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I claim that many patterns of Nature are so irregular and fragmented, that,

compared with Euclid — a term used in this work to denote all of standard

geometry — Nature exhibits not simply a higher degree but an altogether

different level of complexity . . . The existence of these patterns challenges us to

study these forms that Euclid leaves aside as being “formless,” to investigate the

morphology of the “amorphous.”

————————

Benoit Mandelbrot

The amazing thing is that chaotic systems don’t always stay chaotic, Ben said,

leaning on the gate. Sometimes they spontaneously reorganize themselves into

an orderly structure. They suddenly become less chaotic?” I said, wishing that

would happen at HiTek. No, that’s the thing. They become more and more

chaotic until they reach some sort of chaotic critical mass. When that happens,

they spontaneously reorganize themselves at a higher equilibrium level. It’s called

self-organized criticality.

——————

Connie Willis



Abstract

Analysing real-world data within the context of structural complexity is crucial for

accurately revealing the dynamical behavior of systems, ranging from individual

(human) to network (economic). Indeed, the so-called ”Complexity Loss Theory”

establishes that complexity measures are able to provide physically meaningful

interpretation of, for example, the occurrence of stress in such systems. This

theory states that organisms or systems under constraints, such as ageing illness

or more generally loss of degrees of freedom, exhibit lower complexity of their

observable responses. To this end, this thesis aims to model/quantify stress levels

of two dynamical systems: i) autonomic nervous (in humans), and ii) economic (in

financial markets). For human based scenarios, we collected Electrocardiogram

(ECG) in two human activities: i) public speaking, and ii) music performance.

For the assessment of the structural complexity of systems, stock indices from the

four major stock markets in the US were used for studying stress in economic.

This thesis introduces a novel framework for analysing physiological stress from

heart rate variability (HRV) extracted from the wearable ECG. The framework

includes a robust method, established based on the matched filtering method and

the Hilbert transform, for detecting R-peaks in noisy ECG. We examine the

physiological stress through several standard entropy measures, prior to

introducing our novel “Cosine Similarity Entropy” and “Multiscale Cosine

Similarity Entropy”. These new entropy measures are derived based on angular

distance, Shannon entropy and the coarse-grained scale, and shown to

successfully and rigorously quantify structural complexity in systems within the

context of self-correlation. The analysis over numerous case studies shows that

the proposed framework is capable of detecting loss of degrees of freedom, that

is, ‘stress-patterns’ under different stress conditions. Furthermore, we examine

economic stress through an enhanced multivariate entropy measure,

“Moving-Averaged Multivariate Sample Entropy”, which is established based on

a standard multivariate entropy and a novel detrended moving average scale.



The MA-MSE makes it possible to capture the periods of financial stress which

corresponds to the occurrence of the economic crises correctly.

Overall, the novel algorithms in this thesis have resolved several limitations of

the existing entropy measures, especially related to short time series, sensitivity

to signal amplitudes, and undefined entropy values for data with artefacts. In

addition, real world data do not obey any closed-form probability distribution and

are often nonstationary, which requires non-parametric entropy estimators suitable

for such scenarios - a subject of this thesis.
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Constantinides, and D. P. Mandic, “Financial stress through complexity

science,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no.

6, pp. 1112–1126, 2016.

Published Peer-reviewed Conference Proceedings

• T. Chanwimalueang, W. von Rosenberg, and D. P. Mandic, “Enabling R-

peak Detection in Wearable ECG: Combining Matched Filtering and Hilbert

Transform,” In Proceedings of the IEEE International Conference on Digital

Signal Processing (DSP 2015), pp. 134–138, 2015.

• T. Chanwimalueang, L. Aufegger, W. von Rosenberg, and D. P. Mandic,

“Modelling stress in public speaking: Evolution of stress levels during

conference presentations,” In Proceedings of the IEEE International

xxi



Conference on Acoustics, Speech and Signal Processing (ICASSP 2016),”

pp. 1–18, 2016.
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Chapter 1

Introduction

Analysis of real-world data in the context of structural complexity is important

for understanding the dynamical behaviour of physical and biological systems,

ranging from individual systems (human) to collaborative networks (economic).

Based, for example, on the “complexity loss theory” and the “efficient market

hypothesis”, complexity measures are able to provide physically meaningful

interpretation to describe the occurrence of stress in such systems. Our aim is to

study stress in two dynamical systems: i) autonomic nervous (in human), and ii)

economic (in financial markets). We collected the Electrocardiogram (ECG) data

from two scenarios: i) public speaking, and ii) music performance for studying

stress in human, while we obtained four major US stock indices for studying

stress in economics. Heart rate variability (HRV) extracted from the recorded

ECG is used to analyse stress in humans, since the intrinsic properties of HRV

reflect the dynamical mechanism of the autonomic nervous system

physiologically in response to stress. Besides, the stress in economy has a close

connection with the occurrence the stress in individuals but with regard to

behaviours of a vast number of investors in response to incidents/situations

(financial stressors); this results in systemic variability which can lead to an

occurrence of economic crisis. To quantify structural complexity of the two

systems, entropy-based measures are employed, since they are nonlinear metrics

used to estimate degrees of uncertainty or correlation, through the examination

of similar patterns of the underlying structures of the system.

In this chapter, the brief concepts of physiological stress, heart rate variability,

complexity loss theory and efficient market hypothesis are introduced. The

review of well-known entropy-based complexity measures is also provided. We
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Figure 1.1: The divisions of the nervous system (NS). Physiological stress
is directly related to the cooperation between the sympathetic NS (arousing the
body) and the parasympathetic NS (calming after arousal), both of which are part
of the autonomic NS, a branch of the peripheral NS.

then summarise the original contributions of our studies and the organisation of

the thesis.

1.1 Physiological Responses to Stress

The term ‘stress’ was first generally defined by Selye [1] who described it as “the

non-specific response of the body to any demand for change” [2]. For more specific

stress-related physiological responses, the term “physiological stress” is used to

represent an agglomerate response of multiple systems in the body to external

stressors, such as working under pressure, performing various physical or cognitive

tasks, rushing to meet a deadline [3, 4].

The physiological system which directly affected by stress is the autonomic

nervous system (ANS) (a division within the peripheral nervous system1 as

shown in Figure 1.1) which regulates involuntary bodily processes including heart

rate, respiration, digestion and pupil contraction. The ANS is divided into two

1The peripheral nervous system is comprised of the autonomic nervous system (ANS) and
the somatic nervous system. While the ANS controls involuntary bodily responses/processes,
the somatic nervous system is responsible to receive/transmit information between sensory
nerves/motor units and central nervous system for any voluntary movements.
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Figure 1.2: Graphical interpretation of the General Adaptation
Syndrome (GAS). Evolution of resistance to stress over time based on the GAS
can be described in 3 stages (rest is excluded): i) alarm, ii) resistance, and iii)
exhaustion. The fight-or-flight response (SNS dominates) corresponds to the alarm
stage, while the period of coping with stress presents in the resistance stage (PNS
dominates), and the stage of perceiving long-term stress (uncooperative SNS and
PNS) occurs in the exhaustion stage. This Figure is modified from [5].

sub-systems: i) the sympathetic nervous system (SNS), and ii) the

parasympathetic nervous system (PNS), both of which cooperates automatically

without conscious direction. The PNS and SNS play an important role in

response to stress for which the SNS prepares the body for action, so-called

“fight or flight” [7, 8], while the PNS calms and helps the body to conserve

energy. The activation of the SNS exhibits an increase in heart rate and

respiratory rate, eye dilation, and a decrease in stomach motility, while the

activation of the PNS exhibits a decrease in heart rate and respiratory rate, eye

constriction and an increase in stomach motility. The system that mainly

controls the activation of both the PNS and SNS is called the

“hypothalamic-pituitary-adrenal axis”; the complex interactions among the three

components: the hypothalamus, the pituitary gland and the adrenal gland, all of

which transmits/receives hormonal and neural signals to various organs in

response to stress [9]. The activation of SNS and PNS regarding a period of

experiencing stress can be described based on the General Adaptation Syndrome
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Figure 1.3: Physiological responses to stress. The hypothalamus reacts
to external stressors by triggering sympathetic impulses to the adrenal medulla
which then secretes the adrenaline and noradrenaline hormones. This results in an
increase in heart rate, blood pressure, breathing rate, etc. to preparing the body
in “fight or flight” mode. In the resistance stage, the hypothalamus releases the
corticotropin-releasing (CRH) hormone to the pituitary gland which secretes the
adrenocorticotropic hormone (ACTH) to trigger the adrenal cortex which then
secretes the cortisol hormone. This results in an increase in blood amino acid,
fatty acid, and glucose for supplying cells during a stress period. This figure is
modified from [6].

(GAS) proposed in [1]. The GAS elucidates the evolution of stress through the

term “Resistance to Stress” (RS) over a period of time as shown in Figure 1.2.

At the beginning, the body is in the rest stage, so-called ‘homeostasis’, for which

the activation of both the SNS and PNS is at a normal level (balance). Right

after perceiving stressors, the body reacts to stress in the fight-or-flight mode as

a response to threat or danger; this period is called the “alarm stage”. At this

stage, the hypothalamus transmits sympathetic impulses (neural signals) to

trigger the adrenal medulla which then secretes the adrenaline and noradrenaline
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hormones. This results in an increase in heart rate, blood pressure, stomach

motility, respiratory rate, etc and causes a reduction in the RS to the minimum

level, i.e. the SNS dominates [6, 9]. After the moment of fight-or-flight, the body

attempts to cope and calm by activating the PNS causing a raise in the RS to

the homeostasis level. However, this process still continues as the announcement

of the “resistance stage” for which the body overwhelms the activation of the

PNS (the PNS dominates) for compromising the physiological functions; this

results in an increase in the RS to the maximum level. In the resistance stage,

the hypothalamus releases the corticotropin-releasing hormone (CRH) to trigger

the pituitary gland which then secretes the adrenocorticotropic hormone

(ACTH) to activate the adrenal cortex to release the cortisol hormone. This

results in an increase in blood amino acid, fatty acid, and glucose for supplying

biochemical processes used by cells during a stress period [6, 9]. If the body is

able to cope stress at this stage well, the RS level will then decrease to the rest

level; otherwise, in case the body still perceives stress for a long period

continuously without the ability to cope, the body become exhausted as failure

of collaboration in both the SNS and PNS. This causes a reduction in the RS

level as an announcement of the exhaustion stage. Note that the stress occurs in

the period of the alarm and resistance stages is called “acute stress” which

typically lasts for from minutes to hours), while the stress in the period of the

exhaustion stage is called “chronic stress” which typically lasts for days, weeks or

months). The mechanism of the hypothalamic-pituitary-adrenal axis in response

to stress is illustrated in Figure 1.3.

1.2 Heart Rate Variability (HRV)

Heart rate variability (HRV) represents continuous changes in cardiac rhythms

which reflect a state of body and mind in response to a stressor. The HRV is an

estimation of the RR-intervals extracted from the R-peaks of the recorded2 ECG.

2In practice, ECG recordings are noisy and are contaminated with movement artefacts, so
that a robust method is required to the accurate detection of the R-peaks.
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Figure 1.4: R-peaks detection and RR-intervals. Top: an example of a 90-sec
raw ECG (with R-peaks, + in blue) and its extracted RR-intervals. Bottom: The
zoom window of the 3.5-sec raw ECG and its corresponding RR-intervals, whereby
any RR-interval, D[i], is obtained from a distance between consecutively pairwise
R-peaks.

The RR-intervals are obtained from a series of distances between consecutively

pairwise R-peaks of the ECG. Figure 1.4. shows an example of the three

RR-intervals, D[i], D[i+1] and D[i+2] calculated from distances between four

consecutive R-peaks, D[i] = t[i+1] - t[i], D[i+1] = i[i+2] - t[t+1] and

D[i+2]=t[i+3] - t[t+2]. However, these extracted RR-intervals are unevenly

sample-spaced data which is not appropriate for time-, frequency- or nonlinear

analysis, so that the RR-intervals are re-sampled by using an interpolation

technique to obtain equally sample-spaced data, resulting in the HRV.

The underlying intrinsic properties of the HRV have been found in connection

with stress based on the GAS [1]. It is believed that the frequency spectrum of

the HRV between 0.04-0.4 Hz reflects the mechanism of the ANS, whereby the

summation of spectrum power in the low frequency band (LF), between 0.04-

0.15 Hz, is thought to reflect the SNS activity, and the summation of spectrum

power in the high frequency band (HF), between 0.15-0.4 Hz, is thought to reflect

the PNS activity [10, 11]. The well-known index called LF/HF ratio has been
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widely used for assessing the balance between SNS activity and PNS activity (so-

called “Sympathovagal Balance”), and is also used as an indicator of stress levels

[11]. Although the analysis of HRV in the frequency domain can identify and

capture changes in stress, nonlinear analysis in the form of structural complexity

has recently been used to quantify degrees of determinism versus randomness in

signals and has become prevalent [12, 13, 14, 15].

1.3 Entropy-based Complexity Measures

The concept of complexity [16, 17, 18] and complex adaptive systems [19, 20]

spans a range of interdisciplinary approaches, from the theory of nonlinear

dynamical systems to real-world systems studied in many disciplines, such as

physics, mechanics, biology, and economics [20, 21]. Such real-world systems

usually exhibit nonlinearity and/or nonstationarity whereby drift and

deterministic/stochastic trends locally and globally burried in observational data.

This is due to the nature of the aggregated responses from the small functional

units/elements embedded in a system which produces similar or different

amplitudes and latency (time delays); for example, physiological signals are

electrical nerve activities responding to bio-related stimulation and are measured

in a form of a summation of neuron action potentials. The production of action

potential is considered as a nonlinear process regarding the action potential’s

“all-or-none law” whereby each neuron fires its potential at a different rate until

the sum of voltages reaches a certain threshold value [22, 23]. Another example is

financial time series which reflect average prices driven by investors in particular

markets. Activities of each investor (analogous to a small unit/element) can vary

in terms of: i) an amount of buys or sells (amplitudes) and ii) when they make a

decision (a response time), both of which depend on a reaction to simulators,

such as news and regional/international regimes. This yields a series of an

aggregation of average prices which fluctuates over time. Financial time series

have been well modelled using the random-walk process which is effectively used

to estimate the deterministic/stochastic trends of such financial data.
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Figure 1.5: Two examples of real-world data. A segmented raw ECG (top)
is plotted over the interval between 53 and 105 second, and the Dow Jones
index (bottom) is plotted over a period of 1997-2015. Observe the nonstationary
components are buried in the both data in the form of baseline drift (ECG) and
deterministic/stochastic trends (Dow Jones index).

[24, 25, 26]. Figure 1.5 depicts two examples of real-world data are : i) ECG

(physiological data) and ii) Dow Jones index (a financial time series).

In the statistical sense, the distribution of such real-world data can present in

any forms and is not necessary to be Gaussian. This could make standard linear

metrics and the standard descriptive statistic, such as mean, standard deviation,

a time or frequency domain analysis, fail to reveal genuinely intrinsic

characteristics [27, 28]. Many researchers have realized this issue and therefore

attempted to study and invent nonlinear measures for analysing such real-world

data. An important principle widely used in nonlinear approaches is called the

“Takens embedding theory” [29] which briefly states that “the properties and

information of ‘smooth’ dynamical systems can be analogously represented by

their reconstructed observational data (so-called embedding vectors or delay

vectors) with an appropriate selection of an embedding dimension m and a time

lag τ”. The term ‘smooth’ is referred to a time frame captured continuously for
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Figure 1.6: Reconstructed embedding vectors. For a given time series {xi}Ni=1,

any embedding vector x
(m)
i is reconstructed with a chosen embedding dimension

(m, i.e. a number of elements in an embedding vector) . Top: embedding vectors

x
(2)
i with m = 2. Bottom: embedding vectors x

(3)
i with m = 3.

the state space variables of the considered system. The parameter m represents

an appropriate number of dimension for reconstructing on a phase space and the

parameter τ approximately represents a time delay response of a system.

Suppose {xi}Ni=1 is a time series obtained from any system, an embedding vector

x
(m)
i , can mathematically be generated from equation (1.1). An arrangement of

embedding vectors with a given m = 2 and m = 3 is depicted in Figure 1.6, and

an illustrative example of the embedding vectors reconstructed from Lorentz

system, a three-variable dynamical system, is shown in Figure 1.7.

x
(m)
i = [xi, xi+τ , ..., x(i+(m−1)τ)], i = 1, ..., N −m+ 1 (1.1)

Takens embedding theory implies that we are able to model dynamical systems

through their embedding vectors reconstructed from a single channel of

observational data, which comparably represent the structures or patterns of the

original dynamical system. Based on this theory, Pincus [12, 30, 31, 32, 33, 34]

exploited the theory and invented a statistical entropy-based measure called the

“Approximate Entropy” (ApEn) which is classified as a nonparametric metric (a

statistical analysis for any non-Gaussian distributed data) [35]. The ApEn
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Figure 1.7: The Lorentz system and its reconstructed embedding vectors.
Top left: the 5,000 samples of the three variables x′(t), y′(t) and z′(t) generated
from the Lorentz system, x′(t)= σ(y − x), y′(t) = x(ρ − z), z′(t) = xy − βz,
when σ = 10, ρ = 28 and β = 8/3 with an initial condition x = y = z = 0.1.
Bottom: the 5,000 samples observed from the single variable x′(t) generated from
the Lorentz system. Top right: the reconstructed embedding vectors x(3) from
x′(t), with a selection of an embedding dimension m = 3 and a time lag τ = 1,
are plotted on a three-dimensional phase space. Observe that the trajectory of the
embedding vectors x(3) is analogous to the trajectory of the original three-variable
Lorenz system. Based on Takens embedding theory, the properties of such Lorenz
system can be comparably represented by its reconstructed embedding vectors.

approach has become an essential tool for quantifying ‘regularity/irregularity’ of

dynamical systems [31, 32], whereas in statistical mechanics, entropy may be

understood as a measure of ‘disorder’ within a macroscopic system (especially a

thermodynamic system), and in information theory, entropy means a measure of

‘uncertainty’ of random variables. We should note that the terms, ‘irregular’,

‘disorder’ and ‘uncertainty’, conceptually present a common meaning and can be

comprehended as a measure of degrees of similar/dissimilar structures (patterns)

in considered observational data [32, 36]. Figure 1.8 illustrates a concept of

embedding vector-based similar patterns which is based on an amplitude or angle

distance computed from all elements in any embedding vectors. The ApEn
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Figure 1.8: An example of embedding vector-based similar patterns of a
time series. Top: embedding vectors reconstructed from a time series {xi}Ni=1with
a given embedding dimension m = 2 and τ =1 . Bottom: embedding vectors
reconstructed from a time series {xi}Ni=1 with a given embedding dimension m = 3
and τ =1. Observe the similar patterns (structures) of both embedding dimensions
are detected in the green area whereby any amplitude- or angle-based distance can
be used to judge for such similar patterns (an amplitude-based Chebyshev distance
is used in the ApEn approach).

method is based on the probability of occurrences of similar patterns found in

embedding vectors with a given embedding dimensions, m, and in embedding

vectors of a higher dimension, (m + 1). The term ‘structures’ can be interpreted

as a manifestation of intricate inter-connectivity of elements within a system and

its surroundings [19] and is represented by the reconstructed embedding vectors

[37, 38, 39], and lastly “similar structures” (similar patterns) are judged by small

different distances among embedding vectors (the Chebyshev distance method is

used in the ApEn approach). The steps of computing approximate entropy are

summarised in Algorithm 1.1.
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Algorithm 1.1. Approximate Entropy

For a time series {xi}Ni=1 with a given embedding dimension (m), tolerance (rae)

and time lag (τ):

1. Construct the embedding vectors from {xi}Ni=1 using

x
(m)
i = [xi, xi+τ , ..., x(i+(m−1)τ)] , i = 1, ..., N −m+ 1

2. Compute the Chebyshev distance for all pairwise embedding vectors as

ChebDis
(m)
i,j = maxl=1,2,...,m{x(m)

i [i+ l − 1]− x
(m)
j [j + l − 1]}

3. Obtain the number of similar patterns, P
(m)
i (rae), when a criterion

ChebDis
(m)
i,j ≤ rae is fulfilled

4. Compute the local probability of occurrences of similar patterns,

B
(m)
i (rae), given by

B
(m)
i (rae) = 1

N−m+1
P

(m)
i (rae)

5. Compute the global probability of occurrences of similar patterns,

B(m)(rae), using

B(m)(rae) = 1
N−m+1

∑N−m
i=1 lnB

(m)
i (rae)

6. Repeat Step 1 to Step 6 with an embedding vector (m+ 1) and

obtain B(m+1)(rae) from

B(m+1)(rae) = 1
N−m+1

∑N−m
i=1 lnB

(m+1)
i (rae)

7. Approximate entropy is then estimated in the from

ApEn(m, τ, rae, N) = B(m)(rae)−B(m+1)(rae)
.

However, as ApEn counts all such sequences, including self-matches, this

introduces a bias in the entropy value which causes ApEn to greatly depend on

the time series length [13]. To address the lack of consistency in the ApEn

estimates, Richman and Moorman [13] introduced the “Sample Entropy” (SE)

algorithm. SE is an improved version of the ApEn, whereby the occurrences of

the self-similar patterns are not considered; this results in unbiased entropy

estimates. The recent “Fuzzy Entropy” (FE), an improved version of the SE, has

been proposed in [14, 40, 41, 42]. The FE provides a more robust examination of

the similarity between embedding vectors by replacing the Heaviside function,
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used as a criterion in the SE, with a fuzzy membership function, such as Sigmoid

or Gaussian. The FE has been proven to be superior to the SE for short sample

sizes and insensitivity to spikes [14]. The full steps of SE and the FE algorithms

are described in details in Chapter 3.

