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Abstract

Autonomous self-organising systems have gained much attention to manage complex

tasks without any human interaction. Similarly, simpler systems are also required for

the applications of Internet of Things, such as smart home services, wearables, smart

cities and connected health systems. These simpler systems provide autonomous stand-

alone devices for remote sensing, processing and transmission of information. However,

such devices may not have a reliable connections to power mains or may not be conve-

nient for regular battery replacements. Therefore, local energy capturing from ambient

intermittent sources such as vibration, electromagnetic waves, heat or light through har-

vesting could be of great interest for such devices.

This thesis researches mathematical modelling and performance analysis of such au-

tonomous digital devices operating with energy harvesting from intermittent sources.

The approach used in this research is based on the Energy Packet Network paradigm

where the arrivals of data and energy at devices are considered as discrete random pro-

cesses. The devices operate by consuming harvested energy in a discrete manner in order

to process, store and transmit data (wired or wireless) in a negligible time interval, such

that the operation or the workload of the devices is also modelled as a discrete random

process.

Probability models based on random walks and Markov chains are investigated in this

study to predict effective rates at which such devices operate well for different energy

consumption scenarios, and to obtain closed-form formulas for stationary probability dis-

tributions and to make further analysis on the other quantities of interest. Consequently,

a “product form solution” of a cascade network of N nodes where state transitions involve

simultaneous state changes in multiple nodes, due to data packets that flow through sev-

eral nodes consuming energy packets is proposed. A modelling approach to evaluate the

effect of several battery attacks on such devices is studied. Finally, optimum placement

of wireless nodes into a region where there is a spatial continuous distribution of en-

ergy and data traffic is presented for different transmission schemes, and optimisation

objectives.
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Chapter 1

Introduction

1.1 Introduction

The energy needs of devices in the wired backbone of mobile networks, the Internet, and

the Internet of Things (IoT) [1–3], together with the need to power them even when they

are not plugged into permanent electricity sources [4], and the inconvenience of changing

batteries, has motivated research into systems which are powered with harvested energy

sources [5, 6]. Efficient analytical techniques to analyse the behaviour of multiple inter-

connected units, provided each unit operates with unlimited energy, have been available

since the mid-sixties thanks to Jackson’s Theorem [7] and its generalisations [8]. How-

ever, a new and major challenge is to model systems with intermittent sources of energy,

since energy flow is random and not always available. Consequently, the processing of

jobs or forwarding of data packets (DPs) is interrupted when energy is not available at a

unit. While DPs and jobs are represented as discrete entities, it is convenient to model

the flow of energy in terms of discrete energy packets (EPs). Moreover, a battery can be

viewed as a “buffer or queue” of EPs.

As harvested energy is generally intermittent, the Quality of Service (QoS) of systems

that operate with harvested energy will critically depend on the releationship between

the amount of energy that is harvested and stored in each device, and the workload

or traffic that the device processes or forwards [9, 10]. In these systems, mathematical

performance models are needed to combine the effect of both the arrival of energy (EPs)

and the flow of DPs when the service units are network nodes, or jobs when the service

units are computer servers. Advancement in such analytical models has always progressed

in steps. Moreover, the general results in Jackson’s Theorem [7] were preceded by an

earlier solution technique that only considered tandem queuing systems [11]. These

earlier models did not consider the issue of intermittent energy sources. Models in which

13



Introduction 14

work is conducted in parallel sub-systems and then synchronised [12–14], as well as Petri

Nets with synchronisation constraints [15] have also been considered. In [16] a PFS was

proven for the flow of work and of control signals in a system of interconnected service

units. This was subsequently extended to Petri Nets in [17]. In addition, these techniques

have been used to model Gene Regulatory Networks [18] and Cloud Computing systems

[19].

The term IoT was first proposed in late-nineties by indicating its usage for determining

the characteristics of objects. In the first stage of IoT, people believed IoT only stood

on the radio frequency identification devices (RFID) to understand the interconnection

of objects [20]. Later, Melon Steven stated that IoT devices with RFID bring computers

autonomous ability of identification, tracking, monitoring and managing [21]. However,

the first formal concept of IoT was only mentioned in 2005 by International Telecommu-

nication Union. According to the Union, the IoT concept demonstrates the interaction of

people and things by communicating over short-distance mobile transceivers. Although

there is still no standard definition of IoT, it can be considered as a focus on object

identification and interconnection, as well as the communication network [22].

Over the last few years much work has been carried out into IoT [23–25]. This is be-

cause it is a promising paradigm of wired and wireless communication systems, as well as

the identification, tracking and monitoring technologies, and smart distributed network

devices. IoT has been providing significant contributions to develop self-organised or au-

tonomic industrial systems and applications by improving radio frequency identification

and wireless sensor network (WSN) [1]. The core concept of IoT is that there are ob-

jects with identifying, sensing, processing, and networking potentials that allows them to

communicate with other devices and services over the internet for providing convenient

objectives [2]. The usage of IoT has increased and has spread over several areas including

[26]: environmental monitoring (water quality, atmospheric and soil conditions) [27, 28],

infrastructure management (monitoring bridges, railway tracks) [24], manufacturing (real

time optimisation, dynamic response) [29, 30], agriculture (monitoring temperature, hu-

midity, rainfall) [31], energy management (changing lighting conditions) [32], medical

and healthcare (wearable heart monitors) [33], and transportation (smart traffic control)

[34]. According to CISCO, there will be 50 billion IoT devices all over the world by 2020,

compared to 0.5 billion in 2003 [3].

WSNs are one of the fundamental parts of IoT and play several crucial roles for many

IoT applications. WSNs are composed of several wireless sensor nodes cooperatively

communicating with each other by passing data through the network. Thus, a user can

monitor physical or environmental information via internet or mobile communication

systems. WSNs exhibit some differences from traditional networks with respect to source
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and design needs. Source needs can be considered as communication range, amount of

energy, limited storages or buffers and limited processing mechanism for each node.

Design needs basically depend on the application and the environment within which the

WSN is used. The environment is also one of the most important parameters in order to

determine the size of WSNs and the network topology. For example, while a few nodes

could be enough for indoor environments, much more nodes could be needed for outdoor

environments to provide reliable operation.

There exist several different types of sensors that are able to sense a wide variety of

conditions such as noise level, humidity, temperature, pressure and movement [35]. This

variety results in several application areas for WSNs such as military applications (in-

telligence, surveillance, targeting) [36], environmental applications (animal monitoring,

forest fire detection, flood detection) [37–39], health applications (drug administrations)

[40, 41], and home applications (home automation) [42]. Moreover, it results in an in-

creasing number of wireless sensing points all over the world. This was 4 million in 2011

and would be expected as more than 25 million in 2018 [43]. In addition, the WSN

market is expected to increase from 0.5 billion in 2012 to 2 billion in 2022 [44].

However, finite battery capacity is a major limitation for WSNs, as sensor nodes are only

able to operate as long as there is an unfinished battery [45, 46]. Battery depletion results

in interruption of applications and requires the regular change of batteries or connection

to the mains. The use of large batteries for longer life-times can be seen as a solution;

however, it will lead to increased size, weight and cost. In order to achieve a longer

operation life-time of battery-powered sensors, some techniques have been developed such

as energy-aware MAC protocols [47], power aware storage protocols [48], and adaptive

sensing rate [49]. These techniques try to optimise energy usage or maximise life-time of a

sensor, but they are not a complete solution for finite operation time. Energy harvesting

is an alternative technique that avoids inconvenient and costly services and addresses

the problem of finite operation time of a sensor node [5, 6, 50].

Energy harvesting is the process by which energy is harvested from the environment in

the form of solar, thermal, light and magnetic energy. These energies are then converted

into electrical energy. Therefore, energy harvesting is of particular interest for several

applications [51–54], especially remote sensing and security applications [53–55]. Some

recent systems have also been designed to harvest energy from vibrations where the vi-

brations themselves are being sensed [56]. A roadside sensing equipment counts passing

vehicles, and transmits this information by using the harvested energy from the vibra-

tions created by the vehicles. Moreover, when energy is harvested for exploitation and

scheduled for transmission both the harvesting process and the communication needs

must be taken into account [57]. Thus, recent research has addressed new technologies
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based on energy harvesting and on optimisation of harvesting nodes, with the aim of

minimising energy consumption for a given communication task [58, 59].

Several authors have proposed dynamic control policies for traffic flow in networks with

energy harvesting nodes. For example, a mobile base station with a single rechargeable

battery has been considered and dynamic policies were studied to share power from the

same battery in discrete successive time slots to distinct channels having different traffic

rates [60]. Here the power allocation affects the actual transmitted data rate and the

overall performance metric to be optimised was found to be a function of these effective

data rates. In other work, a control theoretic approach was developed to manage the

flow of packets [61]. This was based on the full knowledge of the topology of a multihop

wireless network that does not vary over time. It also assumed that the traffic flows were

not affected by interference or noise. In addition, this work assumed that the amount of

energy and data packets in all nodes was known, that the arrival processes of data and

energy were time-independent (stationary), and that the information about the backlog

of data in a node could be shared with nodes upstream by creating back pressure. In

reference [62], discrete time control models were introduced to maximise the amount of

data sensed and forwarded by a sensor network. The used energy was harvested and

dynamically allocated to forwarding the data, assuming that the data-forwarding rate

depends on the allocated power.

The link between system workload and energy has been recently analysed in [63]. The

availability of harvested and stored energy was represented together with the queue length

of DPs in a single node (N = 1) system. In this approach energy was discretised in EPs,

so that the amount of energy stored in the node’s battery was represented as a discrete

number of EPs. Thus in the “Energy Packet Network” (EPN) abstraction, a battery is

seen as a “buffer queue” for energy, and a network node is represented by two coupled

queues, one for DPs and the other for EPs. This approach has been generalised to systems

with finite DP and EP storage [64], while a two hop (N = 2) feed-forward network has

been also studied in [65]. An additional approach uses the theory of G-Networks to

model the flow of energy as the enabler of service being rendered at a Cloud server [19].

The throughput and power consumption in EPs/sec for a single node with transmission

errors due to noise and interference, was derived when multiple EPs were needed to

transmit a single DP has been considered in [66]. Other work [67, 68] addressed a single

node that consumes energy both for data transmission and for processing jobs.
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1.2 Thesis Contribution

In this thesis, a model for energy harvesting sensor nodes where a DP can be successfully

transmitted by consuming EPs has been assumed. The number of EPs consumed for

DP transmission may vary according to transmission power level needed for successful

communication. We first assume data transmission occurs via a perfect transmitter.

In a perfect transmitter, there is no energy waste for node electronics and energy is

only consumed to transmit DPs. The state transition behaviour of the models can be

represented by random walks and Markov chains. Closed-form formulas for the stationary

probability distributions and the other quantities of interests have been obtained. Next,

more realistic scenarios assuming the occurrence of DP transmissions via an imperfect

transmitter have been investigated. In an imperfect transmitter, energy is consumed not

only for DP transmission but also for node electronics such as DP receiving, processing

and storing in the node. Different solution methods using linear algebra techniques

have been proposed to obtain stationary probability distributions and other quantities.

Alternatively, a network model of sensors has been studied, where a cascade connection

of nodes with intermittent sources exhibiting a product form solution under certain

assumptions. Also, simple battery depletion attacks have been modelled and their effects

on the sensor life-time analysed. Finally, optimum sensor placement in an area where a

spatial continuous distribution of energy and density of data traffic has been studied.

1.2.1 Summary of Contributions

The contributions of this thesis can be divided into the following categories: (a) packet

transmission via perfect and imperfect transmitter, (b) product-form solution of cascade

networks, (c) energy life-time of wireless nodes under energy depletion attacks, and (d)

optimum sensor placement in an area where spatial data and energy arrivals exist.

(a) Packet transmission via perfect and imperfect transmitter

(i) Developed a mathematical model for both perfect and imperfect transmitters

where data transmission occurs by consuming either a single EP or several (K)

EPs. Thus, four different system models have been considered for analysis.

(ii) Obtained the closed-form solutions for stationary probability distributions by

using random walk and Markov chain representations. In addition, companion

matrices and linear algebra techniques were used to reduce the computational

complexities.

(iii) Studied data and energy losses due to finite capacity buffers, optimum energy

efficiency of the transmission and the system stability.
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(iv) Extended the mathematical model to unlimited capacity data and energy

buffers with transmission errors and re-obtained closed-form solutions for

steady state distributions.

(v) Analysed the transmission errors and linked them to the system parameters

for negligible data and energy leakage rates.

(vi) Modelled to noise and interference, and presented several numerical examples

to understand effects of system parameters on transmission.

(b) Product-form solution of cascade networks

(i) Developed a mathematical model for a cascaded N -hop model assuming data

transmission can occur with a single EP via perfect transmitter.

(ii) Obtained a product-form solution for the network under some equilibrium

conditions on energy and data flows, and the other system transitions rates.

(iii) Studied the backlog of DPs and showed some numerical examples illustrating

the effects of network size and the other parameters on the average waiting

time.

(c) Energy life-time of wireless nodes under energy depletion attacks

(i) Developed a model to evaluate the effect of energy attacks on battery life-time

of nodes for both renewable and replaceable batteries.

(ii) Studied two different types of simple energy attacks: the attacks considered

are those that force the node to transmit additional traffic, and those that

create electromagnetic noise that induces errors and hence packet retransmis-

sions.

(iii) Proposed a method to mitigate against attacks that imposes a forced loss on

incoming traffic, so that the total arrival rate of data packets cannot exceed

some value, which may be selected in order that the average energy life-time

has a pre-specified life-time value.

(d) Optimum sensor placement

(i) Studied a model where sensor nodes can directly communicate with the base-

station or cluster head, and optimum placement of sensors to provide full area

coverage while minimising the backlog of DPs.

(ii) Studied a multi-hop communication model and optimum node placement to

maximise the throughput.
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1.3 Thesis Outline

This thesis is organised as follows. In Chapter 2, the background provides the basic

information related to queuing theory and networks, and reviews work related to energy

packet networks and energy networks. In Chapter 3, a model and study for a perfect

transmitter is presented. In Chapter 4, the model is investigated for an imperfect trans-

mitter and an alternative solution is provided. In Chapter 5, a network model in which

several nodes are cascaded to each other is analysed and a product form solution ob-

tained. In Chapter 6, energy depletion attacks have been modelled for wireless nodes and

their effects on battery life-time are presented. In Chapter 7, optimum sensor placement,

for single and multi-hop communication with different optimisation objectives are stud-

ied. Chapter 8 provides a summary of the results and points out some future research

directions. In addition, Appendix A and Appendix B provides the proof of theorems

stated in Chapter 5 and Chapter 7, respectively.

1.4 Publications

• E. Gelenbe and Y.-M. Kadioglu. "Energy loss through standby and leakage in

energy harvesting wireless sensors." In Computer Aided Modelling and Design of

Communication Links and Networks (CAMAD), 2015 IEEE 20th International

Workshop on, pp. 231-236. IEEE, 2015, [69].

• E. Gelenbe and Y.-M. Kadioglu. "Performance of an autonomous energy harvesting

wireless sensor." In Information Sciences and Systems 2015, pp. 35-43. Springer,

Cham, 2016, [70].

– [69, 70] present a performance model for the energy harvesting wireless sensor

nodes in which data and energy are collected as discrete packet forms. The

harvested energy can be stored in a battery or a capacitor, and it is consumed

for data transmission. Energy will leak from the energy storage in the standby

mode. In addition, there will be energy overflows due to the finite capacity of

the energy storage unit. Thus, these papers propose a mathematical model to

analyse the performance of such systems in the presence of a random source

of energy as well as a random source of data by using Markov chain represen-

tation. The equilibrium between random energy, random data and random

energy leakage results in an interesting performance analysis of these small

but ubiquitous systems as a whole. A discussion is also provided about an

infinite capacity model which operates in the presence of transmission errors
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due to channel noise and interference. The material from these papers appears

in Section 3.2.

• Y.-M. Kadioglu and E. Gelenbe. "Packet transmission with K energy packets in

an energy harvesting sensor." In Proceedings of the 2nd International Workshop

on Energy-Aware Simulation, p. 1. ACM, 2016, [66].

– [66] discusses a two-dimensional random walk for modelling a data transmis-

sion system with energy harvesting that represents a remotely operating wire-

less sensor node. If a wireless sensor node gathers enough energy, it transmits

a DP by consuming at least K > 1 EPs. The stationary probability distribu-

tion of this model to compute the performance metrics for a wireless sensor

node with energy harvesting is derived by generalising the previous results (for

the case K = 1) that were obtained in [69, 70]. Then, the probability that a

packet is correctly received by a receiver that operates in the presence of N

identical wireless sensors, each operating at the power level K, is computed

in the presence of noise and of interference. The material from this paper

appears in Section 3.3.

• Y.-M. Kadioglu. "Energy consumption model for data processing and transmission

in energy harvesting wireless sensors." In International Symposium on Computer

and Information Sciences, pp. 117-125. Springer International Publishing, 2016,

[67].

– [67] studies an energy consumption model for data processing and transmission

in energy harvesting wireless sensors with the Energy Network (EN) paradigm.

A wireless sensor node consumes Ke = 1 EP for the node electronics (data

sensing and processing), and Kt = 1 EP for the data transmission. The

assumption of single EP consumptions results in a one-dimensional random

walk modelling for the system. The stationary probability distributions are

obtained as closed-form solutions, and the other quantities of interest are

studied. The material from this paper appears in Section 4.2.

• Y.-M. Kadioglu and E. Gelenbe. "Wireless sensor with data and Energy Pack-

ets." 2017 IEEE International Conference on Communications Workshops (ICC

Workshops), Paris, pp. 564-569. IEEE, 2017, [68].

– [68] develops a mathematical model to determine the balance between the

energy input and the data sensing in a wireless sensing node by considering

generalised values of Ke > 1 EPs and Kt > 1 EPs. The node’s energy and data

flows are modelled by a two-dimensional random walk which represents the
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backlog of the DPs and EPs. Then, the model is simplified by using companion

matrices and matrix algebra techniques that allow us to obtain a closed-form

solution for the stationary probability distribution. This leads us to compute

important performance measures, including the energy consumption by the

node, and its throughput. The model also evaluates the effect of ambient

noise and the needs for data retransmissions, including for the case where

M sensors operate in proximity and create interference for each other. The

material from this paper appears in Section 4.3.

• Y.-M. Kadioglu. "Finite Capacity Energy Packet Networks." Probability in the

Engineering and Informational Sciences: 1-28, 2017, [64].

– [64] surveys the previous studies related to the Energy Packet Network and

the Energy Network. The material from this paper appears in Chapter 3 and

Chapter 4.

• O.Brun, Y.Yin, Y.-M. Kadioglu, E. Gelenbe. "Deep Learning with Dense Ran-

dom Neural Networks for Detecting Attacks against IoT-connected Home Envi-

ronments" In International Symposium on Computer and Information Sciences,

Security Workshop. Springer International Publishing, 2018, [71].

– [71] analyses the network attacks against IoT gateways and proposes a detec-

tion technique by using a dense random neural network. In this paper, the

identification of the relevant metrics to detect the attacks and the explanation

of how they can be computed from packet captures are presented. No material

from this paper is used in this thesis.

• E. Gelenbe and Y.-M. Kadioglu. "Battery Attacks on Sensors" In International

Symposium on Computer and Information Sciences, Security Workshop. Springer

International Publishing, 2018, [72].

• E. Gelenbe and Y.-M. Kadioglu. "Energy Life-Time of Wireless Nodes with Net-

work Attacks and Mitigation." 2018 IEEE International Conference on Communi-

cations Workshops (ICC Workshops), Kansas City, USA, IEEE, 2018, [73].

– [72, 73] first briefly survey the types of attacks which aim at the nodes’ energy

provisioning systems. Then, these papers analyses the effect of such attacks

on the energy lifetime of a wireless node with a renewable or a replaceable

battery. In addition, a simple mitigation technique is proposed to provide

a certain minimum life-time. This technique forces sensor nodes to drop a

certain fraction of the traffic so as to offer a desired energy life-time to the

node. The material from these papers appears in Chapter 6.
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• Y.-M. Kadioglu and E. Gelenbe. "Product Form Solution to Cascade Networks

with Intermittent Energy." In IEEE Systems Journal, 2018 (accepted), [74].

– [74] develops a new product form solution for the joint probability distribu-

tion of energy availability and the job queue length for an N-node tandem

system. Results obtained in this paper enable the diligent computation of all

the performance metrics for such systems operating with intermittent energy.

The material from this paper appears in Chapter 5.

• Y.-M. Kadioglu. "Tandem Networks with Intermittent Energy." In International

Symposium on Computer and Information Sciences, Poznan, Poland. Springer

International Publishing, 2018 (submitted), [75].

– [75] investigates the generalised model of the tandem network studied in [74]

by considering the external data arrivals for each unit in the cascaded network.

A product form solution for the joint distribution is presented. The material

from this paper appears in Section 7.5.



Chapter 2

Background

2.1 Introduction

This chapter explains brief but comprehensive background topics which provide a fun-

damental basis of theoretical aspects of this work. Thus, this chapter first presents the

analytical frameworks of the basic queuing theory. Secondly, some queuing networks

and the EPN paradigm that was proposed in some previous related works are reviewed.

Finally, Markov Chain review is presented. This is used for modelling the state transi-

tions and obtaining the stationary probability distributions of the states for subsequent

chapters. The chapter is organized as follows: In Section 2.2 and Section 2.3, the basic

theory of queuing systems and networks, and literature review on the EPN paradigm

are examined along with the further assumptions related to this thesis. In Section 2.4,

a review of the Markov Chain including its basics and properties, and mathematical

extensions are presented. The chapter concludes in Section 2.5.

2.2 Basic Queuing Theory

Queuing theory is a part of applied mathematics that models and analyses the char-

acteristics of waiting in the lines. In a basic queuing system, a customer arrives to be

served, waits for the service, and leaves after being served. This section presents a brief

explanation of the queuing theory formulation along with the its basics and applications.

2.2.1 Exponential and Poisson Probability Distributions

To understand the basic queuing theory, some knowledge about the exponential and

Poisson probability distributions is needed.

23
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The exponential distribution with parameter λ is given by:

f(t;λ) =

⎧⎨
⎩λe−λt t ≥ 0

0 t < 0
(2.1)

Thus, if T is a random variable representing the inter-arrival times with the exponential

distribution, then P (T ≤ t) = 1− e−λt.

Exponential distribution is used to model customer inter-arrival times and service times

due to its specific properties. The first one is the fact that the exponential distribution

has the memoryless property. This property implies that the time duration until the

next arrival does not depend on how much time has already passed. As the activities of

customers are independent of each other, choosing a memoryless distribution to model

the customer arrivals makes sense. The other property of the exponential distribution is

being strictly decreasing function of t. This suggests that the waiting time of the next

arrival is more likely to be smaller after an arrival has occurred.

On the other hand, the Poisson distribution expresses the probability of a certain number

of events (or arrivals) in a given time interval. The Poisson distribution with parameter

λ is given by:
(λt)ne−λt

n!
, (2.2)

where n is the number of events in time interval t. If we set n = 0, it gives us e−λt.

Conversely, if an event occurs during t (i.e, n = 1), then it gives us 1− e−λt. In fact, the

results are equal to P (T > t) and P (T ≤ t) from the exponential distribution.

In other words, let ti be the time when ith customer arrives, and Ti be the ith inter-

arrival time such that Ti = ti+1 − ti for i>0. If the customer arrivals are assumed to

be Poisson process with a parameter λ, then it can be shown that Ti’s has exponential

distribution with the parameter λ. In addition, the exponentially distributed random

variable T satisfies:

P (T > t+ s|T > s) = P (T > t). (2.3)

This result reflects the memoryless property of the exponential distribution, which is

important for modelling inter-arrival times of customers.

