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Topological photonic systems, with their ability to host states protected against disorder and perturbation, allow us to
do with photons what topological insulators do with electrons. Topological photonics can refer to electronic systems
coupled with light or purely photonic setups. By shrinking these systems to the nanoscale, we can harness the enhanced
sensitivity observed in nanoscale structures and combine this with the protection of the topological photonic states,
allowing us to design photonic local density of states and to push towards one of the ultimate goals of modern science:
the precise control of photons at the nanoscale. This is paramount for both nanotechnological applications and also
for fundamental research in light matter problems. For purely photonic systems, we work with bosonic rather than
fermionic states, so the implementation of topology in these systems requires new paradigms. Trying to face these
challenges has helped in the creation of the exciting new field of topological nanophotonics, with far-reaching appli-
cations. In this article we review milestones in topological photonics and discuss how they can be built upon at the

nanoscale.

I. OVERVIEW

One of the ultimate goals of modern science is the precise
control of photons at the nanoscale. Topological nanopho-
tonics offers a promising path towards this aim. A key fea-
ture of topological condensed matter systems is the presence
of topologically protected surface states immune to disorder
and impurities. These unusual properties can be transferred to
nanophotonic systems, allowing us to combine the high sensi-
tivity of nanoscale systems with the robustness of topological
states. We expect that this new field of topological nanopho-
tonics will lead to a plethora of new applications and increased
physical insight.

In this perspective, as presented schematically in FIG.[T} we
begin (section[Il)) by exploring topology in electronic systems.
We aim this section towards readers who are new to the topic,
so begin at an introductory level where no prior knowledge of
topology is assumed.

In section [[TI] we introduce light, first by discussing how
topological electronic systems can interact with light (section
[T A), then moving onto topological photonic analogues (sec-
tion [[ITB), in which purely photonic platforms are used to
mimic the physics of topological condensed matter systems.

In section [[V| we discuss paths via which topological pho-
tonics can be steered into the nanoscale. Excellent and ex-
tensive reviews already exist on topological photonics*, and
many platforms showcasing unique strengths and limitations
are currently being studied in the drive towards new applica-
tions in topological photonics such as cold atoms>, liquid he-
lium®, polaritons”, acoustic® and mechanical systems® but in
this work we restrict ourselves to nanostructures. We discuss
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FIG. 1. Schematic overview of topics in this perspective.
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efforts up until now in this very new field, and in section[V]we
review how topological photonic analogues can be built upon
and surpassed in order to create photonic topological systems
with no electronic counterpart, and we outline the open ques-
tions and challenges which must be faced and overcome in
order to master topological nanophotonics. We include two
interludes (denoted by &) in which we introduce case studies
and background theory which is complementary to the main
text.
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FIG. 2. Topology in condensed matter systems (a) Liquid-solid transition parameterised by a local order parameter. (b) Quantum Hall
system, supporting topologically protected edge states. (¢) Quantum spin Hall system (2D topological insulator). (d) Photonic topological

insulator displaying edge states.

Il. TOPOLOGY IN CONDENSED MATTER SYSTEMS

Much of modern physics is built on the concept of symme-
tries and the resulting conserved quantities. We are most fa-
miliar with the symmetries and phases of matter characterised
by local order parameters within the Landau theory of phase
transitions!®! (as in FIG. [2h), but in the last few decades the
exploration of topological phases of matter has lead to many
new developments in our understanding of condensed matter
physics, culminating in a Nobel prize for Thouless, Haldane
and Kosterlitz in 2016, and a Breakthrough prize in funda-
mental physics for Kane and Mele in 2019. The notion of
topology in physics was introduced by von Klitzing and his
discovery of the 2D quantum Hall (QH) state 12, with Thou-
less et al. explaining the quantization of the Hall conductance
in 198213, Whereas QH states explicitly break time-reversal
(TR) symmetry, new topologically non-trivial materials obey-
ing TR symmetry have been discovered. The first propos-
als of the 2D topological insulator (TI) - otherwise know as
the quantum spin Hall state (QSH) - were remarkably recent
(Kane and Mele, 2005 413 and Bernevig and Zhang, 2006
16) " The 3D generalisation came soon after in 2007 2 and
experiments have shown that these new phases of matter are
both realisable and accessible 182, Other systems can have
topology associated with another symmetry, such as the Su,
Schrieffer, and Heeger (SSH) model?L, which owes its topo-
logical properties to sublattice symmetry.

A. Topological invariants and band structures

Before the concept of topology was connected to condensed
matter systems, phase transitions could only be characterized
by local order parameters. For example, a disordered liquid,
which when cooled will solidify to a crystal with long range
order (as illustrated in FIG. 2h). A local order parameter such
as mass density p(r) can be defined, and constructed by look-
ing only at a small neighbourhood around r. A small defor-
mation of the Hamiltonian may trigger p(r) to grow discon-

tinuously from 0, signalling a local phase transition.

1. Topological phase transitions

In contrast to theories of local phase transitions, topological
phases of matter cannot be described with a local order param-
eter. Unlike the previously described system in which only the
local neighbourhood around a point r contributes to the local
order parameter, in a system exhibiting topology the whole
system must be measured to ascertain the phase. For a system
which can exist in multiple topological phases, no local order
parameter can be constructed which will distinguish between
the phases and we must instead rely on the idea of topolog-
ical invariants. In condensed matter, a topological invariant
is a global quantity which characterizes the Hamiltonian of
the system, and a topological phase transition must occur to
change the value of the invariant. Topologically trivial phases
have a topological invariant equal to 0.

2. Topological band structures and edge states

For an insulating system described by the Hamiltonian .77,
we may smoothly deform our system to one described by a
new Hamiltonian .7#”, as illustrated in FIG. [3h. If the band
gap remains open during the transformation (as shown in FIG.
[Bh(i)), the number of states residing in the valence band is nec-
essarily conserved, as although these states can mix amongst
themselves during the transformation the only way for the
number of states to increase is to close the gap and allow states
to enter from or leave to the conduction band. The number of
states in the valence band is a topological invariant, and will
only change value if the band gap closes during a transforma-
tion (see shown in FIG. Ba(ii)). The band gap closing signals a
topological phase transition, as it is at this point that the topo-
logical invariant can change value. In this case, 5 and 57’
exist in different topological phases. If the gap remains open
during the transformation then .7# and #” remain in the same



A perspective on topological nanophotonics: current status and future challenges 3

al Conduction band
E Gap >0 ey
--------------------- Fermilevel ~Gap stays >0
me band during
transformation
Same topological phase ——
ii "
E
R\ fio gap
Gap closes during
transformation . .
Different topological phases
b c .
y Bands pushed '
E Conduction band
towards each other /—
T
Edge states Bands overlap K

Fermi level
Inverted band order \
and resultant edge ¢

states

FIG. 3. Topology and bandstructures (a) (i) Gap remaining open
during Hamiltonian transformation means the systems described by
the two Hamiltonians are in the same topological phase, whilst (ii) a
topological phase transition will result in the gap closing during the
transformation. (b) For a finite system comprising of a topologically
non-trivial bulk surrounding by a trivial background, a topological
phase transition occurs on the surface and the gap is closed. Gapless
topological edge states exist on the surface, traversing the gap. (c)
Band inversion due to mechanism such as spin-orbit coupling.

topological phase. The gap remaining open is often enforced
by a system symmetry, and so in order for a topological phase
transition to occur a symmetry breaking must occur. If the
symmetry is preserved then no topological phase transition
will take place.