Besides, Costa et al. [15] noticed a discrepancy in the SE estimates when applied

to physiological time series and attributed this to the fact that SE estimates were

only defined for a single scale (scale here means the scaled data generated using

any temporal or spatial scaling-based method). They argued that the dynamics

of a complex nonlinear system manifests itself in multiple inherent scales of the

observed time series and, thus, SE estimates calculated over a single scale are not

sufficient descriptors. This led to the “Multiscale Sample Entropy” (MSE) method

in which the multiple scales of input data are first extracted using the so-called

“Coarse Graining Process” (CGP) and SE estimates are subsequently calculated

for each scale separately [15, 43] (the full steps of the MSE algorithm are described

in Chapter 3). The CGP is based on moving average with non-overlapped windows

of a time series {xi}Ni=1 and yields a new, successively shorter, time series. The

coarse-grained scale is mathematically generated by

y
(ε)
i =

1

ε

jε∑
i=(j−1)ε+1

x(i), 1 ≤ j ≤ N/ε (1.2)

The coarse graining process with the two scale factors, ε = 2 and ε = 3 is

depicted in Figure 1.9, and an examples of the coarse graining process applied to

the random white noise and the truly complex self-similar and infinitely repeating

noise, so-called 1/f noise, are depicted in Figure 1.10. By applying the MSE to the

random white noise and 1/f noise, Costa found that the random white noise at the

smallest scale factor has a higher entropy than the entropy of 1/f noise. However,

with an increase in the scale factor, the entropy of random noise decreases, while

the entropy of the 1/f noise remains constant over the whole range of scale factors

[15, 43] (see Figure 1.11). This means that we should consider an entropy curve
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Figure 1.9: Coarse graining process. For a given a time series {xi}Ni=1, any scale

y
(ε)
i is calculated from the coarse graining process with the scale factor ε (analogous

to a non-overlapped moving average window method). Top: coarse-grained scale
of ε = 2. Bottom: coarse-grained scale of ε = 3.

over a broad scale factor rather than consider only single scale. Costa defined this

entropy curve as a “complexity profile” of a system, however, due to a variety

of definitions of the term ‘complexity’ [45, 46, 47, 48], it is reasonable to use the

term “structural complexity” whereby the term ‘structures’ mean the patterns of

the embedding vectors [37, 38, 39], and the term complexity means degrees of

regularity/irregularity [12, 30, 31, 33, 34] or degrees of uncertainty [13, 49, 50]

quantified through an entropy curve over meaningful scale factors [15, 43]. The

MSE method has been successfully applied across biomedical research, such as in

fluctuations of the human heartbeat under pathological conditions [15], EEG and

MEG in patients with Alzheimer’s disease [51], complexity of human gait under

different walking conditions [52]. Recently, Ahmed and Mandic [53, 44] extended

the original MSE to suit multivariate/multichannel recordings. To that cause, they

proposed a multivariate sample entropy (MSE) algorithm for performing multiscale

entropy analysis simultaneously over a number of data channels. This extension,

termed the multivariate multiscale entropy (MMSE) [53, 44], was shown to cater

for linear and/or nonlinear within- and cross-channel correlations as well as for

complex dynamical couplings and various degrees of synchronization over multiple
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Figure 1.10: Coarse gaining process (CGP) applied to the 300 samples
of random white noise and 1/f noise. Left: the coarse-grained scales of the
random white noise with the given scale factors from 1 to 5 (top to bottom). Right:
the coarse-grained scales of the truly complex self-similar and infinitely repeating
1/f noise with the given scale factors from 1 to 5 (top to bottom). Observe the
higher the scale factor the lower the number of samples generated from the CGP.
The coarse-grained scales also reflect the low pass filtering of the original data
since the method is based on the non-overlapping moving average [44].
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Figure 1.11: Complexity profile of white Gaussian noise and 1/f noise
through sample entropy.The 20 independent realizations with 10,000 samples
were generated for the white Gaussian noise and 1/f noise. The sample entropy
with a given embedding dimension m = 2 and a given time lag τ = 1 is applied
to both noises. The mean entropies with their standard deviations are plotted
against the 20 coarse-grained scales. Observe an increase in the scale factor, the
entropy of random noise decreases, while the entropy of the 1/f noise remains
constant over the whole range of scale factors.

scales, thus allowing for a direct analysis of multichannel data.

Figure 1.12 shows two illustrative examples of structural complexity: i)

distribution of stars, and ii) mixing process of two substances, changing over a

spatial and temporal scales. The distribution of stars consists of three images: i)

random stars, ii) a structural galaxy (comprised of multiple systems), and iii)

multiple galaxies, which are obtained from a telescope with fine, medium and

coarse resolutions respectively. These correspond to low (no structure), high (a

structural galaxy) and low (few structures) degrees of structural complexity. The

mixing process of ink and water over time (temporal scale) can be described as

follows. In the beginning (short period), the two substances are separated, so

this state is considered as low complexity (few structures). When the ink and the

water start mixing, the ink gradually diffuses through the water; forming
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Figure 1.12: A concept of structural complexity. Left: from top to bottom,
three images: i) random stars, ii) a structural galaxy (comprised of multiple
systems), and iii) random galaxies, are obtained from a telescope with fine, medium
and coarse resolutions. These correspond respectively to low, high and low degrees
of structural complexity. Right: from top to bottom, three states of a mixing
process between ink and water: i) separation, ii) diffusion, and iii) homogeneity
are revealed over short, medium and long period of time. These correspond
respectively to low, high and low degrees of structural complexity. This Figure
is modified from [54].

complex structures, and hence this state is considered as high complexity.

Finally, when both substances are completely mixed within a long period of time,

they become homogeneous and is considered as low complexity (no structure)

[54].

1.4 Complexity Loss Theory and Efficient

Market Hypothesis (EMH)

This nonparametric metric [35, 55] is conveniently interpreted though the

complexity loss theory [27], which asserts that physiological responses in

organisms under constraints (illness, aging, and other inhibitions such as stress)

exhibit lower structural complexity (fewer degrees of freedom) than physiological
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responses in healthy organisms [15]. Among the available entropy measures, the

sample entropy (SE) methods are particularly interesting; low levels of SE

indicate a time series of high regularity, while high level of SE correspond to a

greater degree of irregularity [13]

The efficient market hypothesis (EMH) is a cornerstone of modern financial

theory and states that current security prices (the underlying value of the asset)

incorporate and reflect all relevant information (news and regional/international

regimes) that could be gathered, so that stocks always trade at fair value [56].

This implies that in normal situations markets cannot be consistently beaten

over long time; in other words, the security prices tend to exhibit a random walk

type of behaviour, characterised by poor predictability from their historical

values and high uncertainty in the rate of change of stock prices. However, when

abnormal situations occur, the buyers tend to overestimate stock values while

anticipating the growth or recession of markets, which in turn brings less

uncertainty to the rate of change of future prices.

1.5 Aims of Research

This thesis aims to

1. Model/quantify physiological stress levels in humans based on the theory of

complexity loss and general adaptation syndrome;

2. Identify/capture stress patterns (crises) in economics based on the

complexity loss theory and efficient market hypothesis;

3. Develop a new entropy-based complexity measure for quantifying structural

complexity of dynamical systems in the context of self-correlation.
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1.6 Original Contributions

• A robust R-peaks detection algorithm, namely “Matched Filtering-Hilbert

Transform” (MF-HT). The approach is robustly able to detect R-peaks of

wearable ECG recordings, which is noisy and contains movement artefacts,

while the standard “Pan-Tompkins” approach is sensitive to such noise and

atefacts; resulting in lower accuracy compared to the MF-HT. This algorithm

was published in an IEEE conference [57] and is outlined in Chapter 2.

• The novel entropy measures, namely “Cosine Similarity Entropy” (CSE) and

“Multiscale Cosine Similarity Entropy” (MCSE). The CSE and the MCSE

are able to quantify structural complexity for a short length of data and

yield physically meaningful interpretation in the context of self-correlation in

systems with different degrees of freedom. , unlike the standard SE and MSE

which yield undefined entropy for short samples and give inconsistent entropy

values when applied to such systems. These approaches was publishes in the

Entropy journal [58] and are outlined in Chapter 3.

• A novel analysis framework for modelling evolution of individual stress (in

human). The proposed framework enables modelling evolution of stress in a

subject who performs public speaking, and yields a meaningful interpretation

in terms of physiological stress corresponding to the complexity loss theory.

The framework was published in an IEEE conference [59] and is outlined in

Chapter 4.

• A rigorous analysis framework for quantifying stress in a public performance.

The framework was successfully used for quantifying stress levels of a group

of musicians who perform in high and low stress scenarios, and yields a

meaningful interpretation of stress levels corresponding to the complexity

loss theory. The framework was published in the PLOS ONE journal [60]

and is outlined in Chapter 5.
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• An enhanced multivariate entropy measure, namely “Moving-average

Multivariate Sample Entropy” (MA-MSE). The MA-MSE brings

complexity science to the analysis of financial indices and makes it possible

to model financial stress in connection with the occurrence of economic

crises, based on the complexity loss theory and efficient market hypothesis.

This algorithm was published in an IEEE journal [61] and is outlined in

Chapter 6.

1.7 Thesis Organisation

• Chapter 2: Enabling R-peak Detection in Wearable ECG. This

chapter describes the MF-HT algorithm used for detecting R-peaks in noisy

ECG, i.e. ECG recorded from wearable devices. The background of matched

filtering and Hilbert transform are provided. Comparison of performance and

accuracy between the MF-HT and the standard Pan-Tompkins when applied

to real-world recordings (clean and noisy ECG) is revealed.

• Chapter 3: Standard Entropy Measures and an Introduction to

Cosine Similarity Entropy. This chapter introduces the standard

entropy-based complexity measures; SE, FE, MSE and MFE. The review of

limitations of the standard approaches, and the introduction of novel

entropy measures; CSE and MCSE are explained. This includes the

backgrounds of angular distance, the Shannon entropy and the

coarse-grained scale. Comparison of the performances among the SE, FE

and CSE as a function of embedding dimension, sample size is depicted.

Complexity profiles over synthetic noises, signal-generation systems, and

real-world heart rate variability though the MSE, MFE and MCSE are

evaluated.

• Chapter 4: A Novel Framework for Modelling Evolution of Stress

for a Case Study: Public Speaking. This chapter describes a new
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analysis framework used for modelling evolution of stress in a real-life

scenario (individual): public speaking. The concept of the framework

including the two robust pre-processing methods: i) the MF-HT, and ii)

HRV detrending is explained. Details of experiment and data collections

are provided. The results of the analysis are revealed and discussed.

• Chapter 5: Stress Analysis though Entropy-based Complexity

Measures for a Case Study: Music Performance. This chapter

describes a robust framework for quantifying stress in music performance.

The review of complexity loss theory, pros and cons of time- and frequency-

measures vs nonlinear/complexity measures is provided. Details of

experimental protocol, data collections and analysis results are revealed

and discussed.

• Chapter 6: Analysis of Financial Data through Complexity

Science. This chapter introduces a concept of the efficient market

hypothesis linked to complexity loss theory. The standard multivariate

entropy measure (MMSE) and the proposed MA-MSE method used for

quantifying multivariate financial indices are described. Details of obtained

data and results of MA-MSE are provided. Furthermore, the new method,

“Assessment of Latent Index of Stress” (ALIS), is introduced for the

examination of stress in individual market. The results of the ALIS and

their interpretations in terms of stress-related financial crises are revealed

and discussed.

• Chapter 7: Conclusions and Future Work. Concluding remarks drawn

from the thesis and ideas for future works are outlined in this chapter.
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Figure 1.13: Thesis structure. Two main proposed algorithms: i) MF-HT, and
ii) CSE and MCSE (Chapter 2 and 3) are provided for analysing stress (in human)
of two study cases: i) public speaking, and ii) music performance (Chapter 4 and
5), while the proposed MA-MSE method is implemented for studying the financial
stress (Chapter 6).
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Chapter 2

Enabling R-peak Detection in Wearable ECG

2.1 Introduction

Heart rate variability (HRV) is an important parameter for evaluating physiological

mechanisms. An example of using the HRV is to measure the balance between

sympathetic and parasympathetic nervous systems, where the power ratio of low

and high frequencies in the HRV frequency spectrum and the sample entropy of the

HRV can indicate the level of stress [62]. The electrical currents flowing through

the heart muscle while triggering its contractions can be measured on the body

surface. In the obtained electrocardiogram (ECG), the most prominent segment in

every ECG cycle is the QRS complex, a term for the combination of three peaks

of ECG which occur owing to the depolarization of the right and left ventricle

which is characterised by a sharp waveform with a high amplitude (see Figure

2.1). The R-peak is the point with the maximum amplitude in this interval. The

time period between two consecutive R-peaks, the RR-interval, is commonly used

to calculate the heart rate and its variability over time. However, artefacts in

the signal produce a number of ambiguous peaks that can potentially be the R-

peak in the ECG-cycle. In stationary and wearable ECG, the causes of artefacts

are mostly moving and inadequately attached electrodes [63]. Other sources of

physiological signals, such as muscle contractions, also induce interfering signals.

Especially when examining the HRV, the localisation of R-peaks in the ECG needs

to be precise, and in case of uncertainties, they need to be examined visually by

the user [63].

The extraction of R-peaks using matched filtering has been studied for many

years. One approach [65] uses the QRS complex as a pattern and searches for

similarities in the ECG. To remove nonlinear and nonstationary components in

45



Figure 2.1: QRS complex of a standard ECG waveform. The significant
peaks of electrocardiogram consist of the P, Q, R, S and T (from left to right).
The QRS complex is defined as a prominent interval from the peak Q to S which
occurs due to the depolarization of the right and left ventricles of the heart.

noisy ECG, matched filtering was combined with an artificial neural network [66]

and yielded a high accuracy when applied to ECG with arrhythmia obtained

from the Physionet database (namely the MIT/BIT arrhythmia database). In

[67, 68] matched filtering was implemented in a hardware digital signal

processing unit for a real-time R-peak detection. Another approach [69, 70]

applies the Hilbert (HT) transform for extracting an ECG envelope where the

R-peaks were located at the maximum amplitude of the envelope. A narrow

bandpass filter (8-20 Hz) is applied to eliminate motion artefacts and muscle

activity and the derivative is utilised to remove the baseline drift [71, 72]. The

approach by Pan and Tompkins (PT) [73] exhibits a high sensitivity for the

R-peak detection – approximately the same as the five other algorithms

compared in [74] – and its source code is publicly available. It will be used to

evaluate the performance of the approach presented in this study.

Apart from such approaches for the R-peak detection, there also exist the

approaches for the QRS complex detection, for instance, a wavelet-based QRS

detection, neural network approaches and the QRS detection based on maximum

a posteriori (MAP) estimation reported in [75]. However, these approaches are
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Figure 2.2: The two ECG databases (clean and noisy). Above: ECG
obtained from the QTDB (a Physionet database consists of 105 fifteen-minute
and includes a broad variety of QRS and ST-T morphologies [64]) with a high
SNR. Below: face-lead ECG with a low SNR (the amplitudes are not to scale and
the sets were recorded independently). Both types of ECG signals were used to
evaluate the performances of the proposed MF-HT and the PT.

usually performed on ECG data acquired from stationary devices in hospitals;

new methods are therefore needed for real-world data, such as (noisy) ECG data

obtained from wearable devices. This study proposes a new method which

combines the matched filtering and Hilbert transform (MF-HT) approaches. The

former is used to find a number of potential QRS which are similar to a template

QRS pattern and the exact R-peaks are located by the latter. The approach

utilises a single QRS pattern manually selected once to avoid artefacts when

estimating the QRS computationally. In case of multiple ambiguous R-peaks, the

possible occurrences in time are limited by a dynamical time window which

depends on the standard deviation of previously detected RR-intervals.

Subsequently, the selection of the R-peaks is computed using the cross

correlation between potential QRS and the template.

Another aspect of this work is to offer the R-peak detection software to users and

researchers in medicine or psychology. The extraction and editing of the HRV

from ECG data is facilitated by an interactive graphic user interface (GUI). The

design of the software allows users to configure three important parameters: i)

the range of the ECG data of interest; ii) a template QRS pattern; and iii) the

percentage error of the RR-intervals. The main feature is the automated R-peak
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search using the MF-HT algorithm and the simultaneous computation of the

RR-intervals. The R-peak detection runs automatically until an uncertain peak

is found. The program pauses and the user can select the R-peak from various

choices: i) one of the suggested peaks as identified by MF-HT; ii) manually

selecting a peak; or iii) ignoring the detected peak. The ECG, detected R-peaks,

and the calculated RR-intervals are continuously displayed graphically.

Furthermore, a window in the software allows the user to enlarge an area to

observe potential R-peaks in detail. The software can import .mat, .csv and .txt

file formats and saves the results and configuration settings in .mat and .txt files.

2.2 Matched Filtering and Hilbert Transform

Before proposing an algorithm for detecting R-peaks in ECG, the principles of the

matched filtering and Hilbert transform are described below.

2.2.1 Matched Filtering

The idea of matched filtering is to start from a defined waveform or function and

to search for a similar pattern in a time series. This is performed by taking the

convolution between the conjugate of the defined mother pattern h(k) and the

original signal x(n) with length N as shown in equation 2.1.

y(k) = ΣN−k
k=0 h(k)x(n− k) (2.1)

The result of the convolution results in a high amplitude at times when the time

series resembles the mother pattern and a low amplitude elsewhere. This technique

is useful for locating the QRS complex in the ECG because the R-peak usually

exhibits a high amplitude and the shape of QRS is unique even in noisy intervals.
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2.2.2 Hilbert Transform

The Hilbert transform is a tool used to extend a real function into the complex

domain. The Hilbert transform of a real function, x(t), is generally defined using

the Cauchy principal value (denoted by p.v.) and a time shift, τs, as described in

equation (2.2). The transform can be defined in a convolution form (of h(t) and

x(t), where h(t) = p.v. 1
πt

) as written in equation (2.3) and in the explicit form in

2.5. The complex form (frequency domain) of the Hilbert transform can be derived

by taking the Fourier transform as given by equation (2.5) and (2.6), where the

Fourier transform of the h(t) is −j(sgn(ω)) (sgn is the signum function). This

results in a π/2 phase-lead for a negative frequency and a π/2 phase-lag for a

positive frequency as presented in equation (2.7).

x(h)(t) = H(x(t)) =
1

π
p.v.

∞∫
−∞

x(τs)
1

t− τs
dτs (2.2)

x(h)(t) = h(t) ∗ x(t), h(t) = p.v.
1

πt
(2.3)

x(h)(t) =
1

π
lim
ε→0

∞∫
ε

x(t+ τs)− x(t− τs)
τs

dτs (2.4)

F (x(h)(t)) = F (h(t)) · F (x(t)) (2.5)

X(h)(jω) = K(jω) ·X(jω) (2.6)

K(jω) = −j(sgn(ω)) =

− j, 0 < ω < π

+ j, − π < ω < 0
(2.7)

The Hilbert transform can also be written in terms of a pair of real function x(t)

and imaginary functions (jx(h)(t)) as shown in equation (2.8). The Euclidean

norm of the complex form in equation (2.8) can be written as equation (2.9). The

amplitude of the norm represents the local maxima or the envelope of x(t).
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Figure 2.3: Concept of the Matched Filtering and Hilbert transform
(MF-HT) approach. A QRS pattern is selected from the raw ECG data (top)
and used in the matched filtering step. Dissimilar patterns are removed after
applying matched filtering (middle). Envelope extraction is then performed using
the Hilbert transform for locating R-peaks (bottom).

Applying the HT to x(t) and its norm |s(t)| result in a positive envelope of the

signals (ECG) conveniently to locate the R-peak within a specific time window.

s(t) = x(t) + jx(h)(t) (2.8)

|s(t)| =
√
x2(t) + (x(h))2(t) (2.9)

The concept of combining the MF and HT methods for identifying R-peaks in

ECG data (with a pre-defined QRS complex pattern) is illustrated in Figure 2.3.
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2.3 A Proposed Algorithm for R-peak Detection

The MF-HT algorithm is performed on shifting time windows for the length of

the ECG time series. The approach can be divided into three main steps:

preprocessing, R-peak detection, and peak examination as shown in Figure 2.4.

During the preprocessing, a notch filter (band stop) of the power line frequency

(50 Hz) and a filter with a pass band of 8-30 Hz, the frequency range composing

the QRS [71, 72], are applied to the original ECG data. Both filters are 6th order

IIR Butterworth filters. The QRS pattern QRSpt is manually selected by the

user within the GUI. For the R-peak detection, two time windows are created.

The trend is removed in the first with its range set to 2.5 seconds which spans

over more than one ECG cycle and is large enough to estimate the local trend. A

differential of consecutive samples and a median subtraction are applied to the

data in the window and to QRSpt. The second time window is created inside the

first with a smaller duration to limit the minimum and maximum heart rate. It

starts at 20% of and ends at 150% of the mean of the cumulative RR-intervals,

RRmean, after the last identified R-peak. The first RR-interval is set to 1 second.

Therefore, the constraint for the R-peaks covers a heart rate ranging from 67% to

500% of the mean heart rate and this range is dynamically updated depending

on the variation of the underlying RR-intervals. Matched filtering and Hilbert

transform are applied to QRSpt and the ECG data in the first window. The

result from MF-HT is used to locate potential R-peaks within the second window

using a minimum time threshold of 0.2 × RRmean to avoid physically impossible

R-peaks. The length L of QRSpt (in sampling points) is used to define new

intervals spanning from the centre of the potential R-peaks, QRSpp(j), by ±L/2

to both sides where j is the index of potential peaks. The root mean squares of

the cross correlation between the QRSpt and each QRSpp(j) are computed. This

results in the degree of similarity Crms(j) for each j. The highest value of
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Figure 2.4: The flow chart of the matched filtering and Hilbert transform
(MF-HT) algorithm. The MF-HT algorithm consists of three parts: Pre-
processing, R-peak detection and peak examination. The MF-HT is established
based on the combination of the matched filtering method and the Hilbert
transform.

