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Abstract. This paper analyzes the relation between different orders of the Lasserre hierar-

chy for polynomial optimization (POP). Although for some cases solving the semidefinite

programming relaxation corresponding to the first order of the hierarchy is enough to solve

the underlying POP, other problems require sequentially solving the second or higher orders

until a solution is found. For these cases, and assuming that the lower order semidefinite

programming relaxation has been solved, we develop prolongation operators that exploit

the solutions already calculated to find initial approximations for the solution of the higher

order relaxation. We can prove feasibility in the higher order of the hierarchy of the points

obtained using the operators, as well as convergence to the optimal as the relaxation order

increases. Furthermore, the operators are simple and inexpensive for problems where the

projection over the feasible set is “easy” to calculate (for example integer {0, 1} and {−1, 1}
POPs). Our numerical experiments show that it is possible to extract useful information for

real applications using the prolongation operators. In particular, we illustrate how the op-

erators can be used to increase the efficiency of an infeasible interior point method by using

them as an initial point. We use this technique to solve quadratic integer {0, 1} problems,

as well as MAX-CUT and integer partition problems.

Keywords: Global Optimization, Conic programming and interior point methods, Semidef-

inite Programming, Polynomial Optimization.

1 Introduction

Tight convex relaxations are the most valuable tool in the optimizer’s toolbox for the approxi-

mate solution of NP-hard problems (Boukouvala, Misener, & Floudas, 2016). The Lasserre and
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other related hierarchies are one such incredibly powerful relaxation for polynomial optimization

problems (POPs). Unfortunately, these hierarchies require solving Semidefinite Programming

(SDP) problems that grow exponentially with the relaxation order, limiting the use of interior

point methods (IPM). To address this issue, a great deal of research has gone into exploiting

special mathematical structure (de Klerk, 2010) and developing different hierarchies (Ahmadi

& Majumdar, 2017; Lasserre, Toh, & Yang, 2017; Weisser, Lasserre, & Toh, 2017). The sparse

relaxations proposed in Waki, Kim, Kojima, and Muramatsu (2006) and further analyzed in

Lasserre (2006), enabled an order of magnitude improvement in terms of the dimensionality of

problems that can be solved with sum of squares (SOS) relaxations. Specialized algorithms such

as the low rank approximations developed in Burer and Monteiro (2003) and the semi-smooth

CG and alternating direction augmented Lagrangian methods in Yang, Sun, and Toh (2015) and

Wen, Goldfarb, and Yin (2010) respectively, have also helped address the computational issues

associated with solving large-scale problems.

Despite this progress, the issue of SDP relaxations whose size increases exponentially with the

order of the relaxation persists. We take a step towards addressing this issue by developing linear

operators called prolongation operators for the Lasserre hierarchy. These operators transfer

information from a hierarchy of order w to a hierarchy of order w + 1. The prolongation

operators allow us to approximate both the primal and dual solutions of the relaxation of

order w + 1, by only using information from the order w relaxation. A crucial property of

the proposed operators is that, concerning computational effort, they are virtually free and

are easy to implement. Campos and Parpas (2018) develop prolongation operators that are

used to transfer information between different optimization problems through a single Lasserre

hierarchy. Besides, their computation requires no parameters or any additional assumptions.

The links between the solutions of relaxations at different hierarchies are studied here for the

first time. We develop the proposed operators using the original Lasserre hierarchy, but the

results can easily be extended to the sparse hierarchy in Waki et al. (2006). We anticipate

the proposed approach to be applicable to the study of other SOS relaxations such as BSOS

(Lasserre et al., 2017), but this work focuses on the most widely used hierarchy.

Although our numerical results show that the operators can be used to construct useful initial
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points for warm start strategies, it is important to remark that our results are still bounded by

the limits of the SDP relaxations for POP: first, the number of variables in the polynomial space

that we are able to handle is limited, and second, our method relies on an SDP algorithm that

can take advantage of good initial points. In this paper we use interior point methods as our base

algorithm. Unfortunately, exploiting initial points is a challenging and open problem for interior

point algorithms, and this issue sets an upper bound on the performance of the prolongation

operators developed in this paper.

We consider the following constrained polynomial optimization problem (POP):

p? := min
x∈Rn

f(x)

s.t. hi(x) ≥ 0, i = 1, 2, . . . ,m,

(1)

where f and hi (i = 1, 2, . . . ,m), are n-dimensional polynomial functions with degrees d and

d1, d2, . . . , dm respectively. In addition to the usual (and generally non-restrictive) assumptions

for the convergence of the Lasserre hierarchy to polynomial optimization problems, we make the

following assumption.

Assumption 1.1. The feasible set K = {x ∈ Rn : hi(x) ≥ 0, i = 1, 2, . . . ,m} is compact and

such that the projection of any x ∈ Rn onto the set K is tractable.

Assumption 1.1 is not strictly necessary from a theoretical point of view. But computing the

prolongation operators requires a projection into the feasible set, and therefore Assumption 1 is

needed from a practical point of view. We note that many open problems satisfy Assumption

1, including MAX-CUT (Caprara, 2008), partitioning (van Dam & Sotirov, 2015), and generic

polynomial 0/1 programs (Lasserre, 2016).

The principal theoretical contribution of this work is to provide insight into the relationship

between different relaxation orders. In particular, Section 3 establishes connections between the

input data of relaxations of different orders. We then develop our operators for both the primal

and dual variables and establish the feasibility characteristics of the prolongated variables. From

a practical point of view, the proposed operators can be used to construct an initial point for

an optimization algorithm. In Section 5, we show that the calculation of initial points using
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our operators can improve the solution times of interior point methods when they are used in

combination with a warm start strategy.

2 Notation

Given a real-valued polynomial function f : Rn → R of degree d, let the monomial xα1
1 xα2

2 . . . xαn
n

be denoted by xα and its coefficient by bα, where α ∈ Nn. If Γnd = {α ∈ Nn :
∑

i αi ≤ d}, then

any polynomial of degree at most d can be written as f(x) =
∑

α∈Γn
d
bαx

α. The support of f is

defined by supp(f) = {α ∈ Γnd : bα 6= 0}. Let u(x,Γnd ), be a column vector with the monomials

xα for α ∈ Γnd . The size of the vector u (x,Γnd ) is equal to
(
n+d
d

)
= (n+d)!

n!d! , and will be denoted

by g(n, d). We will assume without loss of generality that this vector has the following structure

u(x,Γnd ) = [1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x

2
2, x2x3, . . . , x

2
n, . . . , x

d−1
n , xd1, x

d−1
1 x2, . . . , x

d
n]>.

Remark 2.1. Note that u (x,Γnd ) can be written u (x,Γnd )> = [u
(
x,Γnd−1

)>
, xd1, x

d−1
1 x2, . . . , x

d
n].

If Q ∈ Rr1×r2 is a matrix, then the element in position (i, j) will be denoted by [Q]i,j (if r1 = 1

or r2 = 1, the ith element of the vector will be denoted by [Q]i). Likewise, if Q1, Q2 ∈ Rr1×r2

are two matrices we will use the usual inner product 〈Q1, Q2〉 =
∑

1≤i≤r1
∑

1≤j≤r2 [Q1]i,j [Q2]i,j

and its induced norm ‖Q‖2 = 〈Q,Q〉. Diag(x1, x2, . . . , xn) is the function returning a diagonal

matrix of dimensions n × n with xi in the entry (i, i) for i = 1, 2, . . . , n. For any symmetric

matrix Q ∈ Rr×r, Q � 0 (� 0) means that Q is positive semidefinite (resp., definite). For

any symmetric matrix Q ∈ Rr×r define λi(Q) as the ith largest eigenvalue of Q, i.e., λ1(Q) ≤

λ2(Q) ≤ · · · ≤ λr(Q). For any symmetric matrix Q ∈ Rr×r, denote ΩQ ∈ Rr×r as the matrix

such that Q = ΩQDiag(λ1(Q), λ2(Q), . . . , λr(Q))Ω>Q (eigenvalue decomposition). Finally, define

Λ(Q, ε), as the number of eigenvalues of the symmetric matrix Q that are smaller than ε ∈ R.
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3 SDP Relaxations for POP

We use the relaxations formulated in Lasserre (2001) to find an approximate solution for problem

(2). This section briefly describes such relaxations for constrained polynomial problems and

studies some of their properties.

