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Abstract 

Properly designed flat slab to column connections can perform satisfactorily under seismic loading. 

Satisfactory performance is dependent on slab column connections being able to withstand the imposed 

drift while continuing to resist the imposed gravity loads. Particularly at risk are pre 1970’s flat slab to 

column connections without integrity reinforcement passing through the column. Current design 

provisions for punching shear under seismic loading are largely empirical and based on laboratory tests 

of thin slabs not representative of practice. This paper uses nonlinear finite element analysis (NLFEA) 

with ATENA and the Critical Shear Crack Theory (CSCT) to investigate the behaviour of internal slab-

column connections without shear reinforcement subject to seismic loading. NLFEA is used to 

investigate cyclic degradation which reduces connection stiffness, unbalanced moment capacity, and 

ductility. As observed experimentally, cyclic degradation in the NLFEA is shown to be associated with 

accumulation of plastic strain in the flexural reinforcement bars which hinders concrete crack closure. 

Although the NLFEA produces reasonable strength and ductility predictions, it is unable to replicate 

the pinching effect. It is also too complex and time consuming to serve as a practical design tool. 

Therefore, a simple analytical design method is proposed which is based on the CSCT. The strength 

and limiting drift predictions of the proposed method are shown to mainly depend on slab depth (size 

effect) and flexural reinforcement ratio which is not reflected in available empirically-based models 

which appear to overestimate the drift capacity of slab-column connections with dimensions 

representative of practice.  

 

Notation 

𝑏0  length of control perimeter (with rounded corners) at a distance of half the average 

flexural effective depth from the column face 

𝑏0,𝑒  length of effective control perimeter (with rounded corners) considering the reduction 

due to non-uniform shear stress distribution 

𝑏0(𝑟𝑒𝑐) length of control perimeter (with the same shape as the column) at a distance of half 

the average flexural effective depth from the column face 

𝑏𝑠  width of support strip for calculating average moment per unit length 



𝑏𝑢  diameter of a circle with the same surface as the region inside the basic control 

perimeter 

𝑐 coefficient used to define reduced concrete compressive strength 

𝑑 average flexural effective depth 

𝑑𝑔   maximum aggregate size 

𝑑𝑔0  reference aggregate size equal to 16 mm 

𝐸𝑠  modulus of elasticity of reinforcing steel 

𝑒𝑢  eccentricity of the resultant shear force with respect to the centroid of the basic control 

perimeter 𝑏0 

𝑓𝑐
′ mean concrete compressive strength 

𝑓
𝑐′
𝑒𝑓

  reduced concrete compressive strength due to tensile strain in transverse direction 

𝑓𝑐0 stress at onset of nonlinear behaviour of concrete under compression  

𝑓𝑦   average yield strength of flexural reinforcement  

𝐺𝑆𝑅 gravity shear ratio: ratio between the shear force induced by gravity load and the 

nominal concentric punching strength without shear reinforcement 

𝑘𝑒   coefficient of eccentricity according to Model Code 2010 

𝑘𝑒𝑙𝑖𝑚
  upper-limit of the coefficient of eccentricity considering yielding of sector element 

𝑘𝑒𝑚𝑜𝑑
 modified coefficient of eccentricity considering slenderness and column radius to depth 

ratio 

L slab span between column centerlines 

𝑚𝐸𝑑𝑚𝑎𝑥
  average design moment per unit length for calculation of the flexural reinforcement in 

the support strip at the hogging face of the column 

𝑚𝐸𝑑𝑚𝑖𝑛 
  average design moment per unit length for calculation of the flexural reinforcement in 

the support strip at the sagging face of the column (+ve hogging) 

𝑚𝑅𝑑ℎ𝑜𝑔
  design average flexural strength per unit length in the support strip for hogging moment  

𝑚𝑅𝑑𝑠𝑎𝑔
  design average flexural strength per unit length in the support strip for sagging moment 

𝑟𝑐  equivalent radius of column for bending calculation 

𝑟𝑠,𝑥, 𝑟𝑠,𝑦  position on x and y axes respectively where the radial bending moment is zero  

𝑟𝑠  position where the radial bending moment is zero (perpendicular to the vector of 

applied unbalanced moment) 

𝑟𝑞  radius of load introduction perimeter 

𝑈𝐹 unloading factor controlling the crack closure stiffness under cyclic loading 

𝑉𝑔𝑟𝑎𝑣  shear force induced by gravity load 

𝑉𝑅𝑑𝑐  punching resistance according to the Critical Shear Crack Theory 

𝜀𝑐
𝑝
 plastic strain at maximum concrete compressive strength 

𝜀𝑣 concrete tensile strain in the transverse direction 

𝜀𝑒𝑞
𝑝

  equivalent uniaxial concrete strain under compression (plastic) 

σc concrete compressive stress 

𝜌ℎ𝑜𝑔  average top flexural reinforcement ratio in support strip (hogging)  

𝜌𝑠𝑎𝑔  average bottom flexural reinforcement ratio in support strip (sagging) 
𝜓  slab rotation relative to column 

𝜓𝑐𝑜𝑙  column rotation 

𝜓𝑚𝑎𝑥  maximum slab rotation 

𝜓𝑚𝑖𝑛  minimum slab rotation 

𝜓𝑠𝑐𝑐  relative slab-column connection rotation 

𝜓𝑠𝑐𝑐 𝑝𝑒𝑎𝑘 relative slab-column connection rotation at punching shear failure 

 

 

 

 



1 Introduction 

Reinforced concrete flat slabs are commonly used in building structures for practical reasons including 

ease of construction, minimum floor-to-floor height, and flat soffit. Flat slabs can perform satisfactorily 

in earthquakes if lateral sway is limited by a primary lateral-force-resisting-system (LFRS). However, 

older flat slab buildings, particularly those designed to pre 1971 revisions of ACI 318, are particularly 

susceptible to damage during seismic events due to the absence of integrity reinforcement. For example 

in the 1985 Mexico City earthquake, it was reported that at least 91 flat slab buildings collapsed due to 

punching failure [1]. More recently, most flat slab buildings throughout the southern California were 

severely damaged in the 1994 Northridge earthquake [2]. Events like these have prompted much 

research into the punching resistance of flat slabs under seismic loading. Design guidance for 

seismically loaded flat slab buildings is given in ACI 318-14 [3] but not Eurocode 8 [4]. ACI 318 

permits the use of flat slabs in seismic regions provided perimeter moment frames, or bracing are 

provided to act as the LFRS. In this case, although not designated as part of the seismic force resisting 

system, the flat slab system undergoes the same lateral deformation as the primary LFRS during seismic 

excitation. Consequently, slab-column connections have to possess sufficient ductility to attain the drift 

demand prior to punching failure. Laboratory tests show that the level of ductility possessed by slab-

column connections is significantly influenced by the gravity shear ratio (GSR) which is the ratio 

between the shear force induced by gravity load (Vgrav) and the nominal concentric punching strength 

without shear reinforcement. In this paper, the GSR is defined according to ACI 318-14 [3] as: 

 

𝐺𝑆𝑅 =
𝑉𝑔𝑟𝑎𝑣

1
3 √𝑓𝑐′. 𝑏0(𝑟𝑒𝑐) . 𝑑 

 𝑆𝐼 𝑢𝑛𝑖𝑡𝑠 (𝑁, 𝑚𝑚)(1) 

 

where Vgrav is the shear force induced by the gravity load, fc’ is the concrete compressive strength, d is 

the average flexural effective depth, and b0(rec) is the length of a  control perimeter (with the same shape 

as the column) at a distance d/2 from the column face.  

Previous studies established best fit relationships between mean lateral drift capacity and GSR based 

on regression analysis of experimental data [2, 5]. Section 18.14.5.1 of ACI 318-14 provides a similar 

empirical relationship for design. ACI 318 requires punching shear reinforcement to be provided if the 

design storey drift exceeds that specified in section 18.14.5.1. However, empirically based limitations 

on drift like these are questionable for practical design since they are largely based on unrepresentative 

scaled-down slab tests with average effective depth of around 100 mm and 1.0% hogging reinforcement 

[6, 7]. No empirical equation can provide a rational explanation of cyclic degradation and its influencing 

parameters.  



This study makes use of 3D nonlinear finite element analysis (NLFEA) with ATENA [8] to examine 

key features of the response of laboratory tested cyclically loaded internal slab-column connections 

without shear reinforcement. The authors are unaware of any comparable 3D NLFEA studies into the 

cyclic degradation of slab-column connection resistance. The NLFEA provides rational insights into 

the causes of cyclic degradation and the parameters that influence it but is unable to capture the observed 

pinching effect. The presented NLFEA is also extremely computationally demanding for cyclic loading. 

In view of these considerations, it is suggested that the critical shear crack (CSCT) [9] forms a more 

practical basis for the development of practical design recommendations for modelling punching shear 

failure under cyclic loading. The second half of the paper presents a simple analytical procedure, based 

on the critical shear crack theory (CSCT) [9], for assessing punching resistance of internal flat slab-

column connections without shear reinforcement under cyclic loading. The proposed method has the 

advantage of being mechanically based yet relatively simple to use. Since it is mechanically based, the 

proposed model can be used to investigate the influence on slab-column connection performance of 

variables and combinations of variables not considered systematically in laboratory tests (e.g. slab 

slenderness, slab effective depth, column size). This is not possible with empirical design methods like 

that of ACI 318-14 which is based on regression analysis of test results from thin slabs unrepresentative 

of practice.  The proposed method is validated with available experimental data and comparisons are 

made with the predictions of other methods, both analytical and empirical. Finally, the proposed method 

is used to derive a code-like curve relating GSR to the lateral drift limit. The predictions of the proposed 

method are shown to compare favourably with those of the much more complex model of Drakatos et 

al. model [7]. Unlike ACI 318-14 [3], but like Broms [6] and Drakatos et al. [7], the proposed model 

predicts that the drift at peak unbalanced moment reduces with increasing slab thickness.  

2 Nonlinear finite element analysis 

2.1 Introduction 

A numerical model was developed in ATENA [8] for modelling punching failure under cyclic loading. 

