

2 ⊗
[
(r)λa ⊕ 2(q ′ + 4)�a ⊕ (t)ϕa

]
= G2 ⊕ (1 + q + 2 + r)V2 ⊕ (q ′ + 4 + t/2)H2.

(68)

The supergravity theory inherits the global symmetries

U(1)st × H ×H = U(1)st × SO(q + 2) × Fq × SO(q ′ + 4) ×Fq ′

× SU(2)L × SU(2)R × U(1)L × U(1)− (69)

directly from the two Yang–Mills factors. Noting that the vector multiplets carry non-trivial 
SO(q + 2) × Fq representations, it is clear that the corresponding SK manifold G/H will have 
SO(q + 2) × Fq ⊂ H . Similarly, the hyper multiplets carry non-trivial SO(q ′ + 4) × Fq ′ ×
SU(2)R representations and therefore SO(q ′ + 4) × Fq ′ × SU(2)L × SU(2)R ⊂ H will con-
tribute to the Q manifold G/H.

Some more detailed comments on the various U(1) factors appearing in (69) are in order. 
First, the U(1)st and U(1)− charges, denoted Cst , C− respectively, are given by the sum and 
difference of the Left and Right helicities Cst

L , Cst
R :

Cst = Cst
L + Cst

R , (70)

C− = Cst
L − Cst

R . (71)

Unlike the symmetries inherited directly and independently from the gauge factors, the “he-
licity difference” U(1)− is not a priori a symmetry of the gravitational theory. However, as 
noted in [42] if the scalar manifold of the supergravity theory is symmetric the U(1)− sym-
metry is required by the squaring procedure. The simplest example is given by the product 
of two N = 0 gauge potentials yielding axion-dilaton gravity, where the axion and dilaton 
parametrise SL(2, R)/U(1)−. Similarly, for maximal supersymmetry we have a global SU(8)

in N = 8 supergravity, which factors into U(1)− × SU(4)L × SU(4)R , where SU(4)L/R are 
the R-symmetries of the Left and Right N = 4 Yang–Mills theories. On the other hand, if the 
scalar manifold is non-symmetric the U(1)− cannot be present. Note, this is reflected precisely 
by the double-copy construction6: if and only if the scalar manifold is symmetric are the gravity 
amplitudes U(1)− invariant, as made evident by the examples constructed in [25].

To make this distinction clear in the present context we briefly illustrate the appearance of 
U(1)− in the symmetric generic Jordan sequence, where it is identified with the axio-dilatonic 
U(1)g in the stabiliser of (5). Note, using the magic Jordan algebraic embedding JA3 ⊃ R ⊕ JA2 , 

6 We thank Henrik Johansson for illuminating discussions regarding this point.
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considered at the level of conformal symmetries, the second enhancement can be simultaneously 
made manifest at the expense of restricting to q = 1, 2, 4, 8. Adopting this starting point we 
then further branch the axio-dilatonic SU(1, 1) ∼= SL(2, R) to its non-compact Cartan, which 
generates the 5-grading:

Conf
(
JA3

)
⊃ Conf

(
R⊕ JA2

)
× Sq 
 SU(1,1) × SO(q + 2,2) × Sq

⊃ SO(1,1) × SO(q + 2,2) × Sq; (72)

Adj = (1,Adj,1) + (3,1,1) + (1,1,Adj) + (2, spin,def)

= (Adj,1)0 + (1,1)0 + (1,Adj)0 + (1,1)−2 + (spin,def)−1

+ (spin,def)+1 + (1,1)+2. (73)

One recognises the G of homogeneous non-symmetric projective SK manifolds, given in (2), 
as the non-negatively graded part of (73), with the global SU(2) factor omitted. However, for 
the symmetric case we also have the additional negative grade (1, 1)−2 component, which when 
linearly composed with the (1, 1)+2 component yields a maximal compact U(1) subgroup of 
SU(1, 1), identified with U(1)−, generating the enhancement SO(1, 1) × SO(q + 2, 2) −→
SU(1, 1) × SO(q + 2, 2). For the magic cases of q = 1, 2, 4, 8 we see that (72) and (73) imply 
the further enhancement SU(1, 1) × SO(q + 2, 2) × Sq −→ Conf

(
JA3

)
. In this sense, at least

within the cubic models, the fact that the extra U(1) is missing in the T 3 model can be traced 
back to the fact that the T 3 model does not contain (as a truncation) any element of the generic 
Jordan sequence.