Furthermore, it is assumed that the service times for different customers are exponen-

tially distributed independent random variables with a parameter μ. The parameter μ

can also be seen as the service rate of the queuing system. However, a customer some-

times requires several phases to be served. Therefore, modelling service times with the
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exponential distribution does not always give the accurate results. Another probabil-

ity distribution that can be considered to model service times is the Erlang probability

distribution with a rate parameter R and a shape parameter k, and it is given by:

R(Rt)k−1e−Rt

(k − 1)!
, (2.4)

where k can be thought of the number of different phases of the service.

2.2.2 Queuing Disciplines

One can easily think that when an arrival occurs in a queuing system, it is placed at the

end of the line and waited until all the other customers ahead of it being served in the

order they arrived. Although it is convenient to model a service discipline in this way,

there are some other existing rules for choosing the next customer to serve. The most

commonly used queue disciplines are:

• FCFS - First Come First Serve: Customer arrives earlier, leaves earlier

• LCFS - Last Come First Serve: Customer arrives later, leaves earlier

• SIRO - Service In Random Order: Customer leaves randomly

• Priority: Customer with the higher priority leaves earlier.

The waiting times of particular customers are significantly affected by the selection of a

different queuing discipline: for example, no customer would want to arrive early at a

queue with LCFS discipline.

2.2.3 Kendall-Lee Notation

In order to describe all of the characteristics of a queuing system, a simple notation

(Kendall-Lee notation) can be used [76]. Let us denote a system by the following series

of symbols:

A/B/m/K/n/D

where

• A: the distribution function of the inter-arrival times

• B: the distribution function of the service times
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• m: number of servers working together

• K: capacity of the system, maximum number of customers allowed in the system

• n: capacity of the customer sources (i.e. customer population size)

• D: queuing disciplines

For instance, exponentially distributed random variables are denoted by M, indicating

Markovian or memoryless. Furthermore, D stands for deterministic, G stands for general

distribution, and E stands for the Erlang distribution. Hence, M/M/1 represents a single

server queuing system with Poisson arrivals and exponentially distributed service time.

2.2.4 Little’s Queuing Formula

It is helpful to have some knowledge about waiting times and number of customers

in a queuing system to evaluate the behaviour of the system. Let Nq and Ns be the

average number of customers waiting in the queue and being occupied in the service

when the system has reached to steady-state, respectively. As a customer can only be

either in the queue or in the service, the total average number of customer in the system

is N = Nq +Ns.

In a similar way, let us define Wq and Ws, in steady-state, to be the average amount of

time spent in the queue and in the service, respectively. Thus, the total average amount

of time spent for a customer is W = Wq+Ws. Hence, Little’s formula states the following

[77]:

Nq = λWq, (2.5)

Ns = λWs, (2.6)

N = λW, (2.7)

where λ is the number of customers arriving at the queuing system per unit time.

2.2.5 M/M/1/∞/∞/FCFS Queuing System

An M/M/1/∞/∞/FCFS is one of the simplest queuing systems with a single server and

infinite buffer capacity. Let λ and μ be the Poisson distributed customer arrival rate and

the exponentially distributed service rate, respectively. After a long operating time, the

queuing system might converge to a stable point. Thus, the stationary distributions of
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the system are given by:

π0 = 1− ρ (2.8)

πn = ρn(1− ρ) (2.9)

where ρ = λ
μ . In order to guarantee stability, the condition λ < μ (or ρ < 1) must

be satisfied. In addition, some of the important metrics for this queuing system can be

calculated as follows:

• Utilization is the fraction of time during which the server is operating or busy,

and it is given by:

U = 1− ρ0. (2.10)

• Total average number of customers in the queuing system is:

N̄ = E[N ] =

∞∑
n=0

nπn =
ρ

1− ρ
. (2.11)

• Total average waiting time in the queuing system is by Little’s theorem:

T =
N

λ
=

1

λ− μ
. (2.12)

2.3 Queuing Networks

A queuing network consists of several interconnected units such that when a customer is

served in a queuing unit, it can either enter another queue or leave the network. Queuing

networks can roughly be categorized into four groups:

• Open network: Customers arrive from outside, then they leave the network or

enter another unit after being served.

• Closed network: Fixed number of customers is served by the network. There

is no external customer arrivals at the units and no customer departures from the

network.

• Loss network: Customers can arrive from outside if there is available space in

the units’ buffers. They can also depart after the service.

• Mixed network: Any combination of networks mentioned above.
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2.3.1 Jackson Network

The traditional method for analysing interconnected service systems with N nodes or

units (i.e. computer networks or distributed computer systems) where energy availability

is unlimited at the nodes (i.e. all connected to a permanent source of electricity) is as

a queueing network. This network includes Poisson external arrivals of packets to each

node i with rate λi, and exponential service times with parameter μi. Moreover, the

movement of data packets is represented by a Markov chain with transition probabilities

pij , i, j = 1, ... N , where pij is the probability that a packet that leaves node i then enters

node j. Such a network is also characterised by the probability di = 1 − ∑N
j pij that

a packet departs from the network after being served at node i. In this model, packets

entering a node, are queued to wait for service and are served in First-In-First-Out order.

This is known as “Jackson’s Network” and is widely used as a simple and effective model

for multi-hop backbone networks [7, 78]. The product form solution (PFS) of Jackson’s

Network states that the joint probability distribution of the N queue lengths of packets

at the nodes in steady-state is rigorously expressed as the product (multiplication) of

the probability distributions of each individual queue length. Moreover, the probability

distribution of the queue length at node i depends only on the queue’s total packet arrival

rate Λi, and its service rate μi such that:

πi(n) = ρni (1− ρi) (2.13)

where

ρi =
Λi

μi
. (2.14)

and

Λi = λi +

N∑
j=1

Λjpji, (2.15)

In addition, the equilibrium state probability distribution for state (n1, n2, · · · , nN ) is

given by:

π(n1, n2, · · · , nN ) =
N∏
i=1

πi(ni) =
N∏
i=1

ρni
i (1− ρi). (2.16)

The wide-spread use of this model, and its generalisations to both BCMP networks [8, 79]

and G-Networks [80] is due to the rigorous “product form solution” (PFS).
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2.3.2 G-Networks

Neural networks was the initial inspiration behind the G-networks. In the random neural

network model studied in [81], signals can be either positive or negative. The positive

signals represent the excitatory spikes, while the negative signals represent the inhibitory

spikes. The potential of a neuron increases by one when a positive spike arrives, and

it decreases by one when a negative spike arrives only if the initial neuron potential is

positive. Otherwise, when the neuron potential is zero, negative spike has no effect on

the neuron’s potential. A neuron can transmit both positive and negative signals when

its potential is positive, and each transmission reduces the neuron potential by one. It

was proved that this random neural network model has a PFS in steady-state.

G-Networks are extension of the random neural network model into the packet queuing

networks [82]. A neuron can be seen as a node in the queuing network analogy. In

addition, positive and negative spikes represent positive and negative customers. In a

similar manner, positive and negative customers increase and decrease the queue length

by one, respectively.

The simplest model of G-Networks studied an open network of N queuing nodes. In this

network, i.i.d. exponentially distributed service times (μ1, μ2, · · · , μN ) and inter-arrival

times were assumed for each node. In addition, there are two types of customer arrivals:

external positive customer arrivals with a rate λ+
i and external negative customer arrivals

with a rate λ−
i to the ith node. When a positive customer arrives at a node, it increases the

queue size by one and waits to be served. On the other hand, when a negative customer

arrives at a queue, it reduces the queue size by one and disappears. If the queue is empty,

the negative customer will have no effect on the node and it will directly disappear. In

addition, the probability that a positive customer leaves the node i and joins the node

j as a positive customer is p+ij , and as a negative customer is p−ij . Furthermore, the

probability that a customer leaves the network after being served in the node i is di.

Thus, we can write the following:

N∑
j=1

p+ij + p−ij + di = 1. (2.17)
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Furthermore, the traffic equations are given by:

Λ+
i = λ+

i +

N∑
j=1

qjμjp
+
ij , (2.18)

Λ−
i = λ−

i +
N∑
j=1

qjμjp
−
ij , (2.19)

(2.20)

where

qi =
Λ+
i

μi + Λ−
i

. (2.21)

In steady-state, it was proved that [82] this network has a PFS such that:

π(n1, n2, · · · , nN ) =

N∏
i=1

πi(ni) =

N∏
i=1

qni
i (1− qi). (2.22)

2.3.2.1 Energy Packet Network

The EPN developed by Gelenbe [83] is a queueing network approach based on G-networks

theory [84–87] and has been used to model data processing or transmission network that

can store and consume harvested energy as discrete units. The analogy that drives this

approach is based on the fact that computer jobs and DPs are discrete entities that are

queued and then processed in the system. However, Gelenbe proposed [88] that it is

also possible to discretise the amount of energy used. He also suggested that electrical

batteries or capacitors can also be viewed as storing discrete units of energy. A similar

concept in which power is used in a discrete manner has been introduced and feasibility

of the ‘power packets’ dispatching system at the physical layer hase been verified in

[89, 90].

In EPNs, EPs and DPs can be considered as regular and negative customers, respec-

tively. In addition, energy storage has a queue role in the system so that the EPNs can

be studied as queueing networks. An EPN study in which the surges in energy demand

on smart grids were suppressed has been previously presented in [91]. The grid contains

both steady energy sources that meet the energy requirements in a grid most of the time

and renewable energy sources that are mainly used when the energy demand exceeds a

particular energy need. A similar model related to energy management for the cloud com-

puting servers was studied in [92] where energy consumption centres can be considered as

cloud computing centres. The general idea in [91, 92] is obtaining the steady state proba-

bilities of the nodes in the EPN by using G-Network theory and adjusting the parameters
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to satisfy energy needs of consumption or cloud computing centres. Additionally, there

are several recent works on EPNs considering the design of optimal energy distribution

architectures [93] and of optimal flows that maximize particular utility functions [94, 95].

2.3.2.1.1 Energy Network EPNs consider task service times such that both the

consumption of energy and the processing or transmission of jobs or packets happens

over some continuous time. A further paradigm, also introduced by Gelenbe [63, 96],

has been motivated by energy harvesting wireless devices (i.e. IoT devices and wireless

sensor networks) [58], [59] wherein processing or transmission times are very fast (and

hence negligible), in comparison to the time it takes to acquire data (as in a sensor)

and energy (as through harvesting). This type of model is called the ‘Energy Network’

(EN). Therefore, IoT devices and wireless sensor networks (WSN)s can be considered as

a perfect application area for the EN paradigm.

2.4 Markov Chain: Review

This section presents the Markov chain review, which is one of the important theoretical

background of this thesis. We will introduce some basics, properties and classifications

related to Markov chain.

A Markov process is a stochastic process where the past of the process has no effect on

the future if the current state is known. In other words, the present state contains all

the information from past related to the future state. A Markov chain is basically a

discrete valued Markov process where the discrete valued stands for finite or countable

state space of the Markov chain.

For a discrete-time Markov chain (DTMC), both time and space are discrete which means

that the states can only change by taking some discrete values only happening at one of

specified discrete time incidents. On the other hand, for a continuous-time Markov chain

(CTMC), the change of the states can happen at any time along a continuous interval.

It is basically generalization of DTMC models where the transitions can happen at any

time.

2.4.1 Basics

Definition 2.4.1. Assume Xn, n = 0, 1, 2, ... is a discrete time stochastic process and

S is a discrete state space where discrete means either finite or countably infinite space.
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The Markov property:

P{Xn = in|Xn−1 = in−1, ..., X0 = i0} = P{Xn = in|Xn−1 = in−1}, (2.23)

where i0, ..., in ∈ S. Thus, the Markov property says the future depends on the past only

trough the present, i.e., the memory of the past is lost in time by the process.

Definition 2.4.2. Any discrete process Xn, n ≥ 0 that satisfies the Markov property is

called DTMC.

Definition 2.4.3. One-step transition probability of a Markov chain from state i to state

j:

pij(n) � P{Xn+1 = j|Xn = i}, (2.24)

where if there is no dependency on n, the process is called time homogeneous or homo-

geneous. In the rest of the section, we assume all the DTMCs are homogeneous and the

notation pij(n) reduces to pij .

Corollary 2.1. Any discrete process satisfying Markov property also satisfies the follow-

ings:

P{Xn+m = in+m, ..., Xn = in|Xn−1 = in−1, ..., X0 = i0} = (2.25)

P{Xn+m = in+m, ..., Xn = in|Xn−1 = in−1}, (2.26)

where n,m ≥ 1, ik ∈ S and k ∈ {0, ..., n+m}. Also,

P{Xn = in, ..., X0 = i0} = (2.27)

P{Xn = in|Xn−1 = in−1, ..., X0 = i0} P{Xn−1 = in−1, ..., X0 = i0} = (2.28)

pin−1in P{Xn−1 = in−1, ..., X0 = i0} = (2.29)

pin−1in pin−2 in−1 P{Xn−2 = in−2, ..., X0 = i0} = (2.30)

αi0 pi0i1 ... pin−1in , (2.31)

where αi0 = P{X0 = i0}. Thus, the joint probability can be computed by the multipli-

cation of one-step transition probabilities.



Background 33

Definition 2.4.4. The transition matrix P for a Markov chain:

P =

⎡
⎢⎢⎢⎢⎢⎣

p11 p12 · · · p1N

p21 p22 · · · p2N
...

...
. . .

...

pN1 pN2 · · · pNN

⎤
⎥⎥⎥⎥⎥⎦

where state space S = {1, 2, ..., N}. If the state space S is countably infinite, then P is

defined as infinite matrix with elements pijs. Also, the matrix P satisfies
∑N

j=1 pij = 1

and 0 ≤ pij ≤ 1, 1 ≤ i, j ≤ N .

2.4.2 Higher Order Transition Probabilities

Definition 2.4.5. n-steps transition probability of a Markov chain from state i to state

j in n steps:

p
(n)
ij � P{Xn+k = j|Xk = i} = P{Xn = j|X0 = i} (2.32)

where the last equality is due to the fact that the process Xn has time homogeneity

property.

Lemma 2.2. p
(n)
ij = Pn

ij for all n ≥ 0 and i, j ∈ S where Pn
ij is the i, jth element of the

matrix Pn.

Proof. The proof will be done by induction. Note that equality is satisfied when n = 0

and n = 1. For n = 2 we may write the following:

p
(2)
ij = P{X2 = j|X0 = i} (2.33)

=
∑
k∈S

P{X2 = j|X1 = k,X0 = i}P{X1 = k|X0 = i} (2.34)

=
∑
k∈S

pik pkj (2.35)

where
∑

k∈S pik pkj ≤
∑

k∈S pik = 1 so that it converges. Thus, p(2)ij = P 2
ij .
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We assume p
(n)
ij = Pn

ij and will check p
(n+1)
ij = Pn+1

ij so that:

p
(n+1)
ij = P{Xn+1 = j|X0 = i} (2.36)

=
∑
k∈S

P{Xn+1 = j,Xn = k|X0 = i} (2.37)

=
∑
k∈S

P{Xn+1 = j|Xn = k,X0 = i}P{Xn = k|X0 = i} (2.38)

=
∑
k∈S

P{Xn+1 = j|Xn = k}P{Xn = k|X0 = i} (2.39)

=
∑
k∈S

p
(n)
ik pkj (2.40)

=
∑
k∈S

Pn
ikPkj (2.41)

= Pn+1
ij (2.42)

Corollary 2.3. For all i, j ∈ S and m,n ≥ 0,

p
(n+m)
ij =

∑
k∈S

p
(m)
ik p

(n)
kj (2.43)

which is called Chapman-Kolmogorov equations.

Corollary 2.4. The probability that the Markov chain will be in state i ∈ S at time n:

P{Xn = i} =
∑
k∈S

P{Xn = i|X0 = k}P{X0 = k} =
∑
k∈S

π
(0)
k p

(n)
ki , (2.44)

where π0
k = P{X0 = k}. In matrix notation we may write:

πn = π0Pn. (2.45)

2.4.3 Classification of States

2.4.3.1 Reducibility

Definition 2.4.6. The state j ∈ S is accessible from state i ∈ S, if there exist a

probability p
(n)
ij > 0. We write i → j to show j is accessible from i.

Definition 2.4.7. If states i, j ∈ S communicate with each other, we write i ↔ j. The

relation ↔ is reflexive (i ↔ i), symmetric (i ↔ j implies j ↔ i), and transitive (i ↔ k

and k ↔ j imply i ↔ j ).
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Definition 2.4.8. If i ↔ j for all i, j ∈ S, then the Markov chain is called irreducible.

Definition 2.4.9. A subset of the state space C ⊂ S is called closed if pij = 0 for all

i ∈ C and j 
∈ C.

2.4.3.2 Periodicity

Definition 2.4.10. The period of a state i ∈ S:

p(i) = gcd{n : p
(n)
ii > 0}, (2.46)

where ’gcd’ stands for greater common divisor. If {n : p
(n)
ii > 0} returns an empty set

then we take p(i) = 1. If p(i) = 1, then state i is called aperiodic, otherwise it is periodic

with period p(i) > 1.

2.4.3.3 Recurrence and Transience

Definition 2.4.11. The state i ∈ S is recurrent if

Pi{τi < ∞} = 1, (2.47)

where Pi{a} = P{a|X0 = i} and τi � min{n ≥ 1 : Xn = i}. Otherwise it is called

transient.

Theorem 2.5. A state i is transient if and only if the expected number of returns is

finite, which occurs if and only if
∑∞

n=0 p
(n)
ii < ∞. Further, if i is recurrent, then with

a probability of one, Xn returns to i infinitely often, whereas if i is transient, there is a

last time a visit occurs.

Proof. Number of times the chain returns to state i ∈ S:

Ri =

∞∑
n=0

l{Xn=i}. (2.48)

The expected value of R:

E[Ri] =

∞∑
n=0

Pi{Xn = i} =

∞∑
n=0

P{Xn = i|X0 = i} =

∞∑
n=0

p
(n)
ii . (2.49)

Assume that the state i is transient and let Θ = Pi{τi < ∞} < 1 so that:

Pi{R = 1} = 1−Θ, Pi{R = 2} = Θ(1−Θ), · · ·Pi{R = k} = Θk−1(1−Θ), (2.50)
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and

E[Ri] =
∞∑
k=0

kΘk−1(1−Θ) =
1

1−Θ
< ∞ (2.51)

Thus, the state i is transient if
∑∞

n=0 p
(n)
ii < ∞ and the state i is recurrent if

∑∞
n=0 p

(n)
ii =

∞.

Corollary 2.6. The state i is recurrent if and only if state j is recurrent when i ↔ j.

Corollary 2.7. All states are recurrent in an irreducible Markov chain with finite state

space.

2.4.4 Stationary Distributions

Definition 2.4.12. A vector π > 0 is called an invariant measure if:

πTP = πT , (2.52)

so that we may write the following:

πi =
∑
j

πjpji, for all i ∈ S. (2.53)

which means that the probability of being state i is basically equal to the summation of

the probability of being state j times pji, the flow rate from state j to i.

Also, if π satisfies the following condition
∑

j πj = 1, then it is said to be steady-state

(stationary or equilibrium) probability distribution.

Theorem 2.8. A finite, aperiodic and irreducible Markov chain has an unique stationary

distribution π such that:

πTP = πT , πi > 0. (2.54)

Also, we may write the following for any probability vector v:

lim
n→∞ vTPn = πT . (2.55)

2.4.5 Reversibility

Definition 2.4.13. A stochastic process X is called reversible if (X(t1), · · · , X(tn)) has

the same distribution with (X(τ − t1), · · · , X(τ − tn)).
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Corollary 2.9. A reversible process is stationary, since (X(t1), · · · , X(tn)) ∼ (X(τ −
t1), · · · , X(τ − tn)) ∼ (X(−t1), · · · , X(−tn)) ∼ (X(τ + t1), · · · , X(τ + tn)).

Theorem 2.10. A stationary Markov process is reversible if and only if the following

detailed balance equations are satisfied:

πipij = πjpji for all i, j ∈ S. (2.56)

Theorem 2.11. If X is a stationary Markov process, then the reserved chain is also

an stationary Markov process with the same equilibrium distributions and the transitions

rates are:

p
′
ij =

πj
πi

pji, i, j ∈ S. (2.57)

This is intuitive and means that the probability flux from state i to j in the reversed

process equals to the probability flux from state j to i in the original process.

Also, since the process is reversible p
′
ij = pij and πi =

∑
j∈S πjpij.

2.5 Conclusion

In the first part of this chapter, the basic queueing theory is presented together with some

related background information. In the next part, queuing networks are examined along

with the basics and properties of Jackson’s network and G-networks. Furthermore, the

basics of the EPN paradigm is presented together with some related previous studies.

In addition to the EPN paradigm, the EN paradigm is also introduced. The EN is

basically the fundamental basis of the system model for this thesis and it is motivated

by the energy harvesting devices. In the final part, the Markov chain review is presented

since it plays a key role to examine performance analysis of the system model. The

Markov chain representation in this work is basically used for showing state transitions

to understand and visualize the system behaviour.



Chapter 3

Packet Transmission via Perfect

Transmitter

3.1 Introduction

This chapter is based on references [66, 69, 70]. In this chapter we investigate a sensor

node in which the packet transmission occurs via perfect transmitter. First, we studied

a model where single EP is consumed to successfully transmit one DP. We obtained

a closed-form solution for the stationary distributions and made further analysis on

quantities of interest such as excessive packet losses and stability of the system. Next,

we assumed a model in which a DP can be successfully transmitted by consuming K > 1

EPs. The motivation is based on noise or interference; the transmitter may need to

make use of a higher transmission power level or it may wish to reduce it to save energy.

A closed-form solution for the stationary distributions of the model was obtained and

further analysis was carried out.

3.2 Transmission with Single Energy Packet

3.2.1 Mathematical Model

It was assumed that an energy harvesting wireless sensor node (EHWSN) receives data,

at a rate of λ DPs per second, and energy, at a rate of Λ EPs per second, in a random

manner. Figure (3.1) depicts the arrival of DPs and EPs that occur according to two

distinct independent Poisson processes. The abstraction of "packet" offers a discrete

38
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Figure 3.1: DP and EP arrivals at the sensor node as two distinct independent
Poisson processes.

representation of the amount of energy and data that are gathering from the environment.

An EHWSN stores energy in a battery or a capacitor and data in a buffer.

It was assumed that energy leaks at a rate of μ due to the self-discharging nature of the

batteries or capacitors, when there is no data to transmit in the buffer. Similarly, data

leaks at a rate of γ when there is no energy in the storage.

In addition, it has been assumed that the energy gathering rate Λ and the data gathering

at rate λ are very small. However, once enough sensed bits have been gathered and there

is at least one energy packet in the system, the time it takes to create packets and

transmit the packets via wireless is extremely fast compared to these rates (i.e. the

transmission time of one packet may be a few picoseconds provided energy is available).

Thus we will assume that transmission is instantaneous (i.e. it takes zero time on the

time scales of sensing and data gathering, and of energy harvesting).

Heinzelman has previously proposed an energy consumption model for sensors. He stated

that the amount of energy required to transmit 1 bit is 50nJ [97]. In this model, it is

assumed that 1 EP has the amount of energy required to transmit 1 DP. Thus, 1 EP

should have ‘50nJ x (number of bits in a DP)’ amount of energy. Moreover, 1 DP size

can typically be considered as tens of kbits. For instance, a wireless protocol Zigbee’s

data rates are 20 kbits (868MHz) and 40 kbits (915MHz). Alternatively, there are several

modules that harvest different amounts of energy per second such as 4.6mW (585-EH300),

30mW (585-EH300A), 275mW (582-P2110B), 400mW (932-MIKROE-651). For example,

if we have a 30mW energy harvesting module, then typical values of Λ can be calculated

as 60 and 15 EPs/sec for 10 and 40 kbits data packet size, respectively.