The model is validated in this paper using five matching pairs of full-scaled slabs tested by Drakatos et 

al. [10] under monotonic and cyclic loading, as well as slab L0.5 of Tian et al. [11]. The first test series 

[10] provides detailed information on crack patterns and local slab sector rotations while [11] gives 

detailed reinforcement strains. The experimental setups used in [10] and [11] are shown in Figures 1(a) 

and 1(b) respectively. The vertical load was applied to the column in the setup of Figure 1(b) which is 

classified as test setup C in [7].  



 

Figure 1. Illustration of experimental test setup used by: (a) Drakatos et al. [10]; (b) Tian et 

al. [11] 

 

The central support plate was 390 mm square in [10] and 406 mm square in test L0.5 [11]. Table 1 

summarises the material properties and geometry of the slab specimens used for the validation. Further 

details are given in Table A1. 
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Table 1. Summary of properties of slab specimens used for NLFEA validation 

No. Slab Source 

Type 

of 

test* 

GSR 

fc’ 

(MPa) 

dg 

(mm) 
fy (MPa) 

ρhog 

(%) 

ρsag 

(%) 

d 

(mm) 

Slab 

width 

(m) 

1 PD4 

Drakatos et al. 

[10] 

M 

0.41 39.0 

 

 

16 

507 0.80 0.35 201 

 

 

3.00 

2 PD5 0.59 37.5 507 0.81 0.35 198 

3 PD3 0.86 34.9 558 0.81 0.34 198 

4 PD12 0.62 35.5 546 1.61 0.72 195 

5 PD10 0.90 32.3 593 1.60 0.72 197 

6 PD8 

C 

0.46 32.7 575 0.81 0.29 198 

7 PD6 0.58 38.3 507 0.81 0.30 199 

8 PD2 0.86 36.9 558 0.81 0.34 198 

9 PD13 0.60 36.5 546 1.61 0.72 196 

10 PD11 0.90 33.1 593 1.60 0.71 196 

11 L0.5 Tian et al. [11] 0.23 25.6 9.5 469 0.50 0.25 127 3.657 

Notes: 

dg is the maximum aggregate size 

fy is the average yield strength of the flexural reinforcement bars 

ρhog is the ratio of flexural reinforcement at slab tension side (hogging) 

ρsag is the ratio of flexural reinforcement at slab compression side (sagging) 

*M indicates monotonic test; C indicates cyclic test 

 

2.2 Concrete material model (CC3DNonLinCementitious2) in ATENA 

ATENA models concrete using a smeared crack approach in conjunction with a fracture-plastic model 

which combines constitutive models for tensile (fracture) and compressive (plastic) behaviour. The 

fracture model used in this study (CC3DNonLinCementitious2) is based on the classical orthotropic 

smeared crack formulation and crack band model [12]. Either fixed or rotating crack models can be 

used in conjunction with the Rankine tensile failure criterion and exponential softening. In this study, a 

fully rotating-crack approach was used since it was found to simulate the experimental response more 

accurately than the fixed-crack model which tended to produce overly stiff load-rotation responses. 

Plasticity for concrete in compression is controlled by the Menetrey-William failure surface [13] which 

is expressed in terms of three independent stress invariants: hydrostatic stress, deviatoric stress, and 

deviatoric polar angle. The concrete stress-strain relationship (σc-𝜀𝑒𝑞
𝑝

) for the ascending branch of the 

compressive response is expressed by the following formula: 

 

𝜎𝑐 = 𝑓𝑐0 + (𝑓𝑐
′ − 𝑓𝑐0)√1 − (

𝜀𝑐
𝑝

− 𝜀𝑒𝑞
𝑝

𝜀𝑐
𝑝 )

2

(2) 

 



where σc is current concrete stress for a given uniaxial equivalent strain 𝜀𝑒𝑞
𝑝

, fc0 is the stress at onset of 

concrete nonlinear behaviour under compression and 𝜀𝑐
𝑝
 is the plastic strain at maximum compressive 

strength fc’.  

The hardening part of the compressive response is expressed in terms of strain while the softening part 

is expressed in terms of displacement to introduce mesh objectivity into the finite element solution. 

After concrete cracks, the compressive strength in the direction parallel to the cracks is reduced 

similarly to the Modified Compression Field Theory [14]. However, in ATENA, this relationship is 

described in the form of a Gaussian which allows the user to flexibly adjust the effect. The reduced 

compressive strength is calculated as: 

 

𝑓
𝑐′
𝑒𝑓

= 𝑟𝑐𝑓𝑐
′, 𝑟𝑐 = 𝑐 + (1 − 𝑐)𝑒−(128𝜀𝑣)2

 (3) 

 

where 𝑓
𝑐′
𝑒𝑓

 is the reduced concrete compressive strength, c defines the residual resistance, and 𝜀𝑣 is the 

tensile strain in the transverse direction. Under zero transverse normal strain, 𝑓
𝑐′
𝑒𝑓

 equals the uniaxial 

concrete compressive strength (fc
’). The strength gradually reduces with strain until a minimum value, 

defined by the c parameter, is attained. To model concrete behaviour under cyclic loading, ATENA 

provides a so-called Unloading Factor (UF) which controls the crack closure stiffness. UF ranges 

between 0 and 1 with 0 for unloading to the origin (default value for backward compatibility) and 1 for 

unloading parallel to the initial elastic stiffness. An initial study of cyclically-loaded specimens showed 

that UF mostly influences the shape of the hysteresis curve with UF=0 giving the best fit to the actual 

behaviour.  

 

2.3 Numerical methodology 

The NLFEA modelling procedure described in Section 2.2 was initially calibrated for monotonic 

loading with eight concentrically loaded internal slab column connections (four with varying flexural 

reinforcement ratios from the PG-series of Guandalini et al. [15] and four with non-axis-symmetrical 

reinforcement from the PT-series of Sagaseta et al. [16]). The calibration study showed that both 

flexural deformation and punching failure could be captured accurately using 10 linear order (8-noded) 

brick elements through the slab thickness in conjunction with the material parameters and solution 

procedure shown in Table 2. The NLFEA accurately captured both the punching resistance (with mean 

and coefficient of variation of test/predicted equal to 0.983 and 0.075) and corresponding maximum 

slab rotation of these slabs (with mean and coefficient of variation of test/predicted equal to 0.964 and 

0.112).  

When modelling eccentrically loaded specimens, advantage was taken of symmetry to only model half 

of the specimen. This is illustrated in Figure 2 for the PD series where, for optimum element aspect 



ratio, 25 × 25 × 25 mm3 brick elements were used to model the slab within twice the slab effective depth 

d of the column face (giving 10 elements through the slab thickness) while a coarser mesh (50 × 25 × 

25 mm3 and 50 × 50 × 25 mm3) was used elsewhere. The steel arms and loading plates were modelled 

using linear tetrahedral (4-noded) elements with elastic material. Reinforcement bars were modelled as 

embedded using 1D 2-noded linear truss elements. Details of the modelling of specimen L0.5 of Tian 

et al. [11] can be found elsewhere [17]. 

Perfect bond was assumed between reinforcement and concrete. Drakatos et al. [10] only report the 

yield strength of the reinforcement used in their tests. Examination of their tests results shows that the 

largest strain achieved in the cyclic tests was around 0.004-0.005. Consequently, the rebar stress-strain 

relationship was defined as elasto-plastic with very minimal strain hardening owing to the low 

maximum measured peak strain. The Bauschinger’s effect was modelled using the approach of 

Menegotto and Pinto [18] as implemented in ATENA (with default parameters). Each specimen was 

meshed with 1790 linear elements, 1954 tetrahedral elements and 36980 solid (brick) elements giving 

a total of 44882 nodes. The external face of the top and bottom central column plates was restrained in 

all directions to simulate the effect of clamping the column to the slab by post tensioning.  

Unbalanced moment was applied in the monotonic simulations by imposing equal and opposite vertical 

forces as in the tests. The experimental cyclic loading protocol [10] was complex to simulate since it 

prescribed the relative slab column rotation which was approximated by imposing equal and opposite 

vertical displacements, derived from monotonic analysis, to the loading arms. The consequence of this 

is discussed in Section 3. Static analysis with force-control was used for the monotonic tests along with 

arc-length iteration while displacement-control (Newton-Raphson) was used for the cyclic tests.  

The same material inputs were used for both monotonic and cyclic loading except the compression 

softening limit (c) given in Equation 3. This was done because comparative studies on identical 

monotonically loaded punching specimens unexpectedly showed displacement-control with Newton-

Raphson to produce higher failures load than force-control with Arc-Length. To compensate for this, it 

was found necessary to reduce the compression softening limit 𝑟𝑐𝑓𝑐
′ to 0.5𝑓𝑐

′
  (from 0.8𝑓𝑐

′ for Arc-

Length) when using displacement-controlled loading. The convergence tolerance was set at 1% for 

displacement, residual, and absolute residual error and 0.1% for energy error. The key input parameters 

used in the analyses are summarised in Table 2 below. 

  



 

Figure 2. Geometry, boundary conditions, and meshing for slabs of Drakatos et al. 