3.3.1. Vector multiplets
In order to reproduce the SK manifolds of section 2.1, we consider those factors of (68)

contributing to the vector multiplet sector, specifically:

VA
2 ⊗

[
V A ⊕ (q + 2)φA

]
⊕ Ca

2 ⊗ (r)λa = G2 ⊕ (1 + q + 2 + r)V2. (74)

The resulting content G2 ⊕(1 +q+2 +r)V2 carries non-trivial representations, inherited directly 
from the Left and Right Yang–Mills multiplets, under the

U(1)st × SO(q + 2) × Fq × SU(2)L × U(1)L × U(1)− (75)

factor of (69),

(1,1,1)
(0,0)
−4 + (1,1,1)

(0,0)
4 (76)

+ (1,1,2)
(1,1)
−3 + (1,1,2)

(−1,−1)
3

+ (1,1,1)
(2,2)
−2 + (1,1,1)

(−2,−2)
2 + (1,1,1)

(−2,2)
−2 + (1,1,1)

(2,−2)
2

+ (q + 2,1,1)
(0,−2)
−2 + (q + 2,1,1)

(0,2)
2

+ (r,1)
(−1,0)
−2 + (r,1)

(1,0)
2

+ (1,1,2)
(−1,3)
−1 + (1,1,2)

(1,−3)
1

+ (q + 2,1,2)
(1,−1)
−1 + (q + 2,1,2)

(−1,1)
1

+ (r,2)
(0,1)
−1 + (r,2)

(0,−1)
1

+ (1,1,1)
(0,4) + (1,1,1)

(0,−4)

0 0
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Table 9
The choice of (q, P, Ṗ ) and Fq for the Right Yang–Mills factor and the required linear combinations of U(1) charges 
leading to the non-symmetric (section 2.1.1), generic Jordan (section 2.1.2), magic (section 2.1.3) and minimally coupled 
(section 2.1.4) N = 2 supergravity theories coupled to vector multiplets.

(q,P, Ṗ ) Fq r Theory Comments

(≥ −1,P, Ṗ ) Sq (P, Ṗ ) Table 2 Non-symmetric SU(2) = SU(2)L, C = CL, drop U(1)−
(≥ −1,0,0) -//- -//- Generic Jordan SU(2) = SU(2)L, C = CL, Cg = C−
(n,1,0) Sn(1,0) Table 3 Magic SU(2) = SU(2)L, C′ = 2CL + C−, C′′ = −CL + C−

Enhancement to d after squaring

(−2,P,0) U(P )F P−1 + P1
Minimally coupled SU(2) = SU(2)L, C = CL + CF

Cmin = (P/2)CL + (1 + P/2)C− − (2 + P/2)CF

CP = (P/4)CL − (P/4)C− − (1 + P/4)CF

-//- -//- -//- T 3 SU(2) = SU(2)L, CT = 2CL − C−
No. of U(1)’s not conserved

+ (q + 2,1,1)
(2,0)
0 + (q + 2,1,1)

(−2,0)
0

+ (r,1)
(1,2)
0 + (r,1)

(−1,−2)
0 .

Leaving the T 3 model aside for the moment, at this stage we are able to reproduce all homo-
geneous SK manifolds of section 3.3.1 by adjusting the field multiplicities, symmetries and 
representations (and hence couplings) of the Right Yang–Mills theory. The choices of q and 
Fq (and the corresponding representation r) giving the non-symmetric (section 2.1.1), generic 
Jordan (section 2.1.2), magic (section 2.1.3) and minimally coupled (section 2.1.4) theories are 
summarised in Table 9. Note, the first three choices reproduce the previous BCJ double-copy 
construction of the non-symmetric, generic Jordan and magic theories appearing in [25]. Note, 
as originally observed in [25] the minimally coupled sequence can also be obtained as a trunca-
tion of the generic Jordan sequence and is thus already included, in this sense, in the double-copy 
construction of the generic Jordan sequence.

The semi-simple symmetries and their representations are matched directly to those of the 
corresponding supergravity theories. The only minor subtlety is the correct identification of the 
various U(1) charges. Including the additional U(1)−, the correct charges for each U(1) factor 
appearing in the gravitational theory are given by an invertible linear combination of C− with CL

and CF , which are inherited directly from the Left and Right factors respectively, as described 
in the final column of Table 9. In these cases, all scalar fields appearing in the supergravity 
theory transform under a manifest global symmetry, which is sufficient to ensure that the scalar 
manifold is (locally) homogeneous [25,62]. By contrast, comparing the (1,1,1)x0 + (1,1,1)−x

0
terms of (4) and (76) we see that U(1)− is not a symmetry of the non-symmetric theory and must 
be discarded. This accords perfectly with the double-copy construction of [25]. In the absence of 
the U(1)− the vanishing of the single soft-dilaton/axion limits must be checked independently 
to establish (local) homogeneity.