Alternatively, energy can be stored in a capacitor or battery. However, this form of

storage discharges its energy due to standby where transmission does not occur. This
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self-discharge is an energy leakage process in energy storages where the internal chemical

reactions reduce the stored charge of batteries or capacitors. Energy storage leakage

typically varies between 0.1% - 30%, depending on the chemicals used for the energy

storage [98].

We model the state of the sensor node using the pair (D(t), E(t)) where D(t) is the

number of DPs stored at the node and E(t) is the number of stored EPs, both at

time t ≥ 0. Because of the very small processing and transmission times at the node,

whenever energy is available and there are DPs waiting they will be instantaneously

transmitted until the energy packets are depleted. Thus, any state D(t) > 0, E(t) > 0

will instantaneously (in zero time) transit to either the state (0, E(t) −D(t)) if E(t) ≥
D(t), or to the state (D(t)− E(t), 0) if D(t) ≥ E(t).

Let us write p(d, e, t) = Prob[D(t) = d,E(t) = e]. From the above remark, we only

consider p(d, e, t) for the state space S of pairs of integers (d, e) ∈ S such that:

S = { (0, 0), (d, 0), (0, e) : D ≥ d > 0, E ≥ e > 0 }. (3.1)

First, note that if both the data buffer and the energy storage capacity are finite, then

the system can be modelled as a finite CTMC whose set of states are given in equation

(3.1) with 0 ≤ d ≤ D, 0 ≤ e ≤ E. It is noted that the process [D(t), E(t), t ≥ 0] is irre-

ducible and aperiodic such that the stationary probabilities p(d, e) = limt→∞ Pr[D(t) =

d,E(t) = e] exist uniquely and are computed from the following balance equations:

p(0, 0)[λ+ Λ] = (Λ + γ) p(1, 0) + (λ+ μ) p(0, 1), (3.2)

p(d, 0)[λ+ Λ+ γ] = (Λ + γ) p(d+ 1, 0) + λ p(d− 1, 0), (3.3)

p(D, 0)[Λ + γ] = λ p(D − 1, 0), (3.4)

p(0, e)[λ+ Λ+ μ] = Λ p(0, e− 1) + (λ+ μ)p(0, e+ 1), (3.5)

p(0, E)[λ+ μ] = Λ p(0, E − 1). (3.6)

Note that these equations have a solution of the form:

p(d, 0) = αnC1, α =
λ

Λ + γ
, 1 ≤ d ≤ D, (3.7)

p(0, e) = θmC2, θ =
Λ

λ+ μ
, 1 ≤ e ≤ E, (3.8)
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where C1 and C2 are arbitrary constants. The following is obtained on considering

equation (3.2):

p(0, 0)(λ+ Λ) = (Λ + γ)(
λ

Λ + γ
)C1 + (λ+ μ)(

Λ

λ+ μ
)C2, (3.9)

0 = (p(0, 0)− C1)λ+ (p(0, 0)− C2)Λ. (3.10)

Thus, C1 = C2 = p(0, 0) satisfies the equation.

Using the fact that the probabilities sum to one we have:

1 = p(0, 0) +

D∑
d=1

p(d, 0) +

E∑
e=1

p(0, e), (3.11)

= p(0, 0)[1 +

D∑
d=1

αd +
E∑

e=1

θe], (3.12)

= p(0, 0)[1 + (
α(αD − 1)

α− 1
) + (

θ(θE − 1)

θ − 1
). (3.13)

Hence:

p(0, 0) =
1− α− θ + αθ

αD+1(θ − 1) + θE+1(α− 1) + 1− αθ
, (3.14)

p(d, 0) = αd 1− α− θ + αθ

αD+1(θ − 1) + θE+1(α− 1) + 1− αθ
, 0 ≤ d ≤ D, (3.15)

p(0, e) = θe
1− α− θ + αθ

αD+1(θ − 1) + θE+1(α− 1) + 1− αθ
, 0 ≤ e ≤ E. (3.16)

Thus, we are able to express closed-form solutions for the stationary probability distri-

butions. In addition, we can express the marginal probabilities for the queue length of

DPs and EPs as:

pd(d) =

∞∑
e=0

p(d, e) = p(d, 0), d > 0, (3.17)

pd(0) =

∞∑
e=0

p(0, e) =

∞∑
e=0

θep(0, 0) =
1− θE+1

1− θ
p(0, 0), (3.18)

and similarly,

pe(e) =
∞∑
d=0

p(d, e) = p(0, e), e > 0, (3.19)

pe(0) =

∞∑
d=0

p(d, 0) =

∞∑
d=0

αdp(0, 0) =
1− αD+1

1− α
p(0, 0). (3.20)
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Hence:

pd(d) = αd 1− α− θ + αθ

αD+1(θ − 1) + θE+1(α− 1) + 1− αθ
, 0 < d ≤ D, (3.21)

pe(e) = θe
1− α− θ + αθ

αD+1(θ − 1) + θE+1(α− 1) + 1− αθ
, 0 < e ≤ E. (3.22)

3.2.2 Energy and Data Packet Losses

There is bound to be some level of energy or data packet loss when either the energy

storage capacity or the data packet buffer is finite. These rates of loss in energy (Le)

and data packets (Ld) per second can be computed as:

Le = Λ

∞∑
d=0

p(d,E) (3.23)

= Λp(0, E) (3.24)

= ΛθE
1− α− θ + αθ

αD+1(θ − 1) + θE+1(α− 1) + 1− αθ
. (3.25)

Ld = λ

∞∑
e=0

p(D, e) (3.26)

= λp(D, 0) (3.27)

= λαD 1− α− θ + αθ

αD+1(θ − 1) + θE+1(α− 1) + 1− αθ
. (3.28)

For the assumption of very large buffer sizes, i.e. both D and E tend to infinity, the

following cases can be considered:

Case 1 If α > 1 and hence θ < 1 or equivalently Λ < λ, such that the energy is not

sufficient for the data and Le → 0 and Ld → λ− (Λ + γ), as would be expected.

Case 2 If α = 1 and hence θ < 1 or equivalently Λ < λ+ μ, the expressions for Le and

Ld are in indeterminate forms. However, following some algebra we obtain Le → 0 and

Ld → 0.

Case 3 If α < 1 and θ < 1 or equivalently Λ < λ+ μ and λ < Λ + γ, in this case there

is no leakage for both buffers, and Le → 0 and Ld → 0.

Case 4 If α < 1 and θ > 1 or equivalently Λ > λ+μ, so that the energy is more plentiful

than is needed, and Le → Λ− (λ+ μ) and Ld → 0, as would be expected.

Case 5 If α < 1 and θ = 1 or equivalently λ < Λ+ γ, the expressions for Le and Ld are

in indeterminate form. However, following some algebra we obtain Le → 0 and Ld → 0.
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3.2.3 Optimum Energy Efficiency of the Transmission

The sensor we considered receives Λ EPs/sec (in power units, e.g. milliwatts) from energy

harvesting. However it can not use all this energy due to the finite capacity energy loss

and energy leakage of the system. Similarly, it can not transmit all the DPs gathered

from the environment due to finite capacity data loss and data leakage. Thus, its energy

consumption per effectively transmitted packet is:

σ =
Λ

λ− g(Λ)
. (3.29)

where

g(Λ) = γ

D∑
d=1

p(d, 0) + Ld = γ
αD+1 − α

α− 1
p(0, 0) + λαDp(0, 0). (3.30)

Thus, it is of interest to investigate what the best operating point may be for this system,

in terms of consumed energy. Therefore, we take the derivative of various terms in the

expression with respect to Λ and see that:

σ′ =
λ− g(Λ) + Λg′(Λ)

(λ− g(Λ))2
, (3.31)

so that the extremum for σ is reached for the value of Λ which gives:

λ− g(Λ) + Λg′(Λ) = 0. (3.32)

In addition, we have

σ′′ =
[Λg′′(Λ)][(λ− g(Λ))2] + [2(λ− g(Λ))][λ− g(Λ) + Λg′(Λ)]

(λ− g(Λ))4
, (3.33)

so that the value for Λ which satisfies equation (3.32) gives the following:

σ′′ =
Λg′′(Λ)

(λ− g(Λ))2
. (3.34)

Following the use of algebra we obtain the value of Λ that satisfies equation (3.32), this

is a point of inflection on the efficiency function σ, since σ′′ = 0.

Figure 3.2 indicates the energy consumption per effectively transmitted packet, σ, for

different energy and data arrival rates, assuming μ = 0.1Λ, γ = 0.1λ,D = E = 100. It

was observed that in order to keep the energy efficiency high, i.e. to have σ as low as

possible, the power Λ that is supplied from harvesting should remain below the nominal

need to satisfy all the flow λ of DPs that are being sensed.
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Figure 3.2: The energy consumption per effectively transmitted packet, σ, for
different energy and data arrival rates.

3.2.4 Stability of the System

System stability is only of interest for data and energy buffers with unlimited storage

capacity. In this case, the system will be stable when the backlog of stored energy and

the backlog of data packets remain finite with probability one when t → ∞ for D → ∞
and E → ∞. Otherwise, the system is said to be unstable.

For some finite G and H with 0 ≤ G < D and 0 ≤ H < E, the probabilities that the

respective backlogs of data and energy packets do not exceed G and H, in steady-state

are:

Pd(G) = limt→∞Prob[0 ≤ D(t) ≤ G ≤ D], (3.35)

Pe(H) = limt→∞Prob[0 ≤ E(t) ≤ H ≤ E]. (3.36)
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Moreover, using our obtained results gives:

Pd(G) = pd(0) +

G∑
d=1

pd(d), (3.37)

=
1− θE+1

1− θ
p(0, 0) +

G∑
d=1

(αdp(0, 0)), (3.38)

= p(0, 0)(
1− θE+1

1− θ
+

α− αG+1

1− α
), (3.39)

=
αG+1(θ − 1) + θE+1(α− 1) + 1− αθ

αD+1(θ − 1) + θE+1(α− 1) + 1− αθ
, (3.40)

and

Pe(H) = pe(0) +

H∑
e=1

pe(e), (3.41)

=
1− αD+1

1− α
p(0, 0) +

H∑
e=1

(θep(0, 0)), (3.42)

= p(0, 0)(
1− αD+1

1− α
+

θ − θH+1

1− θ
), (3.43)

=
αD+1(θ − 1) + θH+1(α− 1) + 1− αθ

αD+1(θ − 1) + θE+1(α− 1) + 1− αθ
. (3.44)

This leads to the following:

Case 1 If α > 1 and hence θ < 1 as E → ∞ and D → ∞, Pd(G) → 0 for all finite

G and Pe(H) → 1 for all finite H, the system is stable with respect to EPs and unstable

with respect to DPs.

Case 2 If α = 1 and hence θ < 1 as E → ∞ and D → ∞, one can easily see that the

expression for p(0,0) is an indeterminate form, so that we apply L’Hospital’s rule and

obtain :

lim
α→1

p(0, 0) = lim
α→1

θ − 1

(D + 1)(θ − 1)αD + θE+1 − θ
=

θ − 1

(D + 1)(θ − 1) + θE+1 − θ
,

and

lim
(D,E)→∞

[ lim
α→1

p(0, 0)] = lim
(D,E)→∞

[
θ − 1

(D + 1)(θ − 1) + θE+1 − θ
] → 0.

Hence:

lim
(D,E)→∞

α→1

[Pd(G)] = lim
(D,E)→∞

α→1

[p(0, 0)] lim
(D,E)→∞

α→1

[

E∑
m=0

θm +

G∑
n=1

αn] → 0.
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in this case a similar analysis can be made for the Pe(H), which leads to Pd(G) → 0 for

all finite G and Pe(H) → 0 for all finite H. Therefore, the system is unstable with respect

to both DPs and EPs.

Case 3 If α < 1 and θ < 1 as E → ∞ and D → ∞, Pd(G) → αG+1(θ−1)+1−αθ
1−αθ and that

limit is obviously in the interval (0,1), since −1 < αG+1(θ − 1) < 0 for all finite G and

similarly Pe(H) → θH+1(α−1)+1−αθ
1−αθ and similarly that limit is in the interval (0,1), for

all finite H. Therefore, the system is unstable with respect to both DPs and EPs.

Case 4 If α < 1 and hence θ = 1 as E → ∞ and D → ∞, it is easily seen that the

expression for p(0,0) is an indeterminate form, such that the analysis can be made by

applying the exact same procedure used in Case 2. Therefore, since Pd(G) → 0 for all

finite G and Pe(H) → 0 for all finite H, the system is unstable with respect to both DPs

and EPs.

Case 5 If α < 1 and θ > 1 as E → ∞ and D → ∞, Pd(G) → 1 for all finite G and

Pe(H) → 0 for all finite H; the system is stable with respect to DPs and unstable with

respect to EPs.

3.2.5 Unlimited Capacity Data and Energy Buffers with Transmission
Errors

If a reduction of the average probability of transmission error over the wireless sensor

network is considered or a certain transmission error detected, then retransmission of

the same DP may be required. Two separate error probabilities (p and π) are considered

to model the effect of retransmissions in a system. The retransmission probability p

occurs when there are plenty of EPs in storage and one DP arrives at the node. In

this case, the data transmission occurs immediately but retransmission may be needed

due to unsuccessful transmission and a further EP will be consumed with probability

p. This process may be repeated independently of the previous outcome with the same

probabilities of success 1− p and failure p. Additionally, the retransmission probability

π occurs when there is at least one DP in the buffer to be transmitted. In this case, the

DP may not be transmitted successfully and remains in the queue so that another EP

will be needed with probability π. Again, the process will repeat itself independently of

the previous event when another EP arrives at some later time.

Let λ be the data arrival rate to the node, Λ the energy harvesting rate, μ the standby

loss rate and γ the time-out loss rate of the system. Thus, the state space of interest is
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still

S = {(0, 0), (d, 0), (0, e) : d, e ≥ 1 }, (3.45)

but the possible state transitions differ from those of the previous section. The following

state transition rates can be obtained:

- λ : for (d, 0) → (d+ 1, 0), d ≥ 0, when a DP arrives,

- Λ : for (0, e) → (0, e+ 1), e ≥ 0, when an EP arrives,

- μ : for (0, e) → (0, e− 1), e ≥ 1, when an EP leaves through leakage.

- γ : for (d, 0) → (d− 1, 0), d ≥ 1, when a DP is lost by leakage.

- Λπ : for (d, 0) → (d, 0), d ≥ 1, when an EP arrives at an empty energy buffer, and if the

DP waiting in the queue can not be transmitted successfully, so that DP retransmission

is needed by consuming another EP with the probability π. However, retransmission can

not occur due to lack of energy and the state of the system is retained.

- Λ(1 − π) : for (d, 0) → (d − 1, 0), d ≥ 1, when an EP arrives to an empty energy

buffer, and if a DP waiting in the queue can be transmitted successfully, data packet

retransmission is not necessary with the probability 1− π.

- λp : for (0, 1) → (1, 0), when a DP arrives at an empty data buffer and there is only

one EP in the storage to be consumed, DP transmission may be unsuccessful. In this

case, EP is already consumed and DP will be stored in the buffer with the probability p.

- λ(1− p) : for (0, e) → (0, e− 1), e > 0,

- λpk−1(1− p) : for (0, e) → (0, e− k), e ≥ k > 1, when there are several EPs in storage

and only one DP arrives at the node. Consecutive retransmissions may be needed in

the case of repetitive unsuccessful attempts. In this transition, DP can be transmitted

before the all EPs are depleted.

- λpe : for (0, e) → (1, 0), i.e. k = e, the arriving DP reduces the number of EPs by 1

and then there may be another DP transmission request and so on, but when all the EPs

are depleted, the eth and final transmission request cannot be satisfied and the system

moves into state (1, 0) having depleted all its EPs and having one final DP waiting to be

transmitted. Also, notice that for any e > 0 the sum of these probabilities is one:

e−1∑
k=0

pk(1− p) + pe = 1. (3.46)
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Thus, the equilibrium equations for the system in steady-state are the followings:

p(0, 0)[λ+ Λ] = (3.47)

λ

∞∑
l=1

pl−1(1− p)p(0, l) + (Λ(1− π) + γ)p(1, 0) + μp(0, 1),

p(1, 0)[λ+ Λ(1− π) + γ] = (3.48)

λ
∞∑
l=0

plp(0, l) + (Λ(1− π) + γ)p(2, 0),

p(d, 0)[λ+ Λ(1− π) + γ] = (3.49)

λp(d− 1, 0) + (Λ(1− π) + γ)p(d+ 1, 0),

p(0, e)[λ+ Λ+ μ] = (3.50)

λ

∞∑
l=1

pl−1(1− p)p(0, e+ l) + Λp(0, e− 1) + μp(0, e+ 1).

Theorem 3.1. If (Λ− μ)(1− p) < λ < Λ(1− π) + γ, the stationary distribution exists

and is given by:

p(0, e) = p(0, 0)Qe, e ≥ 1, (3.51a)

p(d, 0) = p(1, 0)qd−1, d ≥ 1, (3.51b)

where

q =
λ

Λ(1− π) + γ
, (3.52)

Q =
λ+ μ+ Λp−√

(λ+ μ+ Λp)2 − 4μΛp

2μp
, (3.53)

and

p(0, 0) =
(1− q)(1−Q)(1− pQ)

q(1−Q) + (1− q)(1− pQ)
(3.54)

= (
2μλ

(Λ(1− π)− λ)(μ− λ− Λp+
√
(λ+ Λp+ μ)2 − 4μΛp)

(3.55)

+
2μp

2μp− (λ+ Λp+ μ) +
√
(λ+ μ+ Λp)2 − 4μΛp

)−1, (3.56)

p(1, 0) =
q

(1− pQ)
p(0, 0) (3.57)

=
2μλ

(Λ(1− π) + γ)[μ− λ− Λp+
√

(λ+ Λp+ μ)2 − 4μΛp]
. (3.58)
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Proof. To proceed with the proof, we substitute equation (3.51a) in (3.50), which gives

the following after some algebra:

Qe[λ+ Λ+ μ] = λ(1− p)Qe+1 1

1− pQ
+ ΛQe−1 + μQe+1, (3.59)

0 = (Q− 1)[Q2(μp) +Q(−Λp− λ− μ) + Λ]. (3.60)

Thus, the Q are determined as:

Q1,2 =
λ+ μ+ Λp±√

(λ+ μ+ Λp)2 − 4μΛp

2μp
. (3.61)

Note that Q has to be smaller than 1, while:

λ+ μ+ Λp+
√

(λ+ μ+ Λp)2 − 4μΛp

2μp
≥ λ+ μ+ Λp

2μp
>

1

2
(
1

p
+

Λ

μ
) > 1, (3.62)

since p < 1 and μ < Λ.

Therefore, the only viable root is

Q =
λ+ μ+ Λp−√

(λ+ μ+ Λp)2 − 4μΛp

2μp
, (3.63)

and we may consider the following:

λ+ μ+ Λp−√
(λ+ μ+ Λp)2 − 4μΛp

2μp
< 1, (3.64)

(λ+ μ+ Λp− 2μp)2 < (λ+ μ+ Λp)2 − 4μΛp, (3.65)

Λ + μp < (λ+ μ+ Λp), (3.66)

(Λ− μ)(1− p) < λ. (3.67)

Note that the equation (3.49) has a solution of the form:

p(d, 0) = (
λ

Λ(1− π) + γ
)d−1 p(1, 0). (3.68)

Since q < 1, then λ < Λ(1− π) + γ.

The ratio between p(1, 0) and p(0, 0) can also be calculated, when substituting equation

(3.50) in (3.47):

p(0, 0)[λ+ Λ] = λ(1− p)
Qp(0, 0)

1− pQ
+ (Λ(1− π) + γ)p(1, 0) + μQp(0, 0), (3.69)

(λ+ Λ) = λ(1− p)
Q

1− pQ
+ (Λ(1− π) + γ)

p(1, 0)

p(0, 0)
+ μQ. (3.70)
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Thus,

p(1, 0)

p(0, 0)
=

Q2(μp)−Q(Λp+ λ+ μ) + Λ + λ

(Λ(1− π) + γ)(1− pQ)
(3.71)

=
λ

(Λ(1− π) + γ)(1− pQ)
(3.72)

=
2μλ

(Λ(1− π) + γ)[μ− λ− Λp+
√

(λ+ Λp+ μ)2 − 4μΛp]
. (3.73)

Moreover, using the fact that the probabilities must sum to one, gives followings:

1 = p(0, 0) + p(1, 0) +
∞∑
d=2

p(d, 0) +

∞∑
e=1

p(0, e), (3.74)

1 = p(0, 0)[1 + ξ + ξ
q

1− q
+

Q

1−Q
], (3.75)

1 = p(0, 0)[ξ
1

1− q
+

1

1−Q
], (3.76)

where ξ = p(1,0)
p(0,0) =

q
1−pQ .

Thus, p(0, 0) is calculated as:

p(0, 0) =
(1− q)(1−Q)

ξ(1−Q) + (1− q)
(3.77)

=
(1− q)(1−Q)(1− pQ)

q(1−Q) + (1− q)(1− pQ)
(3.78)

=
1

q
1−q

1
1−pQ + 1

1−Q

(3.79)

= [

2μλ
(Λ(1−π)−λ)

[μ− λ− Λp+
√
(λ+ Λp+ μ)2 − 4μΛp]

(3.80)

+
2μp

2μp− (λ+ Λp+ μ) +
√

(λ+ μ+ Λp)2 − 4μΛp
]−1. (3.81)
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Remark 1 Based on the above results, notice that:

• The probability that the data queue is empty can be obtained as:

P [d = 0] = p(0, 0) +

∞∑
e=1

p(0, e) (3.82)

= p(0, 0)(1 +
∞∑
e=1

Qe) (3.83)

= p(0, 0)(
1

1−Q
) (3.84)

=
1

1 + q
1−q

1−Q
1−pQ

(3.85)

=
1

1 + λ
Λ(1−π)−λ

2μp−(λ+Λ+μ)+
√

(λ+μ+Λp)2−4μΛp

2μ−(λ+Λ+μ)+
√

(λ+μ+Λp)2−4μΛp

. (3.86)

• The probability that the data queue is non-empty is:

P [d > 0] =
∞∑
d=1

p(d, 0) (3.87)

= p(1, 0)
∞∑
d=0

qd (3.88)

=
q

(1− pQ)

1

1− q
p(0, 0) (3.89)

=
1

1 + 1−q
q

1−pQ
1−Q

(3.90)

=
1

1 + Λ(1−π)−λ
λ

2μ−(λ+Λ+μ)+
√

(λ+μ+Λp)2−4μΛp

2μp−(λ+Λ+μ)+
√

(λ+μ+Λp)2−4μΛp

. (3.91)

• As a sanity check, the probability that the data queue is either full or empty is:

P [d ≥ 0] =
1

1 + q
1−q

1−Q
1−pQ

+
1

1 + 1−q
q

1−pQ
1−Q

= 1. (3.92)

Similarly,
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• The probability that the energy queue is empty can be obtained as:

P [e = 0] = p(0, 0) + P [d > 0], (3.93)

= p(0, 0) +

∞∑
d=1

p(d, 0), (3.94)

= p(0, 0)(1 + γ

∞∑
d=1

qd−1), (3.95)

= p(0, 0)(1 +
q

(1− q)(1− pQ)
), (3.96)

=
q(1−Q) + (1− q)(1− pQ)(1−Q)

q(1−Q) + (1− q)(1− pQ)
. (3.97)

=
1

A1 +A2
+

1

A3
, (3.98)

(3.99)

where

A1 =
2μλ

(Λ(1− π)− λ)[2μ− (λ+ Λ+ μ) +
√

(λ+ μ+ Λp)2 − 4μΛp]

A2 =
2μp

2μp− (λ+ Λ+ μ) +
√
(λ+ μ+ Λp)2 − 4μΛp

A3 = 1 +
Λ(1− π)− λ

λ

2μ− (λ+ Λ+ μ) +
√
(λ+ μ+ Λp)2 − 4μΛp

2μp− (λ+ Λ+ μ) +
√
(λ+ μ+ Λp)2 − 4μΛp

.