3.1 Lasserre Hierarchy

Consider the POP

p? := min
x∈Rn

f(x)

s.t. hi(x) ≥ 0, i = 1, 2, . . . ,m,

(2)

where f and hi (i = 1, 2, . . . ,m), are n-dimensional polynomial functions with degrees d, d1, d2, . . . , dm

respectively. Writing f(x) =
∑

α bαx
α and since zz> is always positive semidefinite for any real

vector, we can obtain the following equivalent problem,

p? := min
x∈Rn

∑
α∈Fw

bαx
α

s.t. u(x,Γnw)u(x,Γnw)> � 0,

u(x,Γn
w−d̃i

)u(x,Γn
w−d̃i

)>hi(x) � 0, i = 1, 2, . . . ,m,

(3)

where Fw = Γn2w \ {[0, 0, . . . , 0]>}, d̃ = dd/2e, d̃i = ddi/2e (i = 1, 2, . . . ,m), and w a positive

integer such that w ≥ wmin with wmin = max{d̃, d̃1, d̃2, . . . , d̃m}. Replacing the monomial xα by

the real variable yα we obtain the Lasserre wth order relaxation

σw := inf
y

∑
α∈Fw

bαyα

s.t. Mw(y) � 0,

Mw−d̃i(hiy) � 0, i = 1, 2, . . . ,m,

(4)

where Mw(y) and Mw−d̃i(hiy) (i = 1, 2, . . . ,m) are the square matrices obtained by replacing all

the monomials xα by the real variable yα in u(x,Γnw)u(x,Γnw)> and u(x,Γn
w−d̃i

)u(x,Γn
w−d̃i

)>hi(x),
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respectively. The matrices Mw(y) and Mw−d̃i(hiy) are called the moment matrix of order w and

the localizing matrix, respectively.

The dual of this problem can be written as

σdw := sup
X,Zi

−[X]1,1 −
m∑
i=1

hi(0)[Zi]1,1

s.t. 〈Awα, X〉+
m∑
i=1

〈
Bw
i,α, Zi

〉
= bα, α ∈ Fw,

X, Zi � 0, i = 1, 2, . . . ,m,

(5)

where hi(0) is the monomial of degree zero in the polynomial function hi, i.e., the constant

term, and the matrices Awα and Bw
i,α are such that Mw(y) =

∑
α∈Γn

2w
Awαyα, and Mw−d̃i(hiy) =∑

α∈Γn
2w
Bw
i,αyα, with yα = 1 for α = [0, 0, . . . , 0]>.

It is possible to prove that under some assumptions over the feasible set {x ∈ Rn : hi(x) ≥

0, i = 1, 2, . . . ,m}, the difference between the optimal value p? and σw tends to zero as the level

of the relaxation w increases. The next theorem formalizes this idea.

Theorem 3.1. Assume that K = {x ∈ Rn : hi(x) ≥ 0, i = 1, 2, . . . ,m} is compact and there

exits a real-valued polynomial v(x) : Rn 7→ R such that {x : v(x) ≥ 0} is compact, and

v(x) = v0(x) +
m∑
i=1

hi(x)vi(x) for all x ∈ Rn,

where the polynomials vi(x) are all sum of squares, i = 0, 1, 2 . . . ,m.

Then,

(a) (Lasserre, 2001) As w → ∞ one has that σw → p?. Moreover, for w sufficiently large,

there is no duality gap between problems (4) and (5) if K has a non-empty interior.

(b) (Schweighofer, 2005) If the POP (2) has a unique minimizer x? = [x?1, x
?
2, . . . x

?
n]> and

yw = {ywα}α∈Fw is a solution of the primal SDP relaxation (4), then as w → ∞ one has

that ywej → x?j , where ej ∈ Rn is the unit vector with 1 in position j.

Proof. (a) See Theorem 4.2 in Lasserre (2001).
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(b) See Corollary 3.5 in Schweighofer (2005).

Remark 3.1. Although the result above guarantees convergence as w tends to infinity, in

practice it is very common to get the solution of the POP using a small value of w and in some

cases finite convergence can be proved (see for example Lasserre (2002) for finite convergence

in {0, 1} POPs, Lasserre (2009) and De Klerk and Laurent (2011) for finite convergence in the

convex case, and Nie (2014) for the general non-linear case).

3.2 Properties of the SDP relaxations

This section studies the properties of the SDP relaxations (4) and (5). In particular, we want to

relate the parameters Aw−1
α and Bw−1

i,α (i = 1, 2, . . . ,m) for different values of w. To understand

the relation between two levels in the hierarchy consider the following example.

Example 3.1. Let f(x) = 4x2 − 2x and h1(x) = 3− x2. In this case d = d1 = 2. The moment

and localizing moment matrices for w = 1 and w = 2 are:

• Mw: M1(y) =

 1 y[1]

y[1] y[2]

 , M2(y) =


1 y[1] y[2]

y[1] y[2] y[3]

y[2] y[3] y[4]

 .

• Mw−1(h1y): M0(h1y) = [3− y[2]], M1(h1y) =

 3− y[2] 3y[1] − y[3]

3y[1] − y[3] 3y[2] − y[4]

.

Then, it is easy to see that the first and second order SDP relaxations are given by the

following parameters:

• bα: b[1] = −2, b[2] = 4, bα = 0 if α /∈ {[1], [2]}.

• A1
α: A1

[0] =

1 0

0 0

 , A1
[1] =

0 1

1 0

 , A1
[2] =

0 0

0 1

.

• A2
α: A2

[0] =


1 0 0

0 0 0

0 0 0

 , A2
[1] =


0 1 0

1 0 0

0 0 0

 , A2
[2] =


0 0 1

0 1 0

1 0 0

 , A2
[3] =


0 0 0

0 0 1

0 1 0

 , A2
[4] =
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
0 0 0

0 0 0

0 0 1

.

• B1
α: B1

1,[0] =
[
3
]
, B1

1,[1] =
[
0
]
, B1

1,[2] =
[
−1
]
.

• B2
α: B2

1,[0] =

3 0

0 0

 , B2
1,[1] =

0 3

3 0

 , B2
1,[2] =

−1 0

0 3

 , B2
1,[3] =

 0 −1

−1 0

 , B2
1,[4] =0 0

0 −1

.

Note that the matrices A1
[1] and A1

[2] are the 2nd order leading principal sub-matrices of the

matrices A2
[1] and A2

[2] respectively. Similarly, B1
1,[0], B

1
1,[1] and B1

1,[2] are the 1st order leading

principal sub-matrices of the matrices B2
1,[0], B

2
1,[1] and B2

1,[2] respectively. Also, the entries of

the 2nd and 1st order leading principal sub-matrices of A2
[3], A

2
[4], and B2

1,[3], B
2
1,[4] respectively,

are all zero. Finally, notice that bα = 0 for any α such that
∑n

i=1 αi > 2. The next lemma

formalizes the observations made above.

Lemma 3.1. If w̃ ≥ wmin, then the SDP relaxations (4) and (5) of order w = w̃ and w = w̃+1

satisfy:

(a) bα = 0 for any α such that
∑n

i=1 αi > 2wmin.

(b) For any α ∈ Γn2w̃ the g(n, w̃)th order leading principal sub-matrix of Aw̃+1
α is equal to

Aw̃α, and the g(n, w̃− d̃i)th order leading principal sub-matrix of Bw̃+1
i,α is equal to Bw̃

i,α for

i = 1, 2, . . . ,m.

(c) For any α ∈ Γn2w̃+1 \Γn2w̃, the entries of the g(n, w̃)th order leading principal sub-matrix of

Aw̃+1
α and the g(n, w̃ − d̃i)th order leading principal sub-matrix of Bw̃+1

i,α (i = 1, 2, . . . ,m),

are equal to zero.