Finally, let us briefly comment on the absence of the T 3 model. Note, the P = 0 minimally 
coupled model has the same field content and scalar coset as the T 3 model, but with different 
representations as can be seen by comparing (15) with (20). In particular, the two vector poten-
tials and their duals transform as the 4 and 2 + 2 of SL(2, R) for the T 3 and minimally coupled 
model, respectively. Using the same starting point as the minimally coupled model, but letting 
CT = 2CL − C− while dropping entirely the second independent U(1), one can reorganise the 
content into that of the T 3 model. Recall, however, that since the T 3 model has a symmetric 
manifold the global U(1)− is present and we are therefore actually throwing away a symmetry 
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that is inherited from the gauge factors. In terms of the double-copy there will be non-trivial 
amplitudes in the T 3 model that are not generated by the Yang–Mills factors, essentially because 
we are relaxing the second U(1) symmetry present in the minimally coupled starting point. To 
give another perspective, the squaring and double-copy constructions are many-to-one; there is 
no way to pass from minimally coupled to T 3. This leaves the possibility of using two N = 1
Yang–Mills multiplets, but from Table 7 we see immediately that this generates at least one hyper 
multiplet. The apparent absence of only the T 3 model amongst all homogeneous N = 2 super-
gravities coupled to vector multiplets is rather surprising. Although, it should be recalled that the 
T 3 model stands alone in the sense that its five dimensional origin is pure minimal supergravity, 
which itself does not admit a squaring origin. Moreover it is an isolated case in the classification 
of symmetric projective special Kähler manifolds [63]. The final logical possibility is that the 
product of two Yang–Mills theories can have more supersymmetry than the sum of its factors. 
We leave such speculations for future consideration.

3.3.2. Hyper multiplets
In order to reproduce the Q manifolds of section 2.2 let us isolate those terms generating hyper 

multiplets in (68),

Ca
2 ⊗

(
2(q ′ + 4)�a ⊕ (t)ϕa

)
= (q ′ + 4 + t/2)H2, (77)

and label the resulting content under U(1)st ×SO(q ′ +4) ×Fq ′ ×SU(2)R ×SU(2)L. Of course 
the fields will also be charged under U(1)L × U(1)−, but since these factors are absorbed by the 
SK manifolds of the vector multiplet sector we omit them here.

The resulting content carries the representations:

(q′ + 4,1,2,1)−1 + (q′ + 4,1,2,1)1 + (t,1,1)−1 + (t,1,1)1 (78)

+ (q′ + 4,1,2,2)0 + (t,1,2)0.

As for the vector sector we are able to reproduce all homogeneous Q manifolds of section 2.2
by adjusting the field multiplicities, symmetries and representations of the Right Yang–Mills 
theory. The choice of (q ′, P ′, Ṗ ′) and Fq ′ for the Right Yang–Mills factor (and the corresponding 
representation t) giving the non-symmetric (section 2.2.1), generic Jordan (section 2.2.2), magic 
(section 2.2.3), minimally coupled (section 2.2.4), projective quaternionic (section 2.2.5) and 
exceptional T 3 (section 2.2.6) theories are summarised in Table 10.

In this case all those theories with symmetric quaternionic manifolds follow straightforwardly 
from the Right factor since the full isometry group is given by H= SU(2)L×SO(q ′+4) ×Fq ′ ×
SU(2)R or its relevant enhancement, which occurs already in the Right factor before squaring. 
See for example the magic cases given in Table 6. For instance, for the octonionic magic theory 
the Right factor scalars �a and ϕa transform irreducibly under the enhanced E7 ∼= [Conf (J

AC

3 )]c
symmetry of the Right factor,

SO(12) × SU(2)′ ↪→ E7;
(12,2) + (32,1) −→ 56,

(79)

where SO(q ′ + 4) × Fq ′ |q ′=8
∼= SO(12) and SU(2)′ ∼= SU(2)R . From (30) we see that in total 

the hyper scalars transform as

(56,1)1 + (56,2)0 + (56,1)−1 (80)
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Table 10
The choice of (q ′, P ′, Ṗ ′) and Fq′ for the Right Yang–Mills factor and the required identifications SU(2)L/R leading 
to the non-symmetric (section 2.2.1), generic Jordan (section 2.2.2), magic (section 2.2.3), minimally coupled (sec-
tion 2.2.4), projective quaternionic (section 2.2.5) and exceptional T 3 (section 2.2.6) theories.