• The probability that the energy queue is non-empty is:

P [e > 0] = P [d = 0]− p(0, 0), (3.100)

=

∞∑
e=1

p(0, e), (3.101)

= p(0, 0)
∞∑
e=1

Qe, (3.102)

= p(0, 0)
Q

1−Q
, (3.103)

=
Q(1− q)(1− pQ)

q(1−Q) + (1− q)(1− pQ)
. (3.104)

=

λ+μ+Λp−
√

(λ+μ+Λp)2−4μΛp

2μp−(λ+μ+Λp)+
√

(λ+μ+Λp)2−4μΛp

A1 +A2
. (3.105)

• As a sanity check, the probability that the energy buffer is either full or empty is:

P [e ≥ 0] =
q(1−Q) + (1− q)(1− pQ)(1−Q) +Q(1− q)(1− pQ)

q(1−Q) + (1− q)(1− pQ)
= 1. (3.106)
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Remark 2 The total power used by a node for transmission is simply the power entering

the node from harvesting, minus that lost via leakage:

X = [Λ− μ

∞∑
e=1

p(0, e)] = [Λ− μQ(1− q)(1− pQ)

1−Q(p+ q − pq)
]. (3.107)

Remark 3 If leakage rates μ and γ are assumed to be negligible, then λ < Λ and π < p.

3.2.6 Analysis of the Transmission Error with Negligible Leakage Rates

Understandably, a given EHWSN will not radiate power at all if it is not transmit-

ting. Thus for any sensor node i among a set of N nodes, its transmission power when

transmitting a DP is given by:

Xi = [(λi − μi)
∞∑
e=1

pi(0, e) + (Λi − γi)
∞∑
d=1

pi(d, 0)], (3.108)

where the subscript i relates to the parameters of the i-th node.

Furthermore, if the probability of correctly receiving (or decoding) the packet sent by a

given node i that transmits at power level Xi is denoted by:

Ci = f(
Xi∑N

j �=i
j=1

φi +Bi

), (3.109)

where f is some increasing function of its argument which is the signal to interference

plus noise Bi. Assume that all nodes are identical, then equation (3.109) can be replaced

by:

C = f(
(λ− μ)

∑∞
e=1 p(0, e) + (Λ− γ)

∑∞
d=1 p(d, 0)]

(N − 1)[Λ− μ
∑∞

e=1 p(0, e)] +B
), (3.110)

and if the leakage rates μ and γ are negligible, we obtain:

C = f(
λ
Λ

∑∞
e=1 p(0, e) +

∑∞
d=1 p(d, 0)]

(N − 1) + B
Λ

), (3.111)

= f(

λ
Λp(0, 0)

Q
1−Q + p(1, 0) 1

1−q ]

(N − 1) + B
Λ

) (3.112)
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In order to make further analysis, there is a need to re-calculate stationary distributions

when the leakages μ and γ are neglected:

lim
(μ,γ)→0

Q = lim
(μ,γ)→0

λ+ μ+ Λp−√
(λ+ μ+ Λp)2 − 4μΛp

2μp
(3.113)

= lim
(μ,γ)→0

∂
∂u [λ+ μ+ Λp−√

(λ+ μ+ Λp)2 − 4μΛp]
∂
∂u(2μp)

(3.114)

= lim
(μ,γ)→0

1− (μ+λ−Λp)√
(λ+μ+Λp)2−4μΛp

2p
=

1− λ−Λp
λ+Λp

2p
=

Λ

λ+ Λp
. (3.115)

lim
(μ,γ)→0

q = lim
(μ,γ)→0

λ

Λ(1− π) + γ
=

λ

Λ(1− π)
. (3.116)

(3.117)

and

lim
(μ,γ)→0

p(0, 0) = lim
(μ,γ)→0

1−Q

1 + q
1−q

1−Q
1−pQ

=
1− Λ

λ+Λp

1 +
λ

Λ(1−π)

1− λ
Λ(1−π)

1− Λ
λ+Λp

1− Λp
λ+Λp

, (3.118)

=
[λ− Λ(1− p)][Λ(1− π)− λ]

Λ(p− π)(λ+ Λp)
. (3.119)

lim
(μ,γ)→0

p(1, 0)

p(0, 0)
= lim

(μ,γ)→0

q

(1− pQ)
=

λ
Λ(1−π)

1− Λp
λ+Λp

=
λ+ Λp

Λ(1− π)
. (3.120)

Thus, equation (3.112) becomes:

C = f(
p2Λ + p(2λ− Λ)− λπ

Λ(p− π)( λΛ + p)((N − 1) + B
Λ )

). (3.121)

However, the error probabilities π and p are linked to C in the following context. Knowing

that p > π from Remark 3 we may assume that p = π + ε where ε > 0, and error

probabilities can be linked as p = 1− C, π = 1− C − ε.

Thus, equation (3.121) becomes:

C = f(
C2 − C(ς + 1) + ς(ε+ 1)

εκ(ς + 1− C)
). (3.122)

where ς = λ
Λ and κ = (N − 1) + B

Λ .

On the other hand, Q < 1 and q < 1 must be satisfied in order to prevent the summations

diverging to infinity.

• If Q < 1, then Λ < λ+ Λp, so that C < ς.

• If q < 1, then λ < Λ− Λπ, so that ς < C + ε.
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Therefore, the system can only operate, when the condition 0 < C < ς < C + ε < 1 is

satisfied.

It is easily observed that C is equal to a function of C such that C = f(g(C)) = h(C).

In this case, finding a closed-form expression for the value C is elusive; however, the

existence and uniqueness of the solution can be considered.

Lemma 3.2. g(·) is a decreasing function on (0, ς), if (1 + ε) < 1
ς .

Proof. If g′(C) < 0, then g(·) is a decreasing function on (0, ς).

g′(C) =
1

εκ
[
(2C − (ς + 1))(ς + 1− C)

(ς + 1− C)2
+

(C2 − C(ς + 1) + ς(1 + ε))

(ς + 1− C)2
] (3.123)

=
1

εκ
(

ς(1 + ε)

(ς + 1− C)2
− 1). (3.124)

If g′(C) < 0, then ς(1 + ε) < (ς + 1 − C)2. We can easily write the following relation

1 < (ς + 1 − C)2 < (ς + 1)2, since 0 < C < ς. Thus, if the condition (1 + ε) < 1
ς holds,

then g(·) is a decreasing function.

Lemma 3.3. If g(·) is a decreasing function, similarly h(·) is also a decreasing function.

Proof. ∀{C ′, C ′′} ∈ (0, ς), if C ′ < C ′′ then g(C ′) > g(C ′′) and h(C ′) = f(g(C ′)) >

f(g(C ′′)) = h(C ′′), since f(·) is an increasing function. Thus, h(·) is also a decreasing

function on (0, ς).

Theorem 3.4. If (1 + ε) < 1
ς and ς > h(ς), then there exists a unique C∗ such that

C∗ = h(C∗) where ∀C∗ ∈ (0, ς).

Proof. The proof can be carried out by using geometric interpretation. In Figure 3.3, we

can observe that any continuous decreasing function passing through the points (0, h(0))

and (ς, h(ς)) must cross the line y = x at a unique point provided the condition ς > h(ς)

is satisfied. Thus, ∃C∗ ∈ (0, ς) such that C∗ = h(C∗) while (1+ ε) < 1
ς and ς > h(ς).
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Figure 3.3: Arbitrary decreasing functions intersect with the line x = y at only one
point, where C∗ = h(C∗).

3.2.6.1 A Numerical Example

If an unmodulated binary phase shift keying (BPSK) transmission scheme is used, then

each packet consists of n independent binary symbols which are transmitted with noise

and interference. In this case, the probability of correctly decoding each binary symbol

from node i is [99]:

1−Q(

√√√√ Xi∑N
j �=i
j=1

φi +Bi

), (3.125)

and the function f can be simplified to:

f(x) = [1−Q(
√
x)]n, (3.126)

f(g(C)) = [1−Q(
√

g(C))]n. (3.127)

Figure 3.4 shows the relation between the probability of transmitted data correctly re-

ceived and the number of EHWSN in the network for different ς values. The larger

networks with more EHWSNs obviously lead to smaller correctly received probabilities,

while the larger ς values result in fewer transmission errors.
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Figure 3.4: Relation between correctly received probability, C, and the number of
the sensor nodes in the network, N .

3.3 Transmission with K Energy Packets

Again consider an EHWSN in which DPs can be transmitted via a perfect transmitter.

However, in this section we assume a model where a successful transmission can occur

only by consuming K > 1 EPs instead of a single EP. Similarly, we consider that the

arrival of DPs and EPs occur according to two distinct independent Poisson processes

with rates λ and Λ, respectively. However, we do not consider energy and data leakages

from the buffers. In addition, as in the previous section we assume whenever enough

energy is available and there are DPs waiting they will be instantaneously transmitted

until the EPs or DPs are depleted.
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3.3.1 Mathematical Model

Let us write p(d, e, t) = Prob[D(t) = d,E(t) = e]. We need only to consider p(d, e, t) for

the state space S of pairs of integers (d, e) ∈ S such that:

S = {(0, 0), (d, 0), (0, e), (l, k) : (3.128)

1 ≤ d ≤ D, 1 ≤ e ≤ E, 1 ≤ l < D, 1 ≤ k < K}, (3.129)

where D (E) is the maximum amount of DP (EP), which can be stored in the data

(energy) buffer.

Figure 3.5 illustrates the state transition of the CTMC with a defined state space. The

following balance equations can be written according to the state diagram in Figure 3.5:

p(0, 0)[λ+ Λ] = Λ p(1,K − 1) + λ p(0,K), (3.130)

p(d, 0)[λ+ Λ] = Λ p(d+ 1,K − 1) + λ p(d− 1, 0), (3.131)

p(D, 0)[Λ] = λ p(D − 1, 0), (3.132)

p(0, e)[λ+ Λ] = Λp(0, e− 1) + λp(0, e+K)1[E ≥ e+K], (3.133)

p(0, E)[λ] = Λ p(0, E − 1), (3.134)

p(l, k)[λ+ Λ] = Λp(l, k − 1) + λp(l − 1, k), (3.135)

p(D, k)[Λ] = Λp(D, k − 1) + λp(D − 1, k), (3.136)

where equation 3.135 is valid for 0 < l < D, 0 < k < K and equation 3.136 is valid for

0 < k < K.

Finding a closed-form expression for the stationary probability distributions is elusive

considering above equilibrium equations. However, we can use the cylindrical symmetry

of the state diagram of CTMC to define a one-to-one and onto function. This function

combines the data and energy indices into a single index such that:

p(d, e) = p̃(dK − e+ E). (3.137)

Following the state transformation, it is observed that there is a decreasing order among

the states starting from (DK + E) to (0). Thus, the state transitions can be modelled

as a one-dimensional Markov chain as in Figure 3.6.

For the one-dimensional CTMC model, state transitions can basically be separated into

3 different regions according to similar transitions behaviours of the states. Therefore,
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Figure 3.5: State transition for the model where a successful DP transmission can
occur by consuming K EPs.

complication of the analysis can be reduced and the following balance equations can be

written for each region where ξ � DK + E −K:

• Region1, ξ < N ≤ ξ +K:

p̃(ξ +K)Λ = λp̃(ξ), (3.138)

p̃(N)Λ = λp̃(N −K) + Λp̃(N + 1). (3.139)
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Figure 3.6: After the state transition we have one-dimensional CTMC state diagram
that simplifies the analysis

• Region2, K ≤ N ≤ ξ:

p̃(N)[Λ + λ] = λp̃(N −K) + Λp̃(N + 1). (3.140)

• Region3, 0 < N < K :

p̃(N)[Λ + λ] = Λp̃(N + 1), (3.141)

p̃(0)λ = Λp̃(1). (3.142)

Equation (3.140) is a recurrence relation of order of (K + 1) and it leads to obtain the

stationary probabilities in Region 2. Thus, the characteristic equation is:

ΘK+1 − (1 +
λ

Λ
)ΘK +

λ

Λ
= 0. (3.143)

Equation (3.143) has K + 1 roots, namely {ϑ1, ϑ2, ..., ϑK+1} so that the closed-form

expression for the distribution is given by:

p̃(N) = cΘN = c(
K+1∑
j=1

ajϑj)
N (3.144)

where c is an arbitrary constant and the set of a′js should be such that Θ must be real

valued in the interval (0, 1).

Applying Descartes’ rule of signs [100], it can be concluded that equation (3.143) has

either two or zero positive real roots, one negative real root, and either K − 3 or K − 1

complex valued roots. Here, equation (3.143) is rewritten as

ΘK (λ+ Λ(1−Θ))− λ = 0. (3.145)

Since 1 is a root of this equation, (3.143) has exactly 2 positive real roots.
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When we consider the state (K − 1), by equation (3.141) we can write:

p̃(K − 1) =
Λ

Λ + λ
cΘK . (3.146)

By using (3.146) in further calculations, the stationary probabilities in Region 3 can be

expressed as:

p̃(K − i) = (
Λ

Λ + λ
)icΘK , 0 < i < K (3.147)

or

p̃(N) = (
Λ

Λ + λ
)K−NcΘK , 0 < N < K (3.148)

and

p̃(0) =
Λ

λ
(

Λ

λ+ Λ
)K−1cΘK . (3.149)

Moreover, when considering the state (ξ + 1), using equation (3.140) we can write:

p̃(ξ + 1) = cΘξ(1 +
λ

Λ
(1−Θ−K)). (3.150)

By using (3.150) in further calculations, the stationary probabilities in Region 1 can be

expressed as:

p̃(ξ +m) = cΘξ

(
1 +

λ

Λ
(1−Θ−K

m−1∑
i=0

Θi)

)
, (3.151)

where 0 < m < K and

p̃(ξ +K) =
λ

Λ
cΘξ. (3.152)

Using the fact that the sum of the probabilities is 1:

DK+E∑
N=0

p̃(N) =

K−1∑
N=0

p̃(N) +

ξ∑
N=K

cΘN +

DK+E∑
N=ξ+1

p̃(N) = 1, (3.153)
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where

K−1∑
N=0

p̃(N) = p̃(0) +
K−1∑
N=1

p̃(N), (3.154)

=
Λ

λ
(

Λ

λ+ Λ
)K−1cΘK + cΘK

K−1∑
N=1

Λ

Λ + λ

K−N

, (3.155)

=
Λ

λ
(

Λ

λ+ Λ
)K−1cΘK + cΘKΛ

λ
(1− (

Λ

λ+ Λ
)K−1), (3.156)

= cΘKΛ

λ
(3.157)

Following some further algebra the summation (3.153) reduces to:

cΘKΛ

λ
+

c(ΘK −Θξ+1)

1−Θ
+

K∑
m=1

p̃(ξ +m) = 1. (3.158)

where

K∑
m=1

p̃(ξ +m) = c
K−1∑
m=1

(
Θξ +Θξ λ

Λ
−Θξ−K

m−1∑
i=0

Θi

)
+ cΘξ λ

Λ
. (3.159)

Further simplification can be carried out for equation (3.159) giving:

cΘξ(K(1 +
λ

Λ
)− 1) + cΘξ−K

(
ΘK −K(Θ− 1)− 1

(Θ− 1)2

)
. (3.160)

Thus:

DK+E∑
N=0

p̃(N) = cΘKΛ

λ
+

c(ΘK −Θξ+1)

1−Θ
(3.161)

+ cΘξ[K(1 +
λ

Λ
)− 1− Θ−K(1 +K(Θ− 1))− 1

(Θ− 1)2
] (3.162)

= 1. (3.163)

Moreover, an infinite data buffer, i.e., D → ∞ can be assumed such that the summation

reduces to:

∞∑
N=0

p̃(N) = cΘK

(
Λ

λ
+

1

1−Θ

)
= 1. (3.164)

Following further analysis, 3.164 becomes:

ΘK+1 −
(
1 +

λ

Λ

)
ΘK +

λ

cΛ
− λΘ

cΛ
= 0. (3.165)



Packet Transmission via Perfect Transmitter 63

Substituting equation (3.143) into equation (3.165) gives:

c = 1−Θ. (3.166)

Thus, the solution is :

p̃(N) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1−Θ)ΘN , K ≤ N < ∞
(1−Θ)ΘK( Λ

Λ+λ)
K−N , 0 < N < K

(1−Θ)ΘK Λ
λ (

Λ
λ+Λ)

K−1, N = 0

where Θ is the summation of linearly combined roots of equation (3.143).

Note that equation (3.143) cannot be solved in radicals for K ≥ 4 by the Abel & Ruffini

theorem [101]. This means that there does not exist an explicit expression for the roots

of such equations as a function of the coefficients by means of algebraic operations and

roots of natural degrees. Thus, it is better to adjust the system model in order that

one DP can be transmitted by 4 or less EPs. Nevertheless, solutions can be considered

numerically for high K values.

3.3.2 Modelling the Interference and the Noise

The arrival rate of EPs Λ is itself in units of power, i.e. the flow of EPs per second maps

into power entering the EHWSN via harvesting. Assuming that a single EP contains a

unit of energy and that the power level that has been set to transmit one data packet is

K.

Alternatively, on average the total radiated power φ from a node is simply the power

entering the node from harvesting, minus that which is lost through energy loss due to

the finite capacity of the energy buffer, assuming a “perfect” transmitter that does not

waste any power in electronics. Of course this is unreasonable, however the lost effect

may be “hidden” in the value Λ, i.e. this rate is merely the amount of power that reaches

the transmitter after the energy is harvested and then used (in part) to operate the

sensor’s electronic circuits. This gives:

φ = Λ− Le, (3.167)

where

Le = Λ
∞∑
n=0

p(n,E) = Λp(0, E) = Λp̃(0). (3.168)
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Figure 3.7: The relation between the probability of correct detection of a bit C and
the number of simultaneously transmitting wireless sensors N , for different

transmission power levels K.

Now consider a particular EHWSN, say the i-th, operating in proximity with a total of

N wireless sensors all transmitting at the same power level K. In the communication

channel due to noise of power level B at the receiver, plus the interference at level I

from the other sensors, assuming that the transmission of a +1 is as likely as that of the

transmission of a −1, the probability C of correct detection of a bit by the receiver can

be written as:

C =
1

2
{Prob[αK > αI +B] + Prob[−αK + αI +B ≤ 0]},

where 0 ≤ α ≤ 1 is the fraction of transmitter power received with respect to the amount

transmitted, and I = σφ(N −1) where 0 ≤ σ ≤ 1 represents the “side-band interference”

effect. If multiple transmitters use some closely related frequency, they will avoid using

exactly the same frequencies, but their side-bands will interfere with each other so that
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we may expect σ to be much less than one. With BPSK transmissions where both the

interference and the noise are assumed to be Gaussian of zero mean [99] the probability

of correctly receiving a binary symbol is then:

C = 1−Q(

√
αK

ασφ(N − 1) +B
), (3.169)

where Q(x) = 1
2 [1− erf( x√

2
)].

The value of K has an interesting effect on the error rates. A large K can cause φ to

grow, and hence it creates more interference. However, it also provides higher power to

overcome interference as well as noise. This interesting effect is illustrated in the next

section.
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Figure 3.8: The relation between C and the noise power B for different values of
transmission power K with N = 30 mutually interfering transmitters.
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3.3.3 Numerical Examples

Figure 3.7 shows the effect of the number of EHWSN N on the correctly received prob-

ability C for several values of K. Understandably, an increase in the total number of

sensors N will increase the interference in the communication system, so that C will de-

crease. Moreover, when the required energy to transmit one packet is increased, i.e. K

is increased, it is observed that C is slightly higher for the same number of transmitters

N .
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Figure 3.9: C versus the number of interfering transmitters as a function of N when
we assume a much greater interference effect, represented by σ = 1, when N exceeds
the number of multiplexed frequency bands assumed to be 30. Different transmission

power levels K have little effect on the results.

Figure 3.8 illustrates the effect of different noise power levels on C where we set N=30. C

is observed to decrease nearly linearly as B increases, and that the effect of transmission

power level K is quite limited.
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Figure 3.9 reveals an effect not discussed previously. In real systems the total number of

frequency bands that are being multiplexed will be limited; here that number is set to 30.

Thus when N = 30 is exceeded the level of interference is assumed to grow dramatically,

i.e. there is a large increase on σ, taking an extreme worst case that all the other stations

interfere with the one that is being analysed such that σ = 1.

3.4 Impacts of Modelling Assumptions on the Results

In this chapter, packet arrivals are assumed to be independent Poisson processes, which is

a reasonable method to model digital systems studied in this chapter. The justification

lies in the fact that the behaviour of large a number of independent arrivals can be

firmly approximated by the Poisson distribution. This can be understood by considering

three defining properties of the Poisson process: a) one arrival occurs at a time, b) the

probability that an arrival occurs at a time is independent of when the other arrivals

occurred, and c) the probability that an arrival occurs at a given time does not depend

on the time. However, one might think that the arrivals of DPs and EPs at a sensor

node may vary with time (for example, energy arrivals from a photovoltaic source will

be different for the daytime and the night time). In this case, the packet arrivals can

be modelled more faithfully with non-homogeneous Poisson process in which the average

rate of arrivals is allowed to vary with time. Although arrival rates changing with time

increase the complexity of analysis, several works [102–104] have studied to estimate the

long-run average arrival rate. Therefore, the similar steady-state analysis to calculate

the stationary probability distributions can be made by using the estimated values of

long-average arrival rates.

The other modelling assumption for packet arrivals is that DP and EP arrivals are

independent of each other. Although this approach is suitable for many sensor operations,

there are some cases where a strong dependency between both packet arrivals exists (e.g.

harvesting energy from vibrations to sense vibrations [56]). However, a system can be

evaluated in the same way by considering the EP arrival rate is a certain fraction of

the DP arrival rate (or vice versa), and the fraction value can be predicted to provide

effective operations for a sensor.

Negligible service time is another reasonable assumption since the packet transmission

occurs quite fast compared to the time needed to constitute EPs and DPs. This as-

sumption provides simpler random walk and Markov chain models that could be used

to analyse sensor states. However, in reality, a certain amount of time (even if it is too

small) must be spent for the service. In this case, taking into account of a very small

service time will affect the state transition diagrams, and it results in multi-dimensional
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Markov chain models. Although it increases the complexity of finding the state dis-

tributions, some basic state transformation (as used in Chapter 3) can be applied and

solutions for the further analysis can be provided.

In this chapter, the models with both limited and unlimited buffer capacities are exam-

ined. Despite the fact that consideration of the unlimited capacity buffers simplifies the

computational complexity, they do not have a crucial impact on the results. On the other

hand, it must be emphasized that there are some analyses appertaining solely either to

the systems with unlimited buffers (e.g. stability) or to the systems with limited buffers

(e.g. excessive packets).

It is also assumed that the transmission errors occur with some certain probabilities,

which cause retransmissions of the same packets. This retransmission process might

repeat itself with the same error and success probabilities, independent of the previous

outcome. However, one might expect to observe another transmission error if the previous

attempt was not successful. The underlying reason here is the fact that there is an

extremely small time interval between the two consecutive transmissions. In this case,

a sensor node needs to consume more energy (or EPs) in order to achieve the same

correctly received probability of the packet transmission. Hence, the results related to

packet transmission errors presented in this chapter are expected to be better than the

ones obtaining from the simulation results or the real-time experiments.

3.5 Conclusion

This chapter analyses EHWSN that gather both data and energy from the environment,

so that they can operate autonomously. A stochastic model of the harvested energy

and the data arrival has been considered in terms of Poisson flows of DPs and EPs. In

addition, the effect of energy loss through standby operation, and battery or capacitor

leakage, which is represented by an exponentially distributed decay rate is considered.