The topological invariant described above is a bulk quan-
tity (and is intimately linked to the bulk Hamiltonian). For an
insulating material with a non-zero topological invariant sur-
rounded by vacuum, we have a boundary on the interface of
these two insulators with differing topological order parame-
ters. The change in topological invariant at the boundary re-
quires the band gap to close, whilst remaining gapped in the
bulks of both media. This results in localized boundary states,
which necessarily traverse the band gap. Physically, the pic-
ture we then have is of an insulating bulk, with conducting
states localized on the boundary of the material as illustrated
in FIG. Bp. Many materials with topological band structures
(such as HgTe/CdTe wells'® and Bi,Ses family materials>224)
owe their topological properties to spin-orbit coupling, caus-
ing an inverted band order and subsequently for edge states to
appear in the gap (see FIG.[3f).

B. Time-reversal symmetry and Tls

The pioneering example of topology in condensed matter
is the 2D quantum Hall (QH) effect!21¥ (schematically illus-

trated in FIG. 2). For a 2D electronic system at low temper-
ature subjected to large magnetic fields, the Hall resistivity
Pxy exhibits plateaus, characterized by a topological invari-
ant known as the Chern number, which takes integer values.
The large magnetic field results in electrons in the bulk be-
ing localised in small cyclotron orbits, whilst electrons at the
edge experience truncated cyclotron orbits and travel along
the edge of the system giving conducting edge states. The
time-reversal symmetry in this system is explicitly broken by
the magnetic field.

Conversely to the case of the QH state, in QSH and TTs,
conducting edge states are only present when TR symmetry
is preserved, such that the fermionic time-reversal operator
Ty commutes with the system Hamiltonian [, Ty] = 0, and
the fermion condition 77 = —1, is obeyed. The TR symme-
try enforces Kramers degeneracy, that is to say that for every
eigenstate |n), its time-reversed partner Ty|n) is also an eigen-
state and has the same energy, but is orthogonal. This can
be demonstrated using the anti-unitary nature of 7y and the
fermion condition, such that

(n,Tyn) = (Tyn, Tf2n>* =—(Tyn,n)" = —(n,Tyn), (1)

and so (n,Tyn) = 0. Consequently, in the presence of time-
reversal symmetry these counter-propagating states cannot
backscatter into one another. If a TR breaking perturbation
is applied (such as a magnetic impurity in a topological in-
sulator), a gap will open within the dispersion relation of the
edge states and they will no longer conduct, reducing the TI
to a trivial insulator. However if a non-TR breaking perturba-
tion is applied the states will remain gapless and will be robust
against the perturbation.

lll. TOPOLOGICAL PHOTONICS

When discussing topological photonics, there are two dis-
tinct topics to consider. The first is that of topological elec-
tronic systems and their interaction with photons>"2%, and the
second is that of purely photonic systems with a non-trivial
topology'™. In this second area, we have photonic analogue
systems that aim to mimic the band structure and topological
properties of a known electronic topological system, as well as
topological photonic systems with no electronic counterpart.

Photonic platforms that can support topological systems ex-
ist over a vast range of frequencies, however miniaturization
to the nanoscale still proves difficult as some of the platforms
are fundamentally limited in size, or if there are no funda-
mental issues then there are technical hurdles to overcome in
downsizing the systems. We review some major milestones in
topological photonics and the challenges of their correspond-
ing platforms.

A. Topological insulators interacting with light

We review 3D topological insulators (as introduced in sec-
tion [[TB) and their response when irradiated with light. Due
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FIG. 4. Topologically modified Maxwell’s equations and SPPs
(a) Boundary conditions at the surface of a topological insulator. (b)
Otto configuration comprised of a prism, spacer and topological insu-
lator film on a substrate. (c¢) Reflection, transmission and absorption
of incoming light. (d) H near-field for p-polarised light. (e) Trans-
mitted s-polarised light with and without prism from p-polarised in-
cident light.

to the presence of TR symmetry, a new term can be added to
the action of the system 2?, given by

S(¥) = _ﬁ /d3th’9(xaf)8”vaqupf’ )

where L is the permeability of free space, « is the fine struc-
ture constant and e*VP7 is the fully anti-symmetric 4D Levi-
Civita tensor. Fy,y is the electromagnetic tensor and ¥ (x, 1) is
an angular variable which we assume to be constant in order to
preserve spatial and temporal translation symmetry. Normally
this term would not be considered in a theory of electromag-
netism as it does not conserve parity, which the electromag-
netic interaction is known to do. However if ¢ is defined mod-
ulo 27 and is restricted to take the values 0 and 7 only, we find
a theory that conserves both parity and time reversal symme-
try. These two values of ¢ give us either a topologically-trivial
insulator (¢ = 0) or a topological insulator (¢ = ), where ¢
is the topological invariant. Expanding, this leads to a new
term in the Lagrangian o< E - B. This additional term in the

Lagrangian leads to modified Maxwell equations

(025414

V-D=p+ == (V9-B),
vxH-P i % (vyuE),

dt Tl 3)
V><E+(9—B:07

dt

V.B=0,

where D =€¢E and H = ﬁB. To write D and H in these forms
we have assumed a linear material such that polarisation is
given by P = gy xE and magnetization by M = y,,,H where
and ¥, are electric and magnetic susceptibility respectively.
H is the magnetic field and D is electric displacement. € is the
material permittivity, i is the material permeability (which for
all materials we will cover in this work is given by u = o). j
describes free currents, whilst p gives the charges. To be ex-
pected, when in a topologically trivial phase (such that ¥ = 0)
the equations reduce to the ordinary Maxwell equations. As
an alternative to the topologically modified Maxwell equa-
tions, we can also write the usual Maxwell equations with
modified constituent equationszg, such that

D eE — 1980606B7
4
H- g+ %%g
Ho THoc

There have been various successful theory and experimental
proposals on this topic?/30"32 This elegant method of us-
ing modified Maxwell equations to characterize the optical
properties of TIs is valid when the surface states are well de-
scribed classically (i.e. long wavelength), which holds well
for a TI slab as we shall study in Interlude 1. In section [[V]
we discuss spherical TI particles. For nanoparticles (with par-
ticle radius R < 100nm) a classical description of the surface
states is no longer valid, and we must invoke quantum me-
chanics to fully describe them and their interaction with in-
coming light>®. We presently move to Interlude 1, where we
describe a new proposal in which a layer of topological insu-
lator material is added to an Otto surface-plasmon-resonance
(SPR) configuration in order to demonstrate that the conduct-
ing surface state of the TI can be probed with light. This is
due to the unique E - B coupling of the system and the corre-
sponding new boundary conditions (see FIGH). A plasmon
mode excited with purely p-polarised incoming light will ro-
tate out of the plane of the material and a small component of
s-polarised light will be transmitted or reflected. We also di-
rect readers to the prospective paper on experimental methods
for creating films of 3D TI materials and the existence of 2D

Dirac plasmons in these systems 2.

