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Abstract Mode-I Fracture Toughness, KIc, was measured in six shale materials using the double-torsion
technique. During loading, crack propagation was imaged both using twin optical cameras, and with
fast X-ray radiograph acquisition. Samples of Bowland, Haynesville, Kimmeridge, Mancos, Middlecliff,
and Whitby shales were tested in a range of orientations. The measured fracture toughness values were
found to be in good agreement with existing literature values. The two imaging techniques improve our
understanding of local conditions around the fracture-tip, through in situ correlation of mechanical data,
inelastic zone size, and fracture-tip velocity. The optical Digital Image Correlation technique proved useful
as a means of determining the validity of individual experiments, by identifying experiments during which
strains had developed in the two “rigid” specimen halves. Strain maps determined through Digital Image
Correlation of the optical images suggest that the scale of the inelastic zone is an order of magnitude
smaller than the classically used approximation suggests. This smaller damage region suggests a narrower
region of enhanced permeability around artificially generated fractures in shales. The resolvable crack-tip
was tracked using radiograph data and found to travel at a velocity around 470 μm/s during failure, with
little variation in speed between materials and orientations. Fracture pathways in the bedding parallel
orientations were observed to deviate from linearity, commonly following layer boundaries. This suggests
that while a fracture traveling parallel to bedding may travel at a similar speed to a bedding perpendicular
fracture, it may have a more tortuous pathway, and therefore access a larger surface area.

Plain Language Summary Fracture toughness is a measure of the strength of a material, in
the presence of existing flaws or cracks. Here fracture toughness was measured in six shale materials
with fractures oriented both parallel and perpendicular to the bedding layers in the shales. During the
experiments, the progressing fractures were imaged using both optical cameras and radiographs recorded
using a synchrotron. The radiograph images were used to track the velocity of the progressing fracture,
which did not vary strongly with different materials or orientations. The optical images were used to
characterize the “damage zone” around the main fracture in which microfractures develop. This region
was seen to be much smaller than conventional models suggest, which could imply that the developing
fractures increase permeability over a much narrower region than previously believed.

1. Introduction

Shale is the most abundant sedimentary rock in the Earth’s crust, making up 50–80% of sedimentary mate-
rial worldwide (Burns, 2011; Rutter et al., 2017). Shale materials are intimately entwined with hydrocarbon
exploration, commonly behaving as the source rock, cap rock, or both, for conventional hydrocarbon explo-
ration. More recently, shales have been exploited directly as a reservoir formation, using hydraulic fracturing to
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increase hydrocarbon recovery from the naturally tight shale formations (Rutter et al., 2017). Fracture growth
properties in shales are also of interest in the fields of CO2 sequestration and radioactive waste disposal
(Fauchille et al., 2016).

Mechanical data for these materials are therefore of great interest, especially those relating to the propaga-
tion of fractures. Fracture growth in the subsurface is often complex with tortuous pathways and significant
horizontal extent (Eseme et al., 2007; Fisher & Warpinski, 2012; Khazan & Fialko, 1995; Thiercelin et al., 1989).
The relationship between the materials, the loading conditions, and the intricate form of these fractures is
poorly understood.

In response to these developments, the mechanical properties of shale have been the subject of many recent
studies. Shale fracture toughness data specifically was sparse prior to 2015, with only a small number of stud-
ies, mostly addressing the variation of KIc with kerogen content (Chong et al., 1987; Costin, 1981; Schmidt &
Huddle, 1977; Swanson, 1984; Warpinski & Smith, 1990; Young et al., 1982). More recently, a number of studies
have addressed different aspects relating to KIc in shales including the effect of water saturation (Chen et al.,
2017; Yang et al., 2016) and the effect of organic matter content (Kabir et al., 2017). Various theoretical studies
(e.g., Garagash, 2006; Zia et al., 2018) have demonstrated that KIc becomes the dominant control on fracture
propagation for conditions when the pressure gradient within a fracture has equilibrated, either due to a long
timescale or a low fluid viscosity. Recent experimental studies of anisotropy and fracture deflection (Chandler
et al., 2016; Forbes Inskip et al., 2018; Lee et al., 2015; Luo et al., 2018) tend to find strongly anisotropic KIc val-
ues in the region of ≃0.2–1.5 MPa⋅m

1
2 , with much lower KIc values for fracture planes parallel to layering. This

KIc anisotropy is therefore thought to be a possible mechanism for the limitation of hydraulic fracture height
(Zia et al., 2018).

Linear-elastic fracture mechanics predicts a zone of inelastic deformation created by microfracturing around
the tip of a progressing fracture. This inelastic zone is potentially of importance for industrial applications, as
a region of microfracturing will have enhanced permeability, therefore the scale of the inelastic zone should
be expected to relate to the volume of rock stimulated by a progressing fracture (Masoudian et al., 2018).
The high ductility values observed during KIc experiments in shales by Young et al. (1982) and Chandler et al.
(2016) suggest that the region of inelastic deformation in these materials may be large compared to that in
other geomaterials, and the anisotropic KIc values measured by all authors suggest that the form of the defor-
mation within these inelastic zones may vary as a function of orientation. Here the double-torsion method
is employed specifically to investigate the scale of this inelastic zone around a progressing fracture through
two complementary methods of correlative imaging. These imaging techniques allow for the strain field and
fracture-tip location to be determined in relation to the applied load, thereby characterizing the inelastic zone
around the progressing fracture.

The double-torsion technique is used as it features narrow plate samples, allowing for representative strains
to be tracked in two dimensions. In order to image the strain field, a pair of 5 Megapixel cameras was used
with the stereo optical Digital Image Correlation (DIC) technique to allow a coarse image of the strain fields
of the sample surface, at a sampling frequency of 5 Hz (Sutton et al., 2009). Additionally, radiographs were
acquired at a sampling frequency of 25 frames per second, in order to image the movement of the fracture-tip
and crack-mouth opening displacement (CMOD) in relation to the applied load.

This approach is novel within shale materials, allowing for an improved understanding of the local conditions
around a fracture as it develops. Specifically, the method presented here allows for in situ correlation of the
local rock fabric with mechanical data, inelastic zone size, and fracture-tip velocity.