Crms(j), Crms(jmax), is automatically chosen and selected as first R-peak,

R-peakA. The RR-interval is calculated as the temporal distance between the

current and the previous R-peak. The second examination becomes effective

when the recently computed RR-interval differs from the defined error. This

error is calculated from the standard deviation of the cumulative RR-intervals

multiplied with the user-defined weight value. In the second examination, if a

peak j in QRSpp(j) – where R-peakA is excluded – leads to the closest

RR-interval compared to the previous one and also exhibits a high Crms(j)

among the remaining possible peaks, the peak j, R-peakB, is selected instead of

the previous one. The MF-HT can be summarised in Algorithm 2.1
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Algorithm 2.1. Matched Filtering and Hilbert Transform (MF-HT)

For the length N of the ECG data x(k) the MF-HT algorithm can be summarised
in the following iteration steps:

While k ≤ N

1. Create the first time window of filtered ECG data with a length of 2.5
seconds, beginning at the current R-peak.

2. Remove the local trend of the first window by taking the differential and
subtracting its median from the data.

3. Define the second window ranging from 0.2×RRmean to 1.5×RRmean after
the previous R-peak.

4. Apply matched filtering to the QRSpt and the data in the first window.

5. Apply the Hilbert transform to the result from 4).

6. Find potential peaks using a minimum time threshold of 0.2×RRmean

7. Create QRSpp(j) by expanding by ±L/2 from the centre of each potential
QRS to both sides.

8. Calculate cross correlation between QRSpt and QRSpp(j) and take their root
mean square resulting in Crms(j). max[Crms(j)] at jmax is selected to be the
R-peakA at QRSpp(jmax).

9. Calculate the current RR-interval.

10. If the RR-interval is outside of the predefined error, compute RR-intervals
of all j of QRSpp(j), where R-peakA from 8) is excluded.

11. If the potential peak j results in the closest RR-interval value compared to
the previous RR-interval and has max[Crms(j)] among the rest, it is selected
as R-peakB replacing R-peakA.

The GUI of the software is shown in Figure 2.5.

2.4 Performance Evaluation and Results

The algorithm was evaluated on two different databases: i) a standard database

from PhysioNet [76], the QT database (QTDB) [64]; and ii) a set of recordings

partially used in [77] (their examples were depicted in Figure 2.2). The latter were
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Figure 2.5: Software for R-peak extraction using the MF-HT algorithm.
Four windows are designed to visualise: ECG and identified R-peaks, the RR-
intervals, a close-up R-peak examination with suggested choices, and the QRS
pattern selection and settings.

recorded with a wearable device, a motorbike helmet and show a lower signal-to-

noise ratio (SNR) (Figure 2.2). In the first case, only the first channel was used

and in the second case, one exemplary channel, a bipolar measurement between the

two sides of the jaw, was selected. Out of the first 34 datasets in the QTDB (107

datasets in total), four were excluded for the following reasons: the annotations

were missing for large parts of the file, the annotations were incorrect, or the

annotations were inconsistent, i.e. they alternated between different parts of the

QRS-intervals – in some instances the markers were closer to the Q-peaks, in other

closer to the S-peaks).

After scanning the two databases for R-peaks, the detected positions in time were

classified using a reference. For the QTDB, the supplied annotations were used

and for the second database, a simultaneous recording of ECG obtained from

the arms was utilised. Its peaks were well defined and its occurrences in time

were verified visually. An R-peak was classified as correctly identified if the time
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difference between the R-peak in the reference and the R-peak as identified by the

algorithms is smaller or equal to 20 ms which corresponds to approximately 2%

of the duration of an average ECG cycle. Afterwards, the results were quantified

using the parameters Sensitivity (Se) and positive predictivity (+P ) [75]:

Se =
TP

TP + FN
+ P =

TP

TP + FP

where TP represents the number of correctly identified R-peaks, FN the number

of missed R-peaks and FP the number of points falsely labelled as R-peaks.

However, in the case where the algorithm consistently identifies R-peaks wrongly

due to noise or movement artefacts, further parameters are considered: i) the

deviation of the RR-intervals (RRID) as obtained from the R-peak detection

algorithms from the RR-intervals of the reference signal; and ii) the analogue

value for the heart rate deviation (HRD). This is quantified via the

root-mean-square error of the difference between the two values at every second.

The smaller the value, the more accurate was the detection of R-peaks. An

example where the second method excels is the case sel808 in the QTDB. The

markers for all R-peaks are positioned too early in the signal (closer to the

Q-peaks). Therefore, Se and +P were less than 8% for the MF-HT. However,

the RRID and the HRD are comparatively low – 47 ms and 2.0 bpm. While

results for the HRD are more intuitive, since it is common to state the pace of

the heart in beats per minute and not the average time interval between two

heart beats, it is more prone to misleading results. For example, when a false

R-peak was identified close to a real R-peak, the resulting heart rate will be

mistakenly very high due to taking the inverse of a short time period. This

explains why the values RRID and HRD in Table 2.1, row MF-HT, do not show

corresponding results.

The algorithm presented here was compared to a well established method by Pan

and Tompkins [73]. The results for the two databases are displayed in Table 2.1
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Table 2.1: Comparison of performance between PT method and our
proposed MF-HT method on standard ECG data. Both approaches were
tested on 30 datasets QTDB (relatively clean ECG) obtained from Physionet
database. The computational time (Comp. time) is measured in Matlab which is
used to implement both algorithms.

Algorithm Se +P RRID(ms) HRD(bpm) Comp. time(ms)

PT 91.2% 91.2% 1779.8 7.6 652

MF-HT 95.3% 93.5% 235.8 9.6 5347

Table 2.2: Comparison of performance between PT method and our
proposed MF-HT method on noisy wearable ECG data. Both approaches
were tested on 6 datasets with lower SNR. The computational time (Comp. time)
is measured in Matlab which is used to implement both algorithms.

Algorithm Se +P RRID(ms) HRD(bpm) Comp.time(ms)

PT 86.6% 49.6% 408.4 105.9 111

MF-HT 83.1% 86.8% 140.8 11.5 1817

and Table 2.2. For the QTDB, the MF-HT achieved higher values for Se and +P

and furthermore resulted in a smaller value for RRID. Since the MF-HT performed

better according to the three mentioned parameters, it can be concluded that the

higher value for HRD was due to an effect caused by inverting the RR-intervals to

obtain the heart rate (as explained above).

The second set of ECG recordings measured with a mobile device, features a

lower SNR due to electrodes placed on the head instead of the chest or the limbs.

Therefore the performance of both methods was reduced. The Se of PT was a few

percentage points higher than the Se of the MF-HT. However, overall PT listed

significantly more R-peaks that do not exist which lead to a low value for +P . The

same behaviour is perceptible in the columns RRID and HRD: the deviation of the

estimated RR-intervals and the heart rate from the real values was substantially

lower for the MF-HT compared to the PT.

The observation that the Se and +P of the MF-HT are in general lower than
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in other publications (e.g. in [75]), can probably be explained by assuming that

this study is more strict towards the time difference between the actual and the

estimated R-peak to classify the detection as correct.

2.5 Conclusions

A robust R-peak detection method has been established based on a combination

of the matched filtering and the Hilbert transform (MF-HT). The RR-intervals

and cross-correlation have been employed in conjunction to not only

automatically locate the R-peaks but also to display the candidate ambiguous

peaks via an interactive graphical user interface (GUI). The MF-HT approach

has been evaluated by implementing two types of ECG databases: i) standard

clean ECG, and ii) low signal to noise ratio ECG (noisy ECG) obtained from

wearable ECG. The performance of the approach has been compared to the

performance of the well-known Pan-Tompkins algorithm. The proposed MF-HT

has shown a distinctly higher positive predictivity and has led to more satisfying

overall outcomes, especially for the critical call of noisy ECG.

2.6 Future work

Future work will include the verification of these results on additional standard

ECG databases and real-world ECG obtained from a variety of wearable devices.

Nonlinear techniques for eliminating baseline wander and movement artefacts in

noisy ECG will be investigated to the improvement of the accuracy of the R-peak

detection. The HRV estimation (from RR-intervals) and HRV cleaning process

will be included. Moreover, a user-friendly GUI for the approach will be designed

and implemented.
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Chapter 3

Standard Entropy Measures and an Introduction

to Cosine Similarity Entropy

3.1 Introduction

Entropy-based structural complexity assessment is one of the most important

nonlinear analysis tools for quantifying degrees of regularity/irregularity in

signals and systems. However, observational data from real-world systems

usually exhibit nonlinearity and/or nonstationarity, so that standard linear

metrics and standard descriptive statistic, such as mean, standard deviation,

time or frequency domain analysis, fail to reveal genuinely intrinsic

characteristics [27, 28]. A well-known statistical entropy method, called

Approximate Entropy (ApEn) [12, 30, 31, 32, 33, 34], has therefore been

developed particularly for the analysis of physiological signals, such as heart rate

variability (HRV). Such an approach is based on the statistics of occurrences of

similar patterns in a time series. These are found in reconstructed elements,

so-called embedding vectors, which preserve the underlying dynamical properties

of the system when an appropriate embedding dimension (m) is chosen [37, 78].

The Sample Entropy (SE) estimator, proposed by [13], is an improved version of

the ApEn, whereby the occurrences of the self-similar patterns are not

considered; this results in unbiased entropy estimates; this enhanced robustness

has made the SE become an extremely popular in practical applications.

However, there are some limitations of the SE which are related to: i) a short

length of sample size, ii) spikes or erratic noise in data, and iii) unconstrained

bounds on entropy values. To provide insight into these limitations and outline

the proposed solutions, it is important to notice that in the SE approach,

entropy is estimated based on conditional probability, whereby the probability of
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Figure 3.1: Undefined entropy of white Gaussian noise (WGN) and 1/f
noise. The 30 independent realizations with data lengths from 10 to 5,000
samples were generated for WGN and 1/f noise. The sample entropy with a
given embedding dimension m = 2 and a given time lag τ = 1 is applied to both
noises. The mean entropies with their standard deviations are plotted against data
length. Observe the entropy values are undefined when the data lengths are too
short (less than 120 samples). Based on sample entropy formula (see Algorithm
3.1), entropy values are calculated from the natural logarithm of the ratio between
the probability of occurrences of similar patterns found in embedding vectors with
a given embedding dimension m, and one with embedding dimension (m+ 1); the
ratio approaches zeros for such short data lengths and therefore results in infinite
values (undefined entropy values).

occurrences of similar patterns found in the embedding vectors with a small

dimension (m) is compared to the probability of the occurrences of similar

patterns found in the embedding vectors with a larger dimension (m+ 1), defined

as a reference frame. This method is effective when a time series has enough

samples (10m to 30m as a rule of thumb [79]), however for a short time series (the

first issue above), undefined entropy can arise due to the convergence in

probability to zero; i.e. few occurrences of similar patterns are found in

embedding vectors with the dimension of either m or (m+ 1) [80] (see Figure 3.1

for entropy values of the 30 independent realizations with a sample sizes ranging

from 10 to 5,000 samples generated for WGN and 1/f noise). Regarding the
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second issue, since the assessment of the similarity in the SE is based on the

amplitude-based distance called the Chebyshev distance, spurious peaks or high

amplitude of spikes1 present in a time series directly affect such a distance metric

and consequently alter a number of occurrences of similar patterns found in the

embedding vectors for both the dimensions m and (m + 1); this results in either

a reduction or increase in entropy [82, 81] and exemplifies that the rapid changes

of amplitudes cause inconsistent entropy estimates. Furthermore, the estimation

of entropy is based on the natural logarithm which gives an uncontrollable range

entropy values for small values of the proxy for probability (the third issue

above). To this end, the recent fuzzy entropy (FE), an improved version of the

SE, has been proposed in [14, 40, 41, 42]. To provide more robust examination of

the similarity between embedding vectors. This is achieved by replacing the

Heaviside function or a hard threshold, used as a criterion in the SE, with a

fuzzy membership function, such as a Sigmoid or Gaussian. The FE has been

proven to be superior to the SE for short sample sizes and is robust to spikes

[14]. However, the SE and FE yield different entropy estimates (for sufficient

samples), whereby the FE yields lower entropy values and their variation than

the entropy estimated from the standard SE.

In addition, the SE behaves monotonically with respect to the degrees of

uncertainty, meaning that the higher the randomness the greater the entropy.

This implies that the SE is effectively a tool for quantifying degrees of

uncertainty-based complexity [13, 49, 50]. However, completely random signals

have no structure and are therefore not complex, and the complexity should be

considered in the context of (self) correlation over small to large temporal scales,

as shown in the coarse-grained scales employed in the Multiscale Sample Entropy

(MSE), proposed in [15, 52]. Indeed, it is the MSE that make a guarantee step

forward in the way we understand and deal with complexity of real-world data.

1These typically present in real world data, such as in QRS complexes of the
Electrocardiogram (ECG), epilepsy seizures in Electroencephalogram (EEG), movement
artifacts, or any failures of recording devices or of sensors [81].
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An illustrative example of the complexity analysis using the MSE is a

comparison of a long-term correlated signal (1/f fractal noise with a tremendous

amount of structure) and uncorrelated random noise [43]. Random noise at the

smallest scale factor (sample entropy) has a higher entropy than the entropy of

the truly complex self-similar and infinitely repeating 1/f noise. However, with

an increase in the scale factor, the entropy of random noise decreases, while the

entropy of the 1/f noise remains constant over the whole range of scale factors.

Finally, at the largest scale factor, the entropy of random noise reduces

dramatically and is lower than that of the 1/f noise; the implication of this result

is the concept of the quantification of complexity based on self-correlation over

small to large scale factors which is emphasized in this study.

We proposed the algorithm called “Cosine Similarity Entropy” (CSE) and its

extended multiscale version called “Multiscale Cosine Similarity Entropy”

(MCSE) are based on the modification as exploiting the SE and the MSE

approaches, whereby we employ Shannon entropy instead of the conditional

entropy owing to its rigorous properties: i) anti-monotonicity (an increase in

entropy with a decrease in probability and vice versa); ii) for a uniform

distribution of probability, it exhibits a unique maximum entropy; and iii)

entropy is zero only if the probability is 1 (no new information) [83]. In terms of

a distance metric, we employ the angular distance, a family of the cosine

similarity distances (a measure of similarity between two non-zeros vectors by

calculating a norm of inner product space of the two vectors; more details are

given in Section 3.3), which is an amplitude-independent-based distance. The

angular distance also complies with the four axioms of the distance in metric

spaces: i) non-negativity; ii) identity for indiscernibles; iii) symmetry; and iv)

triangle inequality [84, 85]. We examine the characteristic of the CSE over

varying tolerance levels for four synthetic signals: i) white Gaussian noise

(WGN), ii) 1/f noise, iii) first order autoregressive model, AR(1), and iv) second

order autoregressive model, AR(2). The four synthetic signals are tested
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regarding their distinctive characteristics: i) the WGN represents a complete

random signal (no structure), while the 1/f noise represents a long-term

correlation signal (complex structures), and ii) the AR(1) and AR(2) represent

one and two degrees of freedom of the signal-generation systems (intermediate

complex structures); these four signals are hence an appropriate choice for

testing their characteristics in terms of structural complexity. The effects of

different embedding dimensions and sample sizes on the SE, FE and CSE

approaches are also compared. For the multiscale approaches, the performances

of the corresponding multiscale versions, MCSE, MSE and MFE, are investigated

by evaluating the complexity profiles of these four characteristic synthetic signals

over small to large scales. The effectiveness of the three multiscale approaches is

finally verified on real-world heart rate variability obtained from three different

conditions of cardiac pathology. Physically meaningful interpretations of these

conditions based on the proposed correlation based complexity approach are

demonstrated, and its enhanced robustness to short data sizes, artefacts in data

as amplitude-independence and a stable range of values are verified.

3.2 Sample Entropy, Fuzzy Entropy and a

Multiscale Approach

Estimation of sample entropy is based on the conditional probability of the

occurrences of similar patterns in a time series, whereby similar patterns found in

the reconstructed embedding vectors with a given embedding dimension (m) are

compared to similar patterns found in the reconstructed embedding vectors with

a higher embedding dimension (m + 1), regarded as a reference frame. The

patterns are judged similar when a distance (Chebyshev distance, ChebDis)

between two embedding vectors is less than or equal to a given tolerance level

(rse). The steps of the SE approach are summarized in Algorithm 3.1.
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Algorithm 3.1. Sample Entropy

For a time series {xi}Ni=1 with a given embedding dimension (m), tolerance (rse)
and time lag (τ):

1. Construct the embedding vectors from {xi}Ni=1 using

x
(m)
i = [xi, xi+τ , ..., x(i+(m−1)τ)] , i = 1, ..., N −m+ 1

2. Compute the Chebyshev distance for all pairwise embedding vectors as

ChebDis
(m)
i,j = maxl=1,2,...,m{x(m)

i [i+ l − 1]− x
(m)
j [j + l − 1]}, i 6= j

3. Obtain the number of similar patterns, P
(m)
i (rse), when a criterion

ChebDis
(m)
i,j ≤ rse is fulfilled

4. Compute the local probability of occurrences of similar patterns,

B
(m)
i (rse), given by

B
(m)
i (rse) = 1

N−mP
(m)
i (rse)

5. Compute the global probability of occurrences of similar patterns,

B(m)(rse), using

B(m)(rse) = 1
N−m

∑N−m
i=1 B

(m)
i (rse)

6. Repeat Step 1 to Step 6 with an embedding vector (m+ 1) and

obtain B(m+1)(rse) from

B(m+1)(rse) = 1
N−m

∑N−m
i=1 B

(m+1)
i (rse)

7. Sample entropy is then estimated in the from

SE(m, τ, rse, N) = ln[ B(m)(rse)

B(m+1)(rse)
]

.

In a multiscale version of the sample entropy approach proposed by [15, 52, 43],

scales are generated using the coarse graining process which is based on moving

average with non-overlapped windows of a time series {xi}Ni=1 , and yields a new,

successively shorter, time series of length N/ε, defined as

y
(ε)
i =

1

ε

jε∑
i=(j−1)ε+1

x(i) (3.1)

where ε represents a scale factor and 1 ≤ j ≤ N/ε.
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For the Multiscale Sample Entropy (MSE) algorithm, only the coarse graining

process is required prior to proceeding with steps in the SE. For a given scale

factor ε, the coarse-grained scale obtained from equation (3.1) is substituted for

{xi}Ni=1, to serve as an input series to the SE algorithm. The estimation of the

multiscale sample entropy therefore assumes the for

MSE(m, τ, rse, N, ε) = ln[
B

(m)
(ε) (rse)

B
(m+1)
(ε) (rse)

] (3.2)

where B
(m)
(ε) (rse) and B

(m+1)
(ε) (rse) are respectively the global probabilities of the

occurrences of similar patterns for a given m and (m+ 1).

Note that for ε = 1, the coarse-grained time series is equal to the original time

series, thus at this scale factor, the MSE results in an entropy which is identical

to entropy estimated from the standard SE, given in Algorithm 3.1.

In the FE approach, the computational steps in the SE are replicated with two

modifications: i) in the first step of the SE, reconstructed embedding vectors are

centered by their own means; i.e. they become zero-mean, and ii) in the fourth

step of the SE, instead of obtaining a number of similar patterns, P
(m)
i (rcse), the

FE obtains the fuzzy similarity, S
(m)
i (rfe, η), calculated from a fuzzy membership

function, such as the Z-shape [86] or the Gaussian (a family of the exponential

function) [14]. Similar entropy values are found when applying the FE with both

functions with recommended parameters (entropy values resulting from such

functions can be different depending on a selection of parameters for each

function) [86], In our study, we chose the Gaussian membership function which is

suggested by [14, 41]. The steps of the FE approach are summarized in

Algorithm 3.2.

For the Multiscale Fuzzy Entropy (MFE) algorithm, only the coarse graining

process is required prior to proceeding with other steps in the FE. For a given

scale factor ε, the coarse-grained scale produced from equation (3.1) is
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Algorithm 3.2. Fuzzy Entropy

For a time series {xi}Ni=1 with given embedding dimension (m), tolerance (rfe)
and time lag (τ):

1. Construct the centered embedding vectors from {xi}Ni=1 as

x
(m)
i = [xi, xi+τ , ..., x(i+(m−1)τ)]− 1

i+(m−1)τ
∑i+(m−1)

i xi , i = 1, ..., N −m+ 1

2. Compute the Chebyshev distance for all pairwise embedding vectors from

ChebDis
(m)
i,j = maxl=1,2,...,m{x(m)

i [i+ l − 1]− x
(m)
j [j + l − 1]}, i 6= j

3. Obtain the fuzzy similarity, S
(m)
i (rfe, η), using the Gaussian function

S
(m)
i (rfe, η) = e

(ChebDis
(m)
i,j

)η

rfe , where η is a chosen order

4. Compute the local probability of occurrences of similar patterns,

B
(m)
i (rfe), using

B
(m)
i (rfe) = 1

(N−m)
S
(m)
i (rfe, η)

5. Compute the global probability of occurrences of similar patterns,

B(m)(rfe), as

B(m)(rfe) = 1
N−m

∑N−m
i=1 B

(m)
i rfe

6. Repeat Step 1 to Step 6 with the embedding dimension (m+ 1) and obtain

B(m+1)(rfe) from

B(m+1)(rfe) = 1
N−m

∑N−m+1
i=1 B

(m+1)
i rfe

7. Fuzzy entropy is then estimated in the form

FE(m, τ, rfe, N) = ln[
B(m)(rfe)

B(m+1)(rse)
].

substituted for {xi}Ni=1, to serve as an input series to the FE algorithm.

Estimation of the multiscale fuzzy entropy can be then performed based on

MFE(m, τ, rfe, N, η, ε) = ln[
B

(m)
(ε) (rfe)

B
(m+1)
(ε) (rfe)

] (3.3)

where B
(m)
(ε) (rcse) and B

(m+1)
(ε) (rcse) are respectively the global probabilities of the

occurrences of similar patterns for given embedding dimensions m and (m+ 1).
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(a)

(b)

Figure 3.2: Geometric interpretation of the Chebyshev and angular
distances in Cartesian coordinates. (a) Chebyshev distance of two embedding
vectors x1 and x2, with embedding dimensions m = 2 and m = 3. Chebyshev
distances are chosen from the coordinate-wise maximum amplitude difference of
the two embedding vectors. (b) Angular distance of embedding vectors x1 and

x2with m = 2 and m = 3; the angles (α
(m)
1,2 ) and the angular distance between the

two embedding vectors are calculated using equations (3.6) and (3.7).

3.3 Cosine Similarity Entropy (CSE)

Prior to introducing the proposed CSE algorithm and its multiscale version,

MCSE, we shall provide an insight into the geometry of angle-based association

measures of embedding vectors.
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(a)

(b) (c)

Figure 3.3: Geometric interpretation of similar patterns in a three-
dimensional phase space. The embedding vector, x(3) (with a given m = 3), is
reconstructed from an Electrocardiogram (ECG) time series. (a) Normalized raw
ECG. (b) Using the Chebyshev distance with a given a tolerance rse (see section
3.4.1 for more details), similar patterns are detected inside the red sphere. (c)
Similar patterns, derived from the angular distance with a given rcse, are detected
inside the green projection cone.