& Interlude 1 &
Case study exploring Dirac plasmons with prism couplings

It is instructive to see how an extremely widespread system
in nanophotonics can be used to study TIs and in particular the
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excitation of Dirac plasmons. A typical prism coupling sys-
tem is shown in FIG. dp. A prism (Silicon, n = 3.5) is posi-
tioned on top of a dielectric spacer (e.g. Benzocyclobutene?*
with € = 2.5 and thickness 200um), a thin film of a topo-
logical insulator (Bi,Ses with € = —3.4 4 36.7i at 1 THz*>,
thickness 8um) all on top of a substrate with the same refrac-
tive index of the spacer. The light coming from the prism at a
grazing angle will excite surface modes in the film below the
spacer by a tunneling effect. Such a system is widely used in
plasmonics, where a metal film replaces the TI*?. In such ex-
periments, abrupt reduction of the reflectivity is observed for
angles of incidence in the zone of the total reflection. In fact,
with the right conditions it is possible to convert the entirety
of the incident light into a surface plasmon polariton (SPP)*°.

Here, we utilise the same idea but instead of a SPP, we ex-
cite something similar to a surface exciton-polariton in an ab-
sorbing media, i.e. the same phenomenon as observed for Sil-
icon in the near UV®Z, We utilise the high absorption due to
the a-phonon in the Bi;Ses*>. The calculation can be done
easily by modifying the boundary conditions to include topol-
ogy in the multilayer system?®. Following from the theory in
section [[IT A] we enforce the following topological boundary
conditions??, which are given diagrammatically in FIG. ,

ELX dca
Bf = o + o Bt
2 2
E}=E| 5)
By =Bi
|l Do
B,=B)—_E,

We remark that the above boundary conditions mix the po-
larisations. For example, a p-polarized incident light can be
partially converted to s-polarization after the interaction with
the TI. In other words, the TI introduces a magneto-optical ef-
fect and a rotation of the light polarization. The observation
of the magneto-optical effect using the prism coupling method
could offer a new way to study topological insulators. The re-
sult can be seen in FIG. 4c where we show reflectivity (blue),
transmission (orange dashed) and absorption (green dotted)
for a p-polarized incident field at 1 THz. We can see that a
sharp peak in the absorption is obtained at ~27 degrees. At
this angle, in the total reflection zone, we excite a surface po-
lariton in the thin film, as can also be seen from the near fields
in FIG. H4.

Let us now analyze the light rotated from p-polarisation to
s-polarisation. We see a strong conversion at the surface po-
lariton angle of excitation (blue curve in FIG. [dg). In order
to analyze the enhancement of such a conversion, we also
plot the light rotated to s-polarisation when the prism is not
present, i.e. when we do not excite the surface polariton and
see that no s-polarized light is present. This study demon-
strates that a fine-tuned optical device is able to detect the
topological characteristics of a topological electronic struc-
ture.

B. Topological photonic analogues

So far we have discussed merging the physics of topolog-
ical electronic systems with light, but we now move to the
concept of topological photonic analogues, in which we aim
to mimic the properties of topological electronic structures us-
ing bosonic degrees of freedom (i.e. photons). We begin by
discussing how to construct photonic band structures, before
moving onto specific examples both with and without time-
reversal symmetry.

1. Photonic band structures

The first hurdle in emulating topological electronic struc-
tures with photonic systems is by devising a way to create a
band structure for light. Electrons in vacuum have a gapless,
parabolic dispersion relation, but when presented with a peri-
odic potential such as a crystal lattice, gaps may open in which
the electrons will not-propagate, i.e. we have a photonic crys-
talP?0, Similarly, photons in vacuum exhibit a gapless, linear
dispersion relation which can become gapped on the introduc-
tion of a periodic medium. We overview this analogy between
the Maxwell equations in a periodic medium and quantum me-
chanics with a periodic Hamiltonian*!,

We begin with the macroscopic Maxwell equations,

V-H(r,t)=0  VxH(r,7)—ge(r) LE(;:’Z) =0
(6)
V.[e(r)E(r,1)] =0 \% ><E(r,t)+u0% =0.

written in terms of H and E fields, where both fields are de-
pendent on both r and . We restrict ourselves to real and
positive £(r) and linear materials (although the theory can be
generalized for the presence of loss). For mathematical conve-
nience we write the fields as complex-valued fields, such that
we have a spatial-mode profile multiplied by a time-dependent
complex exponential,

H(r,7) = H(r)e '’ (7N
E(r,1) =E(r)e ", (8)

with the proviso that we must take only the real part of the
fields when we wish to recover the physical fields. In doing
s0, we can substitute into the Maxwell equations and combine
into a single eigenvector equation for H(r),

Vx (v xH(r) —(a’)zﬂ(r) )
g(r) ~\c ’
in which we can write the Hermitian operator ® as everything
that acts on H(r) on the left hand side of the equation, such
that

OH(r) =V x <8(11')V X H(r)) . (10)

The field, eigenvector equation and Hermitian operator are re-
peated in table[l} in which they are compared to their counter-

parts in quantum mechanics*!,
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Quantum Mechanics Electrodynamics
Field Y(r,r) =¥(r)e 7 H(r,t) = H(r)e i@
Eigenvalue problem HY =E¥Y ®H = (%)2 H

Hermitian operator

H=—EV2iy@r) ©=V

ﬁVx

X

TABLE 1. QM vs EM Quantities of quantum mechanics alongside their photonic analogue counterparts.