[10] analysed using ATENA 

 

Table 2. Summary of material parameters and numerical input for NLFEA in ATENA 

No. Parameter Value/Reference 

 Concrete constitutive model  

A1 Concrete elastic modulus fib recommendation [19] 

A1 Fracture energy Based on Model Code 2010 [21] 

A2 Concrete tensile strength Based on Model Code 2010 [21] 

A3 Smeared crack model Fully-rotating crack 

A4  Critical compressive displacement 0.5 mm 

A5 Limit of compressive strength reduction due to cracking 

(MCFT)  

0.8fc
’
 for monotonic; 0.5fc

’
 for cyclic  [14] 

A6 Eccentricity (defining the shape of the failure surface) 0.52 

A7 Volume dilatation plastic factor 0 

A8 Unloading factor for cyclic loading 0 

 Reinforcement bar model  

B1 Stress-strain relationship Bilinear with minimal strain hardening 

B2 

B3 

Bond-slip model 

Cyclic behaviour 

Perfect bond 

Menegotto and Pinto [18] with ATENA 

default parameters (C1 = 500; C2 = 50) 

 Loading procedure and convergence criteria  

C1 Loading procedure for monotonic tests Static (force-controlled) 

C2 Iteration method for monotonic tests Arc-length method 

C3 Loading procedure for cyclic tests Static (displacement-controlled) 

C4 Iteration method for cyclic tests Newton-Raphson method 

C5 Convergence criteria for displacement, residual, and 

absolute residual error 

1% 

C6 Convergence criteria for energy error 0.1% 

 Mesh properties  

D1 Mesh size (finest) 25 x 25 x 25 mm (10 elements along height) 

D2 Mesh element for concrete slab 8-noded hexahedral (linear) 

D3 Mesh element for loading apparatus 4-noded tetrahedral (linear) 

D4 Mesh element for reinforcement bar 2-noded truss element (embedded) 

 



2.4 Validation results 

1) Global behaviour 

Global behaviour was assessed in terms of the unbalanced moment versus relative slab-column 

connection rotation response. The slab-column connection rotation, ψscc, is defined as: 

 

𝜓𝑠𝑐𝑐 =
𝜓𝑚𝑎𝑥 − 𝜓𝑚𝑖𝑛

2
− 𝜓𝑐𝑜𝑙  (4) 

 

where ψmax is the maximum slab rotation, ψmin is the minimum slab rotation and ψcol is the column 

rotation which was zero in the numerical analysis since both the top and bottom column plates were 

fully restrained.   

The rotation 𝜓𝑠𝑐𝑐 in actual building (continuous slabs) is related to the inter storey drift 𝜓𝑠𝑡 as follows 

[7]: 

𝜓𝑠𝑡 = 𝜓𝑠𝑐𝑐 + 𝜓𝑠𝑜 + 𝜓𝑐𝑜𝑙 (5) 

 

where ψso is the component of slab rotation due to deformation outside a radius rs = 0.22L of the column 

centreline, in which L is the slab span, and ψcol is the contribution of column deformation. Drakatos et 

al. [7] suggest that ψscc typically contributes 75-80% of the total inter storey drift neglecting the 

contribution of column deformation. The punching resistance itself is related to ψscc rather than ψst since 

ψso + ψcol is a global rotation which does not contribute to the critical shear crack width. Figure 3 

compares the measured and calculated unbalanced moment-ψscc responses of the Drakatos et al. 

specimens. The NLFEA slab rotations ψmin and ψmax were calculated from the vertical displacements of 

pairs of nodes, spaced at around 200 mm, and positioned on the slab centreline near the slab edges with 

minimum and maximum deflections. Rotations are presented in Figure 3 and throughout the paper in 

units of % (102×radians) unless stated otherwise. 



 

Figure 3. Comparison of measured and predicted moment – rotation or moment – drift 

relationship with NLFEA 

 

Figure 3 shows that the NLFEA predictions of ψscc are reasonable for both monotonically- and 

cyclically-loaded slabs. At low drift levels, ATENA overestimates the stiffness of cyclically loaded 

specimens due to the inability of the adopted concrete model to realistically simulate pinching 

behaviour. This is discussed more fully in Section 3. Comparison of the moment-rotation responses in 

Figure 3 for monotonically and cyclically loaded specimens shows that the NLFEA broadly captures 

the degradation in performance caused by cyclic loading. Under cyclic loading, the predicted 

unbalanced moment capacity reduces gradually subsequent to reaching its peak value, unlike the tests 

where loss of vertical resistance was sudden (indicated by green triangles). As done by Drakatos et al. 

[7], this study defines the drift at failure to be that at peak unbalanced moment. The NLFEA results in 

Figure 3 show the reduction of unbalanced moment and drift capacity under cyclic loading to be greatest 

for slabs with low GSR and/or low reinforcement ratios as observed experimentally [10]. This is 

because slab-column connections with low GSR and/or low reinforcement ratios typically attain larger 

drift prior to punching which makes them more susceptible to cyclic degradation. 

 

Peak unbalanced moment (M) from real test: 

Peak unbalanced moment (C) from real test: 

 

Notes: M denotes monotonic; C denotes cyclic 

 

Peak arm-reaction (M) from ATENA: 
Peak arm-reaction (C) from ATENA: 
  
  



2) Local behaviour 

The ability of the NLFEA to simulate local, as well as global, behaviour was validated in terms of a) 

slab-sector rotation; b) crack patterns and c) flexural reinforcement strain. Of these a) and b) are reported 

here for the PD series [10] while validation of reinforcement strains in slab L0.5 [11] can be found in 

[17]. Figure 4 shows the variation of local slab-sector rotation with angle measured from the axis of 

unbalanced moment vector for selected slabs subject to monotonic and cyclic loading. The rotations 

were measured at the peak unbalanced moments indicated by yellow and green circles in Figure 3. 

Measured and predicted crack patterns at failure are compared in Figure 5 for selected slab specimens. 

Figures 4 and 5 show that both the local slab-sector rotation and crack patterns at failure were 

realistically captured using NLFEA.  

 

 

Figure 4. Comparison of measured and predicted slab-sector rotation at peak moment with 

NLFEA for: (a) monotonic test; (b) cyclic test 

 

(a) 

(b) 



 

Figure 5. Comparison of measured and predicted crack patterns at failure for: (a) PD3 

(monotonic); (b) PD8 (cyclic) 
 

3) Discussion of NLFEA failure criterion, loading protocol, and pinching  

Strain monitoring [17] shows that cyclic degradation of strength and stiffness is associated with 

progressive yielding of the flexural reinforcement bars closest to the support both experimentally and 

in NLFEA simulations. As drift increases, plastic strain accumulates in the rebar hindering crack closure 

when the loading is reversed. This condition is worsened by Bauschinger’s effect which reduces the 

reinforcement yield strength under reversed-cyclic loading. The accumulation of plastic strain causes 

crack widths to increase in successive cycles. This eventually reduces shear transfer along cracks 

through aggregate interlock. However, it is important to remark that degradation of shear resistance 

along cracks was not modelled explicitly in ATENA since a rotating crack model was used. Despite 

this, the physical effect of loss of aggregate interlock was modelled indirectly in ATENA through its 

use of an equivalent plastic strain parameter. Accumulation of this strain component in the inelastic 

phase causes concrete to enter the compression softening regime (crushing) more rapidly under cyclic 

than monotonic loading. Damage is also enhanced under cyclic loading since the compressive response 

is adversely affected by damage in tension and vice versa.  

Although broadly able to capture the experimentally observed cyclic degradation, the NLFEA 

overestimated the initial stiffness of cyclically loaded specimens and failed to realistically simulate 

pinching. The inability of the NLFEA to capture the experimentally observed response is largely due to 

shortcomings in the adopted concrete model but minor errors arise from differences in cyclic loading 

protocols. In the laboratory, one end of the steel loading frame was loaded in displacement control with 

load control adopted at the other end to provide an equal and opposite force. This was not possible in 

the NLFEA where equal and opposite displacements were applied to the loading arms. This resulted in 

the downwards force being marginally smaller than the upwards force at any given displacement. This 

reduced the designated GSR by 5-10% at peak moment unlike in the laboratory tests where the GSR 

remained constant during cyclic loading. Secondly, the experimental loading protocol was expressed in 
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terms of ψscc. This also caused modelling difficulties since the relationship between displacements at 

the ends of the steel arms and ψscc is unknown prior to the analysis. The adopted relationship between 

arm displacement and ψscc was derived from monotonic analysis. Figure 3 shows that the resulting 

rotations ψscc are reasonable. 

As shown in Figure 3, the adopted CC3DNonLinCementitious2 concrete model is unable to simulate 

pinching. Since pinching is not captured, the peak unbalanced moment increases between successive 

cycles at the same rotation level as shown by the red and yellow dots in Figure 6 where two load cycles 

were applied at each rotation level as in the tests of Drakatos et al. [10]. The increase in moment between 

successive cycles at the same rotation explains why the numerical cyclic response in Figure 3 is stiffer 

at low drift levels than the corresponding monotonic response. At higher drift levels, the stiffness of the 

numerical cyclic response degrades relative to the monotonic response since accumulation of equivalent 

plastic strain is more dominant than neglect of pinching. The inability of CC3DNonLinCementitious2 

to simulate pinching also causes energy dissipation to be overestimated as evident in Figure 3.  

 

Figure 6. Moment-rotation response of specimen PD2 acquired using ATENA at 0.1% ψscc-

rotation level. 

 

3 Proposed analytical method for cyclic punching 

3.1 Introduction 

NLFEA with solid elements is overly complex and computationally demanding for practical design. 

However, NLFEA can be used to systematically explore the influence and interaction of parameters not 

fully explored experimentally (e.g. slab depth, slab slenderness, column size and shape etc.). For 

example, the presented NLFEA, although not perfect, demonstrates that cyclic degradation depends on 

flexural reinforcement ratio as well as GSR (see Figure 3). This complexity of behaviour demonstrates 

the need for mechanically based design models rather than empirically based design formulae such as 

that of ACI 318 [3] which only considers the influence of GSR on drift limit. The remainder of the 

paper proposes a simple yet mechanically-based model for practical design. Some of the modelling 



assumptions are justified with NLFEA. The method adopts the failure criterion of the CSCT [9] which 

calculates the shear resistance provided by concrete as follows: 

 

𝑉𝑅𝑑𝑐

𝑏0,𝑒 . 𝑑 . √𝑓𝑐′
=

0.75

1 + 15
𝜓 . 𝑑

𝑑𝑔0 + 𝑑𝑔

 (6)           (𝑆𝐼 𝑢𝑛𝑖𝑡𝑠;  𝑁, 𝑚𝑚) 

 

where VRdc (N) is the punching load capacity according to the CSCT, b0,e is the effective perimeter of 

the critical section at d/2 from the column face (rounded corners), ψ is the slab rotation (radians), and 

dg0 is a reference aggregate size equal to 16 mm.  