Moreover, time-out data loss, which occurs when a DP has waited too long in the queue

due to lack of energy is also considered. As the DP transmission time compared to

the DP processing time in the node and sensing time from the ambient environment

is very small, it is assumed to occur very fast, i.e. the packet transmission happens

instantaneously. Furthermore, a transmission scheme by which DPs can be transmitted

via perfect transmitter that does not waste any energy for the node electronics and use

all the energy for successful packet transmission is assumed.

In the first part of the chapter, a model where successful transmission can be obtained by

consuming a single EP is investigated. First, we obtained a closed-form formula of the



Packet Transmission via Perfect Transmitter 69

stationary probability distributions through the equilibrium equations. Next, we studied

the DP and EP losses due to finite capacity of the data and energy buffers. In addition,

the optimum energy efficiency of the transmission to understand the appropriate oper-

ating point that would use the minimum amount of energy consumed per transmitted

packet was discussed. Moreover, the system stability that can only be a concern when

buffer sizes are very large was investigated. A further model that includes energy and

data losses, but assumes that the DP buffer, and energy storage capacity, are unlimited

was also considered. This is a useful idealisation when the capacities are very large.

However, this latter model introduced the interesting question of stability. The model

also incorporated transmission error probabilities due to noise and interference. This

analysis allowed us to consider the error probabilities when N wireless sensors operate

in proximity to each other.

In the second part of the chapter, the system was analysed using a random walk model

that represents the random arrivals of DPs, as well as the random arrivals of harvested

energy in the form of discrete EPs. Using precise assumptions about the processes that

are involved, we obtained the stationary distribution of buffer lengths with limited data

and energy buffers, and both DPs and EPs can be lost when their respective buffers are

full. This analysis allowed computation of the average transmitted power from a sensor,

and to study the behaviour of one sensor in the presence of a collection of interfering

sensors as well as of noise at the receiver. In particular, the probability that a receiver in

the presence of several identical wireless sensor transmitters receives a finite set of bits

correctly was computed. Numerical examples were used to illustrate the contradictory

effect of the transmitter power: high power levels can improve the probability of correct

packet reception; however, they can also increase interference and have the opposite

effect.



Chapter 4

Packet Transmission via Imperfect

Transmitter

4.1 Introduction

The work in this chapter is based on references [64, 67, 68]. In this chapter, an EHWSN

in which the packet transmission occurs via imperfect transmitter is investigated. In an

imperfect transmitter energy is not only consumed for the packet transmission but also

for the node electronics, i.e. packet sensing, processing and storing by the sensor node.

First, a model in which both node electronics and packet transmission require a single

EP, so that successful transmission only occurs by consuming 2 EPs was studied. For this

model, a closed-form solution was obtained for the steady-state probability distributions.

Other quantities of interest including excessive packet rates and system stability were

also investigated. Second, a generalised model in which node electronics and packet

transmission require Ke > 1 and Kt > 1 EPs was considered. Consequently, for a

successful transmission an EHWSN needs to consume Ke +Kt = K EPs in total. This

model leads a two-dimensional CTMC and several linear algebra techniques have been

used to reduce the solution complexity to obtain stationary probability distributions.

4.2 Energy Consumption Model with Single Energy Packet

In this section, an EHWSN where data and energy is received randomly from the ambient

environment is modelled. The arrivals of both DPs and EPs at the node are assumed to

be independent Poisson process with rates λ and Λ, respectively. In addition, there is

standby loss in the system due to self discharge nature of energy storages. This can also

be modelled as an independent Poisson process with rate μ.
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Figure 4.1: Random walk representation of the state transitions where the energy
consumption for both the node electronics and the packet transmission.

In a typical sensor node, the harvested energy is basically consumed for packet sensing,

storing, processing and transmission. In this work, we assume that Ke = 1 EP is required

for the node electronics (sensing, storing, processing) and Kt = 1 EP is required for the

packet transmission.

4.2.1 Mathematical Model

Consider a system at a time t ≥ 0 contains D(t) DPs in the buffer and E(t) EPs in

the storage, such that it can model the state of sensor node by the pair of (D(t), E(t)).

Whenever E(t) ≥ 1, the node can sense a DP, and one EP is immediately consumed

by the node electronics. Moreover, the node can instantaneously transmit the DP by

consuming one more EP if there is still available energy in the storage.

On examining the system model carefully, it can be concluded that the system does not

allow growing numbers of DPs in the data buffer. In fact, when one DP arrives at the

node whose state is (D(t) = 0, E(t) = 1), the state will change as (D(t) = 1, E(t) = 0)

and this is the only state where data buffer is not empty. This interesting situation leads

to excessive DPs in the system, which will be considered later.

Let us write p(d, e, t) = Prob[D(t) = d, E(t) = e]. Considering only p(d, e, t) for the

state space such that (e − d) ∈ S, where E ≥ (e − d) ≥ −1 and E is the maximum

amount of EPs that can be stored in the node.

Consequently, the system can be modelled as a finite CTMC whose states and transition

diagram is shown in Figure 4.1. Moreover, the process is irreducible and aperiodic, which

means the stationary probabilities p(e − d) = limt→∞ Prob[D(t) = d, E(t) = e] exist

uniquely and can be computed from the following balance equations:
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p(−1)[Λ] = λ p(1) (4.1)

p(0)[Λ] = Λ p(−1) + λ p(2) + μ p(1) (4.2)

p(N)[Λ + λ+ μ] = Λ p(N − 1) + λ p(N + 2) + μ p(N + 1) (4.3)

p(E − 1)[Λ + λ+ μ] = Λ p(E − 2) + μ p(E) (4.4)

p(E)[λ+ μ] = Λ p(E − 1). (4.5)

Note that equation (4.3) is valid for 0 < N < E − 1 and has a solution of the form:

p(N) = c ϕN (4.6)

where c is an arbitrary constant and ϕ can be computed from following characteristic

equation:

λϕ3 + μϕ2 − (Λ + λ+ μ)ϕ+ Λ = 0 (4.7)

whose roots are {ϕ1 = 1, ϕ2,3 =
−(λ+μ)∓

√
(λ+μ)2+4Λλ

2λ . Here the only viable root is ϕ3,

since the solution must lie in the interval (0, 1). In the rest of the section, we consider

ϕ3 = ϕ for the sake of the simplicity.

The followings may also be obtained:

p(−1) = c
λ

Λ
ϕ, (4.8)

p(0) = c(
λ

Λ
ϕ2 +

λ+ μ

Λ
ϕ), (4.9)

p(E − 1) = c[1 +
λ+ μ

Λ
− μ

λ+ μ
]−1ϕE−2, (4.10)

p(E) = c[(
λ+ μ

Λ
)(
Λ + λ+ μ

Λ
)− μ

Λ
]−1ϕE−2. (4.11)

Using the fact that summation of the probabilities is one:

E∑
N=−1

p(N) = c(
2λ+ μ

Λ
ϕ+

λ

Λ
ϕ2) (4.12)

+ c

E−2∑
N=1

ϕN + c[
λ+ μ

Λ
− μ

Λ + λ+ μ
]−1ϕE−2 (4.13)

= 1. (4.14)
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Following further calculations, the value of c can be calculated as:

c = [
2λ+ μ

Λ
ϕ+

λ

Λ
ϕ2 +

ϕ− ϕE−1

1− ϕ
+

Λ(Λ + λ+ μ)

(λ+ μ)(Λ + λ+ μ)− μΛ
ϕE−2]−1. (4.15)

4.2.2 Excessive Packets due to Finite Buffer Sizes

As the energy storage capacity (maximum E EPs) and data buffer capacity (maximum

D DPs) are finite and the data buffer is forced to be empty most of the time, there must

be some excessive packets that arrive at the node that cannot be sensed and stored.

These excessive packets rates are Γd and Γe for the DPs and EPs, respectively. They

can be computed as:

Γd = λ

−D∑
N=0

p(N) = λ(p(0) + p(−1)) (4.16)

= cλ(
2λ+ μ

Λ
ϕ+

λ

Λ
ϕ2), (4.17)

Γe = Λp(E) (4.18)

= c[
1

Λ
[(
λ+ μ

Λ
)(
Λ + λ+ μ

Λ
)− μ

Λ
]]−1ϕE−2. (4.19)

Figure 4.2 shows the relation between excessive DP rate and data arrival rate at different

energy arrival rates assuming E = 100 packets and μ = 0.1Λ. As can be seen, an increase

in the DP arrival rate results in a larger excessive packet rate. Conversely, an increase

in the energy arrival has the opposite effect on the excessive packet rate. A reasonable

excessive DP rate is observed if λ is below a nominal value according to Λ, even though no

more than one DP can be stored in the buffer. This is because DPs can be immediately

sensed and transmitted when there are only two or more EPs in the node.

Figure 4.3 shows the relation between excessive EP rate and energy arrival rate for

different data arrival rates for E = 100 packets and μ = 0.1Λ. While an increased

EP arrival rate leads to a more excessive EP rate, a larger DP arrival results in a less

excessive packet since a larger DP arrival rate triggers EP consumption in the node.

4.2.3 Stability of the System

System stability relates to whether or not a finite number of segregated DPs and EPs

remain finite with a certain probability for unlimited data and energy storage capacity

when t → ∞. If this condition is satisfied, then the system is said to be stable.
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Figure 4.2: Excessive DP rate grows with increasing packet arrival rates whereas
decreases with increasing energy arrival rates.

In order to make further analysis, a system with unlimited storage is considered. In this

case, the following is allowed:

p(−1) = c′
λ

Λ
ϕ, (4.20)

p(0) = c′(
λ

Λ
ϕ2 +

λ+ μ

Λ
ϕ), (4.21)

p(N) = c′ϕN , N > 0. (4.22)

where ϕ is again solution for equation 4.7 and c′ can be computed as:

c′ =
(λ+ μ− 2Λ) +

√
(λ+ μ)2 + 4Λλ

2(2λ+ μ)
. (4.23)

Moreover, the marginal probabilities can be expressed as:

pd(d) =

∞∑
e=0

p(e− d) (4.24)

pe(e) =
∞∑
d=0

p(e− d) (4.25)
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Figure 4.3: Excessive EP rate grows with increasing energy arrival rates whereas
decreases with increasing data arrival rates.

In steady state, the probabilities that segregate DPs and EPs do not exceed some finite

values D′ and E′:

Pd(D
′) = limt→∞Prob[0 < D(t) ≤ D′ < ∞], (4.26)

Pe(E
′) = limt→∞Prob[0 < E(t) ≤ E′ < ∞]. (4.27)

Thus, the followings can be calculated:

Pd(D
′) =

D′∑
d=0

∞∑
e=0

p(e− d) (4.28)

= pd(1) + pd(0) (4.29)

= p(−1) + p(0) +

∞∑
N=1

c′ϕN (4.30)

= 1. (4.31)
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and

Pe(E
′) =

E′∑
e=0

∞∑
d=0

p(e− d) (4.32)

= pe(0) + pe(e)1[e > 0] (4.33)

= p(−1) + p(0) +

E′∑
N=1

c′ϕN (4.34)

= 1− c′
ϕE′+1

1− ϕ
. (4.35)

Thus, it can be concluded that a system with unlimited storage capacity is always stable

with respect to DPs and unstable with respect to EPs, as expected.

4.2.4 Analysis of Transmission Error Among a Set of Nodes

The total power entering a sensor node is simply energy harvesting rate Λ, due to the

fact that energy rate is in units of power. All harvested power cannot be used by the

node, as there are some EP losses. Specifically, standby loss due to the self-discharge

nature of the storage and excessive packet loss due to limited storage capacity. Thus,

the total power consumed by a node is:

ξi = Λi − Γei − μi

E∑
N=1

pi(N), (4.36)

where the subscript i relates to the parameters of the i-th node among a set of M nodes.

On transmitting a DP, a node consumes Ke and Kt EPs for the node electronics and

the packet transmission, respectively. Assuming Ke = Kt = 1, the total radiating power

from a sensor on average simplifies to:

φi =
ξi
2
. (4.37)

Furthermore, the probability of correctly receiving (or decoding) a packet sent by a given

node i that transmits at power level Kti can be denoted by:

1− ei = f(
ηiKti

Ii +Bi
), (4.38)

where f is some increasing function of its argument which is the signal to interference Ii

plus noise Bi. Moreover, 0 ≤ ηi ≤ 1 represents the propagation factor of the transmission

power that is sensed by the receiver.
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Figure 4.4: Transmission error probability vs number of sensor nodes where after a
certain number of sensor nodes, α, transmission faces an additional interference, I2, so

that the error probabilities increase.

Some number of ‘α’ separate frequency channels may be used in the communication

medium. If the number of transmitting sensor nodes does not exceed α, distinct frequency

channels are being used by each transmitter. In this case, interference can be considered

as I1i =
∑

j �=i ηjκ0j
ξj
2 , where 0 ≤ κ0j ≤ 1 is a factor that represents the effect of side-

band frequency channels and its value is expected to be very small. Alternatively, if the

number of transmitting sensor nodes exceeds α, some of the transmitters are forced to use

a frequency channel already used by others, so that it will cause an additional interference

I2i =
∑

j �=i κjηj
ξj
2

M−α
M 1[M > α], where κi is very close to 1 since interference is direct

to the channel. Thus, the total interference is:

Ii = I1i + I1i =
∑
j �=i

ηi
ξi
2
(κ0i + (

M − α

M
)1[M > α]). (4.39)

Assuming that all nodes are identical, we can replace equation (4.38) with:

1− e = f(
ηKt

η ξ
2κ0(M − 1) + η ξ

2(
M−α
M )1[M > α] +B

). (4.40)



Packet Transmission via Imperfect Transmitter 78

Assuming BPSK transmission, we have:

1− e = Q(

√
ηKt

η ξ
2κ0(M − 1) + η ξ

2(
M−α
M )1[M > α] +B

), (4.41)

where Q(x) = 1
2 [1− erf( x√

2
)].

Figure 4.4 shows the effect of number of sensor nodes transmitting in a network on

transmission error probability. In this diagram the single bit transmission and system

parameters are assumed as Λ = 10, λ = 10, μ = 1, E = 100, B = 0.1, η = 0.5, κ0 =

0.05, α = 20. Consequently, transmission error grows with an increasing number of sensor

nodes in the network due to a greater influence of the interference over the transmission.

Conversely, following a certain number of sensor nodes, α, the transmission faces an

additional interference, I2, such that the error probabilities increase.

4.3 Generalised Energy Consumption Model

The previous section investigated a model where a DP transmission requires exactly two

EPs: one for processing and one for the packet transmission, or Ke = Kt = 1. In this

section, the approach is generalised by considering arbitrary Ke and Kt values. For each

DP, the sensor requires Ke EPs for node electronics including packet sensing, processing,

and storing and Kt EPs for the packet transmission. The motivation is that the node

electronics and the transmitter may have to vary the power levels they use to deal with

the speed of processing or the transmission power to overcome errors. Assuming random

processes for sensing and energy harvesting, a two-dimensional random walk model was

obtained. Moreover, its complexity was reduced using companion matrices and matrix

algebra techniques. The resulting solution allows us to obtain, in steady-state, a closed-

form solution for stationary probability distribution for states of the sensor node.

4.3.1 Mathematical Model

It was assumed that a DP can be sensed, processed and stored by a sensor node only

when there are at least Ke EPs available in storage. Moreover, these Ke energy packets

are effectively expended each time a DP is successfully received by the node. Otherwise,

the data will not be received and the sensed data will go unnoticed and be lost. Instead,

in order to transmit a DP the node requires an additional number of Kt EPs. Again

all Kt EPs will be consumed for one transmission. Thus, the successful sensing and

transmission of one DP requires the consumption of K = KE +Kt EPs.
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As in the previous section, both the processing and transmission of a packet were assumed

to occur very rapidly, provided enough energy was available to enable instantaneous

storage of DP. Moreover, if the amount of energy available is more than Ke but less than

K, DP will be both processed and transmitted when the amount of energy available is

at least K EPs. Under these assumptions, a two-dimensional continuous time Markov

chain was constructed to represent the behaviour of the system.

Let D(t) and E(t) be the number of DPs and EPs in the sensor node at time t ≥ 0, so

that state of the system can be represented by the pair (D(t), E(t)) and the state space

S is of pairs of integers (d, e) ∈ S such that:

S = {(0, 0), (d, 0), (0, e), (l, k) : 0 < d ≤ D, 0 < e ≤ E, (4.42)

0 < l < D, 0 < k < K, K = Ke +Kt}.

When considering the general values for Ke > 1 and Kt > 1, the system is no longer

modeled as a one-dimensional CTMC but rather a two-dimensional CTMC as is shown

in Figure 4.5. Since the energy consumption for many sensor node applications is mainly

dominated by the data transmission subsystem [105], Kt > Ke was assumed for the

current system model.

Accordingly, the following global balance equations can be written for the model:

p(0, 0)[Λ] = Λp(1,K − 1) + λp(0,K), (4.43)

p(0, e)[Λ] = Λp(0, e− 1) + λp(0, e+K)1[E ≥ e+K], 1 ≤ e < Ke, (4.44)

p(0, e)[Λ + λ] = Λp(0, e− 1) + λp(0, e+K)1[E ≥ e+K], Ke ≤ e < E, (4.45)

p(0, E)[λ] = Λp(0, E − 1), (4.46)

p(d, 0)[Λ] = Λp(d+ 1,K − 1) + λp(d− 1,Ke), 1 ≤ d < D, (4.47)

p(d, e)[Λ] = Λp(d, e− 1) + λp(d− 1, e+Ke), 1 ≤ d < D, 1 ≤ e < Ke, (4.48)

p(d, e)[Λ + λ] = Λp(d, e− 1) + λp(d− 1, e+Ke), 1 ≤ d < D, Ke ≤ e < Kt,(4.49)

p(d, e)[Λ + λ] = Λp(d, e− 1), 1 ≤ d < D, Kt ≤ e < K, (4.50)

p(D, e)[Λ] = Λp(D, e− 1) + λp(D − 1, e+Ke), Ke ≤ e < Kt, (4.51)

p(D, e)[Λ] = Λp(D, e− 1), Kt ≤ e < K, (4.52)

p(D, 0)[Λ] = λp(D − 1,Ke). (4.53)

Finding a closed-form solutions for stationary probability distributions and other quan-

tities using these balance equations is elusive. Therefore, different approaches have been

explored for this particular system model.
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Figure 4.5: Two-dimensional CTMC state transition representation for the gener-
alised values of Ke and Kt.

Using a traditional approach, we define a generator matrix Q to find the stationary

probabilities. Q is an n × n matrix of an n state Markov chain. In our system model,

it can be easily observed that n = E + BK + 1. For matrix Q, the entry in the jth

column of the ith row of the matrix j 
= i will be pij , i.e. the instantaneous transition

rate from state xi to state xj . In other words, it will be the sum of the parameters

labelling arcs that connect nodes i and j in the state transition diagram. The diagonal

elements have been selected to ensure that the sum of the elements in every row is zero,

i.e. pii = −∑
j∈S, j �=i pij . When the model is in steady state, in order to maintain the

equilibrium, it is assumed that the total probability flux out of a state is equal to the

total probability flux into the state. Consequently, for any particular state xi,

πi
∑

xj∈S, j �=i

pij =
∑

xj∈S, j �=i

πjpij (4.54)
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Since pii = −∑
j∈S j �=i pij , we have:

∑
xj∈S

πjpij = 0 (4.55)

Expressing the stationary probability of each state πi as a row vector π, the matrix

equation can be written as πQ = 0.

The πi are unknown and are the values under consideration. As πi is a probability

distribution, the normalisation condition holds:
∑

xi∈S πi = 1. Thus, with these n + 1

equations (global balance equations and normalisation condition) the n unknowns can

be solved.

In order to find πi values, E+BK+2 equations are dealt with in the current model. This

means that the complexity of the solution increases dramatically with increasing data

and energy buffer sizes. Thus, more time and energy is required to deal with the further

complexity of the solution. Therefore, a different solution using companion matrices and

matrix algebra techniques to decrease the solution complexity is proposed.

4.3.2 Solution with Companion Matrices

In order to simplify the calculations, two state indices of the sensor node can be merged

by defining a one-to-one and onto function such that:

Sj = p(d, e) : j = dK − e+ E, j ∈ {0, 1, · · · , DK + E}. (4.56)

Thus, each state (d, e) can be mapped uniquely onto states j. Next, each row of the

two-dimensional CTMC can be considered as a vector Vi where 0 ≤ i ≤ D. This gives

the following:

V0 = [SE , SE−1, · · · , S1, S0], (4.57)

V1 = [SE+K , SE+K−1, · · · , SE+2, SE+1], (4.58)

V2 = [SE+2K , SE+2K−1, · · · , SE+2+K , SE+1+K ], (4.59)
... (4.60)

VD = [SE+DK , · · · , SE+2+DK−K , SE+1+DK−K ]. (4.61)

Following careful examination of the diagram, it was observed that each row, except the

first and the last one, has the similar state transition behaviours. Consequently, there

may be some recurrence relations that might reduce the total number of equations and

ultimately the system complexity.
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Figure 4.6: State diagram representation of the vector Vi

Figure 4.6 shows the state representation of the ith row of the two-dimensional state

diagram or vector Vi, i ∈ {1, 2, ..., D − 1}. Each vector has 3 different transition charac-

teristics among the states. Thus, the vectors can be subdivided into 3 separate regions

represented by the following equations:

• For Region1, 0 ≤ e < Ke or ς −Ke < N ≤ ς where ς = iK + E and 0 < i < D:

SN+1 = SN − (
λ

Λ
) SN−K−Ke , (4.62)

• For Region2, Ke ≤ e < Kt or ς −Kt < N ≤ ς −Ke:

SN+1 = SN + (
λ

Λ
) (SN − SN−K−Ke), (4.63)

• For Region3, Kt ≤ e < K or ς −K < N ≤ ς −Kt :

SN+1 = (1 +
λ

Λ
) SN . (4.64)

Note that equations (4.62) and (4.63) are linearly recursive sequence of order K+Ke+1.

Moreover, there is no known solution in radicals to the general polynomial equations of

degree 5 and more according to Abel & Ruffini theorem [101]. Thus, it is not easy

to solve these equations, leading to a closed-form solution for stationary probability

distributions. However, companion matrices of each equation can be used to express

transitions among states. To provide consistency among the companion matrices, each

one will be considered as a square matrix with dimension K +Ke + 1. On considering

the vector V1, the state transitions of Region 3 can be written using companion matrix.

These are represented as follows:
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⎡
⎢⎢⎢⎢⎢⎣

SE+2

SE+1

...

SE+2−K−Ke

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

(1 + λ
Λ) 0 . . . 0 0

1 0 . . . 0 0
...

...
. . .

... 0

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

SE+1

SE

...

SE+1−K−Ke

⎤
⎥⎥⎥⎥⎥⎦

or equivalently:

−−−→
SE+2 = C3

−−−→
SE+1.

Other state vectors in Region3 can also be expressed iteratively as follows:

−−−→
SE+3 = C3

−−−→
SE+2 = C2

3

−−−→
SE+1,

−−−→
SE+4 = C3

−−−→
SE+3 = C3

3

−−−→
SE+1,

...
−−−−−−→
SE+Ke+1 = C3

−−−−→
SE+Ke = CKe

3

−−−→
SE+1.

Similarly, for Region2:

−−−−−−→
SE+Ke+2 = C2

−−−−−−→
SE+Ke+1 = C2 CKe

3

−−−→
SE+1,

−−−−−−→
SE+Ke+3 = C2

−−−−−−→
SE+Ke+2 = C2

2 CKe
3

−−−→
SE+1,

...
−−−−−−→
SE+Kt+1 = C2

−−−−→
SE+Kt = CKt−Ke

2 CKe
3

−−−→
SE+1,

and for Region1:

−−−−−−→
SE+Kt+2 = C1

−−−−−−→
SE+Kt+1 = C1 CKt−Ke

2 CKe
3

−−−→
SE+1,

−−−−−−→
SE+Kt+3 = C1

−−−−−−→
SE+Kt+2 = C2

1 CKt−Ke
2 CKe

3

−−−→
SE+1,

...
−−−→
SE+K = C1

−−−−−→
SE+K−1 = CKe−1

1 CKt−Ke
2 CKe

3

−−−→
SE+1,

−−−−−→
SE+K+1 = C1

−−−→
SE+K = CKe

1 CKt−Ke
2 CKe

3

−−−→
SE+1,

where

C1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0 − λ
Λ

1 0 . . . 0 0
...