In order to create a band structure from this eigenvalue
problem, we now introduce a discrete translation symmetry
of the material (equivalent to demanding periodic boundary
conditions). Mathematically, this results in £(r) = €(r +R),
where R is an integer multiple of the lattice step vector (i.e.
the vector traversed before the system pattern repeats). The
field H(r) can still be considered as a plane wave, but now
modulated by a periodic function due to the periodicity of the
lattice, such that

H (r) = e™"ug(r), (11)

where u(r) is a function with the same periodicity as the lat-
tice and k is the Bloch wave vector, a conserved quantity so
long as the discrete translation invariance of the system holds.
This result is known as Bloch’s theorem and is analogous to
the periodicity of the electron wave function in a crystal lat-
tice. Putting equations (10| and |11| together, we obtain a new
eigenproblem for u(r),

ok)\?
oun(r) = (22 ) w(v), 12
where the new eigenoperator is given as
1
Ok = (k+V)x — (k+V) x. (13)

e(r)

Media with a periodic dielectric function can be manufac-
tured in a multitude of ways. Photonic crystals may be formed
of periodic dielectric, metallo-dielectric, gyroelectric or gy-
romagnetic structures. To diffract electromagnetic waves of
a given wavelength A, the periodicity of the photonic crys-
tal structure must be = % In order to diffract visible light
(400nm < A < 700nm) the photonic nanostructure becomes
increasingly more difficult to construct. Photonic devices
made of arrays of optical resonators and coupled waveguides
are also of interest, but again miniaturization is a challenging
goal.

When incorporating topology into the photonic band struc-
ture, we mirror the concepts found in topological condensed
matter systems. We focus on the two main types of system:
those in which time-reversal symmetry is explicitly broken in
order to support topological states and those in which we aim
to preserve time-reversal symmetry.

2. Explicit time-reversal breaking

The first theoretical proposal for a photonic analogue of the
quantum Hall effect came in 2008 42147 in which the inter-
face between gyroelectric photonic crystals of differing Chern

number was studied. The proposed system comprised of a
hexagonal array of dielectric rods exhibiting a Faraday effect,
with the Faraday-effect enabling the time-reversal breaking
and opening the band gap. The interface between the pho-
tonic crystals creates a domain wall across which the direc-
tion of the Faraday axis reverses. The Faraday effect vanish-
ing at the domain wall results in Dirac-like edge states at this
point (as illustrated in FIG. [Bp). These unidirectional pho-
tonic modes are the direct analogue of chiral edge states in a
quantum Hall system. While this work was limited to pho-
tonic band structures containing Dirac points, another study
48 noted that a Dirac cone is not imperative for a system to
support edge states, merely that the band structures of materi-
als of either side of an interface have different Chern numbers
of bands below the gap. They put forward a new proposal
using a square lattice gyromagnetic crystal operating at a mi-
crowave frequency, resulting in time-reversal breaking strong
enough for the effect to be easily measured. Both proposals
also note that the phenomenon of chiral edge states should be
independent of the underlying particle statistics as the Chern
number is defined in terms of single-particle Bloch functions.
The number of chiral edge states is equal to the sum of the
Chern numbers of all bands below the band gap, and the Chern
number may only be non-zero if the system explicitly breaks
time-reversal symmetry.

The first experimental observation of photonic chiral edge
states came in 2009 2, utilising a magneto-optical photonic
crystal in the microwave regime. The gyromagnetic, 2D-
periodic photonic crystal consisted of a square lattice of fer-
rite rods in air bounded on one side by a non-magnetic metal-
lic cladding to prohibit radiation leakage (illustrated in FIG.
[Bb). The experimental study demonstrated unidirectional edge
states (shown in FIG.[5k) which were robust against scattering
from disorder, even in the presence of large metallic scatter-
ers. An experimental realisation using a 2D honeycomb array
of ferrite rods in 20114% showed that an auxillary cladding
is not necessary as edge states can be constructed such that
they necessarily evanesce in air. The gyromagnetic effect em-
ployed in this system is limited by the Larmor frequency of
the underlying ferrimagnetic resonance, which is on the order
of tens of gigahertz.

3. Fermionic pseudo-time-reversal symmetry and photonic
Tls

The photonic analogues of the quantum Hall effect outlined
above exhibit photonic edge states which are topologically
protected, but can be challenging to manifest experimentally
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FIG. 5. Proposals and realisations of topological photonic systems (a) The first proposal of PQH state, reprinted figure with permission
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a scheme for pseudo-fermionic TR symmetry. (f) First proposal for a 3D photonic TI using the pesudo-fermionic time reversal scheme shown
in (e), reprinted with permission from , Springer Nature. (g) The first proposal for 3D all-dielectric photonic TI, reprinted with permission

from 46| Springer Nature.

as a strong magnetic field is usually needed. Systems in which
time-reversal symmetry is not broken do not require exter-
nal biasing such as an applied magnetic field, but can pose
their own challenges. We now discuss photonic analogues
of quantum spin Hall states and topological insulators. As
covered in section [[TB] the time-reversal invariance in elec-
tronic systems is intimately linked to the fermionic condition
sz = —1, and the topological protection from backscatter-
ing directly emerges from this condition. Photonic systems
are constructed from bosonic degrees of freedom (namely
photons) and bosonic time-reversal symmetry (which obeys
the condition sz = 1) does not give protection from back-
scattering. In photonic systems it has instead been proposed
to construct a pseudo-fermionic time-reversal operator Tp, by
combining the bosonic time-reversal operator with some other
symmetry of the structure, for example a crystal symmetr.
The platforms we will now discuss construct 7p either with
the use of polarisation degeneracy or by relying on a lattice
symmetry.

The first theoretical proposal for a photonic QSH state came
in 201151, using a two-dimensional array of ring resonators
coupled with waveguides, which produce phase shifts that are
non-commensurate with the lattice. Degenerate clockwise and
anti-clockwise modes of a 2D magnetic Hamiltonian behave
analogously to spins with spin-orbit coupling in the electronic
quantum spin Hall effect. The proposal was then realised ex-
perimentally in 201352, and another proposal using optical
ring-resonators followed soon after, eradicating the need to
fine-tune the inter-resonator coupling.

The first metamaterial proposal for a photonic analogue
of a Z, topological insulator was presented in 20135 us-

ing a metacrystal formed of a 2D superlattice of subwave-
length metamaterials. The spin degeneracy leading to pseudo-
fermionic time reversal invariance is constructed by enforcing
€ = U, resulting in TE and TM modes in the system prop-
agating with equal wavenumbers. This allows one to write
linear combinations of the fields which propagate with equal
wavenumber and are doubly degenerate. These states are con-
nected with a pseudo-fermionic time reversal operator (as de-
picted in FIG. [5k) and will act analogously to spin degenerate
states in an electronic system. The photonic band structure of
such a system is shown in FIG. [3f.

Photonic topological crystalline insulators obey pseudo-
fermionic TR symmetry enforced by the bosonic TR symme-
try of the photons and a crystal symmetry. In 2015 a purely
dielectric scheme was proposed>”, which does not require a
magnetic field and is constructed from cylinders in a honey-
comb lattice which is distorted such that a triangular lattice
emerges with a hexagon of cylinders at each site. The system
has Cg symmetry and helical edge states at the I"-point. This
structure was used in 2017 to experimentally demonstrate that
deep subwavelength scale unidirectional modes can be sup-
ported by crystalline metamaterials>?.