2. Experimental Methods

Narrow rectangular samples were loaded in the double-torsion configuration, with contemporaneous strain
quantification using stereo optical DIC and fracture tracking using radiographic imaging.

2.1. The Double-Torsion Method for Fracture Toughness Determination
The double-torsion sample geometry is shown in Figure 1a. A notched thin rectangular sample is loaded
from one end in a four-point bend configuration. A fracture initiates at the tip of the existing notch and
then propagates over the length of the specimen. During the double-torsion experiment, the fracture front
is found to be close to orthogonal to the direction of load application, with the crack propagating in mode-I
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Figure 1. (a) The double-torsion specimen geometry used here. The sample dimensions used in this study are given in
Table 1. Figure modified after Becker et al. (2011). (b) The three principal crack-plane orientations relative to bedding
(anisotropy) planes; Divider, Short-Transverse, and Arrester. Figure modified after Chong et al. (1987). (c) and (d) profile
and overhead schematics of the loading rig used here. (e) The setup of the optical DIC cameras in relation to the
Double-Torsion sample. The loading ram was moved from the rear of the sample in this setup, to ensure that the
maximum strain was observed on the sample surface. DIC = Digital Image Correlation.
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Table 1
Nominal Sample Dimensions Used in the Experiments Described Here

Dimension Value (mm) Ratio to W

W 20 1

L 60 3

an 12.5 0.625

d 2.75 0.1375

Note. Dimensions correspond to those shown in Figure 1a. Individual sample
dimensions for each test are given in the supporting information Table S1.

(Evans, 1972, 1973). The method has been the subject of a number of review papers which describe the
experiment in more detail (Becker et al., 2011; Shyam & Lara-Curzio, 2006; Tait et al., 1987).

The double-torsion method is popular in the characterization of the fracture mechanics properties in brit-
tle materials because in principle, the determined stress-intensity factor is independent of crack length.
Williams and Evans (1973) showed that the strain energy release rate, G, for a mode-I crack propagating in a
double-torsion specimen is given by

GI = −dU
dA

= P2

2d
dC
da

=
3w2

mP2

2𝜇Wdnd3Ψ
, (1)

where U is total strain energy, A is fracture surface area, P is applied load, C is specimen compliance, wm is
lever arm length, 𝜇 is shear modulus, 𝜓 is a thickness correction factor (discussed below), and d, a, W , and dn

are specimen dimensions defined in Figure 1a. An associated stress-intensity factor can be defined through

KI =
√

E′G, (2)

where

E′ =

{
E, (plane stress)

E
1−𝜈2 , (plane strain) (3)

Substituting equation (1) into equation (2) and using 𝜇 = E
2(1+𝜈)

, the stress intensity is given by

KI =
⎧⎪⎨⎪⎩

Pwm

√
3(1+𝜈)

Wdnd3Ψ
, (plane stress)

Pwm

√
3(1+𝜈)

Wdnd3Ψ(1−𝜈2)
, (plane strain).

(4)

The fracture toughness, KIc, can be found by setting P equal to Pmax , the failure load. Note that from equation
(4), KIc can be determined without knowing the Young’s Modulus, E. Ψ is a correction factor derived by Fuller
(1979), and is given by

Ψ(d,W) = 1 − d
W

[
1.2604 + 2.400e(

−W𝜋

2d
)
]
. (5)

It accounts for the interaction between the two surfaces and becomes significant when d∕W > 0.15 (Tait et
al., 1987). Due to the roughness of the fracture surfaces generated in shale materials, we might expect the Ψ
found here to be a minimum value, as interaction between the fracture faces is likely to be larger than in most
engineering materials due to the tortuosity expected in the fracture path.

Four main assumptions are involved in the derivation of these expressions, as described by Becker et al. (2011).

1. The fracture is assumed to propagate purely in mode-I (opening).
2. The sample is assumed to behave as if it is made up of two symmetric and independent halves. These halves

only experience the load, P, with the lever arm length, wm.
3. The unbroken ligament in front of the crack-tip is assumed to remain rigid.
4. The crack profile is assumed to remain constant throughout propagation.
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It can be seen from the right hand side of equation (1) that the energy release rate, G, (and therefore, the
stress-intensity factor, through equation (2) is not dependent on a, and therefore, the stress intensity expe-
rienced at the crack-tip is independent of fracture length. This property implies that the propagation of the
fracture can be controlled, as all variables on the right hand side of equation (1) will remain constant during the
experiment, with the exception of the load, P. Therefore, during a double-torsion experiment, the stress inten-
sity at the crack-tip should vary purely according to the square of the applied load, KI ∝ P2. In conventional
fracture mechanics notation then, 𝛿Y∗

𝛿a
= 0 for double-torsion experiments, where KI = Y∗𝜎

√
𝜋a.

2.2. Principal Crack Orientations in a Transversely Isotropic Material
Shales commonly exhibit transverse isotropy in terms of their elastic and mechanical properties. In trans-
versely isotropic media, we can define three principal crack orientations with respect to the anisotropy (bed-
ding) plane, as described by Schmidt and Huddle (1977) and Chong et al. (1987). The principal orientations
are known as Divider, Short-Transverse, and Arrester, respectively, and are illustrated in Figure 1d.

In the Divider orientation, the crack plane is normal to the isotropy (bedding) plane but the crack propagates
in a direction parallel to the isotropy plane. In the Short-Transverse orientation both the crack plane and the
crack propagation direction are parallel to the isotropy plane. Finally, in the Arrester orientation, both the crack
plane and the crack propagation direction are normal to the isotropy plane. For a horizontally bedded mate-
rial, the Divider, Short-Transverse, and Arrester orientations correspond, respectively, to a vertically oriented
fracture propagating horizontally, a horizontal fracture propagating horizontally, and a vertically propagating
fracture (Chandler et al., 2016).

The inclined nature of the fracture-tip within the double-torsion specimen does not affect the orientation
of the developing fracture in the short-transverse orientation. However, for samples manufactured in the
Arrester or Divider orientations, fractures will actually propagate at an intermediate angle between the
Arrester and Divider orientations.