Proof. (a) Given that the degree of f is d and 2wmin ≥ d, any monomial of degree greater than

2wmin must have a zero coefficient.

To prove (b) and (c), first note that according to Remark 2.1 we have
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u(x,Γnw+1)u(x,Γnw+1)> = [u (x,Γnw)> , xw+1
1 , . . . , xw+1

n ]>[u (x,Γnw)> , xw+1
1 , . . . , xw+1

n ]

=

 u(x,Γnw)u(x,Γnw)> u(x,Γnw)[xw+1
1 , . . . , xw+1

n ]

[xw+1
1 , . . . , xw+1

n ]>u(x,Γnw)> [xw+1
1 , . . . , xw+1

n ]>[xw+1
1 , . . . , xw+1

n ]


(6)

Also, we constructed Mw(y) and Mw−d̃i(hiy) by replacing every monomial xα for the real

variable yα in u(x,Γnw+1)u(x,Γnw+1)> and u(x,Γn
w−d̃i

)u(x,Γn
w−d̃i

)>hi(x) respectively; and that

Awα, Bw
i,α are such that Mw(y) =

∑
α∈Γn

2w
Awαyα and Mw−d̃i(hiy) =

∑
α∈Γn

2w
Bw
i,αyα. Using these

facts and Equation (6) we have that,

Mw̃+1(y) =
∑

α∈Γn
2(w̃+1)

Aw̃+1
α yα =

Mw̃(y) Q1(y)

Q1(y)> Q2(y)

 =

∑α∈Γn
2w̃
Aw̃αyα Q1(y)

Q1(y)> Q2(y)

 , (7)

where Q1(y) and Q2(y) are the matrices obtained by replacing the monomials xα for the real

variable yα in the matrices [xw+1
1 , . . . , xw+1

n ]>u(x,Γnw)> and [xw+1
1 , . . . , xw+1

n ]>[xw+1
1 , . . . , xw+1

n ],

respectively. Using the same reasoning, we obtain

M(w+1)−d̃i(hiy) =
∑

α∈Γn
2(w̃+1)

Bw̃+1
i,α yα =

∑α∈Γn
2w̃
Bw̃
i,αyα Q̃1(y)

Q̃1(y)> Q̃2(y)

 , (8)

where again the matrices Q̃1(y) and Q̃2(y) are obtained by replacing the monomials xα by

the real variable yα in the matrix [x
(w̃+1)−d̃i
1 , . . . , x

(w̃+1)−d̃i
n ]>u(x,Γn

w̃−d̃i
)>hi(x) and the matrix

[x
(w̃+1)−d̃i
1 , . . . , x

(w̃+1)−d̃i
n ]>[x

(w̃+1)−d̃i
1 , . . . , x

(w̃+1)−d̃i
n ]hi(x), respectively.

(b) Using Equations (7) and (8), is easy to see that
∑

α∈Γn
2w̃
Aw̃αyα and

∑
α∈Γn

2w̃
Bw̃
i,αyα corre-

spond to the g(n, w̃)th and g(n, w̃−d̃i)th order leading principal sub-matrices of
∑

α∈Γn
2(w̃+1)

Aw̃+1
α yα

and
∑

α∈Γn
2(w̃+1)

Bw̃+1
i,α yα respectively, from where statement (b) follows.

(c) Notice that
∑

α∈Γn
2w̃
Aw̃αyα does not contain any yα for α :

∑
αj > 2w̃+1 (or equivalently,

any yα for α ∈ Γn2w̃+1 \ Γn2w̃ is multiplied by a zero matrix). Given statement (b), we can

conclude then that the g(n, w̃)th order leading principal sub-matrix of Aw̃+1
α is zero for any

α ∈ Γn2w̃+1 \Γn2w̃. A similar argument can be made for the g(n, w̃− d̃i)th order leading principal
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sub-matrix of Bw̃+1
i,α yα for α ∈ Γn2w̃+1 \ Γn2w̃.

4 Prolongation Operators

Given w̃ ≥ wmin = max{d̃, d̃1, d̃2, . . . , d̃m}, we will define prolongation operators to relate any

point in the SDP relaxations (4) and (5) of order w = w̃, to the SDP relaxation of order

w = w̃ + 1. We will refer to the w̃th SDP space relaxation problem and variables as the coarse

problem (or coarse relaxation) and coarse variables. Similarly, we will refer to the (w̃ + 1)th

SDP space relaxation problem and variables as the fine problem (or fine relaxation) and fine

variables.

For any order w ≥ wmin, we will denote the primal variables for the wth order relax-

ation (4) as yw ∈ R|Fw| with yw = {ywα}α∈Fw , and the dual variables of the relaxation (5)

as Xw ∈ Rg(n,w)×g(n,w), and Zw ∈ Rg(n,w−d̃1)×g(n,w−d̃1) × · · · × Rg(n,w−d̃m)×g(n,w−d̃m) with

Zw = (Zw1 , Z
w
2 , . . . , Z

w
m).

For (yw, Xw, Zw) we define the dual residuals at the point (Xw, Zw) (rwα(Xw, Zw)) as

rwα(Xw, Zw) := 〈Awα, Xw〉+
m∑
i=1

〈
Bw
i,α, Z

w
i

〉
− bα, (9)

for α ∈ Fw.

4.1 Primal Prolongation Operator

By inspecting the hierarchy, we notice that the number of primal and dual matrices do not

change from the coarse to the fine relaxations. Instead the matrix dimensions increase from one

level to the next. For the primal variables we will define a non-linear operator.

Let projK(x) be the projection operator onto the set K = {x ∈ Rn : hi(x) ≥ 0, i =

1, 2, . . . ,m}, i.e.,

projK(x) := arg minz∈K ‖x− z‖2, (10)
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and define Πw : Rn 7→ R|Fw+1| as

[Πw(x)]α := xα1
1 xα2

2 . . . xαn
n ,α ∈ Fw+1, (11)

for any x ∈ Rn.

Using Equations (10) and (11), we define a non-linear operator Pwy : R|Fw| 7→ R|Fw+1| for

any primal point yw ∈ R|Fw| by

Pwy (yw) := Πw(projK([ywe1 , y
w
e2 , . . . , y

w
en ]>)) (12)

where ej ∈ Rn is a unit vector with 1 in position j.

Theorem 4.1. Let w̃ ≥ wmin and yw̃ a point (not necessarily feasible) of the SDP relaxation

of order w = w̃ defined in (4). If yw̃+1 = P w̃y (yw̃) is defined according to prolongation operator

(12) for w = w̃, then yw̃+1 is feasible for the primal SDP relaxation (4) of order w = w̃ + 1.

Proof. To prove that Mw̃+1(P w̃y (yw̃)) is positive semidefinite, notice that for any x ∈ Rn we have

that Mw̃+1(Πw̃(x)) = u([x,Γn2(w̃+1)])u([x,Γn2(w̃+1)])
>, we can conclude that Mw̃+1(P w̃y (yw̃)) =

Mw̃+1(Πw̃(projK([ywe1 , y
w
e2 , . . . , y

w
en ]>))) � 0 by using the fact that zz> is positive semidefinite for

any real vector z.

Similarly, to prove the positive semidefiniteness of the localizing matrices notice that for

any x ∈ Rn we have M(w̃+1)−d̃i(hiΠ
w̃(x)) = M(w̃+1)−d̃i(Π

w̃(x))hi(x). Therefore, given that

M(w̃+1)−d̃i(P
w̃
y (yw̃)) is positive semidefinite (we can write it as u([x,Γn2(w̃+1)])u([x,Γn2(w̃+1)])

>

with x = projK([ywe1 , y
w
e2 , . . . , y

w
en ]>)), and hi(projK([ywe1 , y

w
e2 , . . . , y

w
en ]>)) ≥ 0 (the projection

over K guarantees this), we can conclude that M(w̃+1)−d̃i(hiΠ
w̃(projK([ywe1 , y

w
e2 , . . . , y

w
en ]>)) is

positive semidefinite.