It is interesting to note, that finite crystals using the same
scheme of dielectric cylinders form photonic topological in-
sulator particles present modes that can are topological whis-
pering gallery modes, as was first theoretically propose
and later experimentally realized®®. Rather than a continuous
spectrum of edge states as seen in an infinite system, these par-
ticles exhibit a discrete spectrum of edge states which (like the
infinite system) support unidirectional, pseudospin-dependent
propagation. The discrete nature of the edge states agrees with



A perspective on topological nanophotonics: current status and future challenges 8

2
¥ 0 A

R 'r V&axis
Surface states 7 ‘

vl A AN

a Bulkst?tes\ RT b E i\/
Mv $

FIG. 6. Topological insulator nanoparticle interacting with light
(a) Schematic of topological insulator nanoparticle irradiated with
light along the material c-axis. Bulk states and surface states. (b)
Discretisation of the Dirac cone, with linear spacing between states
inversely proportional to the particle radius, R. A is material depen-
dent constant.

the observation of discrete peaks in experimental transmission
measurements. Actually, in any experimental realization of
a topological photonic crystal there is a low number of unit
cells compared with the Avogadro number of electrons in a
electronic topological insulator; this has an important reper-
cussion in the number of discrete states, i.e. in any realistic
experiment with a topological photonic crystal only few states
are possible.

The first proposal of a 3D photonic TI (PTI) came in
2016°, relying on a crystal symmetry (the nonsymmor-
phic glide reflection). The complicated nature of the struc-
ture would make it challenging to realise experimentally,
whereas an all-dielectric proposal for a 3D photonic topo-
logical insulator came in 20174, using a 3D hexagonal lat-
tice of ‘meta-atoms’ (dielectric disks) as displayed in FIG.
[Bl. A 3D photonic TI composed of split-ring resonators with
strong magneto-electric coupling was experimentally realised
in 2019°%.,

So far we have discussed the two types of topological pho-
tonic systems - those which explicitly break time-reversal
symmetry (leading to a quantum Hall system) and those which
conserve it (giving a quantum spin Hall system). When in-
version symmetry is broken in a 2D honeycomb lattice, the
two valleys of the band structure exhibit opposite Berry cur-
vatures. These two valleys can be interpreted as pseudo-
fermionic spins, giving rise to a time-reversal invariant effect
known as the valley Hall effect. Proposed for photonic sys-
tems in 2016, this effect has been experimentally observed
in surface plasmon crystals®” and photonic crystals®" 2, with
the demonstration of chiral, topologically protected valley
Hall edge states at the domain wall between two valley Hall
photonic insulators of differing valley Chern number.

Another important class of photonic topological insulators
is the photonic Floquet topological insulator. Floquet topo-
logical insulators induce topological effects not by explicitly
breaking time-reversal symmetry, but by time-periodic modu-
lation (driving). Topologically protected edge states may arise
at the boundary of two Floquet systems much in the same
way that they would in the usual topological insulators, al-
though topological invariants relating to bands (such as the
Chern number) are replaced by gap invariants. Photonic Flo-

quet topological insulators were first realized in 20134, using
a platform of coupled helical waveguides (whose cross sec-
tion have diameters ~ um, arranged in a honeycomb lattice
structure (as shown in FIG. 5S). The helicity of the waveg-
uides break inversion symmetry in the z direction (the axis
of propagation), which acts analogously to the breaking of
TR symmetry in a solid state system (but is periodic in na-
ture, in the spirit of Floquet TIs), which is evident from the
equivalence between the paraxial wave equation in EM and
the Schrodinger equation in QM. The structure results in topo-
logically protected, unidirectional edge states.

Floquet topological insulators demonstrate that topologi-
cally protected edge states may be present in a system even
when the topological band invariant is trivial, indicating a
trivial phase. Modelling photonic topological insulator sys-
tems (such as those studied in>) as Chalker-Coddington-type
networks® allows them to then be mapped onto the Bloch-
Floquet states of driven periodic lattices, and it can be shown
that topologically protected edge states can be present due
to an adiabatic pumping invariant, despite all bands having a
zero Chern number. Anomalous Floquet photonic topological
edge states have been realised in surface plasmon structures®”,
photonic waveguide lattices’? and in ultrafast-laser-inscribed

photonic lattices”!.

IV. TOPOLOGICAL NANOPHOTONICS

We now arrive at topological nanophotonics. Some of the
platforms we will describe are nanoscale versions of systems
already described in section [[IIll However, many of these sys-
tems have fundamental size limits or are simply very diffi-
cult to engineer at the nanoscale. In some of the schemes al-
ready described, the operation frequency of the systems are
fundamentally limited by the strength of the time-reversal
symmetry-breaking mechanism employed, as the frequency
at which the mechanism operates is too low to be used in THz
platforms. We discuss some new platforms that support topo-
logical states. As described so eloquently by ToumeyZZ, “nan-
otechnology has no single origin and spans multiple disci-
plines and subdisciplines all united by the same aim to control
matter at the nanoscale." As such, there are many platforms
on which to develop nanostructures and consequently many
routes through which we can arrive at topological nanopho-
tonics, some of which we now outline.

1. Topological insulator nanoparticles interacting with light

We saw in section that electronic topological insula-
tors will behave differently to their trivially insulating counter-
parts when irradiated with light. When dealing with large bulk
samples of materials, the band structure of the system will
exhibit a finite bulk gap, bridged by continuous, conducting
topological surface states. These surface states display spin-
momentum locking and as such, are extremely robust against
backscattering and so unidirectional surface currents can be
observed. When shrunk to the nanoscale, the surface to bulk
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FIG. 7. Proposals and realisations of topological nanophotonic platforms (a) Honeycomb lattice of metallic nanoparticles supporting Dirac
plasmon, reprinted figure with permission from ©3 Copyright (2009) by the American Physical Society. (b) The SSH model demonstrated with
dielectric nanoparticles, Reprinted figure with permission from®* Copyright (2017) by the American Physical Society. (¢) Bipartite chain of
plasmonic nanoparticles which can exhibit edge states, reproduced from ©. (d) Introducing long-range hopping with retardation and radiative
damping creates a richer and more realisatic model, figure from 0, CC BY 4.0. (e) Experimental realisation of an all-dielectric metasurface

which uses far-field measurements to confirm band inversion

, reproduced from 67, CCBY 4.0.

ratio of the system becomes significant, and we can expect
surface effects to have a greater impact on both the electric
and optical properties of the material.