2.3. Sample Geometry and Manufacture
The double-torsion sample geometry is shown in Figure 1a. The approximate dimensions used in the exper-
iments described here are listed in Table 1, but there is significant variation in the sample dimensions due
to the difficulty of producing thin slices of shale. These nominal dimensions correspond approximately to a
geometry, (W ∶ L ∶ d ∶ an) of (1:3:0.1375:0.625). These samples are slightly thicker than the dimensions rec-
ommended by Becker et al. (2011), and the stress intensities should therefore be expected to display some
small crack-length dependence. The ratio d

W
= 0.1375, is lower than the threshold of 0.15 above which the

correction factor, Ψ(d,W), becomes significant (Tait et al., 1987).

It is commonplace in double-torsion experiments to use a central groove running the whole length of the
sample (i.e., dn < d, for some central region, Wgroove ≪ W ; Tait et al., 1987). This groove acts to keep the
fracture running centrally through the sample, because from equations (1) to (2) it can be seen that KI ∝
d−2, hence a very large stress concentration is generated. Consequently, the fracture is strongly incentivized
to remain within the grooved region. No such central groove was used in the experiments presented here,
because part of the experimental goal was to observe the effect of the material anisotropy and inhomogeneity
on crack-path trajectory under (nominally) mode-I loading.

Sample manufacture varied slightly between different materials and orientations. In most cases, a block with
end dimensions W × L was cut using a slow-rotating circular saw. A central notch of length an was then cut
into the center of the narrow side using a smaller saw. This left a notch width of around 1 mm. The notched
block was then sliced into samples of thickness, d. Due to low availability and irregular shape of some of the
materials tested, other samples were manufactured in a less formulaic fashion, with slices simply cut where
possible and notched appropriately. There are therefore significant discrepancies in the numbers of samples
between different materials and orientations. In particular, sample manufacture in the arrester orientation
proved to be very difficult, with the “legs” to either side of the notch commonly breaking off once the notch
had been cut.

2.4. Experimental Equipment and Setup
The double-torsion samples were loaded using the frame shown in Figures 1c and 1d. This loading frame was
adapted for use with correlative X-ray and optical DIC. The sample is mounted vertically, against two rods of 2
mm diameter and 10 mm height, separated by 5 mm on one side. On the other side, a central actuator with a
2 mm diameter semicylindrical contact area moves horizontally toward the sample. This semicylindrical form
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Figure 2. Photographs showing the setup of the double-torsion rig and optical cameras relative to the rotations stage
and X-Ray beam within experiment hutch on beamline I12 at Diamond light source. (a) Double-torsion rig on rotation
stage. (b) Overhead view of rotation stage. (c) Close-up of double-torsion loading rig. DIC = Digital Image Correlation.

acts to keep the sample aligned centrally during loading. The two loading point contacts are provided by the
points where the semicylinder makes contact with the two sides of the notch. The actuator was driven at 2
μm/s by a stepper motor under displacement rate control. Figure 2 shows photographs of the setup of these
pieces of equipment in relation to one another.

2.5. Strain Determination Using Optical DIC
Two Dantec 3-D DIC cameras were mounted facing the double-torsion sample at angles allowing for ≃35∘

separation. This setup is shown in Figure 1e. Two CCD cameras with 35 mm focal length lenses were used.
The cameras face the opposite side of the sample to the loading actuator, which ensures that the images are
taken from the side of the sample where the maximum strain should be expected. External LED lights were
used for illumination. The 8-bit images of 2,448 × 2,050 pixels were acquired every 0.2 s. The field of view
was 36.72 × 30.75 mm which correspond to a spatial resolution of approximately 15 μm/pixel. Theoretically,
DIC can resolve at 0.01 pixel accuracy based on the subpixel resolution algorithms in optimum experimental
conditions (Pan et al., 2009). However, this cannot be achieved in practice due to the uncertainties caused by
experimental sources such as speckle quality, camera motion, and lighting conditions (Reu, 2012a). Therefore,
in this experiment, the displacement accuracy was assumed between 0.15 and 0.3 μm/pixel, corresponding
to 0.01 and 0.02 of estimated subpixel resolution accuracy.

The accuracy of the DIC system depends heavily on the quality of a distinguishable speckle pattern on the
sample surface. Reu (2012b) recommends that a random uniform speckle pattern with a speckle size of 3–5

Table 2
Summary of the Materials Used in the Double-Torsion experiments

Material Microstructure Mineralogy TOC Maturity Porosity

Bowland shale Non-laminated Quartz/Carbonate rich Medium Oil mature Unknown

Haynesville shale Laminated Clay rich High Gas mature 7%

Kimmeridge shale Laminated Clay rich High Oil mature 7%

Mancos shale Laminated Quartz rich Medium Immature-Oil mature 9%

Middlecliff shale Laminated Clay rich Unknown Unknown Unknown

Whitby mudrock Non-laminated Clay rich Medium Immature 8%

Pennant sandstone Non-laminated Quartz rich Zero N/A 5%

CHANDLER ET AL. 10,522
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Figure 3. Example plots of load as a function of actuator displacement for a
Divider orientation sample of Kimmeridge clay and a Short-Transverse
orientation sample of Mancos shale.

pixel is applied to a sample surface. Here such a speckle pattern was cre-
ated on the sample surface, using matt black and white spray paint in order
to generate an artificial texture to be tracked by the DIC. The strain was
calculated by taking the gradient of two adjacent subsets of displacement
data. Each subset is a region within which the strain value is calculated
by averaging the strain values therein (Reu, 2012c). A larger subset size
will reduce noise in the strain, but at the expense of spatial resolution.
In this experiment, subset and step sizes of 25 and 19 pixels were used,
respectively, to generate the strain fields and found to be most effective.