(q ′,P ′, Ṗ ′) Fq′ t Theory Comments

(≥ −3,P ′, Ṗ ′) Sq′ (P ′, Ṗ ′) Table 4 Non-symmetric SU(2)ns = SU(2)L × SU(2)R

The diagonal identification causes the breaking
SO(q ′ + 4) → SO(q ′ + 3) and thus t → s

(≥ −3,0,0) -//- -//- Generic Jordan SU(2) = SU(2)L, SU(2)′ = SU(2)R
(n,1,0) Sn(1,0) Table 6 Magic SU(2) = SU(2)L, SU(2)′ = SU(2)R

Enhancement to f before squaring

(−4,P,0) U(P ) P−1 + P1
Minimally coupled SU(2) = SU(2)L, SU(2)R drops out automatically

(−4,P,0) Sp(P ) 2P Projective quaternionic SU(2) = SU(2)L, SU(2)R drops out automatically
-//- SU(2)E 4 Exceptional SU(2) = SU(2)L

under the combined Left/Right symmetries H ∼= [Conf (J
OC

3 )]c × SU(2) where SU(2) ∼=
SU(2)L. The remaining cases are summarised in Table 10, with the appropriate identification 
of the SU(2) factors.

The non-symmetric family is a little more subtle. On the gravitational side the hyper multi-
plet scalars that are singlets under the SO(q + 3) × Sq(P, Ṗ ) subgroup of H = SO(q + 3) ×
Sq(P, Ṗ ) × SU(2)ns transform under H as

(1,1,3) + (1,1,1), (81)

as can be seen from (24). On the other hand, from (78) we observe that the only

SO(q + 3) × Sq(P, Ṗ ) ⊂ SO(q ′ + 4) × Sq(P, Ṗ ) (82)

singlets in hyper multiplet scalar sector that follow from the product of the Left/Right factors (77)
transform as a (1,1,2,2) under the Left/Right symmetries SO(q + 3) × Sq(P, Ṗ ) × SU(2)R ×
SU(2)L. Note, the 2 of SU(2)L is required by R-symmetry and hence the only way (81) may be 
reproduced is by identifying SU(2)ns with a diagonal subgroup of SU(2)R × SU(2)L,

SU(2)ns
∼= [SU(2)R × SU(2)L]diag ⊃ SU(2)R × SU(2)L, (83)

under which

(1,1,2,2) → (1,1,2 × 2) = (1,1,3) + (1,1,1). (84)

The observation that the symmetric Q manifolds have an extra SU(2) with respect to the non-
symmetric case follows from an argument analogous to the treatment of the extra U(1)− appear-
ing in the symmetric SK manifolds with respect to the non-symmetric SK manifolds. In order 
to see this, we start once again from the Jordan algebraic embedding JA3 ⊃ R ⊕ JA2 , considered 
now at the level of quasi-conformal symmetries, and then further branch it in order to obtain an 
SO(1, 1) generating the 5-grading (here Sq 
 Sq(1, 0) 
 Sq(0, 1), where q = 1, 2, 4, 8):

QConf
(
JA3

)
⊃ QConf

(
R⊕ JA2

)
× Sq 
 SO(q + 4,4) × Sq

⊃ SO(1,1) × SO(q + 3,3) × Sq; (85)

Adj = (Adj,1) + (1,Adj) + (spin,def)

= (Adj,1)0 + (1,1)0 + (1,1,Adj)0

+ (q + 6,1)−2 + (spin′,def)−1 + (spin,def)+1 + (q + 6,1)+2 . (86)
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One recognises that G of the homogeneous non-symmetric class of quaternionic manifolds 
is given by the non-negatively graded part of the branching (86). The aforementioned ex-
tra SU(2) requires in addition the negatively graded part of (86). The two negative grade 
terms can be present only in the symmetric case, where they generate the enhancement from 
SO(1, 1) × SO(q + 3, 3) to SO(q + 4, 4). From (85) we observe that in the magic cases a sec-
ond enhancement takes place, SO(q +4, 4) ×Sq −→ QConf