Whilst the large TI structures of section[lIT Aand their inter-
actions with light can be treated classically, for much smaller
structures it is no longer possible to treat the states of the struc-
ture classically, and we must instead treat the surface states
quantum mechanically. As shown by Siroki et al* in 2016, in
the case of small (R<100nm) topological insulator nanoparti-
cles (TINPs), the continuous Dirac cone becomes discretized
due to quantum confinement effects (as illustrated in FIG. 7).
The discretized surface states are linearly separated by ener-
gies inversely proportional to R. If irradiated by light of com-
mensurate frequency, single states within the Dirac cone can
be excited to new localised states. This results in a new term in
the absorption spectrum of the system, which (for a spherical
particle of radius R, permittivity €, suspended in a background
dielectric, permittivity &) is given by

3
=4nR Nout

27 €+ 6 — &
O-abs(a)) Im|: + Or out

A s+6R+2som] 19

where (for Fermi level Er = 0) the delta contribution is given
by

e? 1 1
8r = 15
*™ 6re (2A—hwR+2A+hwR) (1)

and A is a material-dependent constant. In the absence of sur-
face states (such as by applying a magnetic field term and thus
destroying the surface states), g = 0 and and we return to the
usual solution of a dielectric sphere in a constant electric field.
For materials in the BiSe3 family, transitions between these
topological, delocalised surface states occur within the same
frequency range as a bulk phonon excitation. This results in a
strong Fano resonance, referred to as the surface topological
particle (SToP) mode. This is a purely quantum mechanical
feature of the system, and the asymmetric profile of this res-
onance creates a point of zero-absorption at a particular fre-
quency, meaning that remarkably, the excitation of a single
electron occupying a topological surface state can shield the
bulk from the absorption of incoming light. This mode has

been theoretically predicted®>, and their observation in exper-
iments is within current experimental capabilities. Of course,
a fine tuning of the Fermi energy it is needed”’.

The robust and discrete nature of the TINP surface states
lends them to various new research paths. They may be of
particular relevance in the areas of quantum optics and in-
formation, as the discrete surface states are reminiscent of an
atomic scheme of energy levels, but with the additional qual-
ity of topological protection. This may make them a unique,
topological type of quantum dot which could have a host of
applications in areas such as topological lasing and topologi-
cal quantum computing. A natural question arises as to how
big a topological nanoparticle must be in order to preserve its
topological properties, which depend on the bulk. This point
has been addressed using a tight-binding model and it was
shown that a particle of diameter greater than 5 nm already
behaves as a topological insulator’*

& Interlude 2 &
Chiral symmetry and the bulk-boundary correspondence
within a photonic SSH model

Here we discuss the Su-Schrieffer-Heeger (SSH) model
2Ii5 whose topological properties are linked to sublattice
symmetry. We study a 1D chain of atoms with nearest-
neighbour interactions only, in which bond strength between
atoms alternates (illustrated in FIG. Bh). This is a single elec-
tron Hamiltonian, written as

N
=v Z |m, B){m,A|
m=1

Vol (16)
+w Z |m+1,A)(m,B|+h.c.,
m=1

where for m € {1,2,...,N}, |m,A) and |m,B) are the states
for which the electron is on unit cell m, on either sublattice
A or B respectively. We define projection operators for each
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sublattice P4, Pg and the sublattice operator X,

N
Py=Y |m,A)(m Al
m=1

al an
Pp= Z |m,B><m,B|,

m=1
Y. =Py —Pg.

Applying the sublattice operator to the Hamiltonian we see
that X, 7Y, = —5¢. This relationship holds for inversion of
the sublattices such that P4 — Pg and Pg — P4. This tells us
that if |y, Wg) is an eigenstate of the system with energy E,
|wa, —yg) will be an eigenstate with energy —E. This means
that for a system with band gap around O, there will be an
equal number of states below the gap as above the gap and
this will can only be violated if the gap closes, causing a topo-
logical phase transition.

A photonic analogue of the SSH model can quite simply
be envisioned by studying a chain of dipoles® with dipole
moments p,, and which are alternately spaced by distances a
and b (as shown in FIG. 8p), described by the coupled dipole
equations

1 M
ml’i = ;jG(l‘mw)pp (18)

where G(r;j,®) is the matrix-valued Green’s function, de-
pending on the separation of the dipoles r;; =r; —r; and a(®)
is the polarisability of whichever platform is being used to
form the dipoles. In the electrostatic, nearest-neighbour limit
this system will obey the SSH Hamiltonian.

The bulk-boundary correspondence is an important princi-
ple that tell us that the number of edge modes equals the dif-
ference in Chern numbers at that edge. For the SSH model, we
begin by studying the bulk. We first observe that the Hamil-
tonian of this system (equation [I6) is a two band model (due
to the two degrees of freedom per unit cell), and use that any
two-band bulk momentum space Hamiltonian can be written
in a Pauli basis, such that . = d(k)o, where we introduce
the basis of Pauli matrices given by

01 0 —i 1 0
GX:<1 O),G},:<i 0>70'Z=(0 _1>. (19)

For the SSH model, the components of the vector d(k) are
given by d(k) = v+wcos(k), dy(k) = wsin(k) and d;(k) = 0.

When plotting the band structure as k goes from O to 27,
we can also plot d(k). Due to the sublattice symmetry of the
system, d,(k) = 0 for all k, and so the vector will trace out a
line in the x-y plane.

We illustrate the three possible systems s for v=w, v > w
and v < w in FIGBL, and their corresponding band structures
and d(k) plots in FIG. [8. d(k) will be a closed loop due to
the periodic boundary conditions of the Hamiltonian. When
describing an insulator, the loop will not touch the origin (as
touching the origin indicates that the gap has closed and the
bands have touched, resulting in a conductor as in the case of

Sublattice
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FIG. 8. SSH model (a) Schematic of the SSH model. (b) Dipole
analogue of SSH model. (¢) The three casesv=w,v>wandv <win
the dimerised limit. Subsystems A and B are coloured blue and green
respectively. Only the third case exhibits edge states, highlighted in
yellow. (d) Visualization of the band structure and function d(k) for
—7 < k < m. The closed d(k) loop only encircles the origin in the
last, corresponding to the existence of edge states.

v = w). For insulating phases (such as v > w and v < w), we
can count the number of times this loop winds around the ori-
gin. The number of times it goes around the origin is the bulk
winding number. Note that the winding number v is calculated
from the bulk Hamiltonian and so is a purely bulk quantity.
The bulk winding number is our first example of a topological
invariant. A topological phase transition occurs at v = w, as
the d(k) loop passes through the origin.

Now if we consider an open system in the dimerised
limit as shown in FIG. [8k, we see that Py — Pp, the net
number of edge states on sublattice A at the left edge is
a topological invariant. For the trivial case (v > w), the
winding number and net number of edge states are both
0. In the topological case (v < w) both quantities are 1.
This is an illustration of the bulk-boundary correspondence,
which tells us that the emergence of topological edge states
is related to the topological invariants of the bulk TI system .