2.6. Radiograph Imaging of Crack Propagation
Time-resolved radiograph imaging of the progressing fracture was con-
ducted using experiment hutch 1 on the I12 beamline at Diamond Light
Source, Harwell, UK, during beamtime EE13824. The synchrotron beam
energy was maintained at 20 keV. A 2,048×2,048 pixel image was recorded
25 times every second using a PCO.edge camera with 2X magnification.
The temperature was kept constant at 20 ∘C, and relative humidity was
maintained at 50%. Dark field and reference field images were recorded at
the start and end of each experiment.

3. Sample Materials

Six different shales were tested to provide mechanical properties for as
broad a range of materials as possible. Additionally, Pennant sandstone

was tested. As a low permeability, quartz-rich sandstone, it is used as a tight-gas sandstone analog, and so has
relevance for hydraulic fracture propagation. It was deemed to be important to perform the double-torsion
experiment on at least one nonshale material, so as to provide a benchmark with which to compare the behav-
ior of the shale. All experiments were conducted on samples that had been dried in an oven at 60 ∘C until
reaching a constant mass.

Due to sample scarcity and difficulties in sample manufacture, sample numbers vary significantly between
different orientations and materials. In particular, samples proved very difficult to manufacture in the Arrester
orientation. The properties of the materials tested here are summarized in Table 2.

Table 3
Mean KIc Values for the Materials Tested Here

KIc(Plane Stress) KIc(Plane Strain) n

Material Orientation
(

MPa ⋅ m1∕2
) (

MPa ⋅ m1∕2
)

(experiments )
Mancos shale Divider 0.47 ± 0.15 0.48 ± 0.15 6

Mancos shale Short-Transverse 0.36 ± 0.18 0.37 ± 0.18 6

Mancos shale 45∘ 0.30 0.30 1

Whitby mudrock Divider 0.36 ± 0.22 0.37 ± m0.23 6

Whitby mudrock Short-Transverse 0.06 0.06 1

Bowland shale (PH-1) Arrester 0.91 ± 0.12 0.93 ± 0.13 5

Bowland shale (PH-2) Short-Transverse 0.35 0.35 1

Haynesville shale Divider 0.37 ± 0.14 0.38 ± 0.15 3

Kimmeridge shale Divider 0.47 ± 0.15 0.48 ± 0.16 6

Kimmeridge shale Short-Transverse 0.08 0.09 1

Middlecliff shale Divider 0.29 ± 0.18 0.29 ± 0.18 4

Pennant sandstone Divider 0.32 ± 0.12 0.33 ± 0.13 17

Pennant sandstone Short-Transverse 0.32 ± 0.06 0.32 ± 0.06 9

Note. In each case, the uncertainty is given by the standard deviation of n (experiments). We expect that the crack-tip
should be close to plane strain conditions and include the plane stress values only for completeness. For samples manu-
factured in the Arrester or Divider orientation, the KIc values should be considered to be at an intermediate angle between
the two orientations, as described in section 2.2.
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Figure 4. Horizontal strains (corresponding to the x-orientation in Figure 2c) recorded using optical Digital Image
Correlation during the loading of a sample of Kimmeridge clay in the Divider orientation. (a) shows the sample before
any loading is applied and (d) shows the sample after peak load. (b) and (c) show the fracture at intermediate times.

Bowland shale is a carboniferous organic-rich basinal marine shale found across the North-West of England

(Andrews, 2013). The samples used here were taken from core material from the Preese Hall 1 borehole, as

used by Fauchille et al. (2017).

Haynesville- Bossier shale is an organic-rich Jurassic mudstone found in Texas and Louisiana (Hammes &

Frébourg, 2012). It is one of the largest and most active hydrocarbon-producing reservoirs in the United

States. The sample selected here is from the dominant fine mudstone microfacies in the Haynesville-Bossier

Shale and was taken from the same core as was used by Dowey and Taylor (2017) and Ma et al. (2018).

Kimmeridge shale is a silt-bearing clay-rich Jurassic mudstone and is the major source rock for North Sea

oil. The samples used here were taken from the same blocks as those used by Hawthorn (2004) and were

sourced from an oil well in the central North Sea.

Mancos shale is found in the Rocky Mountain area of western Colorado and eastern Utah and provides the

source for many of the shale plays in the Rockies (Longman & Koepsell, 2005). It is a strongly laminated

Upper Cretaceous shale deposited 90–70 Ma (Chidsey & Morgan, 2010). The samples used here were taken

from the same block as those used by Chandler et al. (2016, 2017).

Middlecliff shale is a Lower Westphalian lower coal-measure mudstone found in northern England (Ashby &

Pearson, 1979). It is strongly laminated and very friable.

Figure 5. Horizontal strains (corresponding to the x-orientation in Figure 2c) recorded using optical Digital Image
Correlation during the loading of a sample of Mancos shale in the Short-Transverse orientation. (a) shows the sample
before any loading is applied and (d) shows the sample after peak load. (b) and (c) show the fracture at intermediate
times.

CHANDLER ET AL. 10,524
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Figure 6. Final horizontal strains (corresponding to the x-orientation in Figure 2c) after sample failure recorded using
optical Digital Image Correlation during the loading of various samples, demonstrating fracture deflections. The stresses
calculated from the loading of these samples were not used to determine fracture toughness values. (a) Mancos shale,
Short-transverse; (b) Kimmeridge clay, Divider; (c) Kimmeridge clay, Divider; (d) Whitby mudstone, Divider.

Whitby Mudstone is found on the North-East coast of England, and forms part of the Lias Group, made up of

early Jurassic siliciclastic mudstones deposited in the Cleveland Basin (Rawson & Wright, 1995). The samples

used here were taken from the same block as those used by McKernan et al. (2014, 2017), who describe it

as a bioturbated silt-bearing, clay-rich mudstone.

Pennant sandstone is a quartz sandstone deposited in South Wales during the Upper Carboniferous (Kelling,

1974). The samples used here were taken from the same block as used by Hackston and Rutter (2016),

who used Scanning Electron Microscopy (SEM) chemical mapping to find a composition of 70% sutured

quartz grains and 15% feldspar with the interstitial space containing clusters of muscovite, oxides, and clay

minerals.