...
. . .

...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦ , C2 =

⎡
⎢⎢⎢⎢⎢⎣

(1 + λ
Λ) 0 . . . 0 − λ

Λ

1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦
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It has been showed that all the state vectors in V1 can be expressed in terms of
−−−→
SE+1

and the companion matrices. In fact, the same procedure can be followed for the other

row vectors and any state vector
−→
SN : SN ∈ Vi, 0 < i < D can be expressed as:

−→
SN =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C3

α C�N−E−1
K � −−−→

SE+1, 0 ≤ α ≤ Ke

C2
α−Ke C3

Ke C�N−E−1
K � −−−→

SE+1, Ke < α ≤ Kt

C1
α−Kt C2

Kt−Ke C3
Ke C�N−E−1

K � −−−→
SE+1, Kt < α < K

(4.65)

where �·� is a function that returns the largest integer less than or equal to its argument,

C is the multiplication of companion matrices, i.e., C = CKe
1 CKt−Ke

2 CKe
3 , and the

parameter α = (N−E+K−1) (mod K). Thus, the state vectors
−→
SN : SN ∈ Vi, 0 < i <

D can be expressed with respect to the companion matrices and the state vector
−−−→
SE+1.

Now consider V0 so that the following characteristic equations can be written:

• For 0 < N ≤ K − 1:

SN+1 = (
λ

Λ
)(1 +

λ

Λ
)NS0 (4.66)

• For K − 1 < N ≤ E −Ke:

SN+1 = (1 +
λ

Λ
)SN − λ

Λ
SN−K (4.67)

• For E −Ke < N ≤ E:

SN+1 = SN − λ

Λ
SN−K (4.68)

such characteristic equations can be written when the condition E > 2K holds.

Thus,
−−−→
SK+1 can be expressed by equation (4.67):

⎡
⎢⎢⎢⎢⎢⎣

SK+1

SK

...

S−Ke+1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

(1 + λ
Λ) 0 . . . − λ

Λ . . . 0

1 0 . . . 0 . . . 0
...

...
. . .

...
...

...

0 0 . . . 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

SK

SK−1

...

S−Ke

⎤
⎥⎥⎥⎥⎥⎦

where − λ
Λ is in the Kth column of the matrix B2 whose size is also K+Ke+1 to provide

consistency among dimensions of companion matrices.
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Thus, the iteration may be kept and the other state vectors can be expressed as:

−−−→
SK+1 = B2

−→
SK ,

−−−→
SK+2 = B2

−−−→
SK+1 = B2

2

−→
SK ,

...
−−−−−−→
SE−Ke+1 = B2

−−−−→
SE−Ke = BE−K−Ke+1

2

−→
SK .

and

−−−−−−→
SE−Ke+2 = B1

−−−−−−→
SE−Ke+1 = B1 BE−K−Ke+1

2

−−−−−→
SE−K+1,

−−−−−−→
SE−Ke+3 = B1

−−−−−−→
SE−Ke+2 = B2

1 BE−K−Ke+1
2

−−−−−→
SE−K+1,

...
−−−→
SE+1 = B1

−→
SE = BKe

1 BE−K−Ke+1
2

−−−−−→
SE−K+1.

where

B1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . − λ
Λ . . . 0

1 0 . . . 0 . . . 0
...

...
. . .

...
...

...

0 0 . . . 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

whose size is also K +Ke + 1.

−−−→
SK+1 can also be expressed by equation (4.66) as follows:

−−−→
SK+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SK+1

SK

SK−1

...

S0

...

S2−Ke

S1−Ke

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
λ

Λ
S0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 + λ
Λ)

K

(1 + λ
Λ)

K−1

(1 + λ
Λ)

K−2

...
Λ
λ
...

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
λ

Λ
S0

−→γ = −→γ0

Thus, we may write
−→
SN : SN ∈ V0:

−→
SN =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−→γ0, 0 < N ≤ K

B2
N−K −→γ0, K < N ≤ E −Ke + 1

B1
N−E+Ke−1 B2

E−K−Ke+1 −→γ0, E −Ke + 1 < N ≤ E + 1

(4.69)
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−−−→
SE+1 in equation (4.65) may also be replaced and rewritten as:

−→
SN =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C3

α C�N−E−1
K �B′, 0 ≤ α ≤ Ke

C2
α−Ke C3

Ke C�N−E−1
K �B′, Ke < α ≤ Kt

C1
α−Kt C2

Kt−Ke C3
Ke C�N−E−1

K �B′, Kt < α < K

(4.70)

where B′ = BKe
1 (B2)

E−K−Ke+1−→γ0.

Moreover, for the states of VD, the followings can be written:

• For ς1 ≤ N < ς1 +Ke:

SN+1 = SN (4.71)

• For ς1 +Ke ≤ N < ς1 +K:

SN+1 = SN − λ

Λ
SN−K−Ke (4.72)

where ς1 = DK + E −K. Therefore, the following can be written:

−−−−→
Sς1+Ke =

−−−−−−→
Sς1+Ke−1 = · · · = −−−→

Sς1+1

and

−−−−−−→
Sς1+Ke+1 = C1

−−−→
Sς1+1,

−−−−−−→
Sς1+Ke+2 = C2

1

−−−→
Sς1+1,

...
−−−→
Sς1+K = CKt

1

−−−→
Sς1+1.

We can express the state vector
−−−→
Sς1+1 from equation (4.70) as,

−−−→
Sς1+1 = CD−1B′.

Therefore,
−→
SN : SN ∈ VD can be written as:

−→
SN =

⎧⎨
⎩CD−1B′, ς1 ≤ N < ς1 +Ke

C1
N−(ς1+Ke)CD−1B′, ς1 +Ke ≤ N < ς1 +K

(4.73)
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Thus, the state vector
−→
SN : {SN : 0 ≤ N ≤ DK + E} can be written as a function of

companion matrices C1, C2, C3, B1, B2, required EPs, Kt and Ke, the vector −→γ , and the

state S0 by combining equations (4.69), (4.70), (4.73). It is also known that the normal-

isation condition holds
∑BK+E

i=0 Si = 1, so that the stationary probability distribution of

S0 can be found as well as all the other states in the system.

4.4 Impacts of Modelling Assumptions on the Results

The similar comments that have been made in section 3.4 can also be considered for this

chapter. However, one additional assumption is that the number of EPs required for

the packet transmission (Kt) is more than the amount required for the node electronics

(Ke). Although it is a reasonable assumption for many sensor node applications [105],

the invalidation of the assumption (i.e. Ke ≥ Kt) does not have a significant impact on

the results. In this case, there will be a minor change in the state transition diagram,

which only affects the intervals (or regions) where the solutions are valid. In addition, the

condition related to the energy buffer size and the number of EPs required for a successful

transmission (E > 2K) has been assumed. It is another reasonable assumption since a

few EPs would be enough for the packet processing and transmission while the energy

buffers can store plenty of EPs.

4.5 Conclusions

In this chapter, an EHWSN in which packet transmission occurs through an imperfect

transmitter was investigated. The energy consumption in a node was divided into two

different operations: for the packet transmission by consuming Kt EPs, and for the node

electronics by consuming Ke EPs. At least Ke EPs are required in the storage to sense,

store and process a DP. Otherwise, DP cannot be received and the information will be

lost. Moreover, in order to complete a successful DP transmission the node requires an

extra Kt EPs.

First, a data transmission scheme was modelled as a one-dimensional random walk by

assuming Kt = Ke = 1 and closed-form solutions for stationary probability distribu-

tions were expressed. The excessive packet rates and the system stability were then

investigated.

The probability of a transmitted bit being correctly received by a receiver node that

operates in a set of M identical sensor nodes with the existence of noise and interference
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was also considered. Numerical results reveal the effect of number of sensors in the

network on interference values and transmission error probability.

Then, a generalized energy consumption model was investigated assuming Kt > Ke > 1.

A solution method was proposed for this model that uses companion matrices and linear

algebra to reduce its computational complexity. Certain regularity properties of the

matrix structure were also exploited, resulting in efficient numerical computation of all

the metrics of interest. In particular, the steady-state distribution of the backlog of

data and energy packets, the system throughput in terms of successfully transmitted

packets and the possible loss of energy when the energy storage device is full and energy

is harvested have been obtained.



Chapter 5

Product-form Solution Of Cascade

Networks with Intermittent Sources

5.1 Introduction

This chapter is based on reference [74]. In this chapter, product-form analysis for N-Hop

cascade network powered by intermittent sources is studied.

The power needs of digital devices, their installation in locations where it is difficult to

connect to the power grid, and the difficulty of frequently replacing batteries, creates

a need to operate digital systems with harvested energy. In such cases, local storage

batteries must overcome the intermittent nature of the energy supply and system per-

formance dependence on the intermittent energy supply, possible energy leakage and

system workload. Queueing networks with product form solution are standard tools for

analysing interconnected systems. They efficiently predict relevant performance metrics

including job queue lengths, throughput, system turnaround times and queueing delays.

However, existing queueing network models assume unlimited energy availability, while

intermittently harvested energy can affect system performance due to insufficient supply

of energy.

Networks can be designed to operate with intermittent or harvested sources of energy

and with local battery storage at various nodes. These networks can be used as feeders

for data packets coming from stand-alone Internet of Things (IoT) devices towards sink

nodes that forward data to backbone networks and the Cloud. In such systems, the

quality of service (QoS) depends on both the flow of energy into the system and on the

flow of network traffic.

89
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This chapter develops a new product form solution for the joint probability distribution of

energy availability, and job queue length for an N-node tandem system. Such models can

represent production lines in manufacturing systems, supply chains, cascaded repeaters

for optical links, or a data link with multiple input data ports that feeds into a switch or

server. Our result enables the rigorous computation of all the performance metrics for

such systems operating with intermittent energy.

We model energy and traffic flow and represent the number of DPs and discrete EPs

at each node. Moreover, the effect of energy loss through EP leakage from batteries or

devices, and loss of DPs due to time-outs is included. When EP and DP flows entering

the network are independent Poisson processes and certain stability conditions regarding

the flow and loss of EPs and DPs are satisfied, it is shown that a multi-hop feed-forward

network has a steady-state solution for the probability of the number of EPs and DPs

at all nodes. This is the product of their marginal probabilities at each node. This is a

new instance of a network with “product form solution” where state transitions involve

simultaneous state changes in multiple nodes. This is due to DPs that flow through

several nodes consuming EPs before stopping at nodes that have no EPs, or leave the

network.

5.2 Single Node Model

The corresponding single node model was investigated in Chapter 3 and Chapter 4, where

two independent Poisson processes with rates λ and Λ represented the arrivals of DPs

and EPs at a node. One EP is the amount of energy needed to transmit one DP, and a

model with both finite and infinite DP buffer and battery size was considered. In these

previous chapters and in the current chapter, the rates at which the node senses and

collected DPs and the rate at which it harvests energy may be very slow with respect

to the mere nano-seconds it takes to transmit a DP. Therefore, it was assumed that the

DP forwarding or transmission time is zero.

In addition, the node’s battery may leak energy at rate μ ≥ 0 such that EPs are lost

through leakage at random instants that are separated by identically and exponentially

distributed intervals. Moreover, the node may also lose DPs from its data buffer due to

time-outs resulting from the loss of each DP’s value of information over time. Again, these

instants when DPs are lost, are modelled as independent and exponentially distributed

intervals with parameter γ ≥ 0. Furthermore, if a DP arrives to a node when its DP

buffer is full, the arriving packet will be lost. Similarly, if energy is harvested when its

battery is full, then the arriving EP will be lost. Figure (5.1) shows the state transition

diagram of Node i.
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Figure 5.1: State transition diagram of some Node i.

5.3 The Cascaded N-Hop Network

The cascaded N -hop model considered in this chapter is shown in Figure 5.2. It was

assumed that the data and energy buffers at each node are of unlimited storage capacity,

and that one DP (or job) is forwarded using one EP. At node 1, the arrival rate of DPs

from outside sources is denoted λ1, while the remaining nodes are just transit nodes and

they do not receive external arrivals of DPs. On the other hand, all nodes i receive EPs

at rate Λi. EP leakage at node i, and DP loss due to impatience or errors at rate γi are

also considered.

The leakage rate at node i is μi when there is more than one EP at node i, and is μ0
i when

there is just one EP at node i. With current electronic technology, the DP transmission

time will be in the nanoseconds, while the constitution of a full DP through sensing of

external events (i.e. the harvesting of a significant amount of energy, the leakage of an

EP and the loss of a DP due to impatience or errors) will take much longer. Thus, it can

be assumed that the DP forwarding times are negligibly small compared to these other

time durations.

The state of node i ∈ {1, ... , N} at time t can be represented by the pair (xti, y
t
i) where

the first variable represents the backlog of DPs at the node, and the second variable

is the amount of energy (in EPs) available at the same node. As with the single node

model we must have xti . y
t
i = 0 since if there is both an EP and a DP at a node, the

transmission occurs until either all DPs or all EPs are depleted at node i. Thus the state

of a node may be represented by a single variable nt
i = xti − yti . Therefore, if:

• nt
i > 0 then node i has nt

i = xti DPs waiting to be forwarded, but it does not have

the EPs at that node to start the transmission from that node,

• nt
i < 0, then node i has a reserve of −yti EPs, but does not have any DPs to

transmit,
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Figure 5.2: A cascade network comprised of several nodes that store and forward
DPs. Each node operates with EPs that arrive to it intermittently through energy
harvesting. The first node in the cascade receives DPs from the outside world, while
the last node forwards them out of the network, and intermediate nodes forward DPs

to subsequent nodes.

• nt
i = 0, then node i does not have any DP and EP in their respective buffers.

A vector of positive, negative or zero integers then represents the cascaded network:

n̄t = (nt
1, ... , nt

N ), t ≥ 0, and n̄ denotes a particular value of the vector, such the

probability p(n̄, t) = Prob[n̄t = n̄] can be studied.

Let ēi � (0, 0, · · · , 1, · · · , 0) be a vector whose ith element is 1 and other N − 1 elements

are 0. The equilibrium equations for the steady-state probability distribution π(n̄) for

this system are:

π(n̄)λ1 + π(n̄)
N∑
i=1

[Λi + γi1ni>1 + γoi 1ni=1 + μi1ni<−1 + μo
i 1ni=−1] (5.1)

=
N∑
i=1

π(n̄+ ei)[ γi1ni>0 + γoi 1ni=0 + Λi1ni<0 ] (5.2)

+
N∑
i=1

π(n̄− ei)[ μi1ni<0 + μo
i 1ni=0 ] + π(n̄− e1)λ11n1>0 (5.3)

+
N∑
i=2

λ1π(n̄− e1 − ...− ei−1 − ei)

i−1∏
j=1

1nj≤01ni>0 (5.4)

+λ1π(n̄− e1 − ...− eN )
N∏
j=1

1nj≤0 + ΛNπ(n̄+ eN )1nN≥0 (5.5)

+
N−1∑
i=1

Λiπ(n̄+ ei −
N−i∑
k=1

ei+k)1ni≥0

N−i∏
k=1

1ni+k≤0 (5.6)

+

N−1∑
i=1

N−i∑
l=1

Λiπ(n̄+ ei −
l−1∑
k=1

ei+k − ei+l)1ni≥0

l−1∏
k=1

1ni+k≤01ni+l>0. (5.7)

In these equations:
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• Line (5.1) corresponds to a case where there are no arrivals or departures of DPs

and EPs, while the first two terms in line (5.2) correspond to the removal of DPs

due to impatience. Moreover, the third term relates to the arrival of a EP to any

Node i where no DPs are being stored.

• The first two terms in line (5.3) correspond to the leakage of EPs, while the third

term is due to the arrival of a DP to Node 1 (the only node where DPs can arrive)

when Node 1 does not contain any EPs.

• The term in line (5.4) corresponds to the arrival of a DP to Node 1 when nodes

1 to i − 1 contain EPs, while Node i does not contain any EPs. Thus, the DP

progresses directly to Node i where it stops to join the DP queue.

• In line (5.5), the first term corresponds to the case where an arriving DP proceeds

directly to the exit from Node N because all nodes contain at least one EP. The

second term in line (5.5) describes the arrival of an EP to Node N which contains

at least one DP which then leaves the network.

• In line (5.6), an EP arrives to Node i containing at least one DP, which then moves

all the way to the output of the network because all nodes after node i contain at

least one EP.

• Finally line (5.7) describes the arrival of an EP to Node i when it contains at least

one DP; the DP is then able to move through nodes i + 1 to i + l − 1 which all

contain EPs, but it joins the DP queue at Node i+ l which has no EPs.

The equilibrium equations may be rewritten in more compact form as:

π(n̄) [λ1 +
N∑
i=1

(Λi + γi1ni>1 + γ0i 1ni=1 + μi1ni<−1 + μ0
i 1ni=−1)] (5.8)

=
N∑
i=1

[π(n̄+ ei)(γi1ni>0 + γ0i 1ni=0 + Λi1ni<01i �=N + ΛN1i=N )] (5.9)

+
N∑
i=1

[π(n̄− ei)(μi1ni<0 + μ0
i 1ni=0 + λ11n1>01i=1)] (5.10)

+
N−1∑
j=1

[π(n̄−
j+1∑
i=1

ei)λ1

j∏
i=1

1ni≤0(1n1+j=N + 1nj+1≥11n1+j �=N
)] (5.11)

+
N−1∑
j=1

j∑
i=1

[π(n̄+ ei −
N−j∑
k=1

ei+k)Λi1ni≥0(1N−j≤1. (5.12)

+.1N−j≥2

N−j−1∏
k=1

1ni+k≤0)(1i=j + 1nN+i−j≥11i �=j) ]
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5.3.1 The Equilibrium Condition for Energy and Data Flows (EDF)

Imagine if the amount of energy that the system harvests is not sufficient to allow the

transmission of the incoming flow of DPs; then the backlog of DPs will become infinite.

Similarly, if the flow of DPs is not large enough to use the incoming flow of energy, then

the backlog of EPs will grow indefinitely. Naturally, the effect of time-outs for the DPs,

and the leakage of the EPs also needs to be included. Let:

v1 = λ1, vi+1 = λ1

i∏
l=1

Λi

Λi + γi
, (5.13)

where vi can be interpreted (see Theorem 2) as the arrival rate of DPs to Node i. The

Energy and Data Flow (EDF) condition can then be defined as:

vi − γi = Λi − μi, (5.14)

where (5.14) says that the net inflow of DPs, after removal of those that time-out, should

be the same as the total inflow of EPs minus the loss of EPs due to leakage.

Theorem 1 Assume that the EDF condition is satisfied. Then the steady-state proba-

bility distribution for the system π(n̄) = lim t→∞ p(n̄, t) is given by:

π(n̄) =

N∏
i=1

πi(ni),

where

πi(ni) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Ci, if ni = 0,

Ci.
vi

Λi+γ0
i
( vi
Λi+γi

)ni−1, if ni ≥ 1,

Ci.
Λi

vi+μ0
i
( Λi
vi+μi

)−ni−1, if ni ≤ −1,

where μ0
i = vi + 2μi, γ0i = Λi + 2γi, and the normalising constants Ci are:

Ci = (1 +

vi
Λi+γ0

i

1− vi
Λi+γi

+

Λi

vk+μ0
i

1− Λi
vi+μi

)−1. (5.15)

Using the EDF condition we have:

Ci =
2γi.μi

2γi.μi + Λi.μi + vi.γi
(5.16)

=
2γi.μi

(γi + μi)(vi + μi)
=

2γi.μi

(γi + μi)(Λi + γi)
. (5.17)
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The proof is provided in the Appendix A.

5.3.2 Data Packet Arrival Rates to Nodes

The second result concerns the steady state arrival rate of DPs to each node.

Theorem 2 Denote the steady-state arrival rate of DPs to Node i by αi, and obviously

α1 = λ1. Then αi = vi, i = 1, ... , N .

Proof Let :

νi =
∑
ni<0

πi(ni) = Ci
Λi

2γi
=

Λiμi

(γi + μi)(vi + μi)
, (5.18)

ρi =
∑
ni>0

πi(ni) = Ci
vi
2μi

=
γivi

(γi + μi)(Λi + γi)
. (5.19)

Then for i > 1,

αi = (5.20)

= λ1

i−1∏
j=1

νj +
i−2∑
j=1

Λjρj

i−1∏
k=j+1

νk + Λi−1ρi−1, (5.21)

= vi

i−1∏
j=1

μj

γj + μj
+

i−2∑
j=1

γj
γj + μj

vj
Λj

Λj + γj

i−1∏
k=j+1

Λk

Λk + γk

μk

γk + μk
(5.22)

+
γi−1

γi−1 + μi−1
vi−1

Λi−1

Λi−1 + γi−1
, (5.23)

= vi

i−1∏
j=1

μj

γj + μj
+ vi

i−2∑
j=1

γj
γj + μj

i−1∏
k=j+1

μk

γk + μk
+ vi

γi−1

γi−1 + μi−1
, (5.24)

or denoting ui =
γi

γi+μi
, we have:

αi

vi
=

i−1∏
j=1

(1− uj) + ui−1 +

i−2∑
j=1

uj

i−1∏
k=j+1

(1− uk). (5.25)

However, it can be easily shown by induction on the integer M ≥ 1 that:

M∏
j=1

(1− uj) = 1− uM −
M−1∑
j=1

uj

M∏
k=j+1

(1− uk). (5.26)

Hence the arrival rate of DPs to Node i is αi = vi, completing the proof.
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5.4 Total Backlog of Data Packets

The total average number of DPs in the cascade network is:

< n >=

N∑
i=1

∑
ni>0

niπi(ni) =
N∑
i=1

Ci

2

Ri

(1−Ri)2
(5.27)

=
N∑
i=1

Ci

2

vi
μi

[1 +
vi
μi

] =
N∑
i=1

γi
γi + μi

vi
μi

, (5.28)

where Ri =
vi

vi+μi
and the condition Ri < 1 must be satisfied.

Figure (5.3) shows the average backlog of DPs for different energy arrival rates, and

different numbers of nodes N in the cascade network. In this example, the external data

arrival rate is set to λ1 = 1 for the purpose of normalisation. Moreover, all the nodes

have identical EP arrival rates Λi = Λ, and leakage rates μi = Λi + γi − vi. Identical

DP impatience rates have been chosen for all nodes, and have been set to γi = 0.01

for the curves on the left hand-side, and γi = 0.1 for the curves on the right hand-side.

As expected, the average DP backlog decreases significantly since DPs are more rapidly

transmitted when the EP arrival rate is increased. Moreover, higher DP leakage rates

result in lower overall packet backlog, as more DPs are dropped by the nodes during the

transmissions through the network.

Figure (5.4) shows the throughput for different energy arrival rates, and different numbers

of nodes N in the cascade network, assuming the same parameter values as in Figure

(5.3). As the number of sensor nodes in the cascaded network increases, the throughput

reduces significantly due to the conjugated effect of DP loss at each successive node. On

the other hand, the increase in EP arrival elevates the throughput, as more data can

be served before their time-out creates losses. Moreover, higher time-out data loss rate

causes less throughput.