4.2 Dual Prolongation Operator

As already mentioned, the number of dual matrices in the coarse and fine relaxations is m,

i.e., the number constraints in the dual relaxation, but the size of the matrices is larger in the

11



fine problem. In this case, the prolongation will be constructed by using the coarse matrices

as the leading principal sub-matrices of the fine matrices. In particular, for any w ≥ wmin =

max{d̃, d̃1, d̃2, . . . , d̃m} let PwX : Rg(n,w)×g(n,w) 7→ Rg(n,w+1)×g(n,w+1) be the prolongation opera-

tor for the coarse variable Xw, and PwZ : Rg(n,w−d̃1)×g(n,w−d̃1) × · · · × Rg(n,w−d̃m)×g(n,w−d̃m) 7→

Rg(n,(w+1)−d̃1)×g(n,(w+1)−d̃1)×· · ·×Rg(n,(w+1)−d̃m)×g(n,(w+1)−d̃m) be the prolongation operator for

the coarse variable Zw. If Xw+1 = PwX (Xw) and Zw+1 = (Zw+1
1 , Zw+1

2 , . . . , Zw+1
m ) = PwZ (Zw)

then

Xw+1 = PwX (Xw) =

Xw 0

0 0

 , (13)

Zw+1
i = [PwZ (Zw)]i =

Zwi 0

0 0

 , i = 1, 2, . . . ,m, (14)

where 0’s are zero matrices of appropriate size. The next theorems characterize the feasibility

of any prolongated coarse dual point (Xw, Zw).

Theorem 4.2. Let w̃ ≥ wmin and (Xw̃, Zw̃) a point (not necessarily feasible) of the dual SDP

relaxation (5) of order w = w̃. If Xw̃+1 = P w̃X (Xw̃) and Zw̃+1 = P w̃Z (Zw̃) are defined according

to equations (13) and (14) with w = w̃ respectively, then for any α ∈ F w̃+1 we have

rw̃+1
α (Xw̃+1, Zw̃+1) =


rw̃α(Xw̃, Zw̃), if α ∈ F w̃,

0, otherwise,

(15)

where rw̃α(Xw̃, Zw̃) is the dual residual defined in Equation (9).

Proof. Note that

〈
Aw̃+1

α , Xw̃+1
〉

=
∑

1≤i,j≤g(n,w̃+1)

[Aw̃+1
α ]i,j [X

w̃+1]i,j

=
∑

1≤i,j≤g(n,w̃+1)

[Aw̃+1
α ]i,j [P

w̃
X (Xw̃)]i,j

=
∑

1≤i,j≤g(n,w̃)

[Aw̃+1
α ]i,j [X

w̃]i,j

12



=
∑

1≤i,j≤g(n,w̃)

[Aw̃α]i,j [X
w̃]i,j =

〈
Aw̃α, X

w̃
〉
,

where we used the fact that according to Equation (13), [Xw̃+1
k ]i,j = [P w̃X (Xw̃)]i,j = 0 for any

i, j > g(n, w̃), and Lemma 3.1 (b) to replace Aw̃+1
α by Aw̃α. Similarly, using Equation (14) and

the second part of Lemma 3.1 (b) we can deduce that
〈
Bw̃+1
i,α , Zw̃+1

i

〉
=
〈
Bw̃
i,α, Z

w̃
i

〉
. Then, if

α ∈ F w̃, we can write rw̃+1
α as

rw̃+1
α (Xw̃+1, Zw̃+1) =

〈
Aw̃+1

α , Xw̃+1
〉

+
m∑
i=1

〈
Bw̃+1
i,α , Zw̃+1

i

〉
− bα

=
〈
Aw̃α, X

w̃
〉

+
m∑
i=1

〈
Bw̃
i,α, Z

w̃
i

〉
− bα = rw̃α(Xw̃, Zw̃).

Likewise, if α /∈ F w̃, then bα = 0 as
∑

i αi > 2wmin (Lemma 3.1 (a)), and
〈
Aw̃+1

α , Xw̃+1
〉

= 0

and
〈
Bw̃+1
i,α , Zw̃+1

i

〉
= 0 for any i = 1, 2, . . . ,m (Lemma 3.1 (c)). Hence,

rw̃+1
α (Xw̃+1, Zw̃+1) =

〈
Aw̃+1

α , Xw̃+1
〉

+
m∑
i=1

〈
Aw̃+1
i,α , Zw̃+1

i

〉
− bα = 0− bα = 0.

Lemma 4.1. Under the assumptions of Theorem 4.2, if (Xw̃, Zw̃) is also a feasible point of the

dual SDP relaxation of order w = w̃ defined in (5), then

(a) Xw̃+1, Zw̃+1
i � 0, for i = 1, 2, . . . ,m.

(b) rw̃+1
α (Xw̃+1, Zw̃+1) = 0 for any α ∈ F w̃+1.

Proof. (a) Using the fact that Xw is feasible, we have that Xw̃ � 0 and therefore if z ∈ Rg(n,w̃+1)

we have that

z>Xw̃+1z = z>

Xw̃ 0

0 0

 z

= [z1, z2, . . . , zg(n,w̃)]X
w̃[z1, z2, . . . , zg(n,w̃)]

>

≥ 0.

13



Hence, Xw̃+1
l is positive semidefinite. The same argument applies to Zw̃+1

i for i = 1, 2, . . . ,m.

(b) This statement follows by using Theorem 4.2 and noticing that rw̃α(Xw̃, Zw̃) = 0 for any

α ∈ F w̃ because (Xw̃, Zw̃) is feasible for the coarse problem.

4.3 Duality gap of prolongated variables

This section assumes the conditions of Theorem 3.1 are satisfied by the POP in (2). The next

result guarantees that the duality gap of the prolongated coarse solutions tends to zero as the

order of the relaxation goes to infinity.

Theorem 4.3. Assume that the POP (2) has a compact feasible set and a unique solution x?

with global minimum p? =
∑

α bα (x?)α. Furthermore, let w0 ∈ N be such that for any w ≥ w0

the wth order SDP relaxations defined in problems (4) and (5), are solvable and have zero

duality gap (note that w0 exists according to Theorem 3.1). For w ≥ w0, let yw and (Xw, Zw)

be a primal and a dual optimal solution for the SDP relaxations of order w respectively. If the

operators defined in equations (12), (13) and (14) are used to prolongate these solutions to the

level w + 1, then the duality gap of the prolongated points tends to zero as w tends to infinity,

i.e.,

∑
α∈Fw+1

bα[Pwy (yw)]α −

(
−[PwX (Xw)]1,1 −

m∑
i=1

hi(0)[PwZ (Zw)i]1,1

)
→ 0 as w →∞.

Proof. Using the prolongation operators defined in Equations (13) and (14), the objective func-

tion of the dual relaxation can be written as

−[PwX (Xw)]1,1 −
m∑
i=1

hi(0)[PwZ (Zw)i]1,1 = −[Xw]1,1 −
m∑
i=1

hi(0)[Zwi ]1,1. (16)

Hence, using the fact that
∑

α∈Fw bwαy
w → p? as w → ∞ (Theorem 3.1 (a)), the zero duality

gap of the relaxation, and Equation (16), we can deduce that

−[PwX (Xw)]1,1 −
m∑
i=1

hi(0)[PwZ (Zw)i]1,1 → p? as w →∞. (17)
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Now, notice that projK([ywe1 , . . . , y
w
en ]>) → x? as w → ∞ because projK(x?) = x? and

ywei → x?i as w → ∞ for i = 1, 2, . . . , n (Theorem 3.1 (b)). Therefore, using Theorem 3.1 (a),

Lemma 3.1 (a) and Equation (11), we have that

∑
α∈Fw+1

bα[Pwy (yw)]α =
∑

α∈Fw

bα[Πw(projK([ywe1 , . . . , y
w
en ]>)]α →

∑
α∈Fw

bα(x?)α = p?, as w →∞.

(18)

Finally, using Equations (17) and (18) we notice that both the primal and dual objective

functions evaluated on the prolongated points converges to p? as w → ∞ and therefore their

difference convergences to zero as w →∞.