Figure 7. (a, b) Examples of radiographs from sample KIMdiv7, after ≃140 and ≃170 s, respectively, demonstrating
where the crack-tip was picked. (c) Example grayscale transect corresponding to (a), used for Crack-Mouth Opening
Displacement picking. In this case, Crack-Mouth Opening Displacement ≃ 500 μm.
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4. Results

Figure 3 shows example curves of the load, P, as a function of the actuator displacement, x. In each case
the load is observed to increase linearly with applied actuator displacement, before breaking abruptly at the
failure load as the crack reaches the end of the sample.

Table 3 lists the mean fracture toughness values measured for each of the materials tested here. The n(tests)
varies significantly between the different materials and orientations due to a combination of the material
availability and the difficulty in manufacturing samples in certain orientations as described in section 2.3. Four
KIc values are listed for each material, calculated assuming that the crack-tip is in plane stress and plane strain,
using Evans’ conventional method (equation (4)) . We expect that the crack-tip should be close to plane strain
conditions, and include the plane stress values only for completeness.

Mean fracture toughness values were calculated from the failure loads, Pmax , and sample dimensions of all
experiments in which the fracture was not observed to deviate from the central axis by more than 3 mm
while propagating through the central third of the sample length. Fracture deflection was quite common-
place due to the anisotropy and heterogeneity of the material, and the lack of a central sample groove (as
described in section 2.3). These fracture deflections are not discussed here, but are intended to form part of a
later publication.
4.1. Surface Strains Determined Through Optical DIC
Horizontal strain fields determined using the optical DIC equipment described in section 2.5 were processed
using Istra 4-D software. Significantly more random noise is visible in the strain maps than was the case dur-
ing calibrations. This noise is believed to be caused by the scattering of the X-rays used for the radiography.
Figure 4 shows horizontal strain maps calculated at four instances throughout the loading of a Divider orien-
tation sample of Kimmeridge clay. The strain map clearly shows the opening of the fracture, which grows in
the intended vertical direction, from the notch-tip.

Figure 5 shows horizontal strain maps calculated at four instances throughout the loading of a
Short-Transverse orientation sample of Mancos shale. Despite being in the Short-Transverse orientation, the
fracture is seen to be much less straight, due to the inhomogeneity in the Mancos shale.

Figure 6 shows horizontal strain maps immediately prior to complete failure for four different samples in which
the fracture was judged not to be suitable to calculate KIc directly from the load record. In some cases this
corresponds to a fracture which deflects sharply from the intended propagation direction, but in other cases
(such as Figure 6b), the DIC measurements demonstrate that these experiments feature strains developing
away from the main notch. This provides an additional form of quality control on the fracture toughness mea-
surements, as the deformation in the side regions of these samples violates the second of the assumptions
described in section 2.1 but this deformation was not apparent from visual inspection of the sample.

4.2. Crack-Tip Position and CMOD Determined from Radiograph Images
Crack-tip position was picked manually from the radiographs after the dark and reference field corrections
had been made. Figures 7a and 7b show example radiographs as the fracture propagates across a Divider
orientation sample of Kimmeridge shale, demonstrating where the crack-tip was picked from local changes
in the grayscale value. The position of the crack was manually tracked every 20 frames (0.8 s) using the Manual
Tracking plug-in in Fiji image processing software (Schindelin et al., 2012).

CMOD was picked using a grayscale transect in a direction perpendicular to the notch as shown in Figure 7c.
The boundaries of the crack mouth were picked as the points at the base of the rise, in each case.

5. Discussion
5.1. Comparison With Previous Experimental Fracture Toughness Data in Shale
Shale fracture toughness data were sparse in the scientific literature prior to 2015, and only one study con-
sidered measurements in more than one orientation. Schmidt and Huddle (1977) used three-point bend
specimens to measure KIc values varying from 0.3 to 1.1 MPa⋅m

1
2 for two grades of Anvil Points oil shale

across the three principal crack orientations. They found that increased hydrocarbon content produced lower
fracture toughness measurements, and that in both cases the Divider orientation has the highest and the
Short-Transverse orientation the lowest KIc value. Chong et al. (1987) summarized their own results and those
of Costin (1981) and Young et al. (1982) on oil shales in the Divider orientation, finding KIc in the range 0.6–1.1
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MPa⋅m
1
2 , but demonstrating the opposite trend, with fracture toughness and ductility increasing with hydro-

carbon content. Warpinski and Smith (1990) quote KIc = 1.43 MPa⋅m
1
2 for the Mancos shale, but do not describe

the method or orientation used.

More recently, a number of groups have addressed fracture toughness measurement in shales, with studies
by Lee et al. (2015), Chandler et al. (2016, 2017), Chen et al. (2017), Kabir et al. (2017), Luo et al. (2018), and
Forbes Inskip et al. (2018). Lee et al. (2015) used semicircular bend specimens to measure fracture toughness
in the Divider and Arrester orientations in the Marcellus shale, as well as at an angle of 30∘ to the Arrester ori-
entation. They found fracture toughness of KIc values varying between≃0.2 and 0.7 MPa⋅m

1
2 , with the off-axis

measurement the weakest and the Arrester orientation the strongest. Chandler et al. (2016) used short-rod
experiments to measure the fracture toughness of Mancos shale in the three principal crack orientations. Yang
et al. (2016) used a method based on nanoindentation to investigate the effects of hydrophobic coatings
and water saturation on samples of Sichuan gas shale. They found the hydrophobic coating to increase KIc,
and increase in water saturation to decrease KIc. They obtained a fracture toughness of 2.7 Mpa.m

1
2 for their

untreated, air-dried sample. Kabir et al. (2017) used microscopic scratch tests to measure the fracture tough-
ness of Toarcian gray shale and Niobrara black shale, and found that their fracture toughness values vary as a
function of scratch speed, reaching an intrinsic value at high scratch speeds. The intrinsic fracture toughness
values that they measured are much higher than those measured by other authors, on the order of ≃4.0–5.5
Mpa.m

1
2 . Even at the slowest scratch speeds that they test, they found fracture toughnesses in the region of

2 Mpa.m
1
2 . Luo et al. (2018) and Forbes Inskip et al. (2018) each used bend specimens to investigate the varia-

tion of KIc in the Arrester, Short-Transverse, and Divider orientations, as well as at angles between the Arrester
and Short-Transverse orientations. Luo et al. (2018) investigated the Chongqing shale, and found KIc to vary in
the ≃0.9–1.6 Mpa.m

1
2 range. Forbes Inskip et al. (2018) investigated Nash Point shale, and found KIc to vary in

the ≃0.2–0.7 Mpa.m
1
2 range, with the short-transverse orientation the weakest and the Arrester and Divider

orientations comparable.