Parameter Description
λ1 External DP arrival rate at Node 1
vi Total DP arrival rate at Node i
Λi EP arrival rate at Node i
μi EP loss rate at Node i
γi DP loss rate at Node i
< n > Total average number of DPs
N Number of nodes in the cascade network

Table 5.1: Parameters used for numerical examples.
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Figure 5.3: The total average backlog of DPs at all of the N units or nodes (y-axis),
versus the arrival rate of EPs to each node (x-axis) which is set to an identical value at
all units, with Λi = Λ. The leakage rate of EPs is set to the value of μi = Λi + γi − vi.
The total number of cascaded units N was also varied. Note that the total EP arrival
rate, or power flow into the system is N Λ. In order to normalise the results the arrival
rate of DPs to the first node is set to the value λ1 = 1. Other parameters are γi = 0.01
(left) and γi = 0.1 (right), respectively. The values of N, Λ and γi impact the total DP

backlog significantly.
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Figure 5.4: Throughput versus the EP arrival rate at all units; note that we have set
the EP arrival rates to be identical at all nodes with Λi = Λ. The number of cascaded
nodes or units N is varied. Other parameters are λ1 = 1, γi = 0.01 (left) and γi = 0.1
(right), respectively. The values of N, Λ impact the throughput significantly. As the
number of nodes increases, it was observed that the amount of energy per node needed
to “push” the customers or DPs out of the network so that the throughput tends towards
1, is many times larger than the DP arrival rate. This is particularly true when one

notes (again) that the total power consumed by the network is N Λ.

5.5 Impacts of Modelling Assumptions on the Results

The PFS given by this chapter is subject to the EDF condition. The condition states that

the consumption rate of EPs must be equal to the consumption rate of DPs. Nonetheless,
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it is not a strict condition since the equality can be provided by adjusting the time-

out rate (γ) settings. In fact, providing PFS depending on conditions of the models’

transition rates is not confounding since some previous works have derived the product-

forms by considering certain conditions on the system parameters [15, 17, 106].

5.6 Conclusions

In this chapter, a mathematical model of a cascaded multi-hop network or a service

system where each node gathers energy through harvesting has been introduced. DPs

(or jobs) arrive to the first node and are forwarded hop-by-hop to the output node. This

proceeds provided that there is at least one EP present at each node that is visited. If

a DP encounters a node that does not have at least one EP, then the DP must wait for

the arrival of enough energy through harvesting at that node. It was also assumed that

EPs are lost at each node due to leakage, and that DPs may also be lost at nodes due

to time-outs or errors.

It was assumed that DPs arrive to the first node according to a Poisson process and that

EPs are harvested at each node according to independent Poisson processes. Moreover,

it was assumed that the time it takes to forward a DP from one node to its immediate

neighbour when the node has enough energy, is much shorter than the time it takes to

constitute an input DP from sensed data, and the time it takes to harvest an EP that is

needed to forward a DP.

The main result is a previously unknown PFS (product-form solution) for this system.

The use of this analytical solution was illustrated by computing the average backlog of

DPs and their waiting at each node, as shown through several numerical results.

Since product-form analytical solutions are very useful computational tools in network

and computer system performance analysis, and are economical in terms of computing

time as compared to discrete event simulations, it is expected that the results presented

in this chapter will be extended in future work to cover more general network topologies.

Furthermore, although this work started with using Poisson arrivals, it is expected that

(as with other areas of system performance analysis), these results will lead to further

work and that they will be generalised to be dependent (rather than independent) inter-

arrival times, and to time-varying arrival rates.



Chapter 6

Energy Life-Time of Wireless Nodes

under Energy Depletion Attacks

6.1 Introduction

The work in this chapter is based on references [72, 73]. In this chapter, the simple

energy depletion attacks are reviewed and a modelling approach is proposed to evaluate

the effects of these attacks on life-time of sensor nodes operating with EN paradigm.

In the Internet of Things (IoT), a simple form of attack can deplete the energy available

to operate the sensor nodes. Several of these nodes may use batteries, while others may

harvest ambient energy, i.e. photovoltaic, or electromagnetic, or vibration-based energy.

First a brief survey of the types of attacks that target the nodes’ energy provisioning

systems is provided. Moreover, this chapter analyses the effect of these attacks on the

energy life-time of a wireless node. Models are provided to estimate the effect of at-

tacks, which attempt to deplete a node’s energy supply, and for a node that uses energy

harvesting. A simple means of attack mitigation based on dropping both attack and

“good” traffic was then examined. For nodes that use energy harvesting, the fraction of

traffic that must be dropped so as to offer a desired “energy life-time” of the node was

computed. It was observed that the required traffic drop-rate is non-linearly dependent

on the nominal “good traffic rate” at which the node is expected to operate. Finally,

the impact of attacks on the energy life-time of a node that operates with a replaceable

battery was analysed.

Energy needed to operate networks is known to be an important issue. This is true

for the sustainability of information technology in general. Moreover, with regard to

operating stand-alone networks in locations where the electrical grid is not available or

99
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is not reliable and when in a given location it is impossible to provide electrical wired

connections to all sensors. For example, in pre-constructed buildings which are later

equipped with sensors. Thus there has been a growing concern regarding attacks that

directly affect the energy consumption of networks [107–109]. In particular, attacks that

may deplete batteries that are required to operate certain network nodes.

These attacks can take three basic forms: they can increase the activity of nodes through

useless DPs that the nodes receive and then have to process and respond to. Attackers

can also use electromagnetic emissions to create noise that will cause high error rates, and

hence force them to take corrective action such as packet retransmissions that increase

energy consumption and network delays through multiple data retransmissions [110].

In addition, attacks can change the “sleep-awake” duty cycle of nodes and reduce the

proportion of time when the nodes should be asleep to save energy.

6.1.1 Earlier Works

Several types of energy depletion attacks have been discussed in previous work. In vam-

pire attacks, a vampire node appears to be benign, but it continuously sends protocol

compliant messages to other nodes [111]. Vampire nodes may cause additional traffic

(with rate λA), which is sent by the node that is under attack. Vampire attacks [112]

have been observed to generally take one of two forms: the carrousel and the stretch

attack. In the carrousel attack, a vampire node sends corrupted data leading to routing

loops. In the stretch attack, artificially longer routes are chosen despite the fact that

shorter routes are available. In general, carrousel attacks result in more energy con-

sumption than stretch attacks [113]. Moreover, the detection of vampire attacks is not

easy as one malicious vampire node can affect the whole network. Moreover, a protocol

was proposed in reference [113] to detect and mitigate vampire attacks. This protocol

provides routing through the network only for legitimate packets, and verifies consistent

progress is made by packets towards a destination. Furthermore, reference [114] provides

a mitigation method for preventing carrousel attacks by adding extra forwarding logic

to check whether there are loops in the source routes. To prevent stretch attacks, the

work in references [115, 116] suggests "strict" source routing where the route is exactly

specified in the header and there is no need for checking its optimality. An attack packet

detection and removal method was previously proposed [117, 118]. This methods em-

ployed packet broadcast rates and energy parameters at sensor nodes. Other power-aware

routing techniques have been suggested [119, 120].

Sleep deprivation attacks are designed to keep sensor nodes awake as long as possible to

increase their energy consumption, and reduce the battery life of a sensor from months
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to days. These attacks also include barrage, synchronisation, replay, broadcast, and

collision attacks [107, 121, 122]. Typically, a node that receives a request to receive data

from another node, can check its routing table to see whether it may receive data from

that node; if not, it discards the request and goes to sleep. In sleep deprivation attacks

[123], malicious nodes will continuously try to send data to some nodes in order that

they do not sleep and consequently waste energy. As a defence, a lightweight scheme was

proposed [122]. In this approach, a node is activated only if it receives messages from

authenticated and legitimate nodes. Alternatively, attackers can also conduct barrage

attacks on awake nodes by bombarding them with legitimate requests, causing significant

energy wastage. However, barrage attacks can be easily detected and require more effort

from the attacker, while sleep deprivation attacks require only a single message [123, 124].

As nodes have a listen-sleep cycle that can be periodically updated to maintain syn-

chronisation among neighbours, attackers may send artificial synchronisation packets to

lengthen the nodes’ awake time [125]. This can result in 30% or more energy depletion

due to shorter sleep times, and a possibly 100% increase in data loss due to the mis-

alignment of synchronisations. A defence strategy to mitigate the effects of such attacks

was proposed [125]. This proposal suggested ignoring all synchronisation messages with

a relative sleep time longer than a pre-set threshold. Alternatively, in a replay attack

[126], an adversary repeats a valid transmission in the network. Since the attack uses

the replay of messages with small changes, it can fool other nodes by convincing them

that repeated messages concern a new message exchange. Note that in wireless networks

[121] the received signal can help identify malicious nodes through use of a stronger signal

[127].

In broadcast attacks [128], malicious nodes broadcast unauthenticated traffic and long

messages which must be received by other nodes before being possibly discarded for lack

of authentication. These attacks are hard to detect as they have no effect on system

throughput. However, nodes that receive them waste energy. In collision attacks [129],

a hostile node breaks the medium access control protocol and transmits noise packets

corrupting neighbourhood transmissions. Thus noise packets collide with legitimate ones.

A defence strategy has been proposed [130] based on error correcting codes.

A defence strategy against energy depletion attacks has been investigated [121]. The

authors considered denial of sleep attacks which dramatically increase the energy con-

sumption of a wireless sensor node. An evaluation and attack detection method was

proposed [110] where the quality of service is not necessarily degraded. The method of

end-to-end reliability, based on control packet injections and packets replication was also

studied [131]. It was shown that the method is vulnerable to energy depletion attacks

and it is impossible to keep safe a protocol from such attacks without authentication. A
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two-tier secure transmission scheme against energy depletion attacks has been proposed

[132]. This scheme uses the hash-chain to generate dynamic session keys, which can

provide a mutual authentication key. Moreover, the detection and removal of an energy

depletion attack (vampire attack), based on the routing protocol of the wireless sensor

network has been studied [107, 112, 117, 118]. Furthermore, a hardware-based energy at-

tack (hardware trojans) has been investigated [133]. This revealed that significant energy

depletion may occur by embedding a hardware trojan trigger to the integrated circuit.

6.2 Results Addressed in this Chapter

In this work we propose a modelling approach to evaluate the effect of attacks on the

“energy life-time” of a node, i.e. how long it can operate before its energy is depleted,

both for nodes that use energy harvesting, and for nodes that use a conventional battery

that will have to be replaced when depleted. The attacks considered are those that force

the node to transmit additional traffic, and those which create electromagnetic noise that

induces errors and hence packet retransmissions. The following basic aspects have been

developed:

1. Nodes send λn DPs per unit time under normal operation (i.e. when not being

attacked). The traffic of “useless” attack DPs that are transmitted in response to

attacks, result in an additional traffic rate λA of DPs being sent out from the node.

This creates “useless” energy consumption.

2. Electromagnetic attacks create noise that results in DP transmission errors, and

hence DP re-transmissions with probability 0 ≤ r < 1. Moreover, r will increase

with increased attack noise level.

3. In a separate section, we consider a system that has a battery that is regularly

replaced, and compare the node’s energy life-time with that of the node which uses

renewable energy.

For both systems with and without energy harvesting, an initial “normal” DP traffic rate

λn is transformed into a total traffic rate λa under attack. This is given by:

λa = λn + λA + r.λa =
λn + λA

1− r
. (6.1)

Electromagnetic noise causes errors in all of the traffic, including the traffic of rate λA

that results from the reply packets, which the node sends in response to attack packets.

Thus λa in equation (6.1) represents the total DP traffic that the node sends when it’s
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normal traffic would have been λn. Furthermore, the attack traffic it receives is λA and

the noise attack causes retransmissions with probability r.

These two types of attacks are considered when computing the energy life-time of a

wireless node based on its energy harvesting rate, both with nominal or “normal” traffic

and the resulting traffic rate in the presence of attacks. The reduction of the node’s

energy life-time due to attacks is computed and illustrated using numerical results.

In this work it is assumed that the node’s energy harvesting system has been designed

to operate with a nominal value Λn of EPs per unit time, which the node is able to

harvest in the specific environment being considered. The rate Λn then results in an

acceptable energy life-time Tn when the system is operating normally without attacks,

and is sending DPs at rate λn.

Similarly, nodes with a fixed battery size of E0, that will be measured in units of “energy

packets”. will have a battery life-time of T b
n under normal operation when they are meant

to provide for a normal DP traffic rate of λn.

Based on these parameters, we can compute the value of the node’s energy life-time Ta, for

nodes that use energy harvesting, and T b
a if they use a battery, when they operate under

the effect of attacks represented by attack traffic rate λA and the effect of electromagnetic

noise attacks which create transmission errors and require each DP to be retransmitted

with probability r.

Thus, both for systems that use energy harvesting, and those that use a fixed battery, we

are interested in finding to what extent the energy life-time of the node has been reduced

by the attacks, and hence in computing the ratio Ta
Tn

, or T b
a

T b
n

as a function of the ratio of

attack traffic λA
λn

and of r.

6.3 A System with Renewable Energy and Finite DP and

Energy Buffers

In this section, the modelling approach initiated in Chapter 3 is employed. This ap-

proach is in relation to a wireless node that exploits renewable energy sources (such as

photovoltaic, mechanical vibrations or electromagnetic scavenging) where the node col-

lects data or energy at a relatively slow pace as compared to the time it takes to transmit

a DP over a node’s wireless channel. Moreover, the node’s nominal operating parameters

are λn and Λn, the latter corresponding to the nominal rate in which it harvests EPs in

the environment where it is operating. In this section, it has been assumed that the the

node has a local energy storage device, possibly a battery or a large capacitor, that can
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store up to E EPs. If it is out of energy, it is assumed that it can nevertheless store up

to D DPs under the pure effect of the sensing energy. If required, this assumption can

be removed by setting D = 0.

When under attack, the node transmits λa DPs per unit time as indicated in equation

(6.1). This is due to the attack packets it receives, which require a response from the

node producing an additional packet rate λA, and from the retransmission probability

r due to errors caused by electromagnetic noise and interference. Note that the noise

may be created by nodes that are attacking the system, while the interference may result

from the increased volume of wireless traffic as an indirect effect of ongoing attacks.

The state of the node at time t is represented by the pair Dt, Et where Dt is the backlog

of DPs at the node, while Et is the number of EPs that it stores at that time. Denoting

the node’s state probability p(d, e, t) = Prob[Dt, Et], it is known that p(d, e, t) > 0 only

if d.e = 0. This is because if the node has enough energy, it will immediately attempt to

transmit DPs until either all DPs in its buffer have been sent out, or its energy has been

depleted. The data buffer has a capacity of D packets, and the local battery contains

at most E energy packets. Furthermore, DPs will be removed from the data buffer after

a time-out of average value 1
γ with an exponentially distributed departure rate of γ.

Similarly, EP leakage occurs at a rate of μ EPs per unit time.

Thus, the probability that the battery is empty can be calculated by using the results

obtained in Chapter 3:

P a
0 (0) =

∞∑
d=0

p(d, 0) =
D∑

n=0

αnp(0, 0) (6.2)

=
(αD+1 − 1)(θ − 1)

αD+1(θ − 1) + θE+1(α− 1) + 1− αθ
. (6.3)

where

α =
λa

Λn + γ
, θ =

Λn

λa + μ
. (6.4)

Note also that the case with D=0, when the node cannot store any sensor data if it has

run out of energy, is:

P a
0 (0)|D=0 =

θ − 1

θE+1 − 1
. (6.5)

The expected (average) battery life-time, i.e. the average time it takes the node’s battery

to empty from the instant at which it contains one EP, can then be obtained from the

fact that when the battery empties, on average after 1
Λn

time units it will receive an EP
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once again, so that:

P a
0 =

1
Λn

Ta + 1
Λn

, or (6.6)

Ta =
1

Λn
[
1

P a
0

− 1]. (6.7)

If λa is replaced with λn in all terms, then the average battery life-time when the node

is not being attacked is obtained, namely:

Tn =
1

Λn
[
1

P0
− 1]. (6.8)

If the probabilities P a
0 and P0 are very small, then:

log
Ta

Tn
≈ logP0 − logP a

0 . (6.9)

Figure 6.1 shows various curves for the battery life-time versus the attack traffic rate λA

and the retransmission error rate due to electromagnetic attacks r, assuming that the

normal operating life-time before the system’s energy supply is depleted has been set

to Tn = 6 months, and E = D = 100. In this numerical example, the nominal normal

load of the wireless sensor has been set at λn = 10 DPs/hour. Consequently, the energy

harvesting rate then needs to be Λn = 11.247 EPs/hour to meet the Tn = 6 months

average energy life-time of the system when it does not suffer from attacks. Figure 6.2

shows a similar set of results for different parameter settings as described in the figure

caption.

The effect of E, the energy storage capacity of the system, on its energy life-time is shown

in Figure 6.3. The same parameters as used in Figure 6.2 have been retained. Moreover,

r = 0.1, D = 100, and Tn = 6 months for E = 100. However, the local storage battery

capacity E has been varied along the x-axis from 102 to 103 in order to observe the effect

on Ta for four values of attack traffic λA and the resulting effect on Ta.

6.3.1 DP Buffer and Battery with Unlimited Capacity

In this section a sensor node with an unlimited battery that stores the energy that is

harvested, and a DP buffer of unlimited size has been considered. The model equations

for the stationary probabilities for the DP in queue and the amount of energy that is
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Figure 6.1: The curves illustrate the effect of two simultaneous types of attacks,
namely the attacks that create added traffic, and those that create retransmissions due
to noise that is generated by electromagnetic attacks. We show the variation of the
common logarithm of the ratio of node energy life-time under attack, to energy life-
time without attacks (y-axis), against the arrival rate of attack traffic λA with distinct
curves for increasing values of the retransmission probability r due to electromagnetic
attacks. The parameter settings are E = D = 100, γ = 0.01λa and μ = 0.01Λn. We fix
the “normal life-time” of the system until the battery is emptied after Tn = 6 months
of operation, on average. Thus the EP arrival rate Λn representing the required energy
harvesting will vary with the normal traffic rate λn as shown on each of the graphs.
The effect of the attacks is shown by the rapid decrease of the ratio log Ta

Tn
as both λA

and r increase.

stored then become:

p(d, 0) = αdp(0, 0), α =
λa

Λn + γ
, d > 0, (6.10)

p(0, e) = θep(0, 0), θ =
Λn

λa + μ
, e > 0, (6.11)

p(0, 0) =
(1− α)(1− θ)

1− αθ
. (6.12)

The probability that the nodes internal storage battery is empty is then:

Pe(0) =
∞∑
d=0

p(d, 0) =
1

1− α
p(0, 0) =

1− θ

1− αθ
, (6.13)
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Figure 6.2: The curves illustrate the same effects as Figure 1, with the same set of
parameters, except that λn = 1 so that Λn is chosen so that we again have Tn = 6

months, and γ = 0.01λa, μ = 0.01Λn.

and the conditions for system stability conditions are λa < Λn+γ and Λn < λa+μ such

that:

Λn − μ < λa < Λn + γ. (6.14)

6.4 Mitigation Against Attacks for Energy Harvesting Nodes

One approach to mitigate against attacks would be to impose a forced loss on incoming

traffic, so that the total arrival rate of data packets cannot exceed λ0, which has been

selected so that the average energy life-time has a pre-specified value T0. Note that the

total traffic forwarded by the node includes both its “normal” workload and the traffic

resulting from attacks. The latter includes all the packet retransmissions due to errors

resulting from noise and possible electromagnetic attacks, and the additional traffic that

is imposed on the node by other attacks. This approach then requires that a fraction m

of the total traffic is forcibly dropped at the node, where m is obtained from the relation:

λ0 = (1−m)λa, 0 ≤ m < 1. (6.15)
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Figure 6.3: For a node that uses energy harvesting, its energy life-time is shown on
the y-axis versus the local battery capacity E, for for different values of attack traffic
and r = 0.1. The capacity of the local battery which stores the harvested energy

substantially increases the system’s energy life-time.

Here m also represents the fraction of good packets that are lost. For a given value of

λn, and given parameters r and λa, m.λn can be considered as the “cost in the loss rate

of good packets” that is paid to achieve a node average life-time of T0.

The numerical examples in Figure 6.4 show that m varies in a non-linear manner with

λn. In the examples, T0 = 6 months, r = 0.1, Λn = 10, E = D = 100 and different

values of attack traffic λA has been used.

6.5 Energy Life-Time without Energy Harvesting

A conventional alternative to the system described in the previous section is to use a

large enough battery, say of size Eo to support the node for a significant amount of

time. In that case, suppose an energy life-time of T o
a can be attained in the presence of

attacks. A comparison of this system with the one that uses energy harvesting would be

of interest.
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Figure 6.4: When we mitigate the attacks in a node with energy harvesting, by
dropping a fraction m of DPs, we plot m versus the normal data traffic rate λn in DPs
per hour. We show numerical results for a fixed required energy life-time of 6 months,

and for different fractions of λA in proportion to λn with r = 0.1.

This conventional system would also have a DP buffer of size D and can be represented

by a finite capacity single server queue with arrival rate λa, while powered in the presence

of attacks, with service rate τ , and again with DP time-out rate γ. This will result in a

probability that the node is non-empty of:

q =
λa

γ + τ
[
1− ( λa

γ+τ )
D

1− ( λa
γ+τ )

D+1
], (6.16)

and an energy consuming effective transmission rate of DPs given by R = qτ . As

observed in the previous analysis we have identified one EP with the energy consumed

to transmit one DP. This approach will be retained for the purpose of homogeneity in

the comparison between the previous system and this one, so that this system’s energy

consumption rate is also R.

If this system’s average energy life-time is T o
a and the battery has a leakage rate of μ,

then during this time on average T o
aμ EPs will have been wasted. We then have:

Eo
a = [qτ + μ].T o

a , (6.17)
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Figure 6.5: Comparison of a system without harvesting that uses a battery of size
Eo with one that uses energy harvesting. All parameters are as in Figure 1, with
E = D = 100 for the system with energy harvesting, and we fix r = 0.1. The ratio
log

T o
a

Ta
is shown in the y-axis, versus the battery capacity of the node without harvesting

Eo, for three different values of λA. We see that a node that uses a large replaceable
battery is potentially more robust. All other parameters are the same as for Figure 2.

or

T o
a =

Eo
a

μ+ λa
τ

τ+γ

1−( λa
γ+τ

)D

1−( λa
γ+τ

)D+1

. (6.18)

Note that this system will process and forward packets much faster, in the microseconds

per DP or even faster, than the one with energy harvesting which processes DPs at the

rate at which energy is being harvested, i.e. Λn. Thus in general τ >> γ and τ >> λa

so that:

T o
a ≈ Eo

a

μ+ λa
. (6.19)

If it is required that an energy life-time for this system which is similar or identical

to that of the system with energy harvesting, a battery capacity Eo
a would be required

which can be obtained by setting T o
a = Ta. Thus, a battery capacity as shown below will

be needed:

Eo
a ≈ [μ+ λa].Tn(λa, E), (6.20)

where the dependence of Tn on both the net traffic rate of the system under attack λa and
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the energy harvesting’s local battery capacity E is explicitly shown. The corresponding

numerical results are shown in Figure 6.5 where we illustrate the advantage of a system

without energy harvesting by examining the ratio log Ta
T o
a

as a function of Eo. We see

that the advantages of using a larger fixed battery slow down as we increase Eo.

6.6 Impacts of Modelling Assumptions on the Results

In this chapter, two types of energy attack have been studied: a) the one creates ad-

ditional traffic in the network, and b) the one results in packet retransmissions for the

sensor nodes. The life-time analysis has been made by considering the fact that the

impacts of these attacks on the sensor nodes are independent of each other. However,

one might think that there is a link between these two attacks since the additional traffic

can also cause the packet retransmission, and the increasing noise level can elevate the

additional traffic rate. In this case, the total data arrival rate at a sensor node with the

same attack parameters is expected to be more than what is formulated in this chap-

ter. Thus, the outcomes related to the battery life-time presented in this chapter are

anticipated to be longer than the ones acquired from the real-time experiments.