(
JA3

)
(recall, we have restricted to 

the special values of q = 1, 2, 4, 8 here to make this manifest). Note that the two SU(2) factors 
are generated by the so(4) in the maximal compact subalgebra so(q +4) ⊕ so(4) ⊂ so(q +4, 4), 
while the unique SU(2)ns appearing in the non-symmetric homogeneous manifolds is generated 
by the so(3) summand in so(q + 3) ⊕ so(3) ⊂ so(q + 3, 3). Although it is not a priori obvi-
ous why the restriction SU(2)ns ⊂ SU(2)R × SU(2)L would be required by the double-copy 
construction, the above symmetry arguments strongly suggest it will be effected at the level of 
amplitudes.

4. Conclusion

We have shown that all ungauged D = 4, N = 2 supergravity theories with homogeneous 
scalar manifolds are the square of Yang–Mills with two isolated exceptions, pure N = 2 su-
pergravity and the T 3 model in the vector sector. This completes the classification of all super-
gravities with eight or more supercharges and homogeneous scalar manifolds in D ≥ 4 with a 
Yang–Mills squared origin (up to the possibility that more subtle, yet to be appreciated, mecha-
nisms may enter the game). There are two obvious directions for future work (i) D = 4, N = 2
supergravities with non-homogeneous scalar manifolds and (ii) D = 4, N = 1 supergravities, 
first with homogeneous (non)symmetric and then non-homogeneous scalar manifolds. We should 
emphasise, however, that at present it is unclear how one would proceed in the non-homogeneous 
cases. Finally, one can consider the BCJ colour-kinematic duality compatibility of the Right 
Yang–Mills factor to determine whether or not all examples appearing in the classification are 
indeed double-copy constructible. For the non-symmetric hyper multiplet sector we would antic-
ipate a BCJ origin for the identification of the Left and Right SU(2) factors, which at present is 
not understood.

Acknowledgements

We are grateful to Marco Chiodaroli and Henrik Johansson for useful discussions. We would 
like to thank Gerard ‘t Hooft and Antonino Zichichi, directors of the 55th International School 
Of Subnuclear Physics, EMFCSC, Erice, Sicily, for the stimulating atmosphere in which the final 
stages of the project were conceived. The work of LB is supported by a Schrödinger Fellowship. 
MJD is grateful to the Leverhulme Trust for an Emeritus Fellowship and to Philip Candelas for 
hospitality at the Mathematical Institute, Oxford. This work was supported by the STFC under 
rolling grant ST/G000743/1.

Appendix A. Enhancements

In this appendix we address the problem of enhancements. It should be obvious from equation 
(69) that upon squaring, we take the direct product between the global internal symmetry groups 
of the two Yang–Mills sides which can schematically be expressed as SymL × SymR × U(1)−
in the case of a symmetric scalar coset. Then Table 9 and Table 10 give the explicit rules of how 
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to go from this direct product of groups to the H ×H of the desired supergravity theory. In the 
non-symmetric cases one needs to drop U(1)− and identify the two SU(2)L/R . In the symmetric 
cases things differ between the hyper and vector multiplet sectors. In the hyper multiplet scalar 
sector the full isometry group is given by H = SU(2)L ×SymR . However, in the vector multiplet 
scalar sector there are cases where the isometry group H is given directly by the remaining 
factors of SymL × SymR × U(1)− and other cases where these need to be further enhanced in 
order to form the full H . The purpose of this section is to understand when this enhancement 
occurs in the symmetric vector multiplet sector and study its Yang–Mills origin.

To answer the question of when such enhancements occur in the symmetric cases it is enough 
to observe that (1) they never occur in the hyper sector and (2) they do not occur in the generic-
Jordan vector sector series. Having made this observation the answer can be summarised as 
follows:

Whenever the scalars parametrising a symmetric coset space originate from both “boson ⊗
boson” and “fermion ⊗ fermion” terms, an enhancement is required.

In particular, the hyper sector scalars always have a purely “boson ⊗ boson” origin and no 
enhancement is required, consistent with the identification H = SU(2)L × SymR . Similarly, in 
the generic Jordan vector sector series P = Ṗ = 0 so that the Right theory has no fermions, again 
implying that no enhancement is required.

The more interesting question is how, when needed, these enhancements arise in terms of the 
Yang–Mills factors:

What is the Yang–Mills origin of the extra generators required to enhance the symmetries to 
the full H isometry group?