3.3.1 Angular Distance

The Chebyshev distance used in the SE is obtained from the maximum

amplitude difference among elements of the two embedding vectors (for a given

m), however, this amplitude based distance is sensitive to spikes or erratic peaks

in data. In the sense of structural similarity, it is reasonable to consider similar

patterns as spans of a prototype vector, or alternatively any embedding vectors

which are scaled by multiplying gains (within a given small tolerance). With this

rationale, we show that the angular distance (AngDis), which rests upon of the

angle between two embedding vectors as a distance metric, is an appropriate

choice for the determination of the similar patterns in a noisy time series. The

major advantage of the angular distance is its low sensitivity to any changes in

67



vector norms as long as the angle between the considered vectors is maintained a

desired amplitude-independent-based distance.

3.3.2 Properties of Angular Distance

It is important to mention that the angular distance belongs to the family of

cosine distances (CosDis) which are derived from the cosine similarity (CosSim)

metric. Cosine similarity is defined as an inner product of two vectors divided by

the product of their norms, giving a range from −1 to 1. To produce a distance

metric allowing for only positive values, the cosine distance is simply modified by

subtracting its value from 1, to yield a range from 0 to 2. However, the cosine

similarity and the cosine distance are not proper distance metrics, as they violate

the triangle inequality property of a metric in normed vector spaces [87, 88].

Namely, the properties of any valid distance should satisfy of the following. Let

a, b, c be any vectors in a subspace of Rmand Dis(a, b) a distance between the

vector a and vector b. The properties of a valid distance are: i) non-negativity

(Dis(a, b) ≥ 0), ii) identity of indiscernibles (Dis(a, b) = 0 only if a = b), iii)

symmetry (Dis(a, b) = Dis(b,a)), and iv) triangle inequality

(Dis(a, b) ≤ Dis(a, c) + Dis(c, b)) [84, 85]. Even though the cosine distance is

not a proper distance, it has been used in some applications, such as face

recognition [89], speech processing [90] and text mining [91]. The angular

distance is defined as a normalized angle between two vectors and is calculated

from cos−1(CosSim) divided by π, so that the boundary values of the angular

distance range from 0 to 1. This means that any two vectors are similar when

AngDis approaches 1 and they are dissimilar when AngDis approaches 0. The

properties of the angular distance now do obey the axioms of the proper distance

metric, including the triangle inequality [92].

For given embedding vectors x
(m)
i · x(m)

j with an embedding dimension m, the

cosine similarity, CosSim
(m)
i,j , cosine distance, CosDis

(m)
i,j , actual angle, α

(m)
i,j , and
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angular distance, AngDis
(m)
i,j , of any two embedding vectors x

(m)
i and x

(m)
j where

i 6= j are defined as.

CosSim
(m)
i,j =

x
(m)
i · x(m)

j

|x(m)
i ||x

(m)
j |

(3.4)

CosDis
(m)
i,j = 1− CosSim(m)

i,j (3.5)

α
(m)
i,j = cos−1(CosSim

(m)
i,j ) (3.6)

AngDis
(m)
i,j =

α
(m)
i,j

π
. (3.7)

PearCorr
(m)
i,j =

(x
(m)
i − x̄

(m)
i ) · (x(m)

j − x̄
(m)
j )

|x(m)
i − x̄

(m)
i ||x

(m)
j − x̄

(m)
j |

(3.8)

The geometric interpretation of AngDis and ChevDis in the Euclidean space

is illustrated in Figure 3.2, and the geometric interpretation of similar patterns

obtained using the Chebyshev and angular distance is illustrated in Figure 3.3.

Despite its obvious amplitude independence, the angular distance is sensitive to

any offsets in a time series, including baseline wander generally presenting in real

world signals. To eliminate the influence of offsets, the centered cosine similarity

version (so-called Pearson correlation) as given by equation (3.8) [93, 94]. The

method effectively reduces the influence of the offset by centering the input

vectors using their own vector means. Besides, such methods are usually applied

to high dimensional vectors which are enough to represent their intrinsic

distributions, so their vector means are a good proxy to the global means of the

population. However, in practice the reconstructed embedding vectors are of low

dimensions, e.g. m = 2 or m = 3 [34], so that centering such embedding vectors

by their local means would compromise the accuracy of their global correlation

estimate and could lead to bias when examining similar patterns. To resolve this

issue, we propose a simple (optional) pre-processing to remove such offset by

using a zero-median method [95], while preserving its amplitude range

(unnormalised amplitude). We opt for the zero-median rather than the
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zero-mean approach because of its robustness to outliers and spikes, erratic

amplitudes to which the zero-mean approach is sensitive. With such

pre-processing, the angular distance is made robust to baseline wander.

3.3.3 Cosine Similarity Entropy and Multiscale Cosine

Similarity Entropy

The robust entropy algorithm proposed in this study is referred to as the “Cosine

Similarity Entropy” (CSE), whereby for consistent entropy estimation within a

general framework of Algorithm 3.1, the Chebyshev distance is replaced with the

angular distance and the Shannon entropy is employed instead of the standard

conditional probability. The Shannon entropy is mathematically described as

H(x) = −
n∑
i=1

p(xi) logb p(xi), (3.9)

where p(xi) is the probability mass function of random variables

xi = {x1, x2,...,xN} .

For a case of 1-bit data length (n = 2) with a given logarithm base b = 2, Shannon

entropy can be written as

H(x) = −(p(x1) log2 p(x1) + p(x2) log2 p(x2) (3.10)

where p(x1) is the probability mass function of the random variables x1 = 0 and

p(x2) is the probability mass function of the random variables x2 = 1.

Recall that p(x1) + p(x2) = 1, so the equation (3.10) can be re-written as

H(x) = −[p(x1) log2 p(x1) + p(1− x1) log2 p(1− x1)]. (3.11)

Notice that unlike for the SE, the undefined entropy values only occur when
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p(xi) = 0, meaning that none of the similar patterns is found for a given

tolerance level (which is unlikely to happen). When the 1-bit data length has a

uniformly distributed probability, p(x1) = p(x2) = 0.5, the unique maximum

entropy calculated from equation (3.11) is 1, thus H(x) ranges from 0 to 1.

In the proposed CSE algorithm, the steps in the SE approach, given in Algorithm

3.1, are replicated with three modifications: i) in the first step of the SE, we

provide optional pre-processing for removing the offset in a time series, ii) in the

third step of the SE, angular distance is used instead of the Chebyshev distance,

and iii) in the last step of the SE, we estimate the entropy based on equation

(3.11), by substituting the global probability of occurrences of similar patterns

B(m)(rcse) and its complementary probability (1− B(m)(rcse)) for the terms p(x1)

and p(x2). The steps of the CSE approach are summarized in Algorithm 3.3.

For the Multiscale Cosine Similarity Entropy (MCSE) algorithm, only the coarse

graining process is required prior to proceeding with other steps in the CSE. For

a given scale factor ε, the coarse-grained scale produced from equation (3.1), is

substituted for {xi}Ni=1 as an input series to the CSE algorithm, and the estimation

of the multiscale cosine similarity entropy is given by

MCSE(m, τ, rcse, N, ε) = −[B
(m)
(ε) (rcse) log2B

(m)
(ε) (rcse)+

(1−B(m)
(ε) (rcse)) log2(1−B

(m)
(ε) (rcse)] (3.12)

where B
(m)
(ε) (rcse) and B

(m+1)
(ε) (rcse) are respectively the global probabilities of

occurrences of similar patterns for a given m and (m+ 1).

Note that in the SE and FE algorithms, ChebDis can be obtained for any two

embedding vectors with a minimal m = 1, since the distance is based on the

operation on individual element of two vectors, while in the CSE, AngDis can be

obtained for any two embedding vectors with a minimal m = 2, since vectors with

a single dimension are always aligned to their single basis vector (a trivial angular
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Algorithm 3.3. Cosine Similarity Entropy

For a time series {xi}Ni=1 with given embedding dimension (m), tolerance (rcse)
and time lag (τ):

1. (Optional pre-processing) Remove the offset and generate a zero median
series {si}Ni=1 as

s = xi −median({xi}Ni=1) , i = 1, ..., N −m+ 1

2. Construct the embedding vectors, x
(m)
i from {xi}Ni=1 (or from {si}Ni=1) using

x
(m)
i = [xi, xi+τ , ..., x(i+(m−1)τ)]− 1

i+(m−1)τ
∑i+(m−1)

i xi i = 1, ..., N −m+ 1

3. Compute angular distance for all pairwise embedding vectors as

AngDis
(m)
i,j = 1

π
cos−1(

x
(m)
i ·x(m)

j

|x(m)
i ||x(m)

j |
), i 6= j

4. Obtain the number of similar patterns P
(m)
i (rcse) when a criterion

AngDis
(m)
i,j ≤ rcse is fulfilled

5. Compute the local probability of occurrences of similar patterns,
B

(m)
i (rcse), as

B
(m)
i (rcse) = 1

N−mP
(m)
i (rcse)

6. Compute the global probability of occurrences of similar patterns,
B(m)(rcse), from

B(m)(rcse) = 1
N−m

∑N−m
i=1 B

(m)
i (rcse)

7. Cosine similarity entropy is now estimated from

CSE(m, τ, rcse,N) =
−[B(m)(rcse) log2B

(m)(rcse) + (1−B(m)(rcse)) log2(1−B(m)(rcse)].

distance), so that AngDis is valid only when applied to vectors with m ≥ 2 (see

equations (3.4)-(3.7) and Figure 3.2); this is practically perfectly valid.

3.4 Selection of Parameters

Selection and robustness of the parameter values of the proposed CSE approach

is next demonstrated over several benchmark scenarios.
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3.4.1 Selection of the Tolerance ( rcse) for CSE

In the SE and the FE approaches, tolerance is defined as a product of a given

ratio value (r) and the standard deviation (sd) of a considered time series, that is,

rse = rfe = r×sd. The recommended tolerance level, rse, for the SE, is between

0.1 and 0.25 [32, 79]. The recommended tolerance level, rfe , for the FE is between

0.1 and 0.3 [14]. In our proposed CSE and MCSE algorithms, we examined how

entropy changes as a function of rcse on four synthesized signals:

1. White Gaussian Noise (WGN),

2. 1/f noise,

3. The first order autoregressive model (AR(1)) generated from

x(t) = 0.9x(t− 1) + ε(t) and

4. The second order autoregressive model (AR(2)) generated from

x(t) = 0.85x(t− 1) + 0.1x(t− 2) + ε(t), where ε(t) ∼ N (0, 1).

We generated 20 independent realizations with 10,000 samples for each synthetic

signal with the recommended m = 2 [34], τ = 1 [96], and varied rcse from 0.01

to 0.99 with an incremental step of 0.02 (as the boundary values of the angular

distance ranges from 0 to 1). Since Shannon entropy is employed in the proposed

CSE algorithm, it is anticipated that the outcomes of the CSE versus rcse are

analogous to the properties of Shannon entropy versus probability of a selected

event, Pr(X = 1), when using 1-bit data, as shown in Figure 3.4(a). Figure

3.4(b) illustrates the results of the CSE plotted as mean entropies with their sd

against rcse. Observe a rise of mean entropies in all the four CSE curves from

low to high entropy with an increase in rcse from 0.01 to 0.49, and a decrease

in mean entropies in all the four curves with an increase of rcse from 0.51 to

0.99. This means that, as anticipated, the characteristics of the CSE resemble

the characteristics of the Shannon entropy where the unique maximum entropy
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Figure 3.4: Selection of the tolerance parameter for the CSE algorithm.
(a) Standard Shannon entropy curve as a function of probability of a selected event
(Pr(X = 1)) when using 1-bit data. (b) Four CSE curves for WGN, 1/f noise,
AR(1) and AR(2), when varying rcse from 0.01 to 0.99.

occurs at rcse = 0.5. We can thus approximately define an optimal range of the

rcse for which the mean entropies of the four synthetic signals are (visually and

statistically) discriminated to between2 0.05 and 0.2. For a comparison between

the mean entropies among the four synthetic signals, we empirically selected rcse =

0.07, for which the corresponding mean entropies of the WGN, 1/f noise, AR(1)

and AR(2) were respectively 0.37, 0.48, 0.61 and 0.7.

3.4.2 Effect of Embedding Dimension and Sample Size

The sample size, N , and embedding dimension, m, are important parameters which

affect the outcomes of the SE and FE approaches3. In practical applications, it is

acceptable to select a small embedding dimension such as m = 2 [34, 97, 14] for

both approaches, while the rule of thumb for appropriate N is as low as 10m−30m

for the SE [32, 79], but not for the FE for which N can be selected to be down to

2The region of rcse between 0.51 and 0.99 can also be used since the entropy values of this
region are comparable to the region of rcse between 0.01 to 0.49, but we considered the later due
to the fact that the smaller the tolerance the greater the similarity.

3We do not consider varying the time lag, τ , parameter because this is analogous to a
number of samples used in a downsampling method. Hence, we fix τ = 1 [96] for the structural
preservation of the original data.
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Figure 3.5: Comparison of the entropy curves over a varying embedding
dimension using the SE, FE and CSE approaches. The 30 independent
realizations with 1,000 samples were generated for each of the four synthetic
signals; WGN, 1/f noise, AR(1) and AR(2). The mean entropies with their
standard deviations are plotted against the embedding dimension. (a) Results
of the SE, (b) Results of the FE, and (c) Results of the CSE.

50 samples [14]. We next tested the performances of the three entropy approaches

(SE, FE and CSE) as the functions of: 1) embedding dimension and 2) sample

size. In the first test, we generated 30 realizations for each of the four synthetic

signals; WGN, 1/f noise, AR(1) and AR(2), as mentioned in Section 3.4.1, with

the selection of N = 1, 000, τ = 1, rse = rfe = 0.15 [79], rcse = 0.07 and η = 2 [14]

(an order of the Gaussian membership function used in the FE [14]), while varying

m from 1 to 10 (for the CSE, m was varied from 2 to 10 as mentioned in Section

3.3). In the second test, we generated 30 independent realizations for each of the

four synthetic signals with the values of m = 2, τ = 1, rse = rfe = 0.15, rcse = 0.07

and η = 2, while varying N with three different step sizes: i) for the sample sizes

from 10 to 1000, the incremental step was 10 samples (N = 10 : 10 : 1000),

ii) for the sample sizes from 1020 to 2000, the incremental step was 20 samples

(N = 1020 : 20 : 2000), and iii) for the sample sizes from 2050 to 5000, the

incremental step was 50 samples (N = 2050 : 50 : 5000).

Figure 3.5 shows the results of mean entropies with their sd against embedding

dimension m. Figure 3.5(a) depicts the results of the SE in which the mean

entropies behaved consistently over different ranges of m for each synthetic signal:
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Figure 3.6: Comparison of the entropy curves over varying sample sizes
using the SE, FE and CSE approaches. The 30 independent realizations with
a range of sample sizes from 10 to 5,000 samples were generated for each of the four
synthetic signals; WGN, 1/f noise, AR(1) and AR(2). The mean entropies with
their standard deviations are plotted against data length N . (a) Results of the
SE. (b) Results of the FE. (c) Results of the CSE. Observe the excellent stability
of CSE estimates, even for samples sizes as small as 50 samples.

i) WGN: m = [1, 2, 3], ii) 1/f noise: m = [1, 2, 3, 4], iii) AR(1) and AR(2): m =

[1, 2, ..., 5]. However, for any m outside the ranges mentioned, the SE resulted in

undefined entropy. Figure 3.5(b) illustrates the results of the FE in which the

mean entropies of all synthetic signals showed a slow decline with an increase in

m, and the mean entropies peaked at m = 2. Figure 3.5(c) shows the results of

the CSE in which the mean entropies decreased with an increase in m, and when

m ≥ 6, the mean entropies of the WGN and 1/f noise approached zero.

Remark 1. From Figure 3.5 the SE gives valid entropy values only for m = [1, 2, 3].

Figure 3.6 shows the results of the second test (varied N) plotted as mean entropies

with their sd against N . Figure 3.6(a) depicts the results of the SE approach in

which the entropy values of the WGN and 1/f noise were valid for N ≥ 130, for

the AR(1), entropy was valid for N ≥ 70, and for the AR(2), entropy was valid for

N ≥ 60. By visually selecting any N at which the sd of the two mean entropies

were non-overlapped, the separation of mean entropies between the WGN and the

1/f noise was significant when N ≥ 300, and for between the AR(1) and the AR(2)

the separation was achieved when N ≥ 700. Figure 3.6(b) illustrates the results of
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the FE in which the entropy of all synthetic signals was valid over the whole range

of the sample sizes. The separation of mean entropies between the WGN and the

1/f noise was discernible when N ≥ 50, and between the AR(1) and the AR(2)

the separation of mean entropies was pronounced when N ≥ 500. Figure 3.6(c)

shows the results of the CSE approach in which the entropy of all synthetic signals

was valid even when the numbers of samples was as low as 20. The separation of

mean entropies between the WGN and the 1/f noise was observed when N ≥ 100,

while between the AR(1) and AR(2), separation of mean entropies was pronounced

when N ≥ 700.

Remark 2. From Figure 3.6, for the separation of mean entropies between WGN

and 1/f noise, the CSE requires a smaller sample size (N = 100) than that of the

SE (N = 300).

3.5 A Comparison of Complexity Profiles using

MSE, MFE and MCSE

After having established the basic properties of the proposed CSE approach, we

now evaluate the usefulness of its multiscale version, the multiscale CSE (MCSE),

for the quantification of the structural complexity over the coarse-grained scales

(see equation (3.12)).

3.5.1 Complexity Profiles of Synthetic Noises

To examine the behaviors of the multiscale versions - MSE, MFE and MCSE - over

the coarse-grained scales (complexity profiles [43]), we generated 20 independent

realizations of 10,000 samples for each of the four synthetic signals; WGN, 1/f

noise, AR(1) and AR(2), as described in Section 3.4.1. For the three multiscale

entropy approaches, we selected m = 2 [52], τ = 1, rse = rfe = 0.15, rcse = 0.07,
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η = 2 and the scale factor, ε, from 1 to 20. Figure 3.7 illustrates the results of the

three approaches plotted as mean entropies with their sd against the scale factors.

Figure 3.7(a) depicts the results of the MSE from which distinctive profiles of

the entropy curves can be observed. At ε = 1, the order of the mean entropies

from high to low corresponded to the WGN, 1/f noise, AR(1) and AR(2), while

at a large scale, ε = 20, both the AR(1) and AR(2) yielded the highest mean

entropies, and the lower mean entropies were the 1/f noise followed by the WGN.

The distinctive behavior for each synthetic signal can be characterized as follows:

i) for the WGN, the entropy curve decreased as the scale increased; i.e. at ε=1,

the mean entropy was 2.5, and at ε = 20, the mean entropy fell to 1.0; ii) for the

1/f noise, the entropy curve was relatively consistent over all scale factors (mean

entropies varied between 1.87 and 2.04); iii) for the AR(1) and AR(2), the entropy

curves gradually ascended as the scale increased; i.e. at 1 ≤ ε ≤ 17, the entropy

curve of the AR(1) was above the entropy curve of the AR(2) while at ε ≥ 18,

the entropy curves of both the AR(1) and AR(2) converged and then overlapped

at the mean entropy values of 2.12. Figure 3.7(b) shows the results of the MFE

approach in which all the entropy curves were similar to the corresponding entropy

curves of the MSE. The only difference was that the MFE produced lower mean

entropies than the MSE.

Figure 3.7(c) illustrates the results of the MCSE from which distinctive complexity

profiles can be observed. At ε = 1, the order of high to low mean entropies was the

AR(2), AR(1), 1/f noise and WGN, while at ε = 20, the order of high to low mean

entropies was the 1/f noise, AR(2), AR(1) and WGN, that is the correct order of

structural complexity. This can be explained as follows: i) for the WGN, the mean

entropy value of 0.37 was consistent over the whole range of the scale factors; ii)

for the 1/f noise, the entropy curve slowly decreased or was almost consistent with

small variation of mean entropies (between 0.45 and 0.49); in addition, as desired

the mean entropies of the 1/f noise were higher than those of the WGN over all the

scale factors; iii) for the AR(1) and AR(2), the entropy curves gradually decayed
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Figure 3.7: Comparison of the complexity profiles of the four synthetic
signals, WGN, 1/f noise, AR(1) and AR(2), using the MSE, MFE and
MCSE approaches. The 20 independent realizations with 10,000 samples were
generated for each of the four synthetic signals. The mean entropies with their
standard deviations are plotted against the coarse-grained scales. (a) Results of
the MSE. (b) Results of the MFE. (c) Results of the MCSE. Observe the very
consistent and correct behaviors of MCSE in plot (c), especially for large scales,
unlike the MSE and MFE in plots (a) and (b).

as the scale factor increased; as desired the entropy curves of the AR(1) was lower

than those of the AR(2) for the whole range of the scale factors; i.e. at ε = 1,

mean entropies of the AR(1) and AR(2) had the values of 0.61 and 0.7, while at

ε = 20, the mean entropies the AR(1) and the AR(2) were 0.38 and 0.41.

Remark 3. From Figure 3.7, at a large scale factor, the MCSE gives a well defined

separation of mean entropies among all the synthetic signals, WGN, 1/f noise,

AR(1) and AR(2), while the MSE and MFE only yield a good separation of mean

entropies between the WGN and the 1/f noise. In addition, unlike MSE and MFE,

for the proposed MCSE, the complexity of the 1/f noise was higher than that of

the WGN for the whole range of the scale factors.

3.5.2 Complexity Profiles of Autoregressive Models

We next examined the complexity profiles of an ensemble of autoregressive

processes (AR) over the coarse-grained scales, through the MSE, MFE and
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MCSE. To this end, we generated two groups of AR processes including i)

AR(1)s with nine different correlation coefficients (α1, where

α1 = [0.1, 0.2, ..., 0.8, 0.9]) and ii) AR(p) processes of nine orders (p, where

p = [1, 2, ..., 8, 9]) with the pre-defined correlation coefficients (see more details in

Appendix A). We generated 20 independent realizations of 10,000 samples for the

WGN which was also used as the driving noise for all nine AR(1)s and for all

nine orders of the AR(p) processes. For the three multiscale entropy approaches,

we selected m = 2, τ = 1, rse = rfe = 0.15, rcse = 0.07, η = 2 and ε from 1 to 20.