The shear resistance depends on the slab rotation (ψ) and the level of eccentricity which increases the 

maximum slab rotation as well the maximum shear stress. Under eccentric loading, the shear resistance 

calculated with Equation 6 varies around the control perimeter since eccentricity causes the slab rotation 

to vary sinusoidally as shown in Figure 4. Drakatos et al. [7] addressed this issue by integrating both 

shear forces and shear resistances around the control perimeter. In order to perform the integration, the 

slab is firstly divided into a number of sector elements around the tangential axis of the so-called the 

sector model of Kinnunen and Nylander [20]. At each load step, a new value of ψmax is selected and the 

internal forces are determined for each individual sector element from consideration of shear and 

moment equilibrium in terms of ψmin which is iterated until the sum of the resulting shear forces acting 

on each sector element equals the applied shear force. Drakatos et al. [7] assumed that shear failure 

occurs in cyclically loaded slabs when the sector subjected to the largest slab rotation reaches the CSCT-

failure criterion. This failure criterion is also adopted in MC2010 but as shown by Drakatos et al. [7] is 

overly conservative for monotonically loaded slabs where shear redistribution around the control 

perimeter delays failure.  

3.2 Formulation of proposed method 

This study presents a simplified procedure which avoids the need to consider equilibrium of individual 

sector elements as done by Drakatos et al. [7]. The method is an extension of Level of Approximation 

II (LoA II) in fib Model Code 2010 [21] which provides a simple equation for calculating the maximum 

slab rotation under eccentric loading. MC2010 also reduces the length of the basic control perimeter 

(b0) by a multiple (ke) to account the non-uniform shear force distribution induced by moment transfer 

between the slab and the supported area. The effective control perimeter b0,e = keb0 in which the 

coefficient ke can be estimated as: 

 

𝑘𝑒 =
1

1 +
𝑒𝑢
𝑏𝑢

 (7) 

 



where eu is the eccentricity of the resultant of shear force with respect to the centroid of the basic control 

perimeter and bu is the diameter of a circle with the same surface as the region inside the basic control 

perimeter.  

The method proposed here for cyclically loaded slabs involves a modification to the MC2010 LoA II 

procedure for calculation of slab rotation as well as a refinement of ke as described below.  

 

1) Moment-rotation relationship 

Acquiring a sufficiently accurate moment-rotation relationship is crucial for assessment with the CSCT 

since it relates punching resistance to slab rotation. However, defining a sector model and formulating 

equilibrium at both sector and global levels is overly complex for normal design. In the present study, 

the maximum rotation is calculated in accordance with MC2010 LoA II as follows (all units SI; N, mm, 

radians): 

𝜓𝑚𝑎𝑥 = 1.5 .
𝑟𝑠

𝑑
 .

𝑓𝑦

𝐸𝑠
 . (

𝑚𝐸𝑑𝑚𝑎𝑥

𝑚𝑅𝑑ℎ𝑜𝑔

)

1.5

 (8)       

𝑚𝐸𝑑𝑚𝑎𝑥
= 𝑉𝑔𝑟𝑎𝑣  . (

1

8
+

|𝑒𝑢|

2 .𝑏𝑠
)        (9)             

𝑏𝑠 = 1.5 . √𝑟𝑠,𝑥  . 𝑟𝑠,𝑦                    (10)  

𝑚𝑅𝑑ℎ𝑜𝑔
= 𝜌ℎ𝑜𝑔 . 𝑓𝑦 . 𝑑2. (1 −

𝜌ℎ𝑜𝑔 . 𝑓𝑦

2 . 𝑓𝑐′
) (11) 

 

where 𝑚𝐸𝑑𝑚𝑎𝑥
 is the maximum average moment per unit length (Nmm/mm) for calculation of the 

flexural reinforcement in the support strip at the column face, 𝑏𝑠 is the width of the support strip for 

calculating the average moment per unit length, rs denotes the position relative to the support axis where 

the radial bending moment is zero with rs,x and rs,y denoting the positions on the x and y axes 

respectively. For regular flat slabs where the ratio of spans Lx/Ly is between 0.5 and 2.0, rs can be 

approximated as 0.22Lx or 0.22Ly for the x and y directions respectively [21]. Section 4.3 defines 

rs=rs,x=rs,y for the test specimens considered in this paper which all had square slabs. Es (N/mm2) is the 

modulus of elasticity of reinforcing steel and mRdhog (Nmm/mm) is the design average flexural strength 

per unit length in the support strip for hogging moment (positive) (in this paper moments of resistance 

are calculated using the average effective depth d since only isotropic reinforcement is considered). 

 

Although the punching resistance of cyclically loaded slabs is assumed to depend on the maximum 

rotation as in [7], the minimum rotation is needed to calculate the slab-column connection rotation (ψscc) 

(see equation 4) and hence global inter-storey drift. MC2010 gives no guidance on the calculation of 

ψmin since it is not relevant to the design of monotonically loaded connections. The proposed calculation 

procedure for ψmin, depends on the sign of 𝑚𝐸𝑑𝑚𝑖𝑛 
(analogous to 𝑚𝐸𝑑𝑚𝑎𝑥 

) which determines whether 



hogging or sagging reinforcement is activated at the column face supporting the slab sector rotating 

ψmin. For positive 𝑚𝐸𝑑𝑚𝑖𝑛
, ψmin (radians) can be estimated as: 

 

𝜓𝑚𝑖𝑛 (+) = 1.5 .
𝑟𝑠

𝑑
 .

𝑓𝑦

𝐸𝑠
 . (

𝑚𝐸𝑑𝑚𝑖𝑛

𝑚𝑅𝑑ℎ𝑜𝑔

)

1.5

 (12) 

where 𝑚𝐸𝑑𝑚𝑖𝑛
 (Nmm/mm) is given by: 

𝑚𝐸𝑑𝑚𝑖𝑛 
= 𝑉𝑔𝑟𝑎𝑣  . (

1

8
−

|𝑒𝑢|

2 . 𝑏𝑠
) (13) 

 

For negative 𝑚𝐸𝑑𝑚𝑖𝑛 
, 𝜓𝑚𝑖𝑛 can be estimated as: 

 

𝜓min (−) = −1.5 .
𝑟𝑠

𝑑
 .

𝑓𝑦

𝐸𝑠
 . (

|𝑚𝐸𝑑𝑚𝑖𝑛|

𝑚𝑅𝑑𝑠𝑎𝑔

)

1.5

 (14) 

 

where 𝑚𝑅𝑑𝑠𝑎𝑔
 is the design average flexural strength per unit length (Nmm/mm) in the support strip 

for sagging moment which is given by:  

 

𝑚𝑅𝑑𝑠𝑎𝑔
= 𝜌𝑠𝑎𝑔 . 𝑓𝑦 . 𝑑2. (1 −

𝜌𝑠𝑎𝑔 . 𝑓𝑦

2 . 𝑓𝑐′
) (15) 

 

The reinforcement ratio ρsag should be limited to a minimum of 0.5ρhog in Equation 15. Based on 

comparisons with test data, 𝑚𝐸𝑑𝑚𝑖𝑛
 in Equation 14 should be limited to 𝑚𝑅𝑑𝑠𝑎𝑔

when calculating     

ψmin(-). These conditions are introduced to prevent |𝜓min (−)|, and hence 𝜓scc, from becoming 

unrealistically large at failure.   

2) Shear stress demand 

In the proposed method, the basic control perimeter is reduced by a multiple 𝑘𝑒𝑚𝑜𝑑
 to account for the 

non-uniform shear distribution under eccentric cyclic loading. Studies by the authors using both the 

analytical procedure of Drakatos et al. [7] and NLFEA with nonlinear shell elements (not reported here) 

suggest that 𝑘𝑒𝑚𝑜𝑑  is directly related to the proportion of unbalanced moment resisted by eccentric 

shear. This proportion was found to be mostly affected by the ratio rc/rs in which rs is proportional to 

the slab span (L). A systematic investigation was performed using the model of Drakatos et al. [7] to 

find a correlation between 1/𝑘𝑒𝑚𝑜𝑑
 and rc/rs. In this analysis, rc/rs was varied by independently 

changing rs/d and rc/d for a slab with the geometry presented in [10], while keeping other parameters 

unchanged. This was done since there is an interdependency between rs, rc, and d. Curve fitting using 



regression analysis was then performed to develop analytical expressions to describe the influences of 

rs/d and rc/d on 1/𝑘𝑒𝑚𝑜𝑑
 as illustrated in Figures 7(a) and (b) below. 

 

 

Figure 7. Derivation of modified ke parameter for: a) slenderness ratio; b) column radius to 

depth ratio 

Based on the regression analysis ke was modified as follows: 

 

𝑘𝑒𝑚𝑜𝑑
=

1

1 + (
𝑒𝑢
𝑏𝑢

) {[
(𝑟𝑠/𝑑)𝑟𝑒𝑓 

𝑟𝑠/𝑑
] ∗ [0.7 (

𝑟𝑐/𝑑
(𝑟𝑐/𝑑)𝑟𝑒𝑓 

) + 0.3]}

 (16) 

𝑤𝑖𝑡ℎ (𝑟𝑠/𝑑)𝑟𝑒𝑓 = 6.25; (𝑟𝑐/𝑑)𝑟𝑒𝑓 = 0.8125  

where rc is the column radius which is taken as half the column side length for square columns.  

Additionally, the original formulation of ke does not consider the maximum shear stress (peak) that can 

develop in the sector with maximum rotation. In reality, yielding of the sector element may limit the 

increase of shear stress and enforce shear redistribution to adjacent sectors. In order to account for this, 

a lower limit to 𝑘𝑒𝑚𝑜𝑑  is introduced as follows: 

𝑘𝑒𝑚𝑜𝑑 ≥ 𝑘𝑒𝑙𝑖𝑚
=

𝑉𝑔𝑟𝑎𝑣

2𝜋. 𝑟𝑠. 𝑚𝑟𝑑(ℎ𝑜𝑔𝑔𝑖𝑛𝑔). (
1

𝑟𝑞 − 𝑟𝑐
)

 (17)  

where 𝑉𝑔𝑟𝑎𝑣 is the gravity load (N), rq is the radius of the load introduction at the perimeter which is 

approximated as rs in this paper.  