This question was addressed in the context of squaring pure super-Yang–Mills theories in 
[3,41,42]. It is instructive to recall the problem through the paradigmatic example of N = 8
supergravity as the product of two pure N = 4 super-Yang–Mills, each having an SU(4) global 
internal R-symmetry. The problem there was to find the missing generators required to enhance 
SU(4) × SU(4) × U(1)− ⊂ SU(8). The adjoint decomposition goes as:

63 → (15,1)0 + (1,15)0 + (1,1)0 + (4,4)1 + (4,4)−1, (A.1)

which means that the missing generators should carry defining and conjugate-defining indices 
with respect to the R-symmetry groups. Furthermore the generators should act simultaneously 
on both factors and should turn bosonic into fermionic states and vice versa. All these features 
led us to propose that the missing generators were composed by the tensor product of the Left and 
Right supersymmetry generators. Indeed, the tensor product of the Left and Right supercharges 
provided a precise guide to constructing the generators. The caveat here is that strictly speaking 
the generators cannot be those of supersymmetry because the momentum factors arising from 
the partial derivatives should be removed by hand. This caveat can be equivalently thought as the 
problem of trying to build a dimensionless bosonic parameter from the product of two supersym-
metry parameters.

As a concrete example of the theories studied in this paper we can focus on the octo-
nionic magic vector multiplet sector. We need to find the Yang–Mills origin of the enhancement 
SO(10) × U(1) ⊂ E6 where the adjoint representation decomposes as:

78 → 450 + 10 + 163 + 16
−3

. (A.2)

It is instructive to notice that while the simultaneous supersymmetry picture now fails, since the 
Right theory is non-supersymmetric, the missing generators still carry representations similar to 
those of the spinors and still need to mix bosonic with fermionic sates. It should be emphasised 
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that although the combined Left/Right generators correspond to a legitimate bosonic symmetry 
transformation on the supergravity side, the individual generators themselves to not induce a 
symmetry transformation on the Yang–Mills factors individually.

In the Left sector, the vector multiplet is described by the on-shell superfield,

V2− = φ̄ + ηaψa− + η1η2V−, (A.3)

and similarly for V+. For the half-hyper, we have,

C2 = χ+ + ηaσa + η1η2χ−, (A.4)

where the gauge indices have been omitted for simplicity. The action of the desired ladder oper-
ator on the superfields is simply:

[LL]− V2+ = C2,

[LL]− C2 = V2−,

[LL]− V2− = 0,

(A.5)

and similarly for [LL]+. It should be noted that the operator carries both adjoint and defining 
gauge indices which are contracted accordingly with the superfield it acts on. Using the standard 
(anti)-commutation relations, we can write the ladder operator as

[LL]− :=
∫

d̃p

2∑
k=0

[
C2{k}(V2+{k})† + V2−{k}(C2{k})†

]
, (A.6)

where we defined S{k} ≡ ∂
∂kη

S|(η=0).
The states of the Right sector can be written as

A+, λI+x, φm, λx
−I , A−, (A.7)

where again the gauge indices have been omitted. The action of the desired ladder operator on 
the states is:

[LR]I−x A+ = λI+x,

[LR]I−x λJ+y = φm(γm)xyIIJ ,

[LR]I−x φm = λ
y
−J (γ m)yxIIJ ,

[LR]I−x λ
y
−J = A−δ

y
x δI

J ,

[LR]I−x A− = 0,

(A.8)

and similarly for the raising operator [LR]x+I . In the minimally coupled cases φm = 0. In 
the magic cases IIJ = 1 for n = 1, 2, 8 and IIJ = εIJ for n = 4. We can use the standard 
(anti)-commutation relations,[

A+(p),A
†
+(q)

]
= (2π)32Epδ3( �p − �q),

{λI+x(p), (λ
†
+)

y
J (q)} = (2π)32Epδ3( �p − �q) δ

y
x δI

J ,[
φm(p),φn†(q)

]
= (2π)32Epδ3( �p − �q) δmn,

(A.9)

to pack the ladder operator in the simple form
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[LR]I−x :=
∫

d̃p
[
−λI+x(A+)† + φm(γm)xy(λ

I+y)
† + λ

Iy
− (γm)xy(φ

m)† − A−(λIx− )†
]
.

(A.10)

It is now a straightforward exercise to show that the missing enhancement generators can be 
constructed as,[

E+−
]I
x

= [LL]+ ⊗ [LR]I−x and
[
E−+

]I
x

= [LL]− ⊗ [LR]I+x . (A.11)
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