Remark 4: Our hypothesis is that a consistent complexity estimator should give

the same quantification of complexity for all nine AR(1) processes, independent

of the correlation function as all these processes have only one degree of freedom.

Similarly, the complexity of the AR(p) processes, p = [1, 2, ..., 9], should increase

with the order p.

Figure 3.8 illustrates the results of the three approaches applied to the first group of

the synthetic AR processes. The results are plotted as mean entropies with their sd

against the scale factors. Figure 3.8(a) depicts the results of the MSE; at ε = 1, the

WGN yielded the highest mean entropy, and the lower mean entropies were ranked

in a descending order corresponding to the low to high correlation coefficients of the

AR(1) (i.e. α1 = [0.1, 0.2, ..., 0.8, 0.9]). At ε = 20, the mean entropies were ranked

in a descending order corresponding to the high to low correlation coefficients of the

AR(1) (i.e. α1 = [0.9, 0.8, ..., 0.2, 0.1]), while the lowest mean entropy was that of

the WGN. Figure 3.8(b) shows the results of the MFE where all the entropy curves

were similar to the corresponding entropy curves of the MSE. The only difference

was that the MFE produced lower mean entropies than those of the MSE. Figure

3.8(c) illustrates the results of the MCSE from which distinctive profiles of the

entropy curves can be observed. At ε = 1, the mean entropies were ranked in a

descending order corresponding to the high to low correlation coefficients of the

AR(1) (i.e. α1 = [0.9, 0.8, ..., 0.2, 0.1]), while the lowest mean entropy belonged

to the WGN, which was constantly 0.37 for the whole range of the scale factors.
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Figure 3.8: Comparison of the complexity profiles of AR(1) processes
with a varying α1, using the MSE, MFE and MCSE approaches. The
independent 20 realizations with 10,000 samples of WGN were generated as a
driving noise for each of the nine AR(1) with a varying correlation coefficient α1

(α1 = [0.1, 0.2, ..., 0.8, 0.9], see more details in Appendix A). The mean entropies
with their standard deviations are plotted against the coarse-grained scales. (a)
Results of the MSE, (b) Results of the MFE and (c) Results of the MCSE.

At a large scale, ε = 20, the mean entropies were ranked in a descending order

corresponding to the decreasing correlation coefficients of the AR(1). Notice that

all the entropy curves asymptotically converged correctly, including that all the

AR(1) processes have the same complexity.

Remark 5: From Figure 3.8, for the ensemble AR(1) processes of a varying

correlation coefficients, the MCSE, unlike the other methods considered,

provided robust, accurate and physically meaningful quantification of complexity

of the system. In other words only the MCSE was able to assess the correct

complexity of the underlying signal-generation system, the AR(1).

Figure 3.9 illustrates the results of the three approaches applied to the second

group of synthetic AR processes. The results are plotted as mean entropies with

their sd against the scale factors. Figure 3.9(a) depicts the results of the MSE; at

ε = 1, WGN yielded the highest mean entropy, and the lower the mean entropies

were ranked in a descending order corresponding to the low to high orders of the

AR(p) (i.e. p = [1, 2, ..., 9]), while at ε = 20, the mean entropies of the AR(p)s were

ranked in a descending order corresponding to the order AR(p)s as AR(3), AR(4),
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Figure 3.9: Comparison of the complexity profiles of AR(p) processes,
where p is the AR order ranging from 1 to 9, using the MSE, MFE
and MCSE approaches. The independent 20 realizations with 10,000 samples
of WGN were generated as a driving noise for each of the nine AR(p) processes
with pre-defined correlation coefficients (for details see Appendix A). The mean
entropies with their standard deviations are plotted against the coarse-grained
scales. (a) Results of the MSE, (b) Results of the MFE and (c) Results of the
MCSE.

both the AR(2) and AR(5) (overlapped), AR(6), AR(1), AR(7), AR(8), AR(9),

the lowest mean entropy belonged to WGN. Figure 3.9(b) shows the results of the

MFE in which all the entropy curves were similar to the entropy curves of the

MSE. The two differences were that: i) the MFE produced lower mean entropies

than those of the MSE, and ii) at ε = 20, the mean entropies of the AR(2) were

higher than that of the AR(5) (not overlapped as the result of the MSE). Figure

3.9(c) illustrates the results of the MCSE, with the correct distinctive profiles of

the entropy curves observed. At ε = 1, the mean entropies were ranked in a

descending order corresponding to the high to low orders of the AR(p) processes

(i.e. p = [9, 8, ..., 1]), and the lowest mean entropy was that of the WGN (no

structure), with a constant value of 0.37 over the whole range of the scale factors.

At a large scale, ε = 20, the mean entropies of the AR(p)s were ranked in a

descending order corresponding to the order of the AR(p)s as at ε = 1. Notice

that all the entropy curves exhibited a slight decrease in their mean entropies with

an increase in the scale factor.

Remark 6: From Figure 3.9, only the proposed MCSE was able to distinguish
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between the structural complexities of the signal-generation system which ranged

from one degree of freedom (AR(1)) to nine degrees of freedom (AR(9)).

3.5.3 Complexity Profiles of Heart Rate Variability

We next examined the entropy behavior of heart rate variability (HRV) over the

coarse-grained scales through the MSE, MFE and MCSE. Three cardiovascular

pathologies of one-hour RR intervals: i) Normal Sinus Rhythm (NSR, 18 subjects);

ii) Congestive Heart Failure (CHF, 20 subjects); and iii) Atrial Fibrillation (AF,

20 subjects), were obtained from the Physionet database (for more details see

Appendix B). We estimated the HRV time series of the three cardiac conditions

by re-sampling the obtained RR intervals at the frequency of 8 Hz using the shape-

preserving piecewise cubic interpolation [98]. The HRVs were segmented into trials

of 10-min length (5-min length is recommended by [98] but this yields a sample size

of 2,400 which is effectively enough only for computing entropy within the scale

factors of less than 10, so we extended the segment length of the HRV to 10-min

for computing entropy with the scale factor up to 20). For the three multiscale

approaches, we selected m = 2, τ = 1, rse = rfe = 0.15, rcse = 0.07, η = 2 and

varied ε from 1 to 20.

Figure 3.10 illustrates the results of the three approaches plotted as mean entropies

with their standard errors (se) against the scale factors. Figure 3.10(a) depicts the

results of the MSE; at ε = 1, AF and NSR yielded the highest mean entropies (the

mean entropy of the AF (0.36) was slightly higher than the mean entropy of the

NSR (0.31)), and the CHF yielded the lowest mean entropy (mean entropy was

0.2). At ε = 20, the order of the mean entropies from high to low was the NSR,

AF and CHF. Figure 3.10(b) shows the results of the MFE where all the entropy

curves were similar to the entropy curves of the MSE. The only two differences

were: i) the MFE produced lower mean entropies than the MSE, ii) at ε = 1, the

highest mean entropy was to the AF (0.17), followed by the mean entropies of
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Figure 3.10: Comparison of the complexity profiles of heart rate
variability using the MSE, MFE and MCSE approaches. Three conditions
of heart rate variability were considered: i) Normal sinus rhythm, ii) Congestive
heart failure and iii) Atrial fibrillation were which were obtained from the
Physionet database (for more details see Appendix B). Mean entropies and their
standard errors are plotted against the coarse-grained scales. (a) Results of the
MSE, (b) Results of the MFE and (c) Results of the MCSE.

both the CHF and NSR (overlapped at 0.08). Figure 3.10(c) illustrates the results

of the MCSE; at ε = 1, the order of the mean entropies from high to low was the

NSR, CHF and AF (the mean entropy of the CHF (0.89) was slightly higher than

the mean entropy of the AF (0.88)), while at the ε = 20, the order of the mean

entropies from high to low was the CHF, NSR and AF.

3.6 Discussion and Conclusions

We have introduced the Cosine Similarity Entropy (CSE) and the Multiscale

Cosine Similarity Entropy (MCSE) algorithms to robustly quantify the structural

complexity of real-world data. This has been achieved based on the similarity of

embedding vectors, evaluated through the angular distance, the Shannon entropy

and the coarse-grained scale. We have examined the characteristic of the CSE by

varying the tolerance level and have found the optimal range for the tolerance to

be between 0.05-0.2. The effects the parameters including the embedding

dimension and the sample size on the three approaches, the SE, FE and CSE,

have also been evaluated over the four synthetic signals, the WGN, 1/f noise,
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Table 3.1: Recommended parameters ranges for the SE, FE and CSE algorithms.

Parameter/Approach SE FE CSE

Tolerance (r) 0.1-0.25 [79] 0.1-0.3 [14] 0.05-0.2

Embedding dimension (m) 1-3 1-10 2-5

Min. sample size (N) for WGN & 1/f noise 300 50 100

Min. sample size (N) for AR(1) & AR(2) 700 500 700

AR(1) and AR(2) processes. The appropriate selection4 of m and N for the three

approaches are summarized in Table 3.1. The advantage of the CSE over the SE

is that the CSE requires a small sample size for the separation of mean entropies

between WGN and 1/f noise (the CSE requires 100 samples while the SE

requires 300 samples), but in every case, the FE requires the minimum sample

size compared to the sample sizes required in the SE and CSE.

The proposed CSE algorithm has been demonstrated to quantify degrees of

self-correlation-based complexity in a time series rather than to quantify degrees

of uncertainty-based complexity as in the SE and FE algorithms. We have also

determined how the entropy values of the four synthetic signals, WGN, 1/f noise,

AR(1) and AR(2), behave over the coarse-grained scale, so-called complexity

profiles through the corresponding multiscale versions- MSE, MFE and MCSE.

The results of the MSE and MFE at the first scale factor have revealed that the

degrees of the structural complexity (uncertainty-based) from high to low

correspond to the WGN, 1/f noise, AR(1) and AR(2), whereas the results of the

MCSE sort the degrees of the structural complexity (self-correlation-based) from

high to low as AR(2), AR(1), 1/f noise and WGN. In terms of self-correlation,

as an uncorrelated signal, WGN has no structure, the 1/f noise is a long-term

correlated signal and hence with maximum structure, and the AR(1) and AR(2)

processes exhibit different degrees of short-term correlation, whereby the AR(2)

can be more correlated than the AR(1) owing to its higher order (more degree of

4The low embedding dimension, m = 2 [52], is recommended for the multiscale versions; MSE,
MFE and MCSE, due to a decrease in the number of samples with an increase in the scale factor.
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freedom or more correlated terms). Therefore, at a small scale factor

(short-term), the degrees of the self-correlation-based complexity from high to

low correspond to the AR(2), AR(1), 1/f noise and WGN, while at large scale

factor (long-term), the degrees of the self-correlation-based complexity ordered

from high to low correspond to the correct order, 1/f noise, AR(2), AR(1), and

WGN. We have found that only the results from the MCSE have been able to

correctly reveal this short- to long-term structural complexity order and to give

physically meaningful estimates. The results of the MCSE have also shown that

the mean entropies of WGN have yielded the lowest complexity and were

consistent over the whole range of the scale factors, meaning that the WGN has

no correlation in the short- or long-term and can thus be used as a “reference

complexity” (no structure in an uncorrelated signal).

We have also tested the three approaches over the nine varying correlation

coefficients of the AR(1), and nine increasing orders of the AR(p) process. We

have hypothesized that the low to high degrees of complexity are in a direct

relationship with the small to large values of the correlation coefficients of the

AR(1), and the increasing orders of the AR(p) (degrees of freedom), and have

found that the results of the three multiscale entropy estimates quantify

relationships with these AR processes as follows:

• The results of the MSE and MFE have unveiled that the high to low mean

entropies (complexity) were in agreement with the high to low values of the

correlation coefficients of the AR(1) only at the large scale factor, while the

results of the MCSE correctly indicate the corresponding orders of the mean

entropies over all the scale factors, which is rather significant at the small

scale factor.

• The results of the MSE and MFE have showed that the mean entropies at

the first scale factor from high to low coincide with the small to large orders

of the AR(p), while the results of the MCSE disclosed the corresponding
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orders of the mean entropies over all the scale factors, illustrating as the

robust nature of the proposed algorithms.

This indicates that the MCSE can be used to quantify degrees of complexity

based on self-correlation in the short- and long-term, while the MSE and MFE

estimates are physically meaningful only when considering entropy at a large

scale factor. However, at a large scale factor, the MSE and MFE yielded mixed

orders of complexity of the synthetic AR(p), as described in Section 3.5.2, so the

interpretation of degrees of self-correlated complexity by using both of the MSE

and MFE should be made with caution, as these metrics are not reliable when

assessing the number of degrees of freedom of the underlying signal-generation

process.

Finally, we have applied the three approaches to the real-world HRVs obtained

from the three cardiac pathologies, NSR, CHF and AF (with an unknown order

of complexity) and have found that the three approaches resulted in different

complexity profiles, which can be summarized as follows:

• The MSE resulted in equal complexity (overlapped mean entropies) for the

NSR and the AF, which were higher than the complexity of the CHF at

the first scale factor. When increasing the scale factor, the complexity of

the three HRVs increased toward the largest scale factor, where the order of

degrees of complexity from high to low were the NSR, AF and CHF.

• The MFE resulted in equal complexity (overlapped mean entropies) for both

the NSR and CHF, which were higher than the complexity of the AF at

the first scale factor. When increasing the scale factor, the complexity of

the three HRVs increased toward the largest scale factor, where the degrees

of complexity from high to low were the NSR, AF and CHF, analogous to

results of the MSE.

• The MCSE gave equal structural complexity for both the CHF and AF

87



(overlapped mean entropies) which were higher than the complexity of the

NRS at the first scale factor. When increasing the scale factor, the

complexity of the three HRVs decreased, and at the largest scale factor the

degrees of structural complexity from high to low were the CHF, NRS and

AF.

Based on the “Complexity Loss Theory”(CLT) [27], the highest degree of

complexity is deemed to correspond to the NRS (normal healthy subjects), while

the other health conditions are deemed to exhibit lower complexity (pathologies)

[15]. However, this hypothesis is based on degrees of irregularity, whereas our

proposed MCSE quantifies structural complexity based on degrees of

self-correlation, for which the CHF exhibits highest self-correlated complexity

(followed by the NRS and AF). Our proposed measures therefore still admits the

concept of the CLT, but with a new definition “pathology or aging exhibits loss in

self-uncorrelated complexity”. In other words, pathology or aging exhibits

an increase in self-correlated complexity. Additionally, even though the

MCSE yields results which are in contrast to the results from the MSE and

MFE, we can still see the good separations of mean entropies among the three

cardiac conditions in all approaches. Lastly, the proposed algorithms are

demonstrated to be able to quantify degrees of structural complexity in the

context of self-correlation over small to large temporal scales, yielding physically

meaningful interpretations and rigour in the understanding the intrinsic

properties of the system such as the number of degrees of freedom.

3.7 Future work

Future work on the CSE and the MCSE will be related to baseline wander of a

time series. Within this issue, we can eliminate an offset of a time series by

subtracting the median of a time series, but the baseline wander is likely to

contain some non-stationary components usually found in real-world signals.

This requires more advanced nonlinear techniques to remove such a baseline for
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the improvement of the calculation of the angular distance. We will also examine

the robustness of the CSE and MCSE to spikes and erratic peaks, and will

investigate the performances of the CSE and MCSE over a variety of real-world

recordings, such as biomedical data and financial data. In terms of

computational cost, the proposed algorithms will be evaluated against the

standard algorithms to assess their potential in applications of online complexity

measurements. Moreover, multivariate (and multiscale) version of the CSE will

be studied and proposed.
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Chapter 4

A Novel Framework for Modelling Evolution of

Stress for a Case Study: Public Speaking

4.1 Introduction

The analysis of the electrocardiogram (ECG) is a de-facto standard for providing

insight into the state of the cardiovascular system. For example, it captures the

atrial depolarization (P wave), the depolarization of the right and left ventricles

(QRS complex) and the recovery of the ventricles (T wave). While the clinical

use of ECG is well understood, much less is known about how to utilise ECG for

the analysis of the balance between the sympathetic (SNS) and parasympathetic

(PNS) nervous system, and hence mental and physical stress levels in real-life

scenarios. The aim of this study is therefore two-fold: i) to deal with the multiple

artefacts in wearable scenarios, and ii) to illuminate the usefulness of the

proposed signal processing techniques through the study of the evolution of stress

levels of two students presenting their work in an academic conference. For

rigour, the analysis is cast into a framework of complexity science, whereby the

“Complexity Loss Theory” (CLT) establishes that an organism under constraints

(illness, aging) exhibits lower structural complexity of physiological responses

than a healthy organism [27]. Our hypothesis is that stress, being a

psychophysiological impediment, modulates physiological responses so that they

lose degrees of freedom, thereby reducing structural complexity. To this end,

stress-related HRV are analysed through i) Sample Entropy (SE) [13], ii) Fuzzy

Entropy (FE) [14, 40, 41, 42], and iii) a novel entropy measure, Cosine Similarity

Entropy (CSE), as they are designed to operate on real-world nonlinear and

non-stationary data. We also include conventional frequency-domain measures;

low frequency (LF) and high frequency (HF) power of the HRV frequency
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spectrum, and their ratio (LF/HF). In the SE and FE methods, while a decrease

in entropy means a rise in degrees of regularity which is linked to high levels of

stress [62] as corresponded to the CLT, an increase in complexity corresponds to

an increase in randomness in the data, suggesting a physically rest (homeostasis)

state [99], in other words a reduction in degrees of irregularity in HRV suggests

high stress levels. Besides, as we found that the CSE approach yield contrast in

entropy (complexity) levels compared to the SE and FE (see more details in

Chapter 3), a decreased in entropy (complexity) estimated from the CSE means

a reduction in degrees of (self) uncorrelation which is linked to high levels of

stress, in other words an increase in self-correlation in HRV suggests high stress

levels. Although not without controversy, the LF band in HRV, 0.04-0.15 Hz, is

thought to reflect the activity of the sympathetic nervous system (SNS; high

stress) and the baroreflex, while the HF band, 0.15-0.4 Hz, is believed to

correspond to the activity of the parasympathetic nervous system (PNS; relaxed

state) and respiratory sinus arrhythmia (RSA), naturally occurring heart rate

modulations due to breathing [100, 101]. The ratio of the power in the LF and

HF reflects the degree of sympathovagal balance [11], with a higher ratio

representing dominant sympathetic activity and a lower ratio indicating an

increased vagal modulation [102].

In a previous study, we introduced a new algorithm to extract R-peaks from ECG

using a combination of matched filtering and Hilbert transform (MF-HT) [57].

The approach is semi-automatic with the user required to select a QRS waveform

mother pattern from the recorded ECG. To locate R-peaks in noisy ECG, the user

is provided with several R-peak estimates when an abnormal QRS waveform or

heart rate is detected. This is achieved through a user-friendly graphical interface

facilitating straightforward data processing.

After detecting the R-peaks, the HRV is constructed from the R-R intervals, the

temporal difference between two subsequent R-peaks, yielding an unevenly

sampled time series. In order to perform spectral estimation, the HRV is
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Figure 4.1: A conceptual block diagram of the proposed framework
for stress analysis. The MF-HT method is employed for R-peaks detection.
Nonstationary components of the HRV, estimated from extracted RR-intervals, is
removed using the EMD-based HRV detrending method (proposed in this study).
Finally, quantification of stress levels is achieved through frequency domain analses
(LF/HF, LF and HF power) and entropy-based complexity measures (SE, FE and
CSE).

resampled to create a regularly spaced time series using a linear or cubic spline

interpolation with a sampling frequency in the range 2-10 Hz [98]. However,

oversampling typically leads to an oversampled LF/HF ratio when Fourier

transform (FT) is applied [103], and consequently a wrong interpretation. To this

end, the Lomb-Scargle periodogram (LSP) [104, 105], a spectral estimation

technique for unevenly spaced data, has been applied to the original HRV

yielding more reliable results compared to the classical FT [10, 106]. In order to

apply the stress-related metrics including the frequency-domain and the

nonlinear-domain, it is assumed that the extracted HRV is weakly stationary, in

other words, there is no change in the variance and mean in sliding data

windows. However, real HRV is typically non-stationary, a signature of changes

in psychological and physiological mechanisms [107], and the original HRV is

therefore detrended in a pre-processing step. This is achieved based on the

empirical mode decomposition (EMD) algorithm [108], whereby the analysis is

made physically meaningful by the power spectrum density (PSD) of the HF as

the stopping criterion.

This work aims to extract maximum information from HRV related to stress

biomarkers by introducing a new signal processing framework (see Figure 4.1) for
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mobile cardiovascular scenarios. This has made it possible to: i) detect correct

R-peaks in noisy ECG, ii) robustly obtain accurate biomarkers of stress from

HRV, and iii) illuminate the utility of the proposed framework in identifying

changes in physiological responses due to psychological stress in real-life

scenarios. The concept is validated by analysing the stress levels of two

presenters during their oral and poster presentations.

4.2 Proposed a Signal Processing Framework

4.2.1 R-peak Detection Algorithm

Our MF-HT algorithm for R-peak detection operates as summarised in Algorithm

4.1 It combines pattern matching with the Hilbert transform and first identifies

possible QRS complexes from noisy mobile ECG, followed by the application of

the Hilbert transform to identify the R-peak.

4.2.2 HRV Detrending Method

The intrinsic mode function (IMF) resulting from EMD have properties similar to

filter banks and are arranged according to their average instantaneous frequency,

where IMFs with the highest instantaneous frequencies have the lowest indices.

The HF band is thus contained in the IMF indices ranging from the first to the

highest one in which the PSD of HF band is still contained. It is therefore possible

to use the ratio between the HF power spectrum density of the current IMF and the

power spectrum density HF of the previous lower IMF as a threshold parameter to

stop the sifting process of the EMD algorithm. In this work, the threshold of the

ratio was set to 0.2 (the HF power spectrum density of the current IMF is 5 times

less than the HF power spectrum density of the previous IMF) to ensure that the

resulting IMF spectrum retains as much as possible of the original HRV spectrum.