2. Systems of nanoparticles exhibiting topological phases

Metallic nanoparticles can support localised surface plas-
mons, and for a system of multiple nanoparticles the near-
field dipolar interactions between the plasmons cause collec-
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tive plasmons. For a 2D honeycomb lattice of nanoparticles
(illustrated in FIG. [7h) where the collective plasmon disper-
sion relation can exhibit Dirac cones, with edge states derived
from the Dirac points®37/178,

In 2014 it was shown that a zigzag chain of metal-
lic nanoparticles can mimic the Kitaev wire of Majorana
fermions”’. Majorana edge states are topologically protected
and their manifestation in many platforms is of great inter-
est as they are a promising candidate for topologically robus
qubit states. This work shows that localised plasmons at each
edge can be excited selectively, depending on the polarisation
of incident light.

For a bipartite lattice, there are various studies
which demonstrate that this system can be used to construct a
photonic-analogue SSH model, the electronic theory of which
can be found in Interlude 2 (and illustrated in FIG. [7c). By
studying the system at the edge of the Brillouin zone it has
been shown that the collective plasmons obey an effective
Dirac-like Hamiltonian, and the bipartite system is governed
by a non-trivial Zak phase, which predicts the topological
edge states.

Recent work has considered the addition of long-range hop-
ping into the system, with retardation and radiative damping®®
(shown in FIG.[7d). The resulting non-Hermitian Hamiltonian
displays an altered band structure, but a Zak phase and edge
states which can survive. When the introduction of long-range
hopping breaks the symmetry which protects the edge states,
the bulk topological invariant may still be preserved®? indi-
cating a breakdown of bulk-boundary correspondence. Whilst
creating a more realistic model, these studies reach towards
richer and more complex physics, crucial for experimental
nanoscale schemes which will necessarily be more affected
than their larger counterparts by the processes described.

The above collective works demonstrate the first propos-
als for truly subwavelength topological states. It has also been
shown that systems of dielectric nanoparticles present promis-
ing topological nanophotonic platforms. It is well known that
some of the effects achieved with plasmonic nanoparticles can
be reproduced using high-index dielectric particles with elec-
tric and magnetic Mie resonances, which are already used as
buildings blocks in larger photonic systems (referring back to
section [[I). It has been shown that the SSH model can be
translated into this new system of dielectric nanoparticles®*
(shown in FIG. ), as well as dielectric nanodisks®=. Sys-
tems of dielectric nanostructures may even present a better
platform than their metallic counterparts, as they have negli-
gible Ohmic losses, low heating and can exhibit both electric
and magnetic multipolar radiation characteristics.

65166180181

3. Graphene-based topological nanostructures

Graphene-based plasmonic crystals present another plat-
form with which we can study topological phases at the
nanoscale. Their unique plasmonic properties (tunable car-
rier densities, small Drude mass and long intrinsic relaxation
times) allow us to study topological plasmon excitations in the
THz regime. Even explicitly breaking time-reversal symmetry

with a magnetic field is possible, as relatively weak magnetic
fields can result in a high cyclotron frequency when combined
with a small Drude mass. At finite doping of a 2D periodically
patterned graphene sheet (as illustrated in FIG. D), an ex-
ternal magnetic field will induce topologically-protected one-
way edge plasmons®®. These plasmons can exist at frequen-
cies as high as tens of THz. More complicated nanostruc-
tures can be constructed from graphene, such as nanotubes,
nanocavities and even toroidal structures®>. It has also been
proposed that honeycomb superlattice structures fashioned
into ribbons and pierced with a magnetic field (as shown in
FIG. Pb) could present another avenue in which to produce
and guide topologically protected modes within a graphene-

based nanostructure®®,

4. Topological states in metasurfaces

Metasurfaces are the 2D derivative of 3D metamaterials.
These 2D metamaterials are made up of meta-atoms, forming
a structure which is of subwavelength thickness. The spatially
varying features of a metasurface can give rise to various ap-
plications, such as arbitrary wave fronts and non-linear opti-
cal effects. Their resistive loss is lower than that of 3D ma-
terials due to the absence of a bulk material, and in much the
same way that 3D metamaterials can be constructed to support
topological states, so can metasurfaces. Metasurfaces can be
modulated both spatially and temporally (such as via external
voltages or optical pumping), creating various paths towards
topological phases. A recent review of progress in metasur-
face manufacturing and their applications has been compiled
by Chang et al 87,

As with any photonic system, photonic modes can leak
from the structure of a metasurface, allowing a path via which
topological characteristics of the structure may be measured.
As an alternative to probing topological edge states of the sys-
tem, it was demonstrated in 2018°Z that the topological band
inversion of a metasurface structure can be confirmed from
angle-resolved spectra in the far-field (the experimental setup
of which is shown in figure [7g)67.

5. Nanophotonic topological valley Hall

The valley Hall system shares many characteristics with
the quantum spin Hall system. Broken inversion symmetry
in a time-reversal symmetric 2D honeycomb lattice leads to
a system in which the two valleys of the band structure ex-
hibit opposite Chern numbers. This effect has been success-
fully realised using Silicon nanophotonic crystals operating
at telecommunication wavelengths®88. A crystal structure of
equally sized triangular holes will have Cg symmetry and ex-
hibit Dirac cones at the K and K’ points. By alternating the
size of the triangles at each lattice point, the symmetry of
the system will reduce to C3, the Dirac cones will become
gapped and the two valleys will exhibit equal and opposite
valley Chern numbers. Placing two crystals of differing ori-
entation together results in a difference in valley Chern num-
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FIG. 9. Graphene (a) A doped, periodically patterned graphene
sheet in an external magnetic field will exhibit unidirectional edge
states. Reprinted figure with permission from®* Copyright (2017) by
the American Physical Society. (b) More advanced schemes such as
nanoribbon junctions have been presented as novel routes to topolog-
ically protected edge states, reproduced from 8%, CC BY 4.0.

ber across the interface, and counter-propagating edge states
are necessarily localised at this interface. The study demon-
strates a comparison between straight and twisted paths for
the edge states, in which it is shown that the modes are very
robust to harsh changes in structure such as sharp corners,
and out-of-plane scattering is very low. Due to time-reversal
symmetry, disorder which flips the helicity of the states can
still result in backscattering however the work illustrates that
on-chip fabrication of topological nano-devices is very possi-
ble, giving robust topological protection at telecommunication
wavelengths. A similar setup has been achieved in “?, using
circular rather than triangular holes resulting in a band gap for
TE-like polarizations rather than a direct band gap.

V. GOALS AND PROSPECTS

Great strides have been made in the work on topological
photonics and it is now a well established and multifaceted
field, but as seen in the previous section the road towards topo-
logical nanophotonics is far less travelled.

In order to deliver the goal of topological protection of pho-
tons at the nanoscale, we look for platforms in which magnetic
fields need only be of modest size or are not needed at all (as
magnetic effects at the visible/nanoscale are weak). Many of
the tools mastered in other frequency regimes (such as acous-
tic pumping or the use of metamaterials to form photonic crys-
tals) are outside current capabilities at the nanoscale, so we
look for platforms with novel ways of demonstrating and con-
trolling topological states.