Equations 16 and 17 for 𝑘𝑒𝑚𝑜𝑑 are applicable to cyclically loaded slabs where tests show shear 

redistribution of the type identified by Sagaseta et al. [16] to be negligible. Use of 𝑘𝑒𝑚𝑜𝑑 is conservative 

for monotonically loaded slabs since their resistance is enhanced by shear redistribution which is 

neglected in 𝑘𝑒𝑚𝑜𝑑. The influence of the term [
(𝑟𝑠/𝑑)𝑟𝑒𝑓 

𝑟𝑠/𝑑
] in equation (16) is greatest for laterally loaded 

test specimens where the gravity load is applied to the column since rs = 0.5L for these slabs compared 

with rs = 0.22L for slabs subject to gravity loading.  

(a) (b) 



3.3 Calculation of failure point 

The following step-by-step procedure can be used to predict the eccentricity at punching failure and 

corresponding drift: 

1. Assume a value for the ultimate eccentricity (eu), 

2. Calculate the maximum slab rotation (ψmax) for the chosen eu using Equations 8 to 11, 

3. Calculate 𝑘𝑒𝑚𝑜𝑑  in terms of eu with Equations 16 and 17 and hence the effective control 

perimeter length b0,e = 𝑘𝑒𝑚𝑜𝑑
.b0 

4. Calculate VRdc using equation (6) with b0,e from step 3 and 𝜓𝑚𝑎𝑥  from step 2. 

5. Repeat steps 1. to 4. iterating eu until VRdc = Vgrav. 

6. Calculate ψmin using equations 12 to 15 and hence 𝜓𝑠𝑐𝑐. 

 

This step-by-step procedure, which is easily implemented in a spreadsheet, is demonstrated 

schematically in Figure 8. 

 
Figure 8. Schematic illustration of the proposed analytical method 

 

As shown in Figure 8, the shear resistance decreases with increasing slab rotation and eccentricity. 

Failure occurs when the shear resistance reduces to the applied gravity load at the eccentricity efail shown 

in Figure 8. The capability of the proposed analytical method to capture both the moment-rotation 

response and efail was investigated using an experimental database. 

 

4 Validation of proposed analytical method 

4.1 Initial validation of the proposed ψmin and ψscc formula 
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The proposed modification of MC2010 LoA II to estimate ψmin and ψscc was validated for the cyclically-

loaded slabs from the PD series [10] which is unique in providing ψmin, ψmax and ψscc. Plots of measured 

and predicted slab rotations are given in Figure 9 along with the authors’ predictions obtained using 

the Drakatos et al. [7] eccentric sector model for comparison. In both analyses, the slab radius rs was 

taken as half the slab side length of 3.0 m. The stiffening influence of the threaded bars, connecting the 

slab edge to the steel arms, was considered by increasing the flexural reinforcement ratio as shown in 

Appendix A. The % increase in reinforcement ratio was based on NLFEA studies without and with the 

threaded bars.   

 

 

Figure 9. Measured and predicted minimum and relative slab-column rotation using the 

adjustment of LoA II MC2010 and Drakatos eccentric sector model [7] 

 

Figure 9 shows that the proposed method gives good estimates of ψmin and ψscc for all the considered 

slabs. The results obtained with the proposed method also compare favourably with those derived using 

the significantly more complex procedure of Drakatos et al. [7].  

 



4.2 Validation of proposed method against Drakatos et al. method [7] 

The proposed method was validated against that of Drakatos et al. [7] by comparing limiting drifts for 

slabs with L/d equal to 20 and 34. For each L/d, the limiting drift was calculated with rc/d of 0.5, 1.0 

and 1.5. The ratio rc/d was varied by changing the column size while keeping d constant. The resulting 

drift predictions given by each method compare well as shown in Figure 10. The influence of “size 

effect” is also captured almost identically by both methods as shown in Figure 11. 

 

 

Figure 10. Comparison of drift predictions of proposed method with Drakatos method for 

slabs with: a) L/d = 20; b) L/d = 34 (d = 200 mm; ρhog = 0.75%; ρsag = 0.375%; fy = 

550 MPa; fc’ = 32 MPa; dg = 16 mm) 

 

 

Figure 11. Comparison of drift predictions of proposed method with Drakatos method for 

various slab thicknesses (L/d = 30; rc/d = 0.975; ρhog = 0.75%; ρsag = 0.375%; fy = 

550 MPa; fc’ = 32 MPa; dg = 16 mm) 

 

4.3 Validation of proposed method with slabs from experimental database 

The proposed method was validated with an experimental database consisting of 50 internal slab-

column connections (isolated) without shear reinforcement subject to cyclic loading. All the specimens 

had square columns and were loaded with combined gravity and uniaxial lateral loading. The database 

(a) (b) 



included 33 specimens [7, 11, 22-36] from the database compiled by Drakatos [37] and 17 additional 

specimens [29, 38-43]. Details of the specimen geometry and material properties are given in Appendix 

A along with the peak moment capacities and associated rotations. Consideration of the database shows 

that the slenderness (L/d) of the specimens varies considerably. The advantage of mechanically based 

design models like that of the authors’ is that the specimen slenderness is accounted for in the 

calculation of drift.  With the exception of the specimens of Drakatos et al. [10] and Almeida et al. [38], 

the majority of specimens were type C according to the classification of Drakatos et al. [7] (see Figure 

1(b)). Type C specimens are grouped in Appendix A according to whether the vertical load (gravity) 

was applied to the column (C1) or slab (C2).  

The radius rs used for calculation of rotation in the CSCT was taken as 0.22L (where L is defined in 

Figure 1) for cases where the vertical load was applied to the slab (e.g. Figure 1(a)) and 0.5L for slabs 

with vertical load applied to the column (e.g. Figure 1(b)). Drift rather than ψscc was measured in all 

the tests except those of Drakatos et al. [10], Emam et al. [39] and Marzouk et al. [40].  

In test setup C2, deformation of the slab outside rs = 0.22L contributes to drift. Drakatos et al. [7] used 

an effective beam method to simulate the slab outside rs = 0.22L but this is not considered in this paper 

to enable direct comparison with the authors’ simplified method. To investigate the effect of this, 

NLFEA with ATENA was performed for slabs ND4LL, ND1C, and ND5XL [33]. Figure 12 shows the 

contributions to column rotation of i) the slab-column connection region (within rs = 0.22L) and ii) the 

outer region between rs = 0.22L and 0.5L.  

 

Figure 12. Contribution of column, connection region within 0.22L, and outer slab region 

between 0.22L and 0.5L as a function of lateral drift for slabs: a) ND1C; b) 

ND4LL; c) ND5XL from Robertson and Johnson [33] analysed using ATENA 

 

Figure 12 shows that near failure the relative contribution of each component of rotation is fairly 

constant, and independent of GSR. Furthermore, the column contribution is almost negligible which is 

typical. At peak unbalanced moment, the connection region contributes around 80-85% of the total 

lateral drift with the slab outside 0.22L contributing around 15-20%. To confirm the generality of this, 

(a) (b) (c) 



15 slabs from the database [11, 23, 24, 29, 30, 32-34, 36, 43] with test setup C2 were assessed with drift 

calculated as i) ψscc and ii) ψscc/0.85. The results are plotted in Figure 13 which shows that drift 

predictions improve significantly when calculated as ψscc/0.85 (depicted “with outer”) compared with 

ψscc (depicted “without outer”)  

 

Figure 13. Measured to predicted drift at failure according to proposed method, with versus 

without outer slab contribution 

 

In the analyses of the database, the lateral drift was estimated as follows for test setup C: 

i) for test setup C1 with gravity load applied through the column, lateral drift equals ψscc,  

ii) for test setup C2 with gravity load applied through the slab, and flat slab buildings, lateral drift can 

be approximated as ψscc/0.85.  

Representative plots of the measured and predicted unbalanced moment - drift relationship (ψscc for 

slabs of Drakatos et al.), including the failure point, are shown in Figure 14 along with NLFEA results 

where available. Results are grouped according to the test setup with drifts in Figure 14(c) (test setup 

C2) calculated as ψscc/0.85 as explained above. Figure 14 shows that independent of test setup the 

proposed method gives reasonably accurate predictions for both the moment – rotation relationship and 

the point of failure. Furthermore, the proposed method is comparable in accuracy with the much more 

complex method of Drakatos et al. [7].  

 

 



 

Figure 14. Comparison between experimental and predicted moment – rotation curve and 

failure point according to the proposed method and Drakatos et al. for: (a) test 

setup of Figure 1(a); (b) gravity load applied to the column; (c) gravity load 

applied to the slab (considering the additional contribution of slab outside 0.22L) 
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Figure 15 shows the influence of GSR on the ratio of measured to predicted peak unbalanced moment 

for all 50 slabs in the database. As well as the proposed method, predictions are given for the methods 

of ACI 318-14 [3], Drakatos et al. [7], EC2 [44] and the CSCT [9] with ke from MC2010. All these 

design methods define the ultimate drift as that at peak unbalanced moment. Since drift is plotted at 

peak unbalanced moment the experimental drifts are unaffected by the presence or otherwise of integrity 

reinforcement which is required for robustness as described in ACI 318-14 [3]. Strength reduction and 

material safety factors for design codes are set to 1.0 and the aggregate size dg was taken as the reported 

size regardless of the use of either high strength or light weight concrete. Figure 15 shows that the 

average measured/predicted unbalanced moment is greater than 1.0 for all the methods with ACI 318 

most conservative. The proposed method (Figure 15(a): σ = 1.141; COV = 0.213) is comparable in 

accuracy to the much more complex method of Drakatos et al. [7] (Figure 15(b): σ = 1.150; COV = 

0.263). Lastly, comparison of the predictions obtained with the CSCT method using i) ke from MC2010 

(Figure 15(e): σ = 1.257; COV = 0.274) and ii) 𝑘𝑒𝑚𝑜𝑑
 (Figure 15(a)) shows that the proposed approach 

is most accurate. 