This is combined with the original stopping condition of the EMD algorithm, the
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Algorithm 4.1. Matched Filtering and Hilbert Transform (MF-HT)

Pre-iteration

1. Select a mother QRS waveform from the raw ECG.

2. Locate the first R-peak

For each Wi:

1. Create a window Wi beginning at the previous R-peak and ending at the
longest realistic heart beat interval

2. Remove local trend by taking the difference between consecutive sample
points

3. Apply a matched filter between the mother QRS and the Wi, resulting in a
degree of correlation Kmf

4. Apply the Hilbert transform to Kmf to identify candidate R-peaks Cj

5. Locate the correct R-peak by selecting the peak Cj with the highest cross-
correlation with the mother QRS

End For

Post-iteration

Construct HRV from the time difference between subsequent R-peaks.

standard deviation sd of which is 0.2 - 0.3 [108].

Since the original HRV is irregularly sampled, the LSP is well suited to estimate

the PSD. The detrending algorithm is described in Algorithm 4.2

Interpolation after detrending is still required because a low number of sample

points is prohibitive for the estimation of entropy through the SE, FE and CSE and

may lead to unreliable results. A shape-preserving piecewise cubic interpolation

was therefore applied to the detrended data. The 4 Hz sampling frequency is

selected for interpolation based on the reasons outlined in [98, 103].
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Algorithm 4.2. EMD-based HRV Detrend

Denote by x′(t) be the input of each iteration.

For each iteration:

1. Locate lower and upper maxima, emin and emax of x′(t)

2. Apply cubic spline interpolation to emin and emax

3. Compute the local mean m(t) = (emax + emin)/2

4. Obtain the local oscillation d(t) = x′(t)−m(t)

5. Examine whether sd fulfills the stopping condition, compute PSDm of d(t)
using LSP and go to step 6, else set x′(t) = d(t) and go to step 1

6. Examine the ratio of PSDm/PSDm−1. If the ratio is less than 0.2, stop the
sifting process and go to step 7 – otherwise extract the IMF , IMFm = d(t),

where m is the IMF number, and set x′(t) := x′(t)−
m∑
i=1

IMFi

7. Compute the detrended HRV by summing all released IMFs, dt(t) =
m−1∑
i=1

IMFi.

4.2.3 Selection of Parameters

In the SE, FE and CSE, the required parameters for estimating entropy include

embedding dimension m, time lag τ and tolerance levels rse, rfe and rcse. The

appropriate selection of m and τ relies on the underlying dynamics of time series.

Pincus in [32] suggested that using m = 2 or m = 3 is sufficient for a

low-dimensional system such as the human cardiovascular system. Kaffashi et al.

[96] recommended that using τ = 1 is sufficient to estimate the complexity of a

system, while Pincus [30] recommended that r can be taken as 0.1 – 0.2 times

the standard deviation, in order to avoid small unpredictable changes in time

series. Therefore, in this study, m = 2, τ = 1, rse = rfe = 0.15 and rcse = 0.07

(see more details in Chapter 3) were chosen. For the frequency-domain analysis,

Periodogram based spectral estimation is applied to the detrended HRV followed

by a calculation of the PSD in the LF and HF bands and the LF/HF ratio.
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4.3 Analysis Results

A sliding window based approach was used for computing the SE, FE, CSE, PSD

of LF, PSD of HF, and LF/HF ratio, the metrics chosen to quantify the evolution

of stress levels. Different window lengths of 5 min [98] were set respectively for

the poster and oral presentation, based on the duration of the recordings. A

15-second sliding time segment was chosen to maintain approximately constant

statistical variations over time.

In Figure 4.2 and Figure 4.3, the plots from the top to the bottom show the raw

and the detrended HRV, SE estimates (in reversed axis plot), FE estimates (in

reversed axis plot), CSE estimates, LF/HF ratio and the PSD of LF, and PSD of

HF. The whole recording was divided into three sections: i) the pre-presentation

period (Section (a)), ii) the presentation period (Section (b)), and iii) the post-

presentation (Section (c)). Note that the reversed axes for the SE and FE estimates

are for comfortably interpreting stress levels (the lower the entropy estimates the

greater the stress levels).

In the interactive poster presentation, the results from the SE, FE, CSE, LF/HF,

the PSD of the HF, the PSD of the LF are shown in Figure 4.2 and can be

summarised within the three performance periods, Section (a), (b) and (c), as

follows.

• The entropy values of the SE and FE (the third and fourth graph from top of

Figure 4.2) gradually decreased from Section (a) to (b), i.e. approximately

from 1.1 to 0.7 for the SE and from 0.6 to 0.25 for the FE, (a gradually

increased in their curves in both the reversed axes plots), this is followed by

an increase in entropy values in Section (c), i.e. approximately from 0.7 to

1.1 for the SE and from 0.3 to 0.65 for the FE, (a decrease in entropy curves

in the reversed axes plots). This means a reduction in degrees of irregularity

from the pre-performance period to the performance period, and an increase
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Figure 4.2: Analysis of evolution of stress in the study case - poster
presentation. Top to bottom: HRV, detrended HRV, SE estimates (in reversed
axis), FE estimates (in reverse axis), CSE estimates, LF/HF ratio and the PSD of
both the LF and HF bands. The segments a, b and c represent the pre-performance
(25 min), performance (120 min) and post-performance (25 min). Notice that an
gradually increase in stress levels were revealed through all metrics.
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Figure 4.3: Analysis of evolution of stress in the study case - oral
presentation. Top to bottom: HRV, detrended HRV, SE estimates (in reversed
axis plot), FE estimates (in reverse axis plot), CSE estimates, LF/HF ratio and
the PSD of LF, and the PSD of HF. The segments a, b and c represent the pre-
performance (20 min), performance (20 min) and post-performance (20 min).
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in degrees of irregularity in the post-performance period.

• The entropy values of the CSE (the fifth graph from top of Figure 5.2)

gradually increased from Section (a) to (b) (from approximately 0.65 to 0.8)

with some fluctuations; this was followed by a decrease in entropy values

in Section (c) (from approximately 0.8 to 0.65). This means an increase

in degrees of self-correlation from the period of the pre-performance to the

period of the performance, and a reduction in degrees of self-correlation in

the post-performance period.

• The LF/HF ratios and the PSD of the LF and HF (the sixth and seventh

graph from top of Figure 5.2) showed an increase in both trends from Section

(a) to Section (b) but with frequent fluctuations. This was followed by a

decrease in both trends in the Section (c), while the HF exhibited relatively

stead trend over all sections.

The entropy-based complexity measures suggested the “low to high stress

period” corresponding to from the pre-performance to the performance periods

and the “recovery period” corresponding to the post-performance period. The

presenter of the poster confirmed an increased level of stress and psychosocial

engagement towards the end of the presentation due to an increase in a number

of the audience who interacts well beyond the presentation end. In contrast, the

HF remained similarly low throughout the scheduled performance, indicating a

strong PNS withdrawal and thus a less relaxed state, while the LF/HF ratio

exhibited distinctive fluctuations compared to those trends of the entropy

estimate results.

In the oral presentation, the results from the SE, FE, CSE, LF/HF, the PSD of

the HF, the PSD of the LF are shown in Figure 4.3 and can be summarised within

the three performance periods, section (a), (b) and (c), as follows.

• In section (a), the entropy curves of the SE and FE (the third and fourth
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graph from top of Figure 4.3) exhibited steadily low levels (0.75 for the

SE and 0.4 for the FE), but at the end of this section the entropy values

suddenly declined (from 0.75 to 0.5 for the SE and from 0.4 to 0.3 for the

FE). Continuously, at the beginning of section (b), both the entropy curve

immediately rose to their maximum levels (approximately 1.0 for the SE

and 0.5 for the FE) and then gradually decreased toward the end of the

section (b), i.e. approximately from 1 to 0.75 for the SE and from 0.5 to

0.45 for the FE. In section (c), both entropy curves slowly increased and

then slowly decrease toward the end of this section (the last entropy values

are approximately 0.75 for the SE and 0.5 for the FE). This means that a

reduction in degrees of irregularity occurred in the pre-perfomance period

and peaked just before starting the performance period, while the higher

degrees of irregularity were captured in the post-performance period.

• In section (a), the entropy curve of the CSE (the fifth graph from top of

Figure 4.3) exhibited average high levels (approximately 0.75) but

dramatically reduced to lowest levels (approximately 0.65) in the beginning

of section (b). In section (b), the entropy curve increased and then slowly

fluctuated toward the end of the section. In section (c), the entropy curve

slowly declined and then rose toward the end of this section (the last

entropy values are approximately 0.75). This means a high degrees of

correlation in the performance period and low degrees of correlation in the

performance period were captured.

• The LF/HF ratios showed the same trend as that of the CSE (the sixth graph

from top of Figure 4.3), while the PSD of the LF and HF (the seventh graph

from top of Figure 4.3) exhibited high levels in section (a) and steadily low

levels in section (b) toward section (c) with a slight increase in their levels

at the end of this section.
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The entropy-based complexity measures and the LF/HF ratio suggested that the

“high stress periods” corresponds to the pre-performance period (Section (a)),

and the “low stress period or coping period” corresponds to the performance

period (Section (b)) and lastly the “rest (recovery) period” corresponds to the

post-performance period (Section (c)). Besides, the slightly higher levels of the

PSD of LF than the levels of the PSD of HF occurred in the pre-performance

which also suggests “high stress period”, but the steadily low levels in

performance period toward the post-performance period may be suggested as the

“coping period” (the interpretation of stress mechanism from the LF/HF ratio,

PSD of HF and PSD of LF should make with caution

[101, 109, 110, 111, 112, 102]). The presenter of the oral presentation confirmed

an increased level of stress before presenting and psychosocial engagement

towards the end of the presentation due to questions of audience raised in

between and after presenting.

4.4 Conclusions

Public presentations target to inform listeners in a structured, deliberate, and

entertaining manner. They can take place in controlled environments - on stage -

where the presenter regulates the process, or in settings which are highly

interactive and require an increased engagement with the audience. Our study

has proposed a new framework for the analysis of HRV in real-life public

performances, in order to provide robust and accurate biomarkers of the

evolution of stress. Novel R-peak and HRV analyses of mobile ECG in real-life

scenarios have been established based on frequency-domain and

nonlinear-domain metrics; SE, FE, CSE, PSD of LF, PSD of HF and LF/HF

ratio. The analysis has shown a limitation of the frequency domain analysis

when an occurrence of small values of the the PSD of the HF power (approaching

zero), the LF/HF ratio can yield undefined value, so that this makes the LF/HF

ratio rather sensitive compared ton other metrics, and should therefore be

interpreted with caution. Based on degrees of regularity, the SE, FE have shown
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that the pre-performance period corresponds to a stressful period for which

entropy values decreased (low uncertainty), and the performance period

corresponds to a coping period for which entropy values increased with

fluctuations (high uncertainty). Our novel self-correlation based CSE has also

revealed that a stressful period corresponds to the pre-performance period for

which entropy values increased (high self-correlation), and a coping period

corresponds to the performance periods for which entropy values decreased (low

self-correlation). This corresponds to a new definition of the complexity loss

theory: loss in uncorrelation-based complexity implies the occurrence of perceiving

stress in humans. These entropy-based results correspond to the “General

Adaptation Syndrome” (GAS) theory described in Chapter 1, section 1.1 and

can be summarised as follows:

1. The high stress period occurs during the pre-performance period and

corresponds to the alarm stage whereby the sympathetic nervous system

activates to prepare the body for a fight or flight situation, and this results

in the low level of the resistance to stress curve.

2. The low stress period occurs during the performance period and

corresponds to the resistance stage whereby the parasympathetic nervous

system activates to calm the body, and this results in the high level of the

resistance to stress curve.

3. The rest (recovery) period occurs during the post-performance period and

corresponds to the homeostasis stage whereby the less activation of both the

SNS and PNS is presented, and this results in the intermediate level (rest)

of the resistance to stress curve.

However, this study has been conducted only with two participants in a specific

scenario (a conference presentation) which aims to determine a proof of concept

regarding evolution of stress based on the GAS through complexity measures. To

102



this end, these entropy-based complexity measures have unveiled a physically

meaningful interpretation for understanding the complex dynamics of HRV in

response to an evolution of stress over time.

4.5 Future work

Future studies will investigate more closely the physically meaningful

interpretation of structural complexity in relation to stress levels. This includes a

collection of multichannel physiological data, such as ECG, respiratory signals,

and Electroencephalogram (EEG), on public performances within a larger sample

size. Standard protocols for systematic psychological and physiological stress

assessment will also be conducted as a ground tooth.
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Chapter 5

Stress Analysis though Entropy-based

Complexity Measures for a Case Study: Music

Performance

5.1 Introduction

The first attempt to introduce a taxonomy of stress dates back to Hans Selye in

1936, who defined stress as a “non-specific endocrine response” [113]. Current

research explains stress through the modulation of the autonomic nervous system

(ANS) resulting from physical, environmental, or other psychosocial stressors,

where both the sympathetic (SNS) and parasympathetic nervous systems (PNS)

are involved in the regulation of functions including heart rhythms, respiration,

and blood pressure [114]. Music performance is a particularly apt domain for

studying ANS reactivity to stress [115]. For professional musicians, the

expectation to deliver high-quality performances—no matter where, when, and

for whom—has been linked to debilitating and sometimes career-threatening

mental and physical distress [115]. The majority of stress research into music

performance has focused on the psychological construct of performance anxiety

using questionnaires, while neglecting the objective assessment of corresponding

physiological components. While research into physiological stress in musicians

has usefully examined HR [116, 117, 118, 119] rather than the dynamically more

informative heart rate variability (HRV). The analysis of HRV in the time,

frequency, and nonlinear domains is now widely used to assess the biomarkers of

stress. In particular, the high frequency (HF) power in HRV is considered to

reflect PNS activity influenced by vagal control, while the low frequency (LF)

power is multifaceted and was previously believed to reflect SNS activity. The
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ratio of the power in the LF to HF frequency bands (so-called LF/HF ratio) was

long thought to indicate the degree of sympathovagal balance; the higher the

ratio, the greater the dominance of SNS, while a lower ratio was thought to

suggest the dominance of PNS activity [120, 11]. However, the LF/HF ratio is

not a reliable indicator of stress, as the LF band reflects both SNS and PNS

activity due to the nonlinear behavior of the vagus nerve

[101, 109, 110, 111, 112, 102]. Nevertheless, in many psychophysiological stress

studies [121, 122, 123, 124, 125, 126], stressors have been found to be associated

with an increase in the LF band and a decrease in the HF band. Although the

analysis of HRV in the frequency domain can identify and capture changes in

stress, nonlinear analysis in the form of structural complexity has recently been

used to quantify degrees of determinism versus randomness in signals and has

become prevalent [34, 13, 14, 15]. This nonlinear metric is conveniently

interpreted though the “Complexity Loss Theory (CLT)” [27], which asserts that

physiological responses in organisms under constraints (illness, ageing, and other

inhibitions such as stress) exhibit lower structural complexity (fewer degrees of

freedom) than physiological responses in healthy organisms. Among the available

entropy measures, the data-driven Sample Entropy (SE) methods are

particularly interesting; low levels of SE indicate a time series of high regularity,

while increasing values of SE correspond to a higher degree of irregularity

[13, 97]. An improved version of the SE method called Fuzzy Entropy (FE) has

also been recently utilised [14, 40, 41, 42]. However, neither completely

deterministic nor purely stochastic data are truly complex, as structural

complexity is reflected in long-range correlations. Most studies of complexity loss

in HRV have been conducted in the context of understanding cardiovascular

diseases. A recent study on psychosocial stress in public performance [62] was

conducted with a single expert pianist and provided evidence of a reduction in

structural complexity in HRV in response to increased stress levels

[62, 43, 127, 128, 59]. The aim of the present study, therefore, is to establish a

systematic approach to the examination of physiological stress in music
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performance contexts. The evolution of stress responses to performance was

modelled over a cohort of 16 musicians whose electrocardiograms (ECGs) were

recorded for 5 min prior to and 5 min during two performances [98]: i) a

low-stress condition with no audience present, and ii) a high-stress condition in

front of an audition panel. An audition was deemed particularly well suited for

the high-stress scenario, owing to the scrutiny under which musicians are placed.

Auditions also allow enhanced experimental control and maintain high ecological

validity through the assignment of appropriate pieces to be played and the

possibility of demarcating precise timings before and during performance. We

used modern wearable sensing devices for the collection of ECG data and

advanced analysis techniques to capture the signature of stress. Specifically,

Multiscale Sample Entropy (MSE) [15] and Multiscale Fuzzy Entropy (MFE)

[129] and our novel Multiscale Cosine Similarity Entropy (MCSE) approaches

were introduced in order to examine entropy values over increasing time scales,

thus producing so-called complexity profiles. In this way, not only do we account

quantitatively for objective aspects of performance stress, but we are also able to

identify the critical timing of stress reactivity and estimate the most appropriate

period during which to intervene using stress management strategies.

5.2 Materials and Methods

5.2.1 Participants

Eleven violinists from the Royal College of Music (RCM) and five flutists from

the Conservatory of Southern Switzerland (CSI) participated in the study. The

cohort consisted of healthy male (n = 9) and female participants (n = 7) with a

mean age of 23.12 ± 2.42 years (range 19-27), all of whom were advanced music

students with at least 10 years of public performance experience. Recruitment at

the RCM took place from October 2012 to March 2013, with data collection in

March 2013, while recruitment at the CSI took place from March to April 2011,
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followed by data collection in May 2011. Participants were assigned to perform

individually the Allemande from J. S. Bach’s Partita No. 2 in D minor for solo

violin (BWV 1004) or the Allemande in A minor for solo flute (BWV 1013).

5.2.2 Physiological and Psychological Measures

For the violinists, ECG was recorded using the Bioharness, a physiological

monitoring device from ZephyrTM which has been validated in a similar scenario

by Johnstone and colleagues [130, 131]. The raw signals were acquired at a

sampling rate of 250 Hz. For the flutists, ECG was collected using the PowerLab

(model 26T), a similar acquisition device from ADInstruments. Electrodes were

attached at the chest and intercostal spaces (between ribs VI and VII). The raw

signals were acquired at a sampling rate of 1,000 Hz.

5.2.3 State Anxiety

Prior to each performance, participants completed Form Y1 of the State-Trait

Anxiety Inventory (STAI) [132], a 20-item questionnaire which assesses the

emotional state of a person based on subjective feelings of nervousness. Each

item is rated on a 4-point scale (1 = almost never to 4 = almost always) with

cumulative scores ranging from 20 (low anxiety) to 80 (high anxiety). For

reference, the moderate-level score among young men is 36.47±10.02, and among

young women, it is 38.76±11.95 [132].

5.3 Experimental Design

5.3.1 Induction Session

Before conducting the experiment, every participant attended a 20-minute

induction session and confirmed their willingness to deliver multiple polished

performances (on separate days) of either the Allemande from J. S. Bach’s

Partita No. 2 in D minor for solo violin (BWV 1004) or the Allemande in A
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minor for solo flute (BWV 1013). The performance conditions were explained: i)

the low-stress condition involved the assessment of physiological responses during

a private performance without any external attendees apart from the researchers

managing the measurement, ii) the high-stress condition was a performance in

front of an audition panel, composed of three members of staff from the RCM

(for violinists) and the CSI (for flutists). The participants were also required to

provide background information on their musical experience and general health.

On the day of each performance, all participants confirmed that they had not

taken anxiolytic medications or other substances that may affect their

perceptions and physiological responses to the performance scenarios.

5.3.2 Recording Protocol

The low- and high-stress performances were scheduled on separate days, and the

order was counterbalanced across participants. The musicians were asked to arrive

30 minutes before the pre-performance period for the attachment of the ECG

recording devices and also for usual performance preparation (e.g. warming-up,

tuning, and rehearsing). Stage calls were given at 20 minutes and 10 minutes before

performance by a member of the research team acting as the “backstage manager”.

At 5 minutes before performance, participants were brought to a backstage area

and asked to complete Form Y1 of the STAI. The backstage manager then gave a

confirmation signal and allowed the participant to enter the performance room; this

period is referred to as pre-performance (PP). It is important to note that the pre-

performance includes the 2-3 minutes needed to walk into the performance room

and settle for the performance. The participants then performed the designated

pieces, for approximately five minutes in duration (5.06 ± 0.22 minutes for the

violinists and 5.19 ± 0.10 minutes for the flutists); this period is referred to as

performance (P). Time labels were manually marked by the research team for

every condition analyzed. In addition to the ECG recordings, all performances
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Figure 5.1: The experimental protocol. The timeline was designed for
collecting physiological data from the participants experiencing the low- and high-
stress conditions.

were recorded using a video camera. The experimental protocol is summarized in

Figure 5.1.

5.4 Data Analysis

5.4.1 Pre-processing

The R-peaks in the recorded ECGs were detected using a combination of

matched filtering and Hilbert transform algorithm [57], with the initial QRS

complex identified based on a search for ventricular depolarization (QRS)

patterns in the segmented windows of ECG data. The RR intervals were then

created by subtracting the time-intervals of consecutive R-peaks. However,

premature ventricular contractions, or ectopic beats, present in the original RR

intervals are known to adversely affect the results from any analyzing metrics

[63, 133]. To this end, a custom-made algorithm developed for detecting

anomalous peaks in the RR intervals was used to address those erratic behaviors.

The detected anomalous beats were then replaced by interpolated data,

generated using a smoothing function; this resulted in normal sinus to normal

sinus intervals (NN intervals). The HRV signals were then generated from the

NN intervals using cubic spline interpolation at the sampling frequency of 8 Hz

[134]. The HRV signals were segmented into the pre-performance (PP) and

performance (P) periods using the time labels created during the experimental
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Figure 5.2: A conceptual block diagram of the proposed framework for
analysing stress in musicians. MF-HT stands for the combination of matched
filter and Hilbert transform algorithms, while PP and P respectively designate the
periods pre- and during performance.

setup. The block diagram of the whole analysis framework is shown in Figure

5.2, and an example of the HRV is shown in Figure 5.3.