5 Numerical Experiments

The Section 4 results suggest that to solve the (w + 1)th relaxation we can use the operators

(12), (13) and (14), along with the solution of the wth relaxation to provide an initial starting

point. Like in the previous sections, we will call the relaxation of order w the coarse relaxation

or problem and its variables coarse variables. Similarly, the (w + 1)th SDP relaxation will be

referred to as the fine relaxation or problem, with fine variables. According to Theorem 4.1

and lemma 4.1, the prolongated points have zero infeasibility in the fine level. Theorem 4.3

indicates that, for any ε > 0, we can find a w such that the duality gap of the prolongated

points is smaller than ε. This section illustrates how the operators can be used with an interior

point method to solve the (w + 1)th SDP relaxation.

As indicated in the introduction, our operators assume that the feasible set of the POP is such

that calculating the projection of any point onto the set is “easy”. Here we consider numerical

examples where the only constraints are x ∈ {0, 1}n or x ∈ {−1, 1}n. These constraints can

easily be written as polynomials and the projection of any point can be calculated in closed form.

For example, the constraint x ∈ {0, 1}n is equivalent to x2
i − xi = 0, i = 1, 2, . . . n (note that

these equalities can be replaced by double inequalities), and the projection from box bounds

onto the feasible set can be calculated as,
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[proj{0,1}n(x)]i =


0, if xi ≤ 0.5,

1, if xi > 0.5.

When the POP only has integer constraints {0, 1} (or {−1, 1}), the SDP relaxations can be

transformed into an equivalent smaller SDP problem (Lasserre, 2002). For {0, 1} POPs, the

primal SDP relaxation (4) can be reduced by first eliminating the constraints Mw−d̃i(hiy) � 0

(i = 1, 2, . . . ,m), then replacing every variable yα by the variable yβ with βi = 1 if αi ≥ 1, and

finally deleting the kth column and row of the resulting moment matrix Mw(y) if [Mw(y)]1,k =

[Mw(y)]1,l for some l < k (a similar reduction can be done for the {−1, 1} case). Let b̃α and

M̃w(y) ∈ γw×γw be the vector and matrix obtained using the procedure described above. Then

the reduced relaxation is given by

σw := inf
y

∑
α∈Fw

b̃αyα

s.t. M̃w(y) � 0,

(19)

with the dual

σdw := sup
X
−[X]1,1

s.t.
〈
Ãwα, X

〉
= bα, α ∈ Fw,

X � 0,

(20)

where M̃w(y) =
∑

α∈Γn
2w
Ãwαyα.

The result obtained in Lemma 3.1 literal (a) is still valid for these reduced SDP relaxations,

and a similar property to Lemma 3.1 literals (b) and (c) can also be proved for the matrices Ãwα.

In particular, if Ãwα has dimensions γw × γw, then for any α ∈ Γn2w̃ we have that Ãwα is the γthw

order leading principal sub-matrix of Ãw+1
α ; and for any α ∈ Γn2(w̃+1) \Γn2w̃ the entries of the γthw

order leading sub-matrix of Ãw+1
α are equal to zero.

The prolongation operators can still be used for these new problems. For the primal relax-

ation, we use the prolongation defined in equation (12). The dual variableXw will be prolongated

using the same idea used in equation (13), i.e., if the variable Xw has dimensions γw × γw then
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P̃X : Rγw×γw 7→ Rγw+1×γw+1 is defined by

P̃X(Xw) :=

Xw 0

0 0

 . (21)

Notice that all the results proved in Theorems 4.1 and 4.3 and lemma 4.1, are still valid

for the new hierarchy, and therefore, after prolongating a feasible coarse point, the new point

is feasible in the fine SDP space, and the duality gap obtained for prolongated coarse optimal

points tends to zero as the order of the relaxation gets larger.

As mentioned in Remark 3.1, it is possible to prove that the Lasserre hierarchy has finite

convergence for the {0, 1} and {−1, 1} POP (see Theorem 3.2 in Lasserre (2002)). Furthermore,

for all the problems we find the underlying POP solution using relaxation orders w ≥ wmin

smaller than the ones predicted by the theory. Therefore, to solve the original POP we can solve

in a sequential manner the sparse SDP relaxations starting with w = wmin = max{d̃, d̃1, . . . , d̃m}

and increasing the relaxation order until a solution or approximate solution is found. If a solution

is found by solving the SDP relaxation of order w > wmin, this procedure implies solving the

relaxation of order wmin, wmin +1, . . . , w. The idea is to exploit the information calculated when

solving the lower order relaxations to solve the relaxation of order w using the operators defined

in the previous section.

Consider the following benchmark test problems:

• Quadratic optimization {0, 1}: given li ∈ R (i = 1, 2, . . . , n) and ki,j ∈ R (1 ≤ i, j ≤ n)

the problem is

min
x∈Rn

n∑
i=1

lix
2
i +

∑
i<j

ki,jxixj

s.t. x2
i − xi = 0, i = 1, 2, . . . , n.

• MAX-CUT: given a graph G(V,E) with nodes V = {V1, V2, . . . , Vn}, a set of edges E =

{(i, j) : 1 ≤ i, j,≤ n, if i is connected to j}, and a symmetric matrix W with [W ]i,j 6= 0 if
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(i, j) ∈ E and zero otherwise, this problem can be written as

max
x∈Rn

x>Lx

s.t. x2
i = 1, i = 1, 2, . . . , n,

where L = Diag([W1n]1,1, [W1n]2,2, . . . , [W1n]n,n)−W , and 1n ∈ Rn is a vector of ones.

• Partitioning an integer sequence: given an integer vector a ∈ Nn, the problem consists in

determining if there exists a vector x ∈ {−1, 1}n such that a>x = 0, i.e.,

min
x∈Rn

(a>x)2

s.t. x2
i = 1, i = 1, 2, . . . , n.

We generate 100 quadratic {0, 1} POPs, by selecting the coefficients li, ki,j uniformly from

the interval [−1, 1] using n = 10 and n = 20, i.e., a total of 200 problems. Similarly, we

generate 100 random MAX-CUT problems selecting the weights wi,j uniformly from the interval

[0, 1] and another 100 with weights between [−1, 1], using n = 10 and n = 20, i.e., a total

of 400 problems1. For the integer partitioning POP we generate 100 sequences of the form

a = [a1, a2, . . . an/2, a1, a2, . . . , an/2], by uniformly selecting each a1, a2, . . . , an/2, from the integer

set {1, 2, . . . , 100} for n = 10 and n = 14 (note that the structure of the vector a guarantees

that the problem always has a solution).

We use the MATLAB code SparsePOP version 3.00 (Waki, Kim, Kojima, Muramatsu, &

Sugimoto, 2008) to generate the SDP relaxations as well as the MAX-CUT problems (we change

the lines 22 and 33 in the file genMAXCUT.m to obtain weights between [0, 1] and [−1, 1] as the

original code generates integer weights between [−100, 100]). The POPs used in this work do not

have a unique solution and therefore the results of Theorem 4.3 do not apply. Following Waki

et al. (2006), we perturbed the polynomial objective function by adding a small linear term to

guarantee a unique solution (see Section 5.1 Waki et al. (2006) for more details), in particular we

1We also used MAX-CUT problems with integer weights for the experiments but did not find any significant
change in the results compared with the non-integer case.

18



set the parameter param.perturbation in SparsePOP equal to 10−4 for the integer partitioning

problem and 10−6 for the Quadratic and the MAX-CUT problems. To solve the resulting SDP

relaxations we use the infeasible interior point method implemented in SDPT3 version 4.0 (Toh,

Todd, & Tütüncü, 2012), SeDuMi version 1.0 (Sturm, 1999), and Mosek version 8.1.0 (we used

CVX 2.1 as interface to call Mosek). The tolerance for the three solvers was set to 10−7. All

the experiments are done in MATLAB version 2017a in an Intel Core i7-6700 CPU @ 3.40GHz

Ubuntu 16.04 workstation with 16 GB of RAM.