The most critical test of the proposed method is its ability to predict the limiting rotation ψscc peak at peak 

moment. Once ψscc peak is known the LFRS can be designed accordingly and if necessary shear 

reinforcement can be provided to avoid brittle punching failure. Measured/predicted drifts at peak 

moment are shown in Figure 16 for all the considered methods. The limiting drift according to the 

methods of Hueste and Wight [2], ACI 318-14 [3] and Megally and Ghali [5] are as expressed below: 

 

𝐷𝑟𝑖𝑓𝑡 =  −0.125𝐺𝑆𝑅 + 0.065 𝑓𝑜𝑟 𝐺𝑆𝑅 ≤ 0.4 (𝐺𝑆𝑅 ≥ 0.2)      (19𝑎)    

𝐷𝑟𝑖𝑓𝑡 =  −0.0167𝐺𝑆𝑅 + 0.0217 𝑓𝑜𝑟 𝐺𝑆𝑅 >  0.4                          (19𝑏)   𝐻𝑢𝑒𝑠𝑡𝑒 𝑎𝑛𝑑 𝑊𝑖𝑔ℎ𝑡 [2] 

 

𝐷𝑟𝑖𝑓𝑡 =  −0.05𝐺𝑆𝑅 + 0.035 ≥ 0.005  (𝐺𝑆𝑅 ≥ 0.1)                    (20)      𝐴𝐶𝐼 318 − 14 [3]  

𝐷𝑟𝑖𝑓𝑡 =  
0.005

√𝐺𝑆𝑅
0.85                                                                                     (21)      𝑀𝑒𝑔𝑎𝑙𝑙𝑦 𝑎𝑛𝑑 𝐺ℎ𝑎𝑙𝑖 [5] 

 

The calculated drift limit was estimated as ψscc/0.85 in the CSCT based methods (see Figures 16(a), (b) 

and (d)) for slabs with test setup C2. Figure 16 shows that the proposed method (σ = 1.250; COV = 

0.248), the CSCT with ke from MC2010 (σ = 1.404; COV = 0.257), and Drakatos et al. [7] (σ = 1.192; 

COV = 0.258), have lower COV than the empirical methods. ACI 318-14, as intended, provides a lower-

bound, rather than mean, estimate of drift capacity. The main benefits of the proposed method are its i) 

mechanical basis, ii) accuracy, and iii) simplicity compared with the comparably accurate method of 

Drakatos et al. [7]. 

 



 

Figure 15. Measured to predicted unbalanced moment at failure according to: (a) proposed 

method; (b) Drakatos et al. [7]; (c) ACI 318-14 [3]; (d) EC2 [44]; (e) CSCT with 

original ke formulation [9, 21] 

 

 

Figure 16. Measured to predicted drift at failure according to: (a) proposed method; (b) 

Drakatos et al. [7]; (c) ACI 318-14 [3]; (d) CSCT with original ke formulation [9, 

21]; (e) Hueste and Wight [2]; (f) Megally and Ghali [5] 

 

 

 

(a) (b) 

(c) (d) (e) 
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Consideration of Figures 13, 16(a) and 16(b) shows that both the proposed approach and Drakatos et 

al. [7] significantly overestimate drift for specimens AP1 and AP3 of Pan and Moehle [30]. The reason 

for this is unknown. The drift predictions for AP1 and AP3 improve significantly if the maximum 

aggregate size is taken as 10 mm as used by Drakatos et al. [7] rather than 25.4 mm as stated in the 

original test report UCB/EERC-88/16 [45]. For an assumed aggregate size of 10 mm, the proposed 

method gives ratios of experimental to predicted drift of 0.83 and 1.09 for specimens AP1 and AP3 

respectively. It is also notable that all the proposed method gives a very conservative drift estimate for 

the “Control” specimen of Cho [23]. The reason for this is unknown but all the design methods give 

conservative drift predictions for this specimen (see Table A3). These three specimens are included in 

the statistics shown in Figure 16 even though they are possibly outliers. 

Both the proposed method and that of Drakatos et al. [7] have several limitations. First, both approaches 

are derived for flat slabs that can be idealised as having axis-symmetric geometry and reinforcement 

arrangement. This is realistic for the common case where flat slabs are supported on square or circular 

columns that are equally spaced in each orthogonal direction. Second, neither model considers bi-

directional loading on which only very limited test data are available. 

 

5 Code-like curve: GSR vs lateral drift limit 

A code-like curve relating GSR to lateral drift was produced using the proposed method for slabs with 

effective depths (d) of 120 mm and 240 mm with hogging flexural reinforcement ratios (ρhog) of 0.75% 

and 1.50%. The following parameters were used for all slabs: square column with side length of 2d; fc’ 

= 30 MPa, fy = 460 MPa, dg =16 mm and slab span, L = 35d. In all cases, the sagging reinforcement ratio 

was taken as half of the hogging reinforcement ratio (ρsag = 0.5ρhog) as adopted by Drakatos [37]. The 

practical GSR range was chosen to represent flat slabs without shear reinforcement designed to ACI 

318-14 with gravity load equal to full dead load plus 25% live load. Predictions from other analytical 

methods [6, 7] and other empirically-based models [2, 3, 5] are also shown in Figure 15. To ensure a 

consistent comparison with the drift limits of the empirical models, drift calculated with all analytical 

methods was estimated as ψscc/0.85 to account for the contribution of the slab outside rs = 0.22L. Figures 

17(c) and (d) also include measured failure drifts and ATENA predictions for relevant specimens of 

Drakatos et al. [10] (see Table 1).   

The analytical design methods in Figure 17(a) typically give slightly greater limiting drifts than the 

empirical design methods for slabs with d = 120 mm and ρhog = 0.75%. The situation is reversed in 

Figure 17(b) for slabs with the same effective depth but ρhog = 1.5% since the analytical models predict 

shear stress to increase with ρhog at any given drift. However, overall agreement is reasonable between 

the analytical and empirical methods in Figures 17(a) and (b). This is unsurprising since the considered 

slabs are representative of those in the databases used to calibrate the empirical models. Figures 17(c) 

and 17(d) show that for slabs with d = 240 mm, all the considered analytical methods predict lower 



ultimate drifts than the empirical models. This is explained by the “size effect” phenomenon whereby 

slabs with larger effective depths experience larger crack width openings for the same drift causing 

failure to occur at lower drift (more brittle). The ATENA predictions in Figures 17(c) and 17(d) for 

slabs PD6, PD8 and PD13 are also consistent with the CSCT based predictions. The analytical and 

NLFEA results suggest that “extrapolating” the empirical methods beyond the test data used in their 

calibration may lead to unsafe results. However, it should be noted that ACI 318-14 gives reasonable 

drift predictions for the relatively thick (250 mm) slabs of Drakatos et al. [10] with GSR in the practical 

range for slabs without shear reinforcement. This arises since ACI 318-14 provides a lower bound to 

the test data on which it is based. Consequently, the level of accuracy of ACI 318-14 is very variable as 

shown in Figure 16(c). Adopting a mechanically based model leads to more consistent, and accurate, 

drift predictions as shown in Figure 16. The proposed method has the advantage of predicting both 

peak moment and ψscc peak with reasonable accuracy while being considerably simpler than the sector 

model of Drakatos et al. [7]. 

Figure 17. Code like curves produced by various approaches for slabs with: (a) d = 120 mm, 

ρhog = 0.75%; (b) d = 120 mm, ρhog = 1.50%; (c) d = 240 mm, ρhog = 0.75%; (d) d = 240 mm, ρhog = 

1.50% 

 

 

(b) 

(c) (d) 

(a) 



6 Conclusions 

This paper considers the assessment of internal slab-column connections without shear reinforcement 

subject to cyclic loading. Initially, behaviour is assessed using NLFEA with ATENA which is shown 

to be capable of broadly capturing the backbone response of internal slab-column connections subject 

to cyclic loading. Cyclic degradation and local behaviour such as sector-slab rotations, crack patterns, 

and flexural rebar strain were also reproduced accurately. As observed experimentally, cyclic 

degradation in the NLFEA is shown to be associated with accumulation of plastic strain in the flexural 

reinforcement close to the column [17]. Although a useful tool for investigating mechanisms of 

punching failure, NLFEA with solid elements is much too time consuming and complex for practical 

design and assessment. Consequently, an analytical method based on the CSCT was developed for 

predicting the peak unbalanced moment and corresponding drift. The basic control perimeter is reduced 

by a multiple 𝑘𝑒𝑚𝑜𝑑
 to account for eccentric shear. The coefficient 𝑘𝑒𝑚𝑜𝑑

 is related to ke in MC2010 

but also accounts for slab slenderness and column size. In addition, a simple moment-ψscc relationship 

was developed based on a modification to LoA II in MC2010. The main simplification of the proposed 

method is that it separates the calculation of shear resistance and shear demand which negates the need 

to explicitly consider equilibrium of individual sector elements as done by Drakatos et al. [7]. The model 

was used to predict the peak moment and corresponding drift of 50 cyclically loaded internal slab-

column connections without shear reinforcement. The proposed method is shown to produce safe results 

with less scatter than available empirically-based models. Comparisons of the proposed method with 

the related but much more complex model of Drakatos et al. [7] show that the accuracy of both methods 

is comparable. The simpler formulation of the proposed method makes it attractive as a practical design 

tool. 