To date, two studies have looked at double-torsion experiments in shale materials. Swanson (1984) con-
ducted double-torsion experiments on a Devonian shale, finding subcritical crack growth behaved similarly
in the shale as in Westerly granite and three different Basalts. Chen et al. (2017) conducted stress relaxation
double-torsion experiments on Woodford shale with the material in varying saturation states. They found a
fracture toughness of 0.76 Mpa.m

1
2 for unsaturated states and a strong water-weakening effect. Their samples

were manufactured in the Divider orientation, so that the fracture front lies between the Divider and Arrester
orientations.

The shale fracture toughness values listed in Table 3 are generally in the same range as those discussed by
Schmidt and Huddle (1977), Chong et al. (1987), Lee et al. (2015), Chandler et al. (2016), Chen et al. (2017), Luo
et al. (2018), and Forbes Inskip et al. (2018; summarized in section 1), varying between≃0.25 and 1 MPa⋅m

1
2 . In

all materials where multiple orientations were tested, the same trend is observed as by Schmidt and Huddle
(1977), Lee et al. (2015), Chandler et al. (2016), and Forbes Inskip et al. (2018), with the KIc highest in the Arrester
orientation and lowest in the Short-Transverse orientation. The Divider and Short-Transverse orientation mea-
surements on the Mancos shale show very good agreement with the KIc values measured by Chandler et al.
(2016) using the short-rod method on the same material. Pennant sandstone is seen to be isotropic in KIc.

The fracture toughness values found here are significantly lower than the ranges reported by Yang et al. (2016)
and Kabir et al. (2017). Kabir et al. (2017) described their Niobrara shale sample as demonstrating exceptional
toughness and suggested that this is due to toughening mechanisms in the kerogen, and kerogen-clay inter-
faces. However, while their Niobrara shale sample is very kerogen-rich and quartz-poor, their Toarcian shale
and the Sichuan shale sample used by Yang et al. (2016) also display KIc values around four times higher
than those measured by other authors, yet do not feature exceptional kerogen content. It is tempting to con-
sider that the much smaller experimental scale of these two studies may contribute to this discrepancy, to
some extent. In compressive strength measurement, smaller-scale experiments have been shown to record
higher strengths in a range of materials. In particular, recent micropillar compression experiments conducted
by Keller et al. (2017) demonstrate a compressive strength three to four times higher at the microscale in
Opalinus clay as is found at the macroscale by Giger and Marschall (2014). Smaller samples can contain a
smaller maximum-flaw size, and the largest stress concentrations should occur at the tips of the largest flaws,
meaning that larger samples can fail at lower stresses. While this explanation makes sense for compressive
strength experiments, it is more difficult to explain in fracture toughness experiments such as those described
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Table 4
Tensile Strength, Young’s Modulus, Failure Strain, Yield Radius, and Critical Radius for Mancos Shale, Whitby Mudstone, and
Pennant Sandstone

𝜎T E 𝜖T(≃ 𝜖Y) rY rc

Material Orientation (MPa ) (MPa ) (%) (mm) (mm)

Mancos shale Divider 5.81 24,800 0.023 0.030 1.1

Mancos shale Short-Transverse 4.54–7.35 24,800 0.018–0.030 0.038 0.4–1.1

Mancos shale Arrester 7.28 24,800 0.029 0.038 0.3

Whitby mudstone Divider 3.21 12,600 0.025 0.030 2.1

Whitby mudstone Short-Transverse 2.86 12,600 0.022 0.023 0.1

Whitby mudstone Arrester 4.61 8,400 0.054a 0.038 1.0

Pennant sandstone Divider 15.1 23,600 0.063 0.030 0.071

Note. The measured rY values are in the region of 5 pixels, so have a very large associated uncertainty, and should only
really be interpreted as an order of magnitude. The 𝜎T and E are taken from Chandler et al. (2016) for Mancos shale.
Brazilian disk experiments were conducted on Whitby mudstone and Pennant sandstone here, with example load curves
shown in Figure S1. In each case, E is an average determined for all orientations in the material.
aKIc in the Arrester orientation was assumed to be equal to the value in the divider orientation, because it was not
measured here.

here. Here the largest flaw in the sample is controlled during sample manufacture, with the notch playing
the role of an artificial flaw. Therefore, this argument does not explain the factor of ≃4 difference between
the nanoscale/microscale measurements of Yang et al. (2016) and Kabir et al. (2017) and the macroscale
measurements in the literature.
5.2. Scale of the Inelastic Zone Around the Fracture-Tip
For each experiment, KIc was calculated using equation (4). In each case, the KIc value calculated assuming
that the crack-tip is in plane strain is slightly higher than that calculated assuming plane stress, by a factor of
[1∕(1 − 𝜈2)]

1
2 . The effect is, however, very small, with the difference lying within experimental uncertainty for

most materials tested here.