Let yw be the primal relaxation solution of order w, y1
w = [ywe1 , . . . , y

w
en ] (ej ∈ Rn is a unit

vector with 1 in position j), and (y1
w)α = (ywe1)α1 , . . . , (ywen)αn . Then, for each problem we

solve the relaxation of order w = 1, 2, . . . , until we find a relaxation that solves the original

POP, i.e., until σw =
∑

α bα(y1
w)α and y1

w is feasible for the POP. For the Quadratic and

the MAX-CUT problems, we consider a POP solved by the SDP relaxation of order w if |σw −∑
α bα(y1

w)α|/max{1, |
∑

α bα(y1
w)α|} < 10−5, and if maxi{|(ywei)

2 − ywei |} < 10−2 for the

Quadratic POP or maxi{|(ywei)
2 − 1|} < 10−2 for the MAX-CUT. For the integer partitioning

problem, we scale the problem by using a/‖a‖ instead of a, and considered a POP solved when

|
∑

α bα(y1
w)α − 0| < 10−5 (here we use the fact that the minimum of the POP is zero) and

maxi{|(ywei)
2 − 1|} < 10−2.

Table 1 shows that the Quadratic and the MAX-CUT problems required at most the second

order relaxation to find a solution of the original POP. The integer partitioning problem with

10 polynomial variables needed the third order relaxation for 36 of the POPs, while for 72 of the

problems with 14 variables we calculated at least the fourth order relaxation to find a solution

(unfortunately for these relaxations the time needed to solve the SDP problem was larger than

2.5 hours for SeDuMi and 18 hours for SDPT3 making the calculation for all the POPs time

consuming). Additionally, if yw is the primal solution of the wth order relaxation, the table

also shows for how many of the problems that needed the (w + 1)th order of the relaxation,

the vector projK([ywe1 , . . . , y
w
en ]) was a solution of the original POP. The results indicate for

the Quadratic and the MAX-CUT problems, if we are only concerned about the POP solution

or bound independent if we found the solution of the relaxation that solves the POP, a good

strategy before solving higher order relaxations is to check first the projection of the solution
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provided by coarser SDP relaxation levels.

Table 1: Number of POPs solved by level of the SDP relaxation (if (yw, Xw) ∈ (Rmw ,Rγw×γw)
then the dimensions of the SDP relaxation mw, γw are in parenthesis), POPs not solved by
relaxation of order w but solved by projK([ywe1 , . . . , y

w
en ])

.
(a) Quadratic {0, 1}.

Number of polynomial variables n=10 n=20
Total POPs 100 100
# POPs solved by relaxation order w = 1 16 (55, 11) 0 (210, 21)
# POPs solved by relaxation order w = 2 84 (385, 56) 100 (6195, 211)
# POPs solved by projK([y1

e1 , . . . , y
1
en ]) 75 48

(b) MAX-CUT: weights in [0, 1] interval.

Number of polynomial variables n=10 n=20
Total POPs 100 100
# POPs solved by relaxation order w = 1 0 (55, 11) 0 (210, 21)
# POPs solved by relaxation order w = 2 100 (385, 56) 100 (6195, 211)
# POPs solved by projK([y1

e1 , . . . , y
1
en ]) 28 0

(c) MAX-CUT: weights in [−1, 1] interval.

Number of polynomial variables n=10 n=20
Total POPs 100 100
# POPs solved by relaxation order w = 1 5 (55, 11) 0 (210, 21)
# POPs solved by relaxation order w = 2 95 (385, 56) 100 (6195, 211)
# POPs solved by projK([y1

e1 , . . . , y
1
en ]) 58 22

(d) Integer partition.

Number of polynomial variables n=10 n=14
Total POPs 100 100
# POPs solved by relaxation order w = 1 3 (55, 11) 2 (105, 15)
# POPs solved by relaxation order w = 2 61 (385, 53) 5 (1470, 106)
# POPs solved by relaxation order w = 3 36 (847, 176) 21 (6475, 470)
# POPs solved by projK([y1

e1 , . . . , y
1
en ]) 0 0

# POPs solved by projK([y2
e1 , . . . , y

2
en ]) 12 0

The next experiment uses the prolongation operators to provide initial points to SDPT3 to

solve the relaxation w > 1 for those problems where the first order relaxation does not provide a

solution for the original POP. If yw and Xw are the solutions found by SDPT3 of the primal and

dual wth order relaxation respectively for w > 1, then we prolongate these coarse solutions using

the operators defined in equations (12) and (21), and use these new fine points as initial guesses
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for SDPT3 to solve the relaxation of order w + 1. We call this method multilevel algorithm

or approach, and we compare it with default SDPT3, i.e., letting SDPT3 calculate the initial

points, SeDuMi, and Mosek.

The formulation used by SDPT3 includes an additional primal variable in the relaxation (19)

by replacing the constraint M̃w(y) � 0 by M̃w(y) = Sw and Sw � 0. Given that SDPT3 is an

infeasible interior point method, we need to provide positive definite matrices as starting points,

however, the matrices Sw+1 = M̃w(Pwy (yw)) and Xw+1 = P̃wX (Xw) are positive semidefinite

but not positive definite. We perturb these matrices by using an eigenvalue decomposition and

replacing the zero eigenvalues by a small positive number. Preliminary experiments using the

prolongated points to solve the fine relaxation showed that even when the prolongated matrices

were positive definite, the closer the point was to the boundary of the positive semidefinite

cone, the smaller the step sizes calculated by SDPT3 for the initial iterations, making the entire

algorithm very slow. We suspect that after the coarse solutions are prolongated, the new feasible

points are not close to the central path, which makes the algorithm take extra time getting

closer to the central path. This difficulty has been observed in the literature when interior point

methods have been combined with warm start strategies, and some approaches to solve this

issue has been proposed (see for example Benson and Shanno (2007); Skajaa, Andersen, and Ye

(2013)). More research is needed in this area to determine the relation between the prolongated

points and the central path2. We found that getting away of the boundary of the positive

semidefinite cone by making all the eigenvalues smaller than 10−3 equal to 10−3, was a good

trade-off between losing the prolongated points’ information and getting larger step sizes in the

interior point method. Additionally, for the multilevel method, we changed the early stops of

SDPT3 given by the parameter OPTIONS.stoplevel by setting it to zero and we increased the

tolerance of the early stop criteria for the infeasibility given in line 721 of the code sqlpmain.m

(we replaced 10−4 tolerance for 10−12). These changes in the code were done after observing

that for some problems the initial step was very small when using the prolongated points, which

2We also did preliminary experiments using SDPNAL+ (Yang et al. (2015)) as our base algorithm. However,
the use of the prolongated points did not show any significant improvement. One possible explanation for this
result is the fact that although SDPNAL+ and the ADMM algorithm developed in Wen et al. (2010) iterate in
the boundary of the semidefinite cone, the points at every iteration satisfy

〈
Xw+1, Sw+1

〉
= 0, which is not true

for the prolongated points.
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combined with the small infeasibilities made SDPT3 end prematurely (the same approach is

taken in Campos and Parpas (2018)).

Algorithm 1 provides a pseudo-code describing the multilevel method to solve the relax-

ation of order w + 1. We define IPM
(
{Ãw+1

α , bα}α∈Fw+1 , yw+1
0 , Xw+1

0 , Sw+1
0 , ε

)
as the func-

tion that uses an infeasible interior point method to solve the SDP problem with parameters

{Ãw+1
α , bα}α∈Fw+1 and initial points yw+1

0 , Xw+1
0 , Sw+1

0 , to a tolerance ε > 0.

Algorithm 1 Multilevel method to solve the (w+ 1)th order SDP relaxations (19) and (20) for
POPs with {0, 1} or {−1, 1} constraints.