Code-like curves relating the GSR to the lateral drift limit were produced using the proposed analytical 

method for slabs with two different effective depths. The resulting design curves suggest that available 

empirical-models, including the seismic provisions of ACI 318-14 section 18.14.5.1, may be unsafe for 

slabs with large effective depths or large hogging reinforcement ratios. This is in agreement with 

previous findings [6, 7] and has concerning implications for the safety of seismically loaded flat slabs 

designed to ACI 318-14. Further experimental studies are required to confirm the prediction of the 

analytical model. 
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APPENDIX A  

 

Table A1. Details of slab geometry and material properties for cyclic assessment 

 

No

. 
Source Specimen 

Gravity 

load 

applied to 

GSR 

(ACI 

318-14) 

Specimen geometry and loading parameter Drift or 

ψscc (%) 

if 

known 

Unbalance

d moment 

(kN.m) 

c 

(mm) 

h 

(mm) 

d 

(mm) 

Slab 

width 

(mm) 

rs (mm) fc' 

(MPa

) 

dg 

(mm) 

fy 

(MPa

) 

ρtop 

(%) 

ρbot 

(%) 

1 

[10] 

PD2 

Other† 

0.778 390 250 198.0 3000 1500.0 36.9 16 558 1.13* 0.66* 0.36 196.00 

2 PD6 0.535 390 250 199.0 3000 1500.0 38.3 16 507 1.16* 0.65* 0.86 372.00 

3 PD8 0.424 390 250 198.0 3000 1500.0 32.7 16 575 1.12* 0.60* 1.30 384.00 

4 PD11 0.833 390 250 196.0 3000 1500.0 33.1 16 593 1.91* 1.02* 0.43 286.00 

5 PD13 0.559 390 250 196.0 3000 1500.0 36.5 16 546 1.94* 1.05* 0.86 410.00 

6 [11] L0.5 Column 0.230 406 152 127.0 3657 1828.5 25.6 10 469 0.50 0.30 2.00 128.00 

7 

[22] 

CD1 

Column 

0.843 250 150 115.0 1900 950.0 40.4 20 395 1.34 0.45 0.87 50.00 

8 CD5 0.640 250 150 115.0 1900 950.0 31.2 20 395 1.34 0.45 1.22 70.50 

9 CD8 0.510 250 150 116.0 1900 950.0 27.0 20 395 1.34 0.45 1.39 84.60 

10 [23] Control 
Column + 

slab** 
0.299 300 150 130.0 2800 616.0 34.3 25 392 0.90 0.25 4.44 111.57 

11 [24] SPB Slab 0.250 355 152 106.0 4200 924.0 34.1 16 440 1.40 0.25 3.69 150.00 

12 

[25] 

S1 

Column 

0.300 300 120 90.0 2400 1200.0 33.5 16 458 1.00 0.50 3.00 83.10 

13 S2 0.500 300 120 90.0 2400 1200.0 41.3 16 458 1.00 0.50 3.00 74.80 

14 S3 0.300 300 120 90.0 2400 1200.0 37.8 16 458 1.50 0.75 3.00 121.50 

15 [26] IP3C Column 0.246 200 89 70.0 2240 1120.0 29.7 6 316 0.83 0.43 3.62 35.80 

16 [27] C0 Column 0.302 254 150 130.0 2896 1447.8 38.6 10 452 0.52 0.20 2.80 111.56 

17 

[28] 

H9 

Column 

0.313 200 100 80.0 1800 900.0 22.8 10 361 0.70 0.70 2.00 33.00 

18 H10 0.324 200 100 80.0 1800 900.0 22.8 10 361 1.12 1.12 2.00 36.10 

19 H11 0.639 200 100 80.0 1800 900.0 23.2 10 361 1.12 1.12 1.00 25.20 



20 
[29] 

S4 
Slab 

0.081 305 76 61.0 1829 402.4 34.9 10 320 0.98 0.98 4.50 35.50 

21 S5 0.159 305 76 62.0 1829 402.4 35.2 10 340 0.98 0.98 4.80 37.50 

22 
[30] 

AP1 
Column + 

slab** 
0.351 274 122 101.0 3660 805.2 33.3 25 472 0.76 0.25 1.60 52.06 

23 AP3 Column 0.220 274 122 101.0 3660 1830.0 31.4 25 472 0.76 0.25 3.17 86.77 

24 
[31] 

RCA 
Column 

0.442 300 135 114.0 2700 1350.0 22.5 10 430 1.06 0.79 1.34 70.70 

25 RCB 0.406 300 135 114.0 2700 1350.0 38.7 10 430 1.06 0.79 1.44 81.25 

26 [32] RI-50 
Column + 

slab** 
0.370 300 132 102.0 3400 1700.0 32.3 16 392 0.64 0.27 3.44 91.64 

27 

[33] 

ND1C 

Slab 

0.237 254 114 100.0 2743 603.5 29.6 10 441 0.53 0.36 3.00 42.39 

28 ND4LL 0.348 254 114 100.0 2743 603.5 32.3 10 441 0.53 0.36 3.00 44.45 

29 ND5XL 0.452 254 114 100.0 2743 603.5 24.1 10 441 0.53 0.36 2.00 32.52 

30 ND6HR 0.278 254 114 100.0 2743 603.5 26.3 10 441 0.93 0.67 3.00 58.58 

31 ND7LR 0.335 254 114 100.0 2743 603.5 18.8 10 441 0.39 0.36 3.00 29.91 

32 [34] 1C Slab 0.247 250 115 96.0 2743 603.5 35.4 10 420 0.70 0.42 3.50 58.30 

33 [35] C-02 Column 0.381 305 115 82.3 2440 1220.0 30.9 19 454 1.42 0.51 2.44 44.61 

34 [36] INT Slab 0.302 137 61 51.5 1828 402.2 26.2 10 434 0.80 0.34 3.81 10.27 

35 

[38] 

C-30 

Other† 

0.278 250 150 118.0 4150 913.0 66.5 16 526 0.96 0.67 2.00 121.60 

36 C-40 0.392 250 150 119.0 4150 913.0 53.1 16 526 0.96 0.67 1.50 102.80 

37 C-50 0.485 250 150 118.0 4150 913.0 52.4 16 526 0.96 0.67 1.10 74.80 

38 

[39] 

H.H.H.C.0.5 

Column 

0.245 250 150 119.0 1870 935.0 75.8 19 460 0.50 0.26 3.95 134.47 

39 H.H.H.C.1.0 0.251 250 150 119.0 1870 935.0 72.3 19 460 1.00 0.26 3.56 162.97 

40 N.H.H.C.0.5 0.352 250 150 119.0 1870 935.0 36.8 19 460 0.50 0.26 3.43 100.48 

41 N.H.H.C.1.0 0.359 250 150 119.0 1870 935.0 35.4 19 460 1.00 0.26 2.45 127.24 

42 

[40] 

HSLW0.5C 

Column 

0.255 250 150 119.0 1870 935.0 70.0 19 460 0.50 0.26 4.70 135.80 

43 HSLW1.0C 0.255 250 150 119.0 1870 935.0 70.0 19 460 1.00 0.26 3.20 174.00 

44 NSLW0.5C 0.361 250 150 119.0 1870 935.0 35.0 19 460 0.50 0.26 4.60 116.20 



45 NSLW1.0C 0.361 250 150 119.0 1870 935.0 35.0 19 460 1.00 0.26 3.30 151.70 

46 NSNW0.5C 0.361 250 150 119.0 1870 935.0 35.0 19 460 0.50 0.26 3.70 132.37 

47 NSNW1.0C 0.361 250 150 119.0 1870 935.0 35.0 19 460 1.00 0.26 3.50 176.40 

48 [41] 8I Slab 0.178 250 114 89.0 2896 637.0 39.3 25 525 0.83 0.36 3.50 60.15 

49 [42] RC1 Column 0.400 300 135 113.5 2700 1350.0 38.7 16 449 1.06 0.79 1.40 80.75 

50 [43] SC0 Slab 0.247 250 114 96.8 2896 637.0 39.3 25 525 0.89 0.32 3.50 62.03 

 

 

 

Notes: 

*  indicates an equivalent amount of flexural reinforcement ratio (considering the additional threaded bars) for CSCT based methods, whereas EC2 calculation used the 

value of ρtop and ρbot as given in Table 1 

**  for test setup with gravity load applied partly through the column and to the slab, the rs value chosen is either 0.22L or 0.5L which gives most accurate moment-rotation 

response compared to the measured data 

† test setup with unusual boundary conditions: 

a) Drakatos et al.  : gravity load is applied through steel plate at 0.22L and unbalanced moment is applied through steel arm at 0.5L 

b) Almeida et al.  : gravity load is applied through steel plate at 0.22L, unbalanced moment applied through the column while allowing equal rotation and   

  vertical displacement at both slab edges (allowing the movement of the zero radial moment line)  



Table A2. Summary of measured to predicted unbalanced moment from slab database 

 

No Source Specimen GSR 

Measured 

peak 

unbalanced 

moment 

(kN.m) 

Measured/Predicted Peak unbalanced moment 

ACI 318-14 EC2 

CSCT with 

original ke 

formulation 

Proposed 

method 

Drakatos et 

al. method 

1 

[10] 

PD2 0.78 196.00 1.861 1.787 1.568 1.524 1.179 

2 PD6 0.53 372.00 1.637 1.375 1.380 1.342 1.116 

3 PD8 0.42 384.00 1.489 1.168 1.193 1.159 1.155 

4 PD11 0.83 286.00 3.874 1.277 1.365 1.321 1.287 

5 PD13 0.56 410.00 2.001 1.036 1.112 1.076 1.111 

6 [11] L0.5 0.23 128.00 0.808 0.998 1.418 1.222 0.989 

7 

[22] 

CD1 0.84 50.00 2.878 1.472 1.170 1.127 0.843 

8 CD5 0.64 70.50 2.008 1.137 1.032 0.993 0.803 

9 CD8 0.51 84.60 1.877 1.084 1.024 0.986 0.953 

10 [23] Control 0.30 111.57 0.994 0.823 0.849 1.080 1.139 

11 [24] SPB 0.25 150.00 1.350 1.145 1.132 1.274 1.574 

12 

[25] 

S1 0.30 83.10 1.331 1.322 1.239 1.114 1.086 

13 S2 0.50 74.80 1.511 1.744 1.741 1.568 1.184 

14 S3 0.30 121.50 1.832 1.537 1.371 1.226 1.358 

15 [26] IP3C 0.25 35.80 1.512 1.430 1.507 0.989 1.099 

16 [27] C0 0.30 111.56 1.175 1.179 1.666 1.338 1.029 

17 

[28] 