If the size of the inelastic process zone is not negligible relative to the sample size, then yielding at the crack-tip
is not completely suppressed as would be the case in true plane strain conditions (Rice, 1974). If this is the
case for our samples, then our calculated KIc values will be overestimated (Wang & Pilliar, 1989). The fact that
the Mancos shale values found here are approximately 1.15 times that measured by Chandler et al. (2016)
could therefore suggest that the sample size used here is still in the range where measured fracture toughness
displays some sample-size dependence, but the difference is very small.
5.2.1. Evolution of the Scale of the Inelastic Zone
The yield strain, 𝜖Y, of each material was estimated using

𝜖Y =
𝜎Y

E
, (6)

where 𝜎Y is the yield stress and E is Young’s modulus. Table 4 lists 𝜖Y, 𝜎Y, and E for each material, as well as the
method used to determine each value. Chandler et al. (2016) observe negligible yielding in the load versus
displacement curves for Brazilian disk experiments in Mancos shale, and we observe the same here in Brazilian
disk experiments on Whitby mudstone and Pennant sandstone (see supporting information). Therefore, here
we take 𝜎Y ≃ 𝜎T, where 𝜎T is the tensile strength. The 𝜖Y values should therefore be thought of as maximum
bounds. Once 𝜖Y had been calculated, an approximate radius of the yielding region, rY, was found by taking
half of the median width of the region where 𝜖 > 𝜖Y from representative strain fields such as those displayed
in Figures 4–6. Due to the 𝜖Y values being maximum bounds, the rY values should be thought of as minimum
bounds, although the difference should be small. The rY values for Mancos shale, Whitby mudstone, and Pen-
nant sandstone are listed in Table 4. Neither 𝜎Y or 𝜎T was found in the literature for the other materials tested
here, and so rY could be calculated. The rY is found to be in the region of ≃0.04 mm for each material and ori-
entation. These rY values correspond to approximately 2–4 pixels in the strain fields, so should be thought of
as nothing more than order of magnitude estimates.

Schmidt (1980) proposed a model based around the maximum normal stress criterion, for the estimation of
rc, the critical radius. The rc is commonly considered to mark the radius of a circular fracture process zone
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around the crack-tip (Ayatollahi & Aliha, 2008; Janssen et al., 2002; McClintock & Irwin, 1965). According to the
Schmidt (1980) criterion,

rc =
1

2𝜋

(
KIc

𝜎T

)2

. (7)

The rc values for Mancos shale, Whitby mudstone, and Pennant sandstone are listed alongside the rY val-
ues in Table 4. Fracture critical radii, rc, are found to be on the order of 1 mm for cracks propagating in the
Arrester or Divider orientations in the shales, but an order of magnitude smaller in the sandstone and in the
Short-Transverse orientation in the shale. These values are each 1–2 orders of magnitude higher than the
yield radii, rY, except in the case of Pennant sandstone. This suggests that the critical radius approximation
proposed by Schmidt, is perhaps overestimating the region of inelastic deformation in shale materials while
remaining appropriate in the more brittle Pennant sandstone material. If these smaller zones of inelastic defor-
mation in shale are accurate, then the region of increased permeability around a fracture within a shale may
be an order of magnitude smaller than is expected from the model of Schmidt (1980).
5.2.2. Validity of the Small-Scale Yielding Criterion
The small-scale yielding criterion is the assumption that the zone of inelastic deformation around the crack-tip
is small in comparison to the total volume of the sample (Janssen et al., 2002). Here we see that while the scale
of the yielding zone (defined either through rY or rc) is small relative to the loading direction, rc is a significant
proportion (≃ 1

3
) of the sample thickness. However, the fracture-tip has been shown to be steeply inclined in

double-torsion specimens, making a small angle with respect to the x-y plane (Evans, 1973). This implies that
the double-torsion specimen thickness is in the direction of fracture propagation, and therefore the sample
length is the dimension that corresponds to the plate-thickness for determining whether the sample is in
plane strain.

There is good agreement between KIc measured here in the Mancos shale and that measured by Chandler et
al. (2016), with the values measured here slightly higher. This small difference is perhaps surprising, because
of the difference in scale between the large 60 mm cores tested in the former study and the much smaller
samples tested here. Chandler et al. (2016) used such large cores so as to ensure the validity of the small-scale
yielding criteria.

The agreement between the KIc values measured here and by Chandler et al. (2016) could therefore be seen
as supporting the far smaller inelastic zone suggested by rY, which would correspond to a much smaller pro-
portion (≃ 1

100
) of the sample thickness. In such a case, both the experiments conducted here and those

conducted by Chandler et al. (2016) could satisfy the small-scale yielding criterion, and therefore KIc would be
scale-invariant, hence the agreement.

5.3. Validity of the Williams and Evans (1973) Method in Shale Materials
In section 2.1, four assumptions that are made in the derivation of the stress-intensity factor are described.
The heterogeneity and anisotropy of the shale materials tested here are likely to cause greater violation of
these assumptions than would occur in relatively isotropic and homogeneous materials. In particular, if the
millimetric-scale bedding planes in the material do not lie perfectly parallel to one another, small mode-II
displacement components are induced as the fracture propagates from one bed into the next, breaking
assumption 1. This effect is expected to be particularly large in the Arrester orientation, where many bedding
interfaces will be crossed. Additionally the fracture faces in the shale materials were seen to be quite rough.
This is likely to violate assumptions 2 and 4, as some friction will be generated by contact between the surfaces
of the newly formed fracture. The load required to generate a given stress intensity at the notch-tip should
then be expected to increase, and therefore our fracture toughness values should be thought of as maximum
values within a range.

From section 5.2, the region of inelastic deformation around the fracture-tip is seen to be small, and no signif-
icant yielding ahead of the fracture is observed in Figures 4–6. Therefore, the region ahead of the progressing
fracture does appear to remain rigid and accordingly, accordingly assumption 3 seems valid.

Figure 6b shows an example of an experiment during which strain accumulates in a region not directly con-
nected to the main fracture. In this case, assumption 2 is violated as the two halves of the sample are not
behaving as rigid bodies. The small feature accumulating strain was not clearly visible on the sample surface
itself, during or after the experiment. This suggests that optical DIC can provide a valuable form of quality
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Figure 8. Crack-tip position, velocity, and load as a function of time for a Divider orientation sample of Kimmeridge clay
(a), and a Short-Transverse orientation sample of Mancos shale (b). Crack-tip position and velocity are measured
exclusively in the y direction as defined in Figure 2. The velocity data has a 5-point moving average filter applied.

control for ruling out this type of off-plane deformation during mechanical experiments in these semibrittle
materials.