Input: Prolongation operators Pwy and P̃wX defined in Equations (12) and (21), solutions yw

and Xw of the wth order SDP relaxations (19) and (20), parameters {Ãw+1
α , bα}α∈Fw+1 , and

ε > 0.
Procedure:

1: yw+1
0 ← Pwy (yw)

2: Xw+1
0 ← P̃wX (Xw)

3: Sw+1
0 ← M̃w(yw+1

0 )
4: tX ← Λ(Xw+1

0 , 10−3)
5: tS ← Λ(Sw+1

0 , 10−3)
6: if tX > 0 then
7: Xw+1

0 ← ΩXw+1
0

Diag(10−3, 10−3, . . . , 10−3, λtX+1(Xw+1
0 ), . . . , λγw+1(Xw+1

0 ))Ω>
Xw+1

0

8: end if
9: if tS > 0 then

10: Sw+1
0 ← ΩSw+1

0
Diag(10−3, 10−3, . . . , 10−3, λtS+1(Sw+1

0 ), . . . , λγw+1(Sw+1
0 ))Ω>

Sw+1
0

11: end if
12: (yw+1, Xw+1)← IPM

(
{Ãw+1

α , bα}α∈Fw+1 , yw+1
0 , Xw+1

0 , Sw+1
0 , ε

)
In our case we use SDPT3 as the infeasible IPM, and set the tolerance epsilon equal to

10−7. For those problems where the first order relaxation did not find the solution of the

POP, we calculated measures for primal infeasibility, dual infeasibility and the duality gap of

the prolongated points before and after the eigenvalue perturbation, i.e., we use SDPT3 to

find a solution to an accuracy of 10−7 for the SDP relaxation of order w and then calculate

the optimality measures for the points (yw+1, Sw+1, Xw+1) in Algorithm 1 lines 1 − 3, and

then again but using the matrices calculated in Algorithm 1 lines 7 and 10. Given a point

(yw+1, Sw+1, Xw+1) for the (w + 1)th order SDP relaxations (19) and (20) (not necessarily

feasible but satisfying the positive semidefinite constraints), we use the following measures:
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• Primal infeasibility:

pw+1
infeas :=

‖M̃w+1(yw+1)− Sw+1‖
(1 + γ0.5

w+1)
, (22)

where γw+1 is the dimension of the matrix M̃w+1(yw+1).

• Dual infeasibility:

dw+1
infeas :=

(∑
α∈Fw+1

(〈
Ãw+1

α , Xw+1
〉
− bα

)2
)0.5

(
1 +

(∑
α∈Fw+1 b2α

)0.5) . (23)

• Duality gap:

gapw+1 :=

〈
Xw+1, Sw+1

〉(
1 +

∑
α∈Fw+1 b̃αy

w+1
α − [Xw+1]1,1

) . (24)

For a tolerance ε > 0, SDPT3 will stop when it has found a point (yw+1, Sw+1, Xw+1) such

that max{pw+1
infeas, d

w+1
infeas, gapw+1} ≤ ε.

The average of the optimality measures for every SDP relaxation of order w > 1 are shown

in Table 2. The primal infeasibility is always zero and therefore we do not report it in the table

(Theorem 4.1). As expected, the dual infeasibility using the original prolongation points for the

fine relaxation is lower than the 10−7 tolerance required for the coarse relaxation (Theorem 4.2

and lemma 4.1). We observed that the magnitude of the duality gap is of the order of 10−2 to

10−1. Although these values are not close to the 10−7 accuracy required for our experiments,

they are smaller than the observed values achieved by the automatic initial points generated by

SDPT3, which for some problems can be of the 105 order. When the matrices of the prolongated

points are perturbed, the optimality measures for the primal and dual infeasibilities are increased

considerably, but they were still lower or at the same levels of the duality gap values. However,

as mentioned before, we found that it was necessary to sacrifice these optimality measures to

achieve better results when the prolongation points are combined with SDPT3.

Table 3 shows which of the four algorithms solved faster the wth order relaxation for those

problems where the (w − 1)th order relaxation did not provide a solution for the POP (the

accuracy in every algorithm was set to 10−7). As we are interested in solving the SDP relax-
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Table 2: Average primal-dual infeasibilities, and duality gap for the (w+ 1)th order SDP relax-
ation using: (1) original prolongated points and (2) the prolongated points after perturbing the
eigenvalues of the matrices Xw+1 and Sw+1.

POP

Optimality Measures Original Perturbed

dw+1
infeas gapw+1 pw+1

infeas dw+1
infeas gapw+1

Quadratic: n = 10, w + 1 = 2 1.2e-11 2.8e-02 3.7e-02 1.2e-02 6.3e-02

Quadratic: n = 20, w + 1 = 2 1.6e-11 2.9e-02 7.2e-02 1.3e-02 7.1e-02

MAX-CUT ([0, 1]): n = 10, w + 1 = 2 7.7e-12 3.0e-01 8.7e-03 4.4e-03 3.5e-01

MAX-CUT ([0, 1]): n = 20, w + 1 = 2 1.3e-11 5.2e-01 9.3e-03 4.6e-03 6.1e-01

MAX-CUT ([−1, 1]): n = 10, w + 1 = 2 1.5e-11 5.0e-02 8.7e-03 4.1e-03 8.0e-02

MAX-CUT ([−1, 1]): n = 20, w + 1 = 2 1.3e-11 6.0e-02 9.3e-03 4.4e-03 1.2e-01

Integer partition: n = 10, w + 1 = 2 7.8e-09 2.6e-02 8.7e-03 3.3e-03 1.2e-01

Integer partition: n = 10, w + 1 = 3 9.3e-09 4.3e-03 9.3e-03 2.4e-02 2.4e-01

Integer partition: n = 14, w + 1 = 2 3.4e-09 2.7e-02 9.1e-03 3.0e-03 1.8e-01

Integer partition: n = 14, w + 1 = 3 9.3e-10 2.3e-02 9.5e-03 4.0e-02 4.7e-01

ations, we include in these results those problems from where the projection onto the feasible

set of the (w − 1)th order relaxation provided a solution for the POP. In general, Mosek is the

fastest algorithm among all the options for large size problems, i.e., problems with more than 10

polynomial variables and/or high order of relaxation. For smaller problems, we can start to see

the advantages for the multilevel approach, where for some of the instances, e.g., the Quadratic

{0, 1}.

The previous experiment shows in absolute terms which algorithm is faster to achieve an

accuracy of 10−7 (is important to note that the stopping criteria of the algorithms is different,

but all the algorithms achieved an accuracy in terms of the Equations (22) to (24) close to 10−7).

However, these results do not show if in general, given a base interior point method, the warm

start strategy is useful, e.g., if Mosek is twice as fast as SDPT3 is very unlikely that a warm start

strategy with SDPT3 as the base algorithm will be faster than Mosek. It is more interesting

to see relative results between the algorithms, in particular, between SDPT3 and the multilevel

approach. Table 4 compares times for the same problems presented in Table 3. Given that

SDPT3, SeDuMi and Mosek have different stopping criteria, for this experiment we normalize

the criteria to decide when an SDP relaxation is solved. To this end, we use the solution found by

SeDuMi, SDPT3 and Mosek, to calculate the primal infeasibility, dual infeasibility and duality
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Table 3: Comparison between the times used by SeDuMi, SDPT3 , Mosek and Multilevel to
solve relaxations of order greater than 1 (accuracy 10−7).

(a) Quadratic {0, 1}. Relaxations of order w = 2.

Number of polynomial variables n=10 n=20
Total POPs 84 100
# Solved faster by Mosek 0 100
# Solved faster by SeDuMi 2 0
# Solved faster by SDPT3 0 0
# Solved faster by Multi 82 0

(b) MAX-CUT: weights in [0, 1] interval. Relaxations of order w = 2.

Number of polynomial variables n=10 n=20
Total POPs 100 100
# Solved faster by Mosek 0 100
# Solved faster by SeDuMi 56 0
# Solved faster by SDPT3 2 0
# Solved faster by Multilevel 42 0

(c) MAX-CUT: weights in [−1, 1] interval. Relaxations of order w = 2.

Number of polynomial variables n=10 n=20
Total POPs 95 100
# Solved faster by Mosek 53 100
# Solved faster by SeDuMi 13 0
# Solved faster by SDPT3 1 0
# Solved faster by Multilevel 28 0

(d) Integer partition. Relaxations of order w = 2.