5.4.2 Time, Frequency and Complexity analyses

The analyses were performed in the time, frequency, and nonlinear domains. The

averages of NN intervals (AVNN), the standard deviation of all NN intervals

(SDNN), the square root of the mean of the squares of the differences between

adjacent NN intervals (rMSSD), and the percentage of differences between

adjacent NN intervals (pNN50) were used as standard time-domain metrics [135].

For the power spectral density (PSD) analysis, the aggregate PSDs in the low

frequency band (LF: 0.04-0.15 Hz) and high frequency band (HF: 0.15-0.4 Hz)

were computed using the Welch PSD estimator; the ratio between the power of

the LF and HF bands (LF/HF) was calculated as an additional metric. For the

nonlinear analysis, the MSE, MFE and MCSE were computed for quantifying

degrees of structural complexity of the extracted HRVs over ten scales. The

selected parameters for the MSE, and MCSE were: embedding dimension m = 2,

tolerance level rse = 0.15 times the standard deviation of the data, rcse = 0.07
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Figure 5.3: An example of the extracted HRV of musicians. HRV signal
of a participant, interpolated from the NN intervals in the low- and high-stress
conditions.

(see more details in Chapter 3) time lag, τ = 1 [15], while the optimal

parameters used in MFE were found empirically: embedding dimension m = 2,

tolerance level rfe = 0.01, time lag τ = 1, and a second order Gaussian is used as

a fuzzy membership function. The areas of the entropy curves over the whole ten

scales (the complexity profiles) were computed and were considered as the

nonlinear metric. The t-test was used to examine statistical differences in each

time, frequency and nonlinear metric according to four possible comparisons: i)

high-stress: pre-performance (PP) vs performance (P), ii) low-stress:

pre-performance (PP) vs performance (P), iii) pre-performance (PP): low- vs

high-stress, and iv) performance (P): low- vs high-stress (see Table 5.1). Scores

on the state anxiety inventory (STAI-Y1), completed before the low- and

high-stress performances, were compared using a paired-samples t-test.

111



Table 5.1: Statistical tests of frequency and nonlinear metrics. The unit
of AVNN, SDNN, rMSSD, and pNN50 is millisecond (msec) and the unit of the
TOTPWR, VLF, LF, and HF is s2/Hz. Note. PP = pre-performance period; P
= performance period; AVNN = the averages of NN intervals; SDNN = standard
deviation of all NN intervals; rMSSD = square root of the mean of the squares of
the differences between adjacent NN intervals; pNN50 = percentage of differences
between adjacent NN intervals; TOTPWR = total NN interval spectral power;
VLF = power in the very low frequency band (0.003-0.04 Hz); LF = power in
the low frequency band (0.04-0.15 Hz); HF = power in the high frequency band
(0.15-0.4 Hz); LF/HF = ratio between the power of the LF and HF bands; MSE
= multiscale sample entropy; MFE = multiscale fuzzy entropy. Bold indicates
p ≤ 0.05 (based on Bonferroni correction with a selection of 5% significant level
among 11 metrics).
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5.5 Results

5.5.1 Time, Frequency and Complexity Metrics Results

Table 5.1 shows that the average and the root mean square of the extracted HRV

signals (AVNN and rMMSD) from the low-stress condition (performed without

judges) were higher than those from the high-stress condition (performed in front

of three judges); in other words, the cardiovascular reactivity of the participants

was pronounced in the high-stress condition. However, none of the time-domain

metrics shows significant differences in any of the four comparisons except the

AVNN metric, which shows discrimination for the performance period where the

low- and high-stress conditions were compared. In the frequency domain, the

mean power of all frequency bands (TOTPWR, VLF, LF, and HF) showed

decreases from the pre-performance to the performance periods, and from the

low- to high-stress conditions. The statistical differences between three

comparative scenarios (i.e. two periods of performances and the high- vs

low-stress in the performance period) were significant for the TOTPWR and

VLF metrics. However, the LF metric indicates statistical discrimination only

between the two performance periods, while the HF and the LF/HF ratio metrics

indicates no statistical discrimination for any of the comparisons. In the

nonlinear domain, both MSE and MFE yielded i) an increase in mean entropies

from the pre-performance to performance periods; and ii) a decrease in mean

entropies from the low- to high-stress condition. Statistical comparisons revealed

significant differences between most cases for both MSE and MFE, except for the

comparison of the low- and high-stress conditions for the performance period.

The results of both the MSE and MFE corresponded to our CLT-based

assumptions for which a reduction in degrees of irregularity is due to i)

perceiving stress in a stressful circumstance (high stress condition), and

perceiving a period of stress (pre-performance period). Besides, the MCSE

yielded i) a decrease in mean entropies from the pre-performance to the
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performance periods, and ii) an increase in mean entropies from the low- to

high-stress condition. Statistical comparisons revealed significant differences only

for the comparison of the pre-performance and performance periods (under the

low-stress condition). Even though the results of the MCSE did not give

statistical separations for all comparisons, the MCSE gave another a physically

meaningful perspective on self-correlation-based complexity, i.e. a decrease in

degrees of uncorrelation (an increase in mean entropies estimated from the

MCSE) is due to i) perceiving a stressful circumstance (high stress condition),

and ii) perceiving a period of stress (pre-performance period).

The complexity profiles of the four comparisons through the MSE, MFE and MCSE

were plotted as mean entropies and their standard errors (se), as shown respectively

in Figure 5.4, Figure 5.5 and Figure 5.6.
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Figure 5.4: MSE complexity profiles of the HRVs obtained the musicians.
All curves are plotted as mean entropies and their standard error against the scale
factor. LS, HS, PP and P are abbreviations for the low- and high-stress conditions,
the pre-performance and performance periods, respectively.
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Figure 5.5: MFE complexity profiles of the HRVs obtained from the
musicians. All curves are plotted as mean entropies and their standard error
against the scale factor. LS, HS, PP and P are abbreviations for the low- and
high-stress conditions, the pre-performance and performance periods, respectively.
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Figure 5.6: MCSE complexity profiles of the HRVs obtained from the
musicians. All curves are plotted as mean entropies and their standard error
against the scale factor. LS, HS, PP and P are abbreviations for the low- and
high-stress conditions, the pre-performance and performance periods, respectively.
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5.5.2 State Anxiety Result

The reported state anxiety of the musicians was significantly higher in the high-

stress condition (mean = 39.12±7.04) than in the low-stress condition (mean =

34.37±7.88) t15= -2.594, p-value ≤ 0.05, confirming that the high-stress condition

was indeed experienced by the participants as more anxiety provoking than the

low-stress condition.

5.6 Discussion and Conclusions

We have examined the cardiovascular reactivity of musicians experiencing low-

and high-stress performance conditions within the framework of CLT, quantified

using the Multiscale Sample Entropy (MSE), Multiscale Fuzzy Entropy (MFE),

and our novel Multiscale Cosine Similarity Entropy (MCSE) algorithms. Unlike

standard questionnaire-based anxiety assessments, this has been achieved

through a suite of objective stress measures based on physiological responses to

stress in two scenarios, low- versus high- and before- versus during-performance.

Advanced signal processing algorithms for R-peak detection and HRV extraction

(Matched Filtering and Hilbert Transform; MF-HT) have been employed to deal

with noisy cardiac data in real-life scenarios, while state-of-the-art data analysis

techniques in the time, frequency and nonlinear complexity domains have been

used to quantify the signatures in HRV related to stress in performance. The

analysis has also revealed that currently used spectral analyses of HRV may be

inadequate for detecting stress reactivity, as exemplified by the statistically

non-significant findings reported in Table 5.1. The time-domain analysis based

on the AVNN and rMMSD metrics has suggested that, in high-stress condition,

the heart rates of the participants were higher than in low-stress condition.

However, these higher heart rates were accompanied by a smaller difference in
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heart rate variability when comparing the pre-performance and performance

periods, in all time-domain metrics. The standard HRV frequency analysis

showed decreases in the LF and HF powers from the pre-performance to

performance period, and from the low- to high-stress condition, suggesting a shift

of vagal activity from the HF to LF band [14, 15, 27, 62, 34, 13] or, in other

words, a signature of both SNS and PNS in the LF

band[121, 122, 123, 124, 125, 126]. This has revealed higher stress in the

pre-performance period than during the performance. Our nonlinear analyses

have shown that the MSE and MFE approaches have achieved robust

discrimination of the underlying features related to the dynamics of the heart,

regulated by the autonomic nervous system. Based on the CLT, both MSE and

MFE have shown that the transition period from pre-performance to

performance corresponds to a reduction in stress levels in the musicians. The

same complexity pattern was presented in the discrimination from the high-stress

condition to the low-stress condition. Furthermore, our novel entropy measure,

the MCSE, has revealed an increase in structural complexity from the low- to

high- stress condition and for a transition period from the pre-performance to the

performance. This corresponds to a new definition of the CLT: loss in

uncorrelation-based complexity implies the occurrence of perceiving stress in

human. For rigour, these objective stress metrics have been benchmarked against

the subjective state anxiety scores, where the low-stress and high-stress

conditions corresponded respectively to lower and higher anxiety reported by the

musicians.

In this study, we have used both wearable and stationary physiological recording

devices and have addressed the imperfections and artefacts in such real-world

data through advanced data analysis methods. Our study has focused on

combining physiological and psychological measures, analyzed within the

framework of the complexity loss theory, to analyze data from a number of

performers and to extend a previous single-person study, to address a more
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general issue of musicians’ emotional and physiological adaptability to

psychosocial stressors.

5.7 Future work

Subsequent work will consider joint analysis of multivariate physiological data,

such as HRV, respiration rate, Electromyogram (EMG), and skin conductance.

The collection, analysis and examination of multivariate data, in relation to

strategies for managing stress and enhancing performance quality, promises to

offer personally and professionally significant advancements in musicians’

training and skill development, particularly if targeted at the sensitive period

before performance, as shown in this study, and employed in a range of

performance contexts.
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Chapter 6

Analysis of Financial Data through Complexity

Science

6.1 Introduction

Indices of major stock markets are generally accepted as indicators of the

financial health and economic wellbeing [136, 137]. Given their close link with

socio-economic and geo-political factors (here, we refer to those as ‘events’) the

latent dynamics of stock indices are also a reliable indicator of the influence those

events have on the health of the financial system. To put this into context, in the

last 25 years the US alone have been through a number of events, including the

“Dot-com Boom” in the 1990s, the 9/11 terrorist attack in 2001 and the

sub-prime mortgage crisis in 2008. It is therefore natural to ask whether a

general health of the economy, seen through the lens of stock indices, can be

assessed in a way analogous to the way we examine health of living organisms.

This motivates us to embark upon the significant body of work on human stress

in order to derive indicators of ‘stress’ of the financial system and establish

‘biomarkers’ of characteristic events in stock indices. To this end, we employ the

so-called “Complexity Loss Theory” which states that organisms experiencing

constraints (illness, ageing, stress) exhibit lower structural complexity of their

physiological responses than healthy organisms. Our analysis falls under this

general umbrella, but is finance-specific and employs non-parametric analyses of

the determinism (via predictability), nonlinearity, multiscale entropy, and

synchrony, within an intrinsic multivariate analysis framework.

In technical terms, stock indices exhibit trends – local and global ‘first order’

characteristics [138] – together with economic and non-economic cyclical influences
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(e.g. the four-year presidential cycle in the US) and effects of our habits, such as

the Sell in May stock trading strategy and the Christmas sales effect [139]. Trends

in financial indices are perhaps their most examined characteristics, with both

numerical and graphical methods used for their detection. Stock market volatility,

on the other hand, reflects the degree of uncertainty in stock indices. Financial

analysts are therefore interested in patterns in historical data in order to predict

financial crashes – an often disputed practice called “Technical Analysis” [140, 141].

A very popular numerical technical analysis method is the class of moving-average

(MA) algorithms which yield indicators of general movements of stock prices such

as: i) price moving average for raw data with trend, and ii) rate of change at

different scales, for detrended data. The price moving averages allow investors to

compare fluctuations in stocks to the trends over time, while the rates of change are

relatively faithful indicators of the momentum of stocks. For example, a positive

value of the rate of change suggests enough market support to continue driving

prices in the direction of the current trend, while its negative value indicates lack

of market support and tendency for stock values to become stagnant or to reverse.

The “Efficient Market Hypothesis” (EMH) is a cornerstone of modern financial

theory and states that current security prices (the underlying value of the asset)

incorporate and reflect all relevant information that could be gathered, so that

stocks always trade at fair value [56]. This implies that in ‘normal’ situations

markets cannot be consistently beaten over long time; in other words, the

security prices tend to exhibit a random walk type of behaviour, characterised by

poor predictability from their historical values and high uncertainty in the rate of

change of stock prices. However, when speculative economic bubbles –

‘abnormal’ situations – occur, the markets are often driven by buyers who are

prone to sentiment or irrational exuberance. In such scenarios, the buyers tend

to overestimate stock values while anticipating the growth of markets, which in

turn brings less uncertainty to the rate of change of future prices. This

‘acceleration-stabilisation’ type of behaviour is not dissimilar to the
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sympatho-vagal balance in humans, whereby the sympathetic autonomous

nervous system (SNS) accelerates body functions while the parasympathetic

nervous system (PNS) slows them down [142].

In human sciences, stress is defined as a non-specific neuroendocrine response

[1]. In the same way, we propose to define the financial stress as a non-specific

deviation from its normal functioning. There is no agreement on a more specific

definition, as episodes of financial stress often vastly differ, from dot-com bubble

through to sub-prime mortgage crisis. A risk (stress) indicator specific to currency

markets was proposed in [143], and defines financial risk through a reduction in

the number of significant factors – principal components. However, the suggestions

that a decrease in the degrees of freedom invariably signifies the loss of complexity

during an episode of crisis is not necessarily valid; to this end, higher-order features

related to long-range couplings also need to be examined [144], for example those

manifested in long-term correlation, which is the basis for practical structural

complexity analysis. The degree of determinism (predictability) of the signal, in

addition, also plays an important role in determining the degree of complexity

[145].

During a financial crisis, the term “systemic risk” refers to a series of correlated

defaults among financial institutions, occurring over a short time span and

triggering withdrawal of liquidity and a widespread loss of confidence in the

financial system as a whole. At the heart of the concept is the notion of

‘contagion’, a particularly strong propagation of failures from one institution,

market, or system to another. The financial stress index (FSI) proposed in [146]

considers the variations in the intensity and duration of financial stress episodes

through high-frequency price variables. Based on an equal-variance weighted

average, financial stress is detected when the value of the FSI exceeds one

standard deviation above the trend; the FSI also indicates whether an episode of

financial stress is due to stress in banking, securities, or foreign exchange sectors.
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The absorption ratio [147] is an indicator of market fragility and systemic risk,

and is defined as the fraction of the total variance of a set of assets explained or

absorbed by a finite set of eigenvectors. A high value for the absorption ratio

corresponds to a high level of systemic risk and fragility. For example, high

values of absorption ratio of the US stock market during the dot-com bubble and

the global financial and sub-prime mortgage crises suggested that the market was

extremely fragile (susceptibility of a financial system to large-scale financial

crises caused by small, routine economic shocks [148]) and vulnerable to shocks

(unexpected or unpredictable events that affect an economic positively or

negatively and is measured by an impulse response function [149]). The

absorption ratio can also be used as a warning for investors, as on average, stock

prices decreased following one-standard-deviation spikes in the absorption ratio,

and increased after one-standard-deviation drops in the absorption ratio. The

‘10-by-10-by-10’ approach for the assessment of systemic financial risk related to

stress scenarios was proposed in [150], and involves three factors: financial

institutions, a number of counterparties and stress tests. The total of gains and

losses of each stress test for each institution (also counterparty) is calculated and

then reported periodically.

This all indicates a void in the literature when it comes to the quantification of

both financial stress and systemic risk. To this end, in an analogy to human stress

(sympatho-vagal imbalance) the signatures of which are derived by the sum of

power spectrum at the the low-frequency (LF) band (0.04-0.15 Hz) and the sum of

the power spectrum at the high-frequency (HF) band (0.15-0.4 Hz) within heart

rate variability (HRV), we propose the Assessment of Latent Index of Stress (ALIS)

which examines the LF and HF bands in detrended financial data. Our rationale

is that low-frequency changes (LF band), which correspond to time spans of over

1 year, are driven by global factors (monetary policies), whereas the more rapid

changes (HF band), over spans of 5 days to 3 months, signify abrupt events, such

as the 9/11 crisis and the Internet bubble burst.
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The ALIS index therefore determines ‘crisis versus no-crisis’ episodes of the

financial stress evolution through the examination of long- and short-term

changes in specific stock indices, whereas the existing FSIs in [146, 151, 152]

consider several sub-components, such as stock market returns and time-varying

stock market return volatility, which may be responsible for the onset and

development of financial stress. While the ALIS index is not designed for specific

analyses using financial market variables as potential co-founders for financial

stress, it is one of the first methods which extends beyond the second order

analysis in [146, 151, 152] to detect the patterns of financial crises in specific

financial indices using a bio-inspired signal processing approach.

6.2 Summary of Motivation and Contribution

Inspired by the catastrophe theory [153] and the EMH theory, we propose the

ALIS index as an indicator of financial stress during episodes of financial crises in

different individual stock indices. Following on the complexity-loss theory, financial

systems are shown to exhibit lower levels of structural complexity during financial

crises (low uncertainty, i.e. the patterns of indices are easy to predict since investors

are prone to do the similar activities), compared to normal periods [136]. We also

introduce the moving-average multivariate sample entropy (MA-MSE) algorithm

to quantify different degrees of such complexity.

It is almost self-evident that financial markets exhibit high structural complexity

since activities of each investor (a small unit/element) can vary in terms of an

amount of buys or sells (amplitudes) and when to make a decision (a response

time), both of which depend on a reaction to simulators, such as news and

regional/international regimes. This yields a series of a complex aggregation of

average prices which fluctuates over time. which in turn can be quantified

through entropy, for example, using the multivariate multiscale sample entropy

(MMSE) algorithm [144, 53]. This approach examines long-term correlations of

both the trend and the detrended data. For enhanced resolution, we introduce a
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novel MA-MSE algorithm, described in Section 6.3.2. Also, prior to modelling

financial indices, it is a prerequisite to establish the ground truth for the linear

versus nonlinear and deterministic versus stochastic nature of the data, referred

to as signal modality analysis.

In the analysis, we consider four major stock indices which indicate the state of

economy of the US [136]: i) Dow Jones Industrial Average (DJIA), ii) NASDAQ

Composite, iii) Standard & Poor’s 500 (S&P 500), and iv) Russell 2000. The

DJIA comprises 30 of the largest companies in the US across a range of industries

except for transport and utilities; NASDAQ is an indicator of the performance of

stocks in technology and of the growth in companies; S&P 500 consists of 500 large

companies from a vast number of industries, each having market capitalisation of

more than $5 billion; and Russell 2000 comprises a small-cap segment of the US

equity market.

It is arguable whether increased local variances may signify financial crises,

without assistance of sophisticated numerical methods. The studied

non-parametric methods, however, are independent of signal variance which

being only a 2nd order moment may not effectively reveal major financial crises.

Indeed, we show how such crises can be precisely determined through changes in

the intrinsic characteristics of financial data, such as their determinism, linearity,

and complexity. The purpose of this study is therefore to quantify these

time-varying characteristics in order to simultaneously characterise, in a full

multivariate way, the financial stress through the complexity-loss hypothesis

(systems under stress exhibit greater regularity and less freedom.) [51, 154, 76]

and systemic risk (the markets are contagious and behave in the same way

during financial crises). This is achieved by examining in stock trends intrinsic

and inter-channel dependencies together with their nonlinear and stochastic

properties. The detrended stock indices (the rate of change) of the market

indices over the last 25 years (between 1st January 1991 and 31st August 2015)

were analysed using the following non-parametric methods: i) multivariate
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multiscale sample entropy (MMSE), ii) moving-average multivariate sample

entropy (MA-MSE). The analysis is verified over several case studies which

support the complexity-loss hypothesis for financial markets, a robust framework

to understand financial stress, and is expected to be beneficial to those interested

in middle- and long-term investments.

6.3 Algorithms and Background

We shall first briefly describe the algorithms used in this study.

6.3.1 Moving-average (MA) Method for the Multivariate

Data Analysis

This standard approach considers a multivariate signal xorg,k,i, k = 1, 2, . . . , p, i =

1, . . . , N , with ρ being the number of data channels and N the total number of

sample points. The moving-average filter removes the trend, sk,j, from the original

xorg,k,i, using the following functional form

sεk,j =
1

ε

j+τ−1∑
i=j

xorg,k,i, 1 ≤ j ≤ N − τ + 1, (6.1)

where ε is a pre-defined scale factor (data window size). The detrended data, zk,j,

is then obtained as

zεk,j = xorg,k,i − sεk,j, i = 1, 2, . . . , N − 1 (6.2)

Observe that long window sizes will remove short trends. An example of using

5-day scale for the MA is shown in Figure 6.1
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Figure 6.1: Stock market indices (DJIA, NASDAQ, Russell 2000 and
S&P 500) and their detrended versions. Upper panels : Original data and
their trends for a 5-day scale. Lower panels : Detrended data. and their trends
for a 5-day scale. Lower panels : Detrended data. (a) The DJIA over 1991–2015.
(b) The NASDAQ over 1991–2015. (c) The Russell 2000 over 1991–2015. (d) The
S&P 500 over 1991–2015.

6.3.2 Multivariate Multiscale Sample Entropy (MMSE)

and Moving-average Multivariate Sample Entropy

(MA-MSE)

The Sample Entropy (SE) method calculates empirical estimates of entropy [13]

based on the probability of similarity between the delay vectors (patterns) in

data. The SE is a single-scale measure, however, the interpretation of complexity
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estimated via entropy requires multiple scales. To this end, the multiscale sample

entropy (MSE) algorithm [15] employs pre-determined scales, constructed using

the coarse graining process (CGP). However, the CGP reduces a number of

sample points of an original time series when increasing scales factor, i.e. for a

given scale, ε, Nε = N
ε

, decreases linearly in the scale factor, which may results in

undefined entropy at high scale factors. For better resolution, the modified

multiscale entropy (Mod-MSE) [80] algorithm replaces GCP by a moving-average

(MA) scale definition process. Both the MSE and the Mod-MSE are, however,

univariate algorithms, not capable of accounting for cross-channel dependencies.