5.4. CMOD and Crack-Tip Velocity Determined From Radiograph Images
CMOD was calculated from the radiograph images by taking a transect of the grayscale at the tip of the initial
notch and monitoring the width of the high-grayscale region. Crack-tip location was picked manually using
both the raw radiograph images and difference maps of the current radiograph with the radiograph of the
undeformed sample subtracted. It is important to note that while the resolution of CMOD is controlled by the
image resolution of 20.8 μm, the form of the specimen means that while the crack-tip is loaded in mode-I, the
surfaces of the initial notch are actually subject to rotation relative to the plane of the radiographs. This causes
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the CMOD data to be very noisy. The crack-tip velocity calculated here corresponds only to the velocity of the
resolvable crack-tip (i.e., the point along a crack’s length where it the crack aperture is greater than the pixel
size). The relationship between the true and resolvable crack-tip velocity is not known.

Figure 8 shows crack-tip y position, velocity ( dy

dt
), and load as a function of time for a Divider orientation sample

of Kimmeridge clay, and a Short-Transverse orientation sample of Mancos shale. CMOD was extremely noisy
and was not observed to change by more than 2 pixels, therefore it is not plotted here.

In each case, the crack-tip only became visible once the load had reached approximately 20 kN. Prior to this
load, the crack had either not yet initiated, or was too narrow to resolve. In each case velocity initially rose
steeply to approximately 250 μm/s during the linear portion of the loading curve. The crack-tip velocity was
then seen to drop sharply and plateau during the period as the load curve deviates from linearity. A second
peak in velocity was then seen slightly prior to the peak load, with crack-tip velocity reaching approximately
470 μm/s before dropping sharply again as the peak load was reached.

Despite the differences in material and orientation, the crack-tip velocities and failure loads are very similar.
Comparison between Figures 4 and 5 demonstrate that the fracture path seen in the Divider orientation Kim-
meridge clay sample is much less tortuous than that in the Short-Transverse Mancos shale, where the fractures
are prone to following the interfaces between silt and clay layers. The matrix of the Kimmeridge shale material
is also substantially richer in clays and organic matter than is the Mancos shale, hence the developing fracture
is less likely to be arrested by a localized high-resistance feature. However, the velocities ( dy

dt
) observed in the

two samples are very similar, despite the fracture in the Mancos shale deflecting more in the x direction.

6. Conclusions

Fracture toughness has been measured in one or two of the three principal crack orientations for six different
types of shale, as well as Pennant sandstone. In each shale, the Arrester or Divider orientation displays a higher
KIc value than the Short-Transverse orientation, with KIc,Div/Arr∕KIc,S-T ratios varying between 1.3 and 6. Pennant
sandstone behaved isotropically. The values of KIc measured here are on a similar order to those previously
reported in the literature, and the same trend in KIc anisotropy was observed.

Stereo optical DIC was used to characterize the strain fields on the surface of the samples and the scale of
the inelastic zone size around the fracture-tip in relation to sample size. The inelastic zone size radii (rY) were
calculated in the Whitby mudstone, Mancos shale, and Pennant sandstone, and rY values were found to be in
the region of ≃30 μm. This is one to two orders of magnitude smaller than the critical radius assumption of
Schmidt (1980), which finds rc values in the region of ≃ 0.8 mm in the same materials. The rY suggests that
inelastic deformation is confined to a region around the fracture-tip which is approximately 1

100
of the sam-

ple thickness, while rc suggests that the inelastic zone radius can be up to one third of the sample thickness.
If these smaller zones of inelastic deformation, rY are truly the case, then the region of increased perme-
ability around a shale fracture could be an order of magnitude smaller than expected from the model of
Schmidt,. This inelastic deformation zone could potentially be investigated further by SEM imaging of the
sample surfaces.

Optical DIC also provided a valuable form of quality control when conducting mechanical experiments using
this type of complex inhomogeneous material. Mechanical experiments commonly assume no deformation
away from a specific region or plane, and the DIC strain fields were able to identify experiments where this was
not the case, even in situations where the deformation was not apparent by visual inspection of the sample
surface. This type of analysis is potentially very valuable in the continued investigation of the mechanical
properties of shale materials, with their strong heterogeneity and anisotropy.

Crack-tip velocity and CMOD were tracked directly using radiograph imaging. The resolvable crack-tip was
found to travel at speeds on the order of 100μm/s during loading, with fractures appearing to travel at approx-
imately the same velocity in the Divider and Short-Transverse orientations, and in Mancos and Kimmeridge
shales. Inspection of the samples showed that the Short-Transverse orientation fractures were significantly
more tortuous than those in the Divider orientation. This suggests that while a fracture traveling parallel
to bedding may travel at a similar speed to a bedding perpendicular fracture, it may take a more tortuous
pathway, and therefore access a larger surface area. Further work is required to address the impact of elastic
anisotropy on crack-kinking and tortuosity, as the analyses previously applied by Chandler et al. (2016) and
Forbes Inskip et al. (2018) simply assume that the effect of elastic anisotropy is small in comparison to that of
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the KIc anisotropy. The variation of the elasticity tensor in shale with depth could potentially be investigated
in the laboratory using ultrasonic velocities.

The DIC and radiograph observations combine with the mechanical data presented here to provide new
insight into the propagation of fractures in complex inhomogeneous materials. Stereo optical DIC has been
shown to allow the determination of yielding regions within shales, while also providing a valuable form of
quality control for mechanical deformation experiments. Radiograph imaging has been shown to provide the
possibility of tracking the fracture-tip location through complex materials during mechanical experiments.

KIc anisotropy has now been observed in shales consistently over a number of studies, but further work is
required to address how this anisotropy affects the propagation of a fluid-driven subsurface fracture. Mod-
eling suggests that fluid-driven fractures should propagate in the “toughness dominated” regime when
fluid pressure has been allowed to equilibrate throughout the fracture, either due to a long timescale or a
low-viscosity fluid (Garagash, 2006; Zia et al., 2018). Therefore, the variation in form of fluid injection fractures
with injected fluid viscosity might provide some experimental evidence of the influence of KIc anisotropy in
the different regimes.
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