H9 0.31 33.00 1.414 1.267 1.297 1.007 0.984 

18 H10 0.32 36.10 1.572 1.119 1.079 0.929 0.964 

19 H11 0.64 25.20 2.039 1.346 1.332 1.147 0.891 

20 [29] S4 0.08 35.50 0.790 0.851 0.981 1.081 1.288 



21 S5 0.16 37.50 0.890 0.975 1.106 1.243 1.344 

22 
[30] 

AP1 0.35 52.06 0.866 0.878 0.763 0.750 0.743 

23 AP3 0.22 86.77 1.236 1.186 1.033 0.718 0.807 

24 
[31] 

RCA 0.44 70.70 1.208 0.898 1.039 0.896 0.800 

25 RCB 0.41 81.25 0.994 0.865 1.031 0.893 0.743 

26 [32] RI-50 0.37 91.64 1.376 1.639 2.041 1.282 1.368 

27 

[33] 

ND1C 0.24 42.39 0.719 0.775 0.927 0.944 0.946 

28 ND4LL 0.35 44.45 0.845 0.996 1.189 1.108 1.154 

29 ND5XL 0.45 32.52 0.852 0.990 1.125 1.116 1.002 

30 ND6HR 0.28 58.58 1.114 0.906 0.980 1.189 1.190 

31 ND7LR 0.33 29.91 0.730 0.871 1.060 0.960 1.038 

32 [34] 1C 0.25 58.30 0.999 1.005 1.147 1.223 1.173 

33 [35] C-02 0.38 44.61 0.935 0.819 0.692 0.612 0.602 

34 [36] INT 0.30 10.27 1.388 1.252 1.027 0.971 1.095 

35 

[38] 

C-30 0.28 121.60 1.134 1.007 1.040 1.029 1.043 

36 C-40 0.39 102.80 1.257 1.073 1.083 1.072 0.981 

37 C-50 0.49 74.80 1.102 0.967 0.953 0.943 0.767 

38 

[39] 

H.H.H.C.0.5 0.25 134.47 1.108 1.374 1.638 1.067 1.677 

39 H.H.H.C.1.0 0.25 162.97 1.385 1.216 1.246 1.219 1.359 

40 N.H.H.C.0.5 0.35 100.48 1.385 1.529 1.681 1.279 1.412 

41 N.H.H.C.1.0 0.36 127.24 1.807 1.347 1.319 1.288 1.355 

42 

[40] 

HSLW0.5C 0.26 135.80 1.180 1.445 1.707 1.128 1.714 

43 HSLW1.0C 0.26 174.00 1.512 1.318 1.347 1.318 1.473 

44 NSLW0.5C 0.36 116.20 1.664 1.821 1.991 1.535 1.639 

45 NSLW1.0C 0.36 151.70 2.172 1.614 1.580 1.543 1.623 

46 NSNW0.5C 0.36 132.37 1.895 2.075 2.268 1.749 1.867 

47 NSNW1.0C 0.36 176.40 2.526 1.877 1.837 1.795 1.889 



48 [41] 8I 0.18 60.15 1.010 0.990 0.861 0.998 1.035 

49 [42] RC1 0.40 80.75 0.985 0.859 0.882 0.761 0.660 

50 [43] SC0 0.25 62.03 0.997 0.915 0.796 0.934 0.985 

Mean 1.424 1.212 1.257 1.141 1.150 

St Dev 0.583 0.312 0.345 0.243 0.303 

COV 0.410 0.258 0.274 0.213 0.263 

  



Table A3. Summary of measured to predicted drift or ψscc from slab database 

 

No Source Specimen GSR Measured drift or ψscc (%) 

Measured/Predicted drift or ψscc (%) at peak unbalanced moment 

ACI 318-

14 

Megally 

and Ghali 

Hueste and 

Wight 

CSCT with 

original ke 

formulation 

Proposed 

method 

Drakatos 

et al. 

method 

1 

[10] 

PD2 0.778 0.36* 0.720 0.487 0.414 0.973 0.946 1.248 

2 PD6 0.535 0.86* 1.040 0.767 0.674 1.375 1.342 1.358 

3 PD8 0.424 1.30* 0.941 0.896 0.890 1.737 1.661 1.596 

4 PD11 0.833 0.43* 0.860 0.628 0.553 1.305 1.264 1.627 

5 PD13 0.559 0.86* 1.218 0.806 0.696 1.841 1.760 1.638 

6 [11] L0.5 0.230 2.00 0.851 0.699 0.552 0.986 0.802 0.774 

7 

[22] 

CD1 0.843 0.87 1.748 1.293 1.148 1.381 1.331 1.303 

8 CD5 0.640 1.22 2.430 1.323 1.104 1.490 1.444 1.493 

9 CD8 0.510 1.39 1.466 1.179 1.058 1.226 1.137 1.340 

10 [23] Control† 0.299 4.44 2.212 2.074 1.604 2.181 2.611 2.368 

11 [24] SPB† 0.250 3.69 1.640 1.416 1.093 1.336 1.425 1.331 

12 

[25] 

S1 0.300 3.00 1.501 1.410 1.092 1.207 1.010 1.052 

13 S2 0.500 3.00 3.001 2.485 2.250 1.783 1.614 1.450 

14 S3 0.300 3.00 1.500 1.409 1.091 1.364 1.130 1.127 

15 [26] IP3C 0.246 3.62 1.596 1.367 1.059 1.631 0.812 0.979 

16 [27] C0 0.302 2.80 1.408 1.326 1.029 2.074 1.532 1.468 

17 

[28] 

H9 0.313 2.00 1.032 0.983 0.771 1.195 0.858 0.799 

18 H10 0.324 2.00 1.063 1.023 0.816 1.593 1.297 1.042 

19 H11 0.639 1.00 2.000 1.088 0.908 1.075 0.932 0.916 

20 
[29] 

S4† 0.081 4.50 1.455 0.496 0.821 0.978 1.094 0.801 

21 S5† 0.159 4.80 1.774 1.114 1.063 1.119 1.266 1.063 



22 
[30] 

AP1† 0.351 1.60 0.918 0.895 0.758 0.495 0.490 0.577 

23 AP3 0.220 3.17 1.320 1.056 0.845 0.936 0.548 0.654 

24 
[31] 

RCA 0.442 1.34 1.040 0.968 0.937 1.417 1.220 1.195 

25 RCB 0.406 1.44 0.980 0.947 0.967 1.274 1.114 1.101 

26 [32] RI-50† 0.370 3.44 2.086 2.040 1.836 1.793 1.168 1.197 

27 

[33] 

ND1C† 0.237 3.00 1.295 1.084 0.847 1.085 1.099 1.112 

28 ND4LL† 0.348 3.00 1.705 1.663 1.397 1.391 1.254 1.293 

29 ND5XL† 0.452 2.00 1.615 1.482 1.416 1.272 1.260 1.168 

30 ND6HR† 0.278 3.00 1.421 1.293 0.990 1.522 2.048 1.913 

31 ND7LR† 0.335 3.00 1.643 1.591 1.295 1.433 1.254 1.239 

32 [34] 1C† 0.247 3.50 1.544 1.323 1.024 1.336 1.398 1.412 

33 [35] C-02 0.381 2.44 1.530 1.494 1.404 1.064 0.844 0.987 

34 [36] INT† 0.302 3.81 1.911 1.800 1.396 1.245 1.198 1.212 

35 

[38] 

C-30 0.278 2.00 0.948 0.864 0.661 1.071 1.053 0.929 

36 C-40 0.392 1.50 0.975 0.949 0.940 1.115 1.099 1.085 

37 C-50 0.485 1.10 1.025 0.881 0.810 0.969 0.957 0.963 

38 

[39] 

H.H.H.C.0.5 0.245 3.95* 1.737 1.484 1.150 1.220 0.811 0.852 

39 H.H.H.C.1.0 0.251 3.56* 1.586 1.372 1.059 1.326 1.310 1.255 

40 N.H.H.C.0.5 0.352 3.43* 1.972 1.925 1.635 1.726 1.116 1.253 

41 N.H.H.C.1.0 0.359 2.45* 1.437 1.405 1.217 1.036 1.026 1.474 

42 

[40] 

HSLW0.5C 0.255 4.70* 2.113 1.845 1.420 1.528 0.999 1.091 

43 HSLW1.0C 0.255 3.20* 1.439 1.256 0.967 1.200 1.185 1.153 

44 NSLW0.5C 0.361 4.60* 2.713 2.653 2.313 2.395 1.588 1.673 

45 NSLW1.0C 0.361 3.30* 1.946 1.903 1.659 1.398 1.384 1.977 

46 NSNW0.5C 0.361 3.70* 2.182 2.134 1.860 1.926 1.277 1.346 

47 NSNW1.0C 0.361 3.50* 2.064 2.018 1.760 1.483 1.468 2.096 

48 [41] 8I† 0.178 3.50 1.342 0.922 0.819 1.005 1.120 0.956 



49 [42] RC1 0.400 1.40 0.933 0.905 0.933 1.085 0.911 0.865 

50 [43] SC0† 0.247 3.50 1.547 1.328 1.027 1.166 1.296 1.186 

Mean (without 0.22L slab contribution) 1.528 1.315 1.121 1.355 1.215 1.240 

Standard Deviation (without 0.22L slab contribution) 0.495 0.483 0.405 0.350 0.349 0.355 

Coefficient of Variation (COV) (without 0.22L slab contribution) 0.324 0.367 0.362 0.258 0.287 0.287 

       Mean (with 0.22L slab contribution) 1.528 1.315 1.121 1.297 1.155 1.183 

Standard Deviation (with 0.22L slab contribution) 0.495 0.483 0.405 0.356 0.315 0.343 

Coefficient of Variation (COV) (with 0.22L slab contribution) 0.324 0.367 0.362 0.274 0.273 0.290 

 

Notes: 

*  indicates specimen where ψscc is measured from experimental test 

†  indicates specimen where drift is calculated as ψscc/0.85 to consider the contribution of slab rotation outside 0.22L for CSCT based methods  

    

 

 