Many of the systems in sections [[I] and [IV] display Her-
mitian behaviour, mimicking the physics of topological elec-
tronic systems. This is because topological insulators origi-
nally emerged in the context of quantum mechanics, in which
operators are Hermitian so that measurable parameters are real
valued. However, the emulation of Hermitian systems is just
one facet of topological photonics, which can also break Her-
miticity through losses, gain and phase information. We must
therefore understand how non-Hermiticity affects TIs if we
hope to fully harness the power of topological protection for
photonic systems.

Before their application to TIs, non-Hermitian systems
have been vastly explored in the case of parity-time sym-

metric scenarios, where the eigenvalues of the operators are
real valued despite the lack of Hermiticity. In photonics
this behaviour emerges due to a balancing act between loss
and gain®!. Since then parity-time (PT) symmetric systems
and those with different symmetries and complex eigenvalues
have been shown to exhibit topological protection, opening a
door to new and exciting physics’*“# Researchers have pre-
dicted and observed phase transitions and edge states appar-
ently unique to non-Hermitian systems®>°®, and are working
to develop much-needed theory for non-Hermitian TIs?Z100,

All Hermitian TIs are characterised by the ten-fold way, a
sort of topological insulator periodic table associating topo-
logical behaviour with matrix symmetry classes and dimen-
sionality!’. The equivalent description for non-Hermitian
systems is currently an open question, with recent works using
the original symmetry classes of the Hermitian case or propos-
ing the study of a larger group of symmetry classes /2103,

The interplay between loss and gain in photonic systems
already described above is not only a topic primed for scien-
tific study, but also an opportunity for new and exciting ap-
plications. For example, the existence of robust edge states in
topological systems has allowed for the breakthrough concept
of topological lasing. By using topologically protected states
for lasing modes, the lasing mechanism is immune to disorder
under many perturbations of the system (such as local lattice
deformations 104100/

Lasing from the edge states of a 1D SSH lattice has been
demonstrated using polariton micropillars in the strong cou-
pling regime!?Z. It was shown that the lasing states persist
under local deformations of the lattice, and although the ex-
periment was undertaken at low temperature (T=4K), micro-
cavity polariton lasing experiments have been accomplished
at room temperature "810% and so this avenue has the potential
to produce room-temperature lasing from topological states.

The cavity in conventional lasers has an important role and
a lot of precision and care must be taken when building a cav-
ity. In fact, the amplification of optical modes can only happen
with a properly aligned, stable cavity. An alternative approach
was recently proposed®*H0, borrowing concepts from topo-
logical insulators. The main idea is a laser whose lasing mode
is a topologically protected edge mode. Or in other words,
we can use photonic topological crystals which present pro-
tected edge states. In this way, light which propagates in only
a single direction can be amplified, despite cavity imperfec-
tions such as sharp corners or crystal defects. Such an idea
has been theoretically proposed"? and realized®*® with an ar-
ray of micro-ring resonators, with coupling between rings de-
signed to follow a topological model!. Allowing gain only
on the edge, it is possible to enforce that the topological edge
mode lases first. Such new lasing systems present interesting
properties such as high slope efficiency, unidirectionality, sin-
gle mode emission (even in the high gain region) aside from
the extreme robustness of the mode due to topological protec-
tion. These systems also show that non-Hermitian Hamiltoni-
ans have protected topological states, bolstering them against
previous criticism.

Despite these exciting advances, a proper theoretical back-
ground is still missing when we deal with non-Hermitian



A perspective on topological nanophotonics: current status and future challenges 13

Platforms without
magnetic fields

Visible/nano

Topological Nanophotonics:

Topological phases in
nanoparticles

Nanoscale
dielectric PTIs

Goals and Prospects

NAW.R S

Non-hermitian
topological systems

‘H =

Topological

quantum dots ab

ca

¢

oK . Topological
& graphené based
_ _ nanostructures
Topological lasing

FIG. 10. The goals and prospects of topological nanophotonics.

Hamiltonians.

While they harbour great potential for robust lasing sys-
tems, topological nanophotonic systems could also be of in-
terest in the field of topological quantum optics and informa-
tion.

Topological insulator nanoparticles exhibit a quantum dot-
like structure of discrete edge states. These states can be tuned
as a function of particle size, ranging from 0.003-0.03 eV
and can be coupled with incoming light. These qualities give
TINPs the same functionality at a quantum dot but in the THz
regime, and with delocalised rather than localised states. Such
topological quantum dots, if experimentally confirmed, could
open new exciting paths in quantum optics at room tempera-
ture. The braiding of Majorana fermions in quantum wires'
has been proposed as a method of topological quantum com-
putation, so chains of nanoparticles that can model a Kitaev
chain could also follow. Any system which can robustly hold
information could be of use in topological quantum comput-
ing.

Another development that will be crucial in the advance-
ment of robust quantum photonic devices is the development
of interfaces between topological photonic systems and sin-
gle quantum emitters. First steps have been taken with an
all-dielectric photonic crystal featuring a band inversion at the
Gamma point and momentum dependent edge modes coupled
to a single quantum emitter1?, generating a robust source of
single photons. It has also been shown that a robust source of

single photons can be generated from the edge states realised
in a 2D array of ring resonators -4,

Time-modulation is a promising tool to induce topology,
which has not yet been explored in nanophotonics. Photonic
systems have already been used to demonstrate 4D quantum
Hall physics'>, with the use of topological pumping. In this
work, 2D arrays of evanescently coupled waveguides were
used in the near-IR regime and coupled in such a way that
momenta associated with two synthetic dimensions were sam-
pled and a 2D topological pump was realized. The resulting
band structure of the light has a second Chern number asso-
ciated with a 4D symmetry, and the photon pumping in this
system is analogous to charge pumping in an electronic sys-
tem. Pumping in the visible range is difficult due to the high
operating frequency, but possibilities at the nanoscale do exist
- for instance Graphene can be modulated at hundred of GHz,
whilst hosting plasmons in the THz. Time-reversal symmetry
breaking with acoustic pumping of nanophotonic circuits has
been achieved!!®. The interplay of non-Hermiticity and topo-
logical gaps associated with non-zero second Chern numbers
has yet to be explored, and nanophotonic systems provide a
possible platform from which to study this type of interplay
and the related physics of topological systems.

In order to obtain strong interaction between light and mat-
ter, an important goal will be to move the topological insulator
properties to higher frequencies as visible an near-UV.

The plethora of possibilities and new paradigms available in
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the topic of topological nanophotonics (as illustrated in FIG.
[T0) make it an exciting field to study and is brimming with the-
oretical and experimental challenges. With technical feats of
nanofabrication improving steadily, the potential for topolog-
ical protection and precise control of photons at the nanoscale
is extensive and there is much yet which can be accomplished
in this new and rapidly developing field.
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