Number of polynomial variables n=10 n=14
Total POPs 97 26
# Solved faster by Mosek 0 26
# Solved faster by SeDuMi 42 0
# Solved faster by SDPT3 6 0
# Solved faster by Multilevel 49 0

(e) Integer partition. Relaxations of order w = 3.

Number of polynomial variables n=10 n=14
Total POPs 36 21
# Solved faster by Mosek 36 21
# Solved faster by SeDuMi 0 0
# Solved faster by SDPT3 0 0
# Solved faster by Multilevel 0 0
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gap measures used in SDPT3. Then, for any particular instance, we use the multilevel method

to solve three times the SDP relaxation with three different tolerances corresponding to the three

other algorithms. We calculate the mean of the ratios of the solution times between each of the

three algorithms (SeDuMi, SDPT3 and Multilevel) and the multilevel method. For example,

tSDPT3/tMulti for n = 10 is equal to 1.68 in Table 4 part (a), which indicates that the mean of

the ratio between the time used by SDPT3 and the multilevel method for the 84 problems not

solved by the first order relaxation is 1.68. The results give more insight about the speed of the

algorithms, of particular interest the relative times between SDPT3 and the multilevel approach.

In this case we can see that the multilevel method improves in average the base interior point

method for all the problems from a conservative 1.02 for the Integer Partition up to 1.76 for the

20 variables Quadratic problems. The rest of the table shows that Mosek can be up to 10 times

faster than the multilevel, nevertheless, this means that in general Mosek can be more than 10

times faster than SDPT3. It would be interesting to use the warm start with Mosek, however,

to the best of our knowledge the starting point capability is not offered by this solver.

6 Conclusions

Using SDP relaxations for polynomial optimization problems has been proved to be a powerful

tool to solve other-wise hard non-convex problems. This paper proposes a new approach to

exploit the usually unused information contained in the lower levels of the Lasserre hierarchy.

The new prolongation operators relating the lower and higher levels are simple and easy to

implement, and our numerical experiments show that they can be useful as an approximate

solution by themselves, or as an initial point to be used along with an interior point method.

When the latter version is implemented, we do not claim that the warm start method (which we

have referred as the multilevel approach) is better than any other IPM or any other alternative

to solve POPs (like the algorithm Biq Mac for MAX-CUT problems developed in Rendl, Rinaldi,

and Wiegele (2010)). In fact, depending on the particular POP that we are trying to solve and its

size, other solvers can perform better than SDPT3 and our multilevel version. However, we can

improve the efficiency of the underlying IPM, in our case SDPT3, and given the inexpensive cost

of calculating the prolongation points once the solution of a lower relaxation has been found, it
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Table 4: Time ratios between the Multilevel approach and SDPT3, SeDuMi and Mosek to solve
the relaxations of order greater than 1.

(a) Quadratic {0, 1}. Relaxations of order w = 2.

Number of polynomial variables n=10 n=20
Total POPs 84 100
Mean tSDPT3/tMulti 1.68 1.76
Mean tMosek/tMulti 2.10 0.51
Mean tSeDuMi/tMulti 1.14 16.83

(b) MAX-CUT: weights in [0, 1] interval. Relaxations of order w = 2.

Number of polynomial variables n=10 n=20
Total POPs 100 100
Mean tSDPT3/tMulti 1.17 1.04
Mean tMosek/tMulti 1.27 0.45
Mean tSeDuMi/tMulti 0.96 12.39

(c) MAX-CUT: weights in [−1, 1] interval. Relaxations of order w = 2.

Number of polynomial variables n=10 n=20
Total POPs 95 100
Mean tSDPT3/tMulti 1.27 1.14
Mean tMosek/tMulti 0.87 0.50
Mean tSeDuMi/tMulti 1.04 13.70

(d) Integer partition. Relaxations of order w = 2.

Number of polynomial variables n=10 n=14
Total POPs 97 26
Mean tSDPT3/tMulti 1.10 1.02
Mean tMosek/tMulti 1.53 0.52
Mean tSeDuMi/tMulti 1.01 1.96

(e) Integer partition. Relaxations of order w = 3.

Number of polynomial variables n=10 n=14
Total POPs 33 21
Mean tSDPT3/tMulti 1.13 1.08
Mean tMosek/tMulti 0.27 0.13
Mean tSeDuMi/tMulti 0.54 1.35
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is worth to use them as initial points when no more information is available. Recently, new and

promising SDP relaxations have been proposed (Lasserre et al., 2017). These new hierarchies

have shown good numerical results when compared with the classical Lasserre hierarchy, and

therefore it will be interesting to implement the multilevel ideas in that framework.

Acknowledgements

This work was funded by Engineering & Physical Sciences Research Council grant numbers

EP/P016871/1 and EP/M028240/1.

References

Ahmadi, A. A., & Majumdar, A. (2017). DSOS and SDSOS optimization: more tractable alter-

natives to sum of squares and semidefinite optimization. arXiv preprint arXiv:1706.02586 .

Benson, H. Y., & Shanno, D. F. (2007). An exact primal–dual penalty method approach to

warmstarting interior-point methods for linear programming. Computational Optimization

and Applications, 38 (3), 371–399.

Boukouvala, F., Misener, R., & Floudas, C. A. (2016). Global optimization advances in

mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimiza-

tion, CDFO. European Journal of Operational Research, 252 (3), 701–727.

Burer, S., & Monteiro, R. (2003). A nonlinear programming algorithm for solving semidefinite

programming via low-rank factorization. Mathematical Programming (series B), 95 , 329-

357.

Campos, J. S., & Parpas, P. (2018). A multigrid approach to SDP relaxations of sparse poly-

nomial optimization problems. SIAM Journal on Optimization, 28 (1), 1–29.

Caprara, A. (2008). Constrained 0-1 quadratic programming: Basic approaches and extensions.

European Journal of Operational Research, 187 (3), 1494–1503.

de Klerk, E. (2010). Exploiting special structure in semidefinite programming: A survey of

theory and applications. European Journal of Operational Research, 201 (1), 1-10.

28



De Klerk, E., & Laurent, M. (2011). On the lasserre hierarchy of semidefinite programming

relaxations of convex polynomial optimization problems. SIAM Journal on Optimization,

21 (3), 824–832.

Lasserre, J. B. (2001). Global optimization with polynomials and the problem of moments.

SIAM Journal on Optimization, 11 (3), 796–817.

Lasserre, J. B. (2002). An explicit equivalent positive semidefinite program for nonlinear 0-1

programs. SIAM Journal on Optimization, 12 (3), 756–769.

Lasserre, J. B. (2006). Convergent SDP-relaxations in polynomial optimization with sparsity.

SIAM Journal on Optimization, 17 (3), 822–843.

Lasserre, J. B. (2009). Convexity in semialgebraic geometry and polynomial optimization. SIAM

Journal on Optimization, 19 (4), 1995–2014.

Lasserre, J. B. (2016). A MAX-CUT formulation of 0/1 programs. Operations Research Letters,

44 (2), 158–164.

Lasserre, J. B., Toh, K.-C., & Yang, S. (2017). A bounded degree SOS hierarchy for polynomial

optimization. EURO Journal on Computational Optimization, 5 (1-2), 87–117.

Nie, J. (2014). Optimality conditions and finite convergence of lasserres hierarchy. Mathematical

programming , 146 (1-2), 97–121.

Rendl, F., Rinaldi, G., & Wiegele, A. (2010). Solving Max-Cut to optimality by intersecting

semidefinite and polyhedral relaxations. Math. Programming , 121 (2), 307.

Schweighofer, M. (2005). Optimization of polynomials on compact semialgebraic sets. SIAM

Journal on Optimization, 15 (3), 805–825.

Skajaa, A., Andersen, E. D., & Ye, Y. (2013). Warmstarting the homogeneous and self-dual

interior point method for linear and conic quadratic problems. Mathematical Programming

Computation, 5 (1), 1–25.

Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric

cones. Optimization Methods and Software, 11 (1-4), 625–653.
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