To cater for multivariate cases, the multivariate MSE (MMSE) [144, 53], reveals

both the intrinsic- and cross-complexities through a multivariate embedding

process. We here introduce its variate, termed MA-MSE, to quantify

multivariate complexity of both the trend and the detrended data, a procedure

referred to as the moving-average multivariate sample entropy (MA-MSE),

outlined in Algorithm 6.1. By virtue of MA-MSE, pre-defined and physically

meaningful scales are generated to match periods of interest (finance-specific

scales) in financial data as [141]

1. Weekly-term trading (a week or 5 days)

2. Short-term trading (a month or 20 days)

3. Medium- or quarter term trading (3 months or 60 days)

4. Long-term trading (a year or 240 days).

Within either the MMSE or the MA-MSE, first the embedding dimension m and

time lag τ of each variate are calculated to construct a composite multivariate

delay vector, given by
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Xm(i) = [x1,i, x1,i+τ1 , . . . , x1,i+(m1−1)τ1 ,

x2,i, x2,i+τ2 , . . . , x2,i+(m2−1)τ2 , . . . ,

xρ,i, xρ,i+τρ , . . . , xρ,i+(mρ−1)τρ ],

(6.3)

where M = [m1,m2, ...,mρ] ∈ Rρ is the embedding dimension vector,

τ = [τ1, τ2, . . . , τρ] denotes the time lag vector, p is the number of variates, and

Xm(i) ∈ Rm.

The CGP within the MMSE creates scale factors by averaging the adjacent

sample points within non-overlapping windows of increasing length ε (scale

factor). The resulting data, denoted by yεk,j, represent a coarse-grained scale ε

and is obtained as

yεk,j =
1

ε

jε∑
i=(j−1)ε+1

xk,i, 1 ≤ j ≤ N

ε
(6.4)

The proposed MA-MSE replaces the CGP by MA-based scale generation, whereby

both the trend, sεk,j, and the detrended data, zεk,j, are combined as wεk,j = [sεk,j, z
ε
k,j]

and are used as pre-defined scales (input) for the algorithm.

Before computing the MMSE and the MA-MSE, a tolerance parameter, r, is

defined and is used to search for similar patterns (delay vectors) by comparing

the scalar distance between all pairs of delay vectors in equation (6.3), but

without self-comparison. If the difference in the distance of a pair of delay

vectors is less than r, the event of a similar pattern has occurred. The MMSE

and MA-MSE algorithms can be summarised in Algorithm 6.1
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Algorithm 6.1. Multivariate multiscale sample entropy (MMSE) & Moving-
average multivariate sample entropy (MA-MSE)

For each scale: yεk,j (MMSE), or wεk,j (MA-MSE):

1. Construct a composite delay vector based on the scale yεk,j (MMSE) or wεk,j
(MA-MSE).

2. Search for similar patterns in every data channel of the composite delay
vector. If the difference in the pair-wise distance is less than or equal to the
defined tolerance max||Xm(i) −Xm(j)|| ≤ r, j 6= i, the event of similarity,
denoted by Pm, is counted.

3. Calculate the probability Bm(r) =
1

N
Pm, where N is the total number of

searches in each sub-delay vector.

4. Repeat Steps 1 to 3 for the (m+ 1)-dimensional composite delay vector.

5. Calculate the MMSE or the MA-MSE using

MMSE(m, τ, r), MA−MSE(m, τ, r) = −ln[
Bm+1r

Bmr
]

6.3.3 Assessment of Latent Index of Stress (ALIS)

We shall now introduce the Assessment of Latent Index of Stress (ALIS) to quantify

“stress level of a financial organism” by considering the detrended data, zk,j, as the

input, followed by aggregating the normalised financial time series of the low (0-

0.0042 Hz, LF) and high (0.0167-0.2 Hz, HF) frequency bands. The LF band was

chosen so as to correspond to long-term trends (over a year), while the HF band is

related to short-term trading (5 days), short-term trends (less than a month) and

medium-term trends (3 months). Given the sampling frequency, fs, of 1 Hz (the

close stock value for each day), and f = fs
N0

, where f is the frequency and N0 the

number of data points, a simple period-frequency conversion maps the periods of

one year (240 sample points), 3 months (60 sample points), and 5 days (5 sample

points) to the corresponding frequencies of 0.0042 Hz (f = fs
N0

= 1
240

= 0.0042

Hz), 0.0167 Hz (f = fs
N0

= 1
60

= 0.0167 Hz) and 0.2 Hz (f = fs
N0

= 1
5

= 0.2 Hz) in

129



detrended financial time series. These frequencies were used as cut-off frequencies

for the LF and HF bands. A threshold which determines whether the market is

judged ‘stressed’ or ‘normal’ is derived based on the median, as summarised in

Algorithm 6.2.

Algorithm 6.2. Assessment of Latent Index of Stress (ALIS)

Input: Generate the detrended data, zk,j, using the MA method with a pre-defined
scale factor (window size) of the length 1 year.

1. Construct the two time series corresponding to the sum of the power
spectrum in the LF band and the sum of the power spectrum in the HF
bands as a function of time (d), LF (d) and HF (d), where symbol d denotes
a month.

2. Normalise the LF and HF time series by subtracting the mean and dividing
by standard deviation in order to alleviate the problem of scaling.

3. Remove the offset in both the LF (d) and HF (d).

4. The ALIS is given by ALIS(d) = LF (d) +HF (d).

5. Use the median in the ALIS(d) as a threshold for stress in the market.

6.4 Analysis and Results

We applied our methodology to four stock market indices which represent the

US economy over the last 25 years, between 1st January 1991 and 31st August

2015. Five consecutive periods of different natures were identified, based on our

interpretation of key geopolitical and socio-economic events which affected the US

and world economies [136], as follows:

• Period 1: 1-JAN-1991 to 31-DEC-1999. Economic boom, followed the ‘dot-

com’ boom from 1997 to December 1999.

• Period 2: 1-JAN-2000 to 31-DEC-2003. Uncertainty, high volatility, and

Internet bubble burst; the economy crisis further deteriorated due to the

9/11 terrorist attack and its aftermaths.
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• Period 3: 1-JAN-2004 to 31-DEC-2007. Recovery due to huge investment

in undervalued stocks.

• Period 4: 1-JAN-2008 to 31-DEC-2011. Sub-prime mortgage crisis.

• Period 5: 1-JAN-2012 to 31-AUG-2015. Weak growth and recovery owing

to the uncertainty in fiscal policy (“fiscal cliff”), increases in tax, and a

slowdown in the housing sector.

For the MA-MSE analysis, six scale factors of 5 days (short-term trading), 10

day, 1 month (short-term trends), 2 months, 3 months (medium-term trends) and

1 year (long-term trends) were employed in the MA method, in order to obtain

trends within the original daily-adjusted closing prices of the four financial indices

and the detrended data. (For the ALIS index, a scale factor of 1 year was used

in the MA method). The trends and the detrended data of the DJIA, NASDAQ,

Russell, and S&P 500 were estimated using a scale factor of 5 days, and the results

are shown in Fig. 6.1 (a)-(d).

6.4.1 Entropy Estimates of Raw Financial Data through

MMSE and MA-MSE

As an economic cycle typically lasts for approximately one year, and in order to

capture economic changes over a small number of economic cycles, 4-year sliding

windows with 3 years and 11 months overlap (1 month increment) were optimally

applied. Fig. 6.2 illustrates the multivariate complexity of the original four

financial indices estimated using the MMSE. The maximum duration of coarse

graining scales was set to 1 year for which the six pre-defined scale factors can be

selected. However, only the entropies of five scales (5 days, 10 days, 1 month, 2

months and 3 months) could be computed, as the entropy estimated using the

1-year scale diverged. Notice the effect of aliasing caused by poor resolution of
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Figure 6.2: Structural complexity of trends in compound stock indices
estimated using multivariate multiscale sample entropy (MMSE). The
values were estimated using 4-year sliding windows with 3 years and 11 months
overlap (1 month increment). The scale factors were 5 days, 10 days, 1 month, 2
months. For the 1-year scale, the entropy values diverged, and are excluded from
the graph.
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Figure 6.3: Structural complexity of trends in compound stock indices
estimated using moving-average multivariate sample entropy (MA-
MSE). The values were estimated using 4-year sliding windows with 3 years and
11 months overlap (1 month increment). The trends were generated using the MA
method with six pre-defined scale factors (5 days, 10 days, 1 month, 2 months, 3
months and 1 year).

CGP in the 2- and 3-month scales, which implies that MMSE may not be

suitable for large scales in financial data.

Fig. 6.3 shows the multivariate complexity of the trends (price moving average)

estimated using MA-MSE with the six pre-defined scale factors. Observe that the

multivariate complexities in all the scales exhibited similar sample entropy values
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and no aliasing, except for the 1-year scale which showed a lower entropy, but

similar variation as the other scales. The MA-MSE suggested high multivariate

complexity during 2000 and 2004, the period of uncertainty and high volatility.

6.4.2 Entropy Estimates of Trend and Detrended Financial

Data through MMSE and MA-MSE

Financial data were considered as an output of a low noise system. This is natural

as they represent actual values of the stock indices, and therefore m = 2 was used.

A unit time lag τ = 1 was chosen as there exist short-term correlations in the

sliding windows. Four-year sliding windows with 3 years and 11 months overlap

(1 month increment) were used.

The long- and short-term correlations in data were found via the MA filter with

different pre-defined scale factors, ε. We considered six pre-defined scale factors

which match the periods of interest in financial data (short-term trading, short-,

medium-, and long-term trends), for which the scale factors were respectively 5

days (5 sample points), 10 days (10 sample points), 1 month (20 sample points), 2

months (40 sample points), 3 months (60 sample points), and 1 year (240 sample

points).

Fig. 6.4 shows the multivariate complexity of the trends (price moving average)

estimated using the MA-MSE with the six pre-defined scale factors. Observe

that in each economic period the multivariate complexities in all the scales

exhibited similar sample entropy values. The MA-MSE suggested substantially

higher multivariate complexity during the dot-com bubble and the Internet

bubble burst, the periods of uncertainty and high volatility. During the

sub-prime mortgage crisis, the MA-MSE revealed higher entropy values than the

‘normal’ periods – the economic-boom, economic-recovery, and weak-growth

periods. Note that high multivariate complexities of the trends estimated using
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Figure 6.4: Structural complexity of trends in compound stock
indices. The moving-average multivariate sample entropy (MA-MSE) values
which represent the structural complexity for the trends of the four financial indices
in different economic periods. The trends were generated using the MA method
with six pre-defined scale factors (5 days, 10 days, 1 month, 2 months, 3 months
and 1 year).

the MA-MSE revealed the presence of the crises, as financial trends show the

tendencies of the markets to change in a particular way over time [138].

The multivariate complexities of the original data of the four financial indices and

the trends were estimated respectively using the MMSE and the MA-MSE, and are

shown in Fig. 6.2 and Fig. 6.3. Observe that the multivariate complexity quantified

using the MA-MSE had no aliasing at large scales, a major improvement of the

MA-MSE in scale generation.

Fig. 6.5 validates our complexity-loss hypothesis by examining the multivariate

complexity of the detrended data (rate of change) estimated using the MA-MSE

with six pre-defined scales. It suggests high complexity between 2000 and 2004,

the period of uncertainty and high volatility. Observe in both the figures a high

variation in complexity among different scales from 2004 to 2008 (the economic

recovery period) – highly pronounced in the 5-day pre-defined scale, which

indicates enhanced short-term dependencies in data. Also, during the ‘dot-com

bubble’ between 1997 and 2000, long-term correlations – more regularity – were
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Figure 6.5: Structural complexity of detrended compound stock indices.
The moving-average multivariate sample entropy (MA-MSE) values which
represent the structural complexity for the detrended data of the four financial
indices. These values were estimated using 4-year sliding windows with 3 years
and 11 months overlap (1 month increment). The trends were generated using the
MA method with six pre-defined scale factors (5 days, 10 days, 1 month, 2 months,
3 months and 1 year).

observed. Note that while the occurrences of the crises were detected using the

MA-MSE applied to the financial trends, stress in the financial markets was

observed using the MA-MSE applied to the detrended data.

6.4.3 Financial Stress through ALIS

The wellbeing of the “economic organism” was next examined through the

complexity-loss hypothesis, whereby the low complexity (high ‘stress’ level) is

indicated by high values of the proposed ALIS index applied to the detrended

data. Four-year sliding windows with 3 years and 11 months overlap (1 month

increment) were used. Fig. 6.6 (a)-(d) show the stress levels for the DJIA,

NASDAQ, Russell 200 and S&P 500. Observe that the stress levels of the DJIA

and the S&P 500 (markets for big companies) were above the thresholds during

the two crises: the Internet bubble burst and the sub-prime mortgage crisis,
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(b) Evolution of ALIS for NASDAQ.
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(c) Evolution of ALIS for Russell 2000.
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(d) Evolution of ALIS for S&P 500.

Figure 6.6: Financial stress evolution through the proposed ALIS index.
Observe the perfect match in ALIS for the DJIA, Russell 2000 and S&P 500
for both the Internet burst and sub-prime mortgage abnormalities. The NASDAQ
comprises only IT companies and thus reacted more strongly to the Internet bubble
burst and less strongly for the housing crisis.

where the NASDAQ (market for IT companies) exhibited substantially higher

level of stress during the dot-com bubble and the Internet bubble burst.

Although the sub-prime mortgage crisis primarily affected the housing sector and
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non-IT companies, it also impacted on IT companies, as indicated by an excess

stress level of the NASDAQ in 2011. The Russell 2000 also exhibited high stress

level during the sub-prime mortgage crisis and the recent weak growth period.

However, as it comprises a small-cap segment of the US equity market, it was

less affected by the Internet bubble burst.

6.5 Conclusions

We have examined the financial market from the point of view of complexity

science and have analysed the constraints it exhibits in its responses to major

socio-economic and geo-political events. This has been achieved for four major

stock markets over a period of 25 years. The multiscale sample entropy based

multivariate MA-MSE algorithm has been shown to provide both a composite

estimate of complexity for financial indices and an estimate of systemic risk.

Finally, we have introduced a new metric, referred to as the Assessment of Latent

Index of Stress (ALIS), which measures the degree of financial stress based on

the physically meaningful scales which reflect common trading principles. The

ALIS has strongly indicated financial stress during the Internet and mortgage

bubble crises. This work has conclusively demonstrated the utility of posterior

complexity science approaches in the assessment of financial stress.

6.6 Future work

Future studies will focus on a variety of financial indices including currency

exchange rates, and we will employ robust multivariate complexity measures

approaches within machine learning algorithms in predictive scenarios.
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Chapter 7

Conclusions and Future Work

This thesis has introduced the concept of complexity science and has brought it

to real-world within the context of system stress analysis. This makes it possible

for two real-world dynamical systems: i) autonomic nervous (ANS, in human),

and ii) economic (in financial markets), which have been studied. We have

analysed structural complexity of the two systems through standard

entropy-based measures, Sample Entropy (SE), Fuzzy Entropy (FE) and their

multiscale versions (MSE and MFE). This includes our proposed data-driven

approaches called the “Cosine Similarity Entropy (CSE), “Multiscale Cosine

Similarity Entropy (MCSE)”, “Moving-average Multivariate Sample Entropy

(MA-MSE)” and the “Assessment of Latent Index of Stress” (ALIS) methods.

These complexity measures have unveiled that both the systems exhibit

analogous underlying dynamical behaviors when perceiving stressors. This

compiles with the “Complexity Loss Theory”, which asserts that physiological

responses in organisms under constraints (illness, aging, and other inhibitions

such as stress) exhibit lower structural complexity than physiological responses in

healthy organisms and the “Efficient Market Hypothesis” which states that there

exist differences in structural complexity in security prices between regular and

abnormal situations. It has been found that the standard uncertainty-based

complexity measures (MSE, MFE, MA-MSE) yield a decrease in entropy values

(low uncertainty-based complexity) during occurrences of a stressful period,

while our novel MCSE yields an increase in entropy values (high

self-correlation-based complexity) during the same period of stress. The results

from the MCSE (with synthetic and real-world signals) have suggested a new

interpretation for structural complexity of systems in the context of

self-correlation which has been proven that the entropy curves of the synthetic
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and real-world signals change monotonically from small to large (coarse grained)

scales, while the MSE and MFE yielded mixed orders of entropy curves of such

signals; the interpretation of structural complexity from both the MSE and MFE

should therefore be made with caution.

In our human performance studies, based on the “General Adaptation

Syndrome” it has been is found that: i) the high stress period occurs during the

“pre-performance” period or coincides with the “high stress condition”; this

corresponds to the “alarm stage” whereby the sympathetic nervous system

activates to prepare the body to the fight or flight mode, resulting in the low

level of the resistance to stress curve, ii) the low stress period occurs during the

‘performance’ period or coincides with the “low stress condition”; this

corresponds to the “resistance stage” whereby the parasympathetic nervous

system activates to calm the body (coping with stress), resulting in the high level

of the resistance to stress curve, and iii) the rest (recovery) period occurs during

the post-performance period and corresponds to the homeostasis stage whereby

the both the SNS and PNS less or equally activated; this results in the normal

(rest) level of the resistance to stress curve. However, the interpretation of stress

scenarios is different when using the self-correlation-based MCSE whereby the

high stress scenario corresponds to high complexity or high entropy values and

the low stress scenario corresponds to low complexity or low entropy values.

In our economic stress study, we have shown that the results from the MA-MSE

and the ALIS are able to capture an analogy between transitions from ‘normal’

(relaxed) to ‘abnormal’ (stressed) financial periods in four major stock indices

of the US economy over the past 25 years: i) Dow Jones Industrial Average, ii)

NASDAQ Composite, iii) Standard & Poor’s 500, and iv) Russell 2000, together

with FTSE 100, CAC 40 whereby the high stress events (economic crises) occur

during low complexity (low entropy values estimated from the MA-MSE but high

values of ALIS) and the low stress events (normal economic) occur during high

complexity (high entropy values estimated from the MA-MSE but low values of
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ALIS). Our findings support the EMH theory and reveal high stress for both the

periods of Internet bubble burst and sub-prime mortgage crisis.

Future work on the CSE and the MCSE will be related to baseline wander of a time

series which requires advanced signal processing techniques to model nonstationary

components buried in such baseline. Multivariate versions of the CSE will also be

needed since modern real-world data are usually obtained from multiple channels or

multiple sensors for which such multivariate versions could yield more meaningful

structural complexity quantified from inter and across multiple channels. Other

directions of future work could be related to measuring structural complexity of

a variety of real-world recordings, such as multichannel/ multimodal biomedical

data obtained from real-life/experimental performances, currency exchange rates,

high frequency trading stock indices, ect.
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Appendix A. Autoregressive Models
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Figure A.1: Two groups of synthetic AR processes used for evaluating
the performances of the SE, FE and CSE approaches. (a) The first 300
samples from AR(1) processes with nine varying coefficients of correlation (α1) and
the driving WGN input. (b) The first 300 samples of the AR(1) - AR(9) processes
with the pre-defined correlation coefficients and the driving input WGN, giving
signals with the degrees of freedom of the underlying generation system ranging
from 1 to 9.

To evaluate the performances of the SE, FE and CSE approaches, we generated

two groups of AR models: i) AR(1) with nine varying correlation coefficients and

ii) nine orders of AR processes with the pre-defined correlation coefficients. For

the first group, AR(1) models driven by random noise were synthesized using

20 independent realizations of 10,000 samples. Each realization consists of nine

varying coefficients of the AR(1) processes generated as

x(t) = α1x(t− 1) + ε(t) (A.1)

where ε(t) ∼ N (0, 1) and α1 ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9].

For the second group, pth−order AR processes driven by random noise were
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Table A.1: The pre-defined correlation coefficients used for the nine orders of the
AR(p) processes

Correlation

coefficient
α1 α2 α3 α4 α5 α6 α7 α8 α9

AR(1) 0.5 - - - - - - - -

AR(2) 0.5 0.25 - - - - - - -

AR(3) 0.5 0.25 0.125 - - - - - -

AR(4) 0.5 0.25 0.125 0.0625 - - - - -

AR(5) 0.5 0.25 0.125 0.0625 0.0313 - - - -

AR(6) 0.5 0.25 0.125 0.0625 0.0313 0.0156 - - -

AR(7) 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0078 - -

AR(8) 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0078 0.0039 -

AR(9) 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0078 0.0039 0.0019

synthesized using 20 independent realizations of 10,000 samples, given by

x(t) =

p∑
i=1

αix(t− i) + ε(t) (A.2)

where ε(t) ∼ N (0, 1), p is the AR order increasing from 1 to 9 and αi represents

the pre-defined correlation coefficients of the ithorder as shown in Table (A.1).

Note that with the selected correlation coefficients, both groups of the generated

AR models were stable and stationary, which can be seen in Figure A.1.
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Appendix B. Heart Rate Variability

Database
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Figure B.1: Example of the RR intervals (RRI) of the three cardiac
conditions over 225 second duration. Top: RRI of the normal sinus rhythm
database (in blue); Middle: RRI of the congestive heart failure database (in red);
Bottom: graph represents the atrial fibrillation (in black).

One-hour RR intervals of the three cardiac pathologies; Normal Sinus Rhythm

(NSR), Congestive Heart Failure (CHF) and Atrial Fibrillation (AF), were

extracted from the Physiobank database available at https://physionet.org/

[76]. The beat annotations (RR intervals) of the NSR and CHF database were

obtained by the automated detector with manual review and correction, while

the beat annotations of the AF database were only obtained by automated

detector. For the NSR database, we obtained 18 RR intervals of subjects who

had no significant arrhythmia. The subjects included 5 men, aged 26 to 45, and

13 women, aged 20 to 50. For the CHF database, we selected the first 20 RR

intervals from the total of 29 subjects with congestive heart failure (NYHA

classes I, II, and III), who aged from 34 to 79. The subjects included 8 men and
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2 women; the gender is not known for the remaining 21 subjects. For the AF

database, we obtained 20 RR intervals from the total of 25 subjects, with no

information about the age and gender [155]. An example of the RR intervals of

the three cardiac conditions within 225 seconds is shown in Figure B.1.
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