6.7 Conclusions

This chapter has focused on the effect of simple energy-based attacks on sensor network

nodes. We consider how long it takes to deplete a battery and hence stop the node’s

operations when a sensor node is in use. Two situations have been considered: (a) where

the node exploits ambient but intermittent energy sources and therefore does not require

being connected to the grid, or being fed by a replaceable battery, and (b) when the node’s

energy needs are offered with a replaceable battery, but without an ambient harvested

energy source. The analysis carried out focused on the effect of attacks that are meant

to deplete the node’s energy, either through creating additional “useless” traffic or via

electromagnetic noise that results in packet errors and further packet retransmissions.

Analytical results and numerical experiments have been shown to compare and evaluate

the resulting effects. In particular, the reduction of “energy life-time” of the node was

detailed and illustrated for both cases. The study showed that attacks can be used to

very rapidly deplete the energy life-time of a node, and that a system which operates with

a source of harvested energy is less robust to attacks. Moreover, the use of a large fixed

battery can be advantageous for long energy life-times, although it has the inconvenience

of requiring human intervention to replace the batteries.
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Regarding the proposed mitigation technique discussed in Section 6.4, it is observed in

Figure 6.4) for a system that uses energy harvesting, that for low values of normal traffic

λn ≈ 10, even with high proportions of attack traffic, relatively low packet loss rates are

sufficient to maintain the battery life-time at the required length, which in this example

is six months. However, for the higher values of λn, the packet drop rates required would

be too high to be acceptable and one would have to maintain them at a lower level and

accept a shorter battery life-time.



Chapter 7

Optimum Sensor Placement

7.1 Introduction

While WSNs operate autonomously in unattended environments, they have to cope with

several resource constraints. These include computation, communication and energy re-

quirements in order to extend the battery life-time of sensor nodes in addition to the

life-time of WSNs. A typical WSN tends to consist of hundreds of sensor nodes which

can send the gathered information to a base station either directly or over a multi-hop

route. Sensor nodes operations rely on small batteries which may or may not be capable

of harvesting energy from the ambient environment. When a sensor node runs out of its

energy, it stops operating and the network may not continue its proper operations due

to several sensor nodes that may have already depleted their energy sources. Therefore,

while managing the network’s application requirements, energy conversion and manage-

ment must be prudently taken into account.

Several existing techniques for WSNs try to optimise networks at different communi-

cation layers. For instance, multi-hop routing and hierarchical network topologies are

well-known ways to optimise the network layer [134]. Moreover, preventing idle listening,

and managing power consumption are examples of optimisation methods at the medium

access layer [135, 136]. Furthermore, data encryption and authentication, and adaptive

node activations help to optimise the networks at the application layer [137]. Further-

more, using opportunistic communications that uses low-cost human wearables rather

than conventional fixed communications also helps to optimise networks for emergency

situations [138].

Optimum sensor placement has gained much attention for various objectives and models

as a means to optimise networks with respect to their primary duties, as careful node

113
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placement can be helpful in meeting the system requirements and achieving the desired

network goals. However, in many WSN applications sensor placement is primarily driven

to ensure that the network topology covers the region being monitored [139]. In fact,

sensor placement affects several network performance parameters apart from coverage.

These include throughput, communication delays and energy consumption. Ineffective

sensor node placement might cause weak communication links, throughput losses and

excessive energy depletion.

Although the importance of optimal sensor node placement is straightforward, it is still

a very challenging problem for most network topologies and goals [140, 141]. Several

heuristic models and techniques have been developed to reach some near-optimal solu-

tions [142, 143]. One crucial point that should be considered for optimising the WSNs is

whether sensor node locations will be static during the whole network operations or dy-

namically changeable according to varying external factors (e.g. change in traffic pattern

or load) and some internal factors (e.g. adding new nodes to the network or losing exist-

ing nodes due to battery depletions) [144, 145]. Optimisation models that allow dynamic

adjustment of node locations might give better results as the initial node placement can

lose its importance. In this situation, the network will require an updated placement

scheme. However, it also brings its own difficulties. These include continuous monitor-

ing of the network states and network performance. Moreover, relocation of sensor nodes

may cause some interruptions of data traffic which may result in the loss of some infor-

mation. Furthermore, an updated routing path should be immediately provided for each

sensor node that is relocated. Therefore, this study will focus on optimisation methods

that consider static node placement, i.e. optimum locations are initially determined and

then relocation is not considered.

7.2 Static Node Placement

Optimisation strategies for static node placement focus on quality metrics and are in-

dependent of the network’s current state or performance. These strategies consider un-

changed parameters throughout the network operation. For example, traffic load, en-

ergy availability, distance, and communication errors. Nevertheless, strategies for initial

positioning of nodes still have a great impact on effective operations of WSNs. In refer-

ence [139], the static positioning of sensor nodes is categorised according to deployment

methodology, optimisation objectives and the functionality of the nodes in the networks.
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7.2.1 Deployment Methodologies

Sensor nodes in an environment can be either deterministically or randomly placed by

considering sensors type, network applications, and the environmental factors within

which the network operates. The controlled placement of sensor nodes is common par-

ticularly when their operation depends on location, or they are very expensive. Expensive

sensors are usually used for several indoor applications such as surveillance for obtaining

high quality images of targets, maintenance of large buildings and contamination detec-

tion in air and water supplies [146–149]. Furthermore, sensor placement is crucial for

underwater applications, as sensor nodes use acoustic signals and they have to be placed

in a specific range for a successful communication [150].

Alternatively, random sensor node deployment could be a feasible solution for several

network applications in rough environments, such as disaster areas or battlefields. Con-

trolled sensor node placement is often not possible during a combat or a fire. However,

random placement can be done remotely by helicopters or with some sensor grenades. Al-

though the localisation of nodes is random, node densities can be controlled or planned,

and some reasonable approximations and analysis can be made based on this density

information [151, 152].

7.2.2 Optimisation Objectives

Every WSN is designed in a way that several goals or objectives are satisfied. Area

coverage, network connectivity, network longevity and data fidelity are the most common

objectives that WSN designers try to optimise [139]. It is clear using large numbers

of sensor nodes can achieve these objectives. However, the real challenge is to design

networks using the least number of sensor nodes due to limited resources.

Area coverage of the monitored region is one of the main objectives for WSN applications.

Network designers generally try to achieve either area coverage maximisation by using a

predetermined number of sensor nodes or full coverage of a specific region by minimising

the number of sensor nodes in the network. The assessment of the coverage depends on

the modelling the sensing range of sensor nodes and the metrics evaluating the collective

coverage of the network. Most studies consider that a sensor node is able to sense a disk

region whose centre is the location of the node and the radius is the node’s sensing range

[153]. However, several other metrics such as irregular polygons are used to evaluate area

coverage [154, 155].
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In addition, network connectivity is a further network objective as false information can

be monitored or there might be nothing to show at all without a proper network com-

munication. Although area coverage has always been a constraint for network designs,

network connectivity has not been considered due to the fact that the transmission range

of a sensor node is assumed to be much greater than the sensing range. However, it be-

comes a serious concern when these two ranges are close to each other. Locating relay

nodes, which are capable of long distance communication, among other sensor nodes and

ensuring a traffic route from a sensor to another one, which is closer to the base station,

may help to achieve the connectivity objective. Moreover, different placement strategies

can overcome both coverage and connectivity concerns [156, 157].

Network longevity is also a crucial objective for WSNs. Communications among sensor

nodes and base stations is one of the main energy consumers in WSNs. Consequently,

network life-time is highly dependent on the location of the sensor nodes. For instance,

network life-time is shortened when sensor nodes are uniformly distributed as the nodes

further away from the base station consume energy faster than those closer to the base

station [158]. Therefore, designers will tend to maximise network life-time instead of

optimising coverage or connectivity objectives by assuming the availability of sufficient

number of sensor nodes that have sensing ranges that prevent a lack of coverage or

connectivity problems. In several applications, a set of sensor nodes may operate for the

same purposes. Thus, the whole network will keep functioning as long as one node in a

set has sufficient energy to operate. Alternatively, each sensor node may be assigned a

unique job. In this case the node that consumes its energy first determines the network

life-time.

The reliability of gathered information or data fidelity is an additional design objective

for WSNs. Placement of several sensor nodes, trying to sense the same information,

in a specific region increases the data credibility or accuracy as the fused data consists

of multiple independent sensor nodes information. For instance, reference [159] uses

information from multiple nodes to maximise the target detection probability. However,

increased node density in networks results in problems such as extra cost and elevated

interference levels. Moreover, it causes a trade-off between data fidelity and coverage, or

connectivity objectives when the number of sensor nodes is limited.

7.2.3 Nodes’ Functionality

Sensor node placement depends not only on network design targets, such as prolonging

life-time or minimising delays, but also the functionality of the nodes in the network.

In addition to being a regular sensor, a node can contribute as a base station, relay
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or cluster head. Therefore, designers should consider the nodes functionality before

positioning strategies. Functionality of the relay nodes may vary according to network

design needs. As mentioned previously, the transmission range of the relay nodes is

greater than that of regular nodes, as they may play a gateway role for several nodes in

a network. It is generally assumed that relay nodes can directly communicate with the

base station of the network. In fact, even if they do not have direct communication with

the base station, they can still significantly improve network performance.

Clustering of sensor nodes plays a key role in the sense of scalability for large networks

[160]. While a relay node can only forward the received data from a regular node, a

cluster head can collect and aggregate all the information from other nodes in a cluster.

Moreover, some cluster heads are capable of dealing with management responsibilities

of clusters. These include assigning and changing sensor nodes tasks. Cluster heads in

the same network may have direct connections to the base station, alternatively they

constitute a multi-hop cluster head network to reach to the base station.

Figure 7.1: The area that has to be covered by the sensor nodes.

7.3 System Model

This work proposes a modelling approach to optimise the sensor node placement of

WSN when there is a spatial continuous distribution of energy (e.g. photovoltaic) and a

continuous spatial density of data traffic. The following statements are assumed:



Optimum Sensor Placement 118

1. The areas that have to be covered by the sensor nodes consist of m x n = M

unit regions, and each can be represented by Aij , i ∈ {1, · · · ,m}, j ∈ {1, · · · , n} as

shown in Figure (7.1).

2. Each Aij has spatial energy arrivals, which is a Poisson process with rate Λij , and

spatial data arrivals, another independent Poisson process with rate λij .

3. The number of sensor nodes placed in Aij is represented by nij and the following

equation must be satisfied:

m∑
i=1

n∑
j=1

nij = N, 0 ≤ nij ≤ k, (7.1)

where N is the total number of sensor nodes, and k is the maximum number of

nodes can be placed into a unit region due to physical constraints i.e, each sensor

node occupies a certain area. Furthermore, at least one node has to be placed in

each unit region to provide area coverage, so that N > M .

4. Each sensor node operating in Aij is capable of capturing the same amount of

energy, the full portion of the spatial energy arrival Λij . However, sensor nodes

divide the traffic load when they are placed into the same unit region, i.e. the

traffic load for each sensor node in Aij is λij

nij
.

5. The sensing range of a node is limited to cover the unit region where it is placed.

Thus, the node is not occupied with traffic arrivals from neighbouring unit regions.

6. Data can be successfully transmitted by consuming a single EP.

7.4 Single Hop Transmission

Clustering is common in WSNs. Consequently, they are designed such that each node is

able to directly communicate with the cluster-head (or the local base station) without

requiring multi-hop communication. In other words, the transmission range of a node

can cover the distance between the node and the base station to achieve direct commu-

nication. In this section, a brief single node analysis which is generally used in the single

hop transmission networks is explained together with an explanation of the optimisation

problem and the fairness in relation to optimum node placement.
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7.4.1 Single Node Analysis

In this section, an identical time-out loss rate γ and energy leakage rate μ have been

assumed for all sensor nodes in the network. Alternatively, the energy and data arrivals

of sensor nodes depend on their location. Figure (7.2) models a sensor node located in

Aij .

Figure 7.2: A single node with spatial energy arrival rate Λij , spatial data arrival
rate cλij , data time-out loss rate γ, and energy leakage rate μ. If the node operates

among total number of nij sensor nodes, then c = 1
nij

.

States of a node at time t are represented by p(d, e, t) where the first variable represent the

backlog of data and the second one represents the number of EPs. Therefore, stationary

state distributions of a node operating among total number of nij ≤ k sensor nodes in

Aij can be calculated as:

pij(d, 0) = αd
ij pij(0, 0) = (

λij

nij

Λij + γ
)d pij(0, 0), (7.2)

pij(0, e) = θeij pij(0, 0) = (
Λij

λij

nij
+ μ

)e pij(0, 0), (7.3)

pij(0, 0) =
(1− αij)(1− θij)

αD+1
ij (θij − 1) + θE+1

ij (αij − 1) + 1− αijθij
. (7.4)
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Furthermore, the average backlogs of DPs waiting in the buffer can be calculated as:

d̄ij =

D∑
d=0

d pij(d, 0), (7.5)

=

D∑
d=0

d αd
ijpij(0, 0), (7.6)

=
αij(DαD+1

ij − (D + 1)αD
ij + 1)

(1− αij)2
pij(0, 0), (7.7)

=
αij(1− θij)[DαD+1

ij − (D + 1)αD
ij + 1]

(1− αij)[α
D+1
ij (θij − 1) + θE+1

ij (αij − 1) + 1− αijθij ]
. (7.8)

7.4.2 The Optimisation and The Fairness Index

Covering the operational area whilst simultaneously minimising the total average backlog

of DPs can be considered a design objective for sensor node placement via single hop

transmission. The optimisation problem can be defined as follows:

minimize
nij

gij(d̄ij) =
m∑
i=1

n∑
j=1

d̄ij

subject to

m∑
i=1

n∑
j=1

nij = N,

k ≥ nij ≥ 1, ∀i ∈ {1, · · · ,m}, ∀j ∈ {1, · · · , n}.

(7.9)

One intuitive strategy to solve the optimisation problem is to place as many sensor nodes

as possible in the unit regions with higher energy availability. Apart from the existence

of sufficient amounts of energy, traffic load can be shared with other nodes in the same

unit, so that the expected backlog of DPs will be low. However, the remaining nodes

that operate in the other units may have to deal with heavy traffic loads or a lack of

energy. Thus, fairness must be provided among the sensor nodes. For example, having

average backlogs of DPs as d1 = 1, d2 = 1, d3 = 1, d4 = 1 is more preferable than having

d1 = 0, d2 = 0, d3 = 0, d4 = 4 even if the total backlog of DPs is equal. The reason

behind the fairness concern is that long interruptions of updates from a specific region

may impact the efficiency of the network functionality and result in incorrect monitoring.

A fairness index can help us understand the effect of unfair sharing among data buffers

when their total backlog is the same. Jain’s index, the earliest proposed fairness measure,

is defined in [161] as:

f(x) =
[
∑n

i=1 xi]
2∑n

i=1 x
2
i

(7.10)
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where 0 ≤ f(x) ≤ 1. Jain’s index is one of the most widely used fairness measures. The

larger value of f(x) represents the fairer strategy for the sensor node placement. Table

(7.1) shows the different Jain’s index with different average backlog of DPs. In this table,

it can be seen that the system becomes fairer when Jain’s index is closer to 1.

Table 7.1: Example’s of Jain’s index, < di > represents the average backlog of DPs
at node i.

A small modification in the objective function can help to overcome fairness concern.

The following could be an example of a modified objective function:

g∗ij(d̄ij) =
m∑
i=1

n∑
j=1

d̄ij
2 (7.11)

where the summation of d̄ij
2s will provide fairer sharing among the sensor nodes.

7.4.3 Numerical Results

As mentioned previously, each unit region must be occupied by at least one sensor node

to cover the whole region in which the WSN operates. Thus, the sensor node replacement

problem is distributing N −M remaining nodes among M = m× n unit regions.

Table (7.2) shows a numerical example of optimum node placement using identical sensor

nodes whose parameters are D = 1000, E = 1000, μ = 0.1, γ = 0.1, and N = 50,m =

5, n = 5. Random energy and data arrival rates are assumed for each unit region such

that Λij ∈ [1, 10] and λij ∈ [10, 20] packets per second. In this numerical example,

comparison of three different node placements, optimum placement with and without

fairness concern, and equal node placement to each unit region have been considered.

While the placement with fairness concern shows the best performance, equal node place-

ment without any optimisation shows the worst.
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Table 7.2: Results of 3 different node placement algorithms. Fairness provides better
results for the overall network performance.

7.5 Multi-Hop Transmission

Although the single hop transmission is sufficient for most WSN clusters and small

networks, multi-hop transmission is required for larger networks as the transmission

range of a sensor node can not cover the distance between the node and the base-station.

The problem definition is slightly different compared to the one considered in the single

hop transmission section. In this section:

1. A cascaded network of N sensor nodes is considered and their optimum placement

in an area consisting of M = m× n unit regions.

2. Each unit region can occupy at most one sensor node, i.e., k = 1.
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3. A sensor node in Aij can forward DPs to only the node in Ai+1j−1, Ai+1j , or

Ai+1j+1, as shown in Figure (7.3).

4. The optimisation problem is placing one sensor node into each row i ∈ {1, 2, · · · , N}
as shown in Figure (7.3) such that the final throughput is maximised.

Figure 7.3: A node in Aij can only forward its data to specific nodes, which must be
located in Ai+1j−1, Ai+1j , or Ai+1j+1.

7.5.1 N-Layers Cascaded Network

In the cascaded N -hop model, it was assumed that the data and energy buffers are

unbound. A DP is transmitted using one EP. DP transmission or forwarding times were

assumed to be negligibly small compared to the inter-arrival times of DPs and EPs to

the system, and to the average time between successive losses of a DP, and to the average

time it takes an EP to be lost due to battery leakage. Figure (7.4) shows the cascaded

N -hop model.
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Figure 7.4: Cascade network of N nodes that store, process, and forward jobs to their
successive node.

States of a node i in steady state are represented by p(ni) where n(i) = di − ei. Thus,

the joint distribution of the cascade network can be written as:

Theorem 1 Let:

v1 = λ1, vi+1 = λi+1 +

i∑
j=1

λj

i∏
k=j

Λk

Λk + γk
. (7.12)

and the conditions

vi + μi = Λi + γi, (7.13)

μ0
i = vi + 2μi, (7.14)

γ0i = Λi + 2γi. (7.15)

are satisfied, then the steady state probability distribution:

π(n̄) = P

N∏
i=1

πi(ni), (7.16)

where n̄ = (n1, n2, · · · , nN ) and

πi(ni) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if ni = 0

1
2(

vi
Λi+γi

)ni , if ni ≥ 1

1
2(

Λi
vi+μi

)−ni , if ni ≤ −1

(7.17)

where the normalising constants P is:

P =
N∏
k=1

(1 +
vk
2μk

+
Λk

2γk
)−1, (7.18)

The proof is given in the Appendix B.
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The average backlogs of DPs waiting in the network is:

< d > =

N∑
i=1

∑
ni>0

niπ(ni) (7.19)

=
N∑
i=1

∑
ni>0

Pi

2
ni(

vi
Λi + γi

)ni (7.20)

=
N∑
i=1

Pi

2
(
vi
μi

(1 +
vi
μi

)) (7.21)

=
N∑
i=1

vi
μi

γi
γi + μi

. (7.22)

and the DP throughput of a node i can be calculated as:

Oi =
∑
ni>0

π(ni)Λi +
∑
ni<0

π(ni)vi (7.23)

=
1

2
Pi[(

vi
Λi+γi

1− vi
Λi+γi

)Λi + (

Λi
Λi+γi

1− Λi
Λi+γi

)vi] (7.24)

=
1

2
PiΛivi(

1

γi
+

1

μi
) (7.25)

=
viΛi

Λi + γi
(7.26)

where Pi =
2γiμi

(γi+μi)(vi+μi)
.

7.5.2 Numerical Examples

The optimum placement of N = m sensor nodes that can form as a cascade network, and

provide multi-hop communication into a region, consisting of M = m × n unit regions,

for maximising the final throughput of the cascade network have been considered.

Figure (7.5) shows two numerical examples of the optimum sensor placement for final

throughput maximisation where the number pairs represent the spatial continuous energy

and traffic arrivals at each unit region (Λij , λij), such that Λij ∈ [1, 10] and λij ∈ [10, 20]

packets per second. The other parameters of a sensor node operating in Aij are assumed

to be μij = 0.1Λij and γij = vij + μij − Λij . The selection of γij is to satisfy the

energy-data flow condition in equation 7.13.
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Figure 7.5: Optimum sensor placement for throughput maximisation where the pa-
rameters of unit region Aij are Λij , λij , μij = 0.1Λij , γij = vij + μij − Λij .

7.6 Impacts of Modelling Assumptions on the Results

In this chapter, it has been assumed that a sensor can only sense DPs from the unit

region where it is placed. In reality, however, a sensor node is able to collect data from

a circular region where the sensor is located in the centre. Thus, a sensor node needs to

occupy with not only the traffic from the unit region it is placed but also the traffic from

the neighbouring units. In this case, energy consumption for the transmission would

increase along with the increasing total data arrival rate. Furthermore, the additional

traffic from the other units would lower the reliability of the information collected by

the monitoring devices. One reasonable approach to re-evaluate this assumption is that

the circular sensing range covers the possible maximum area that stays inside the unit

region. In this case, the integrity problem still remains since a small fraction of the unit

regions can not be covered by the sensing range of a sensor node. However, this model

dramatically reduces the effect of the interference and the total energy consumption of

the system.

7.7 Conclusion

This chapter focused on the optimum sensor placement for different transmission schemes

and different optimisation objectives. The importance of sensor localisation for WSNs
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was briefly mentioned and a summary of the different factors that have an impact upon

initial node placement (e.g. deployment methodologies, optimisation objectives and node

functionality) have been provided. The region where WSNs operate is composed of unit

regions. The data and energy arrivals, at each unit region, were assumed to follow a Pois-

son process with different rates. While sensor nodes placed in a unit region can share

the traffic load, they are all able to capture the full amount of energy (e.g. from a pho-

tovoltaic source). First, a model was investigated wherein the sensor nodes can directly

communicate with the base station or the cluster head. For this model, the network ob-

jective is to provide the area coverage while minimising the total average backlog of data

in the node buffers. In addition, fairness among sensor nodes was considered so that the

objective function was changed to a sum of squared values of each DP backlog instead

of their direct sum. Moreover, an additional model was studied wherein sensor nodes

constitute a multi-hop cascade network to communicate with the base station. The net-

work objective of this model was the placement of sensor nodes in the unit regions such

that the final throughput of the cascaded network was maximised. Numerical examples

were provided to illustrate the optimum node placement for single-hop transmission with

and without fairness concern. Furthermore, examples of optimum path selection for a

multi-hop transmission case have been provided.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis has investigated recent work on mathematical models of digital devices where

energy and data are in discrete packet units abstraction based on the EPN paradigm.

While EPNs examine the task service times for both energy consumption and job process-

ing, the EN paradigm considers devices with zero service time. Particularly in EHWSN,

the DP transmission usually takes place on a scale of microseconds or nanoseconds, while

the packet sensing and processing in the node may take many milliseconds such that the

EN paradigm is applicable. EHWSNs studied in this thesis receive data from other

devices or through sensing, and gather energy through harvesting from photovoltaic or

other ambient energy sources. Buffers for DPs and EPs have been assumed to have

limited capacities of D and E.

An EHWSN requires energy not only for packet transmission but also for node electronics.

For example, packet sensing, processing and storing. Therefore, the harvested energy

consumption in a sensor node was divided into two parts: Ke and Kt EPs for node

electronics and for DP transmission. Whenever a sensor node stores less than Ke EPs,

it cannot sense and store the data. Consequently, the information will be lost. However,

if a node stores more than Ke EPs, the data arrival can be sensed, processed, and stored

immediately by consuming Ke EPs. Moreover, if the remaining EPs are greater than

Kt EPs, they can also be transmitted in zero time by consuming all the Kt EPs. Thus,

successful sensing and transmission of a DP requires exactly K = Ke +Kt EPs.

In Chapter 3, it was assumed that a successful DP transmission can occur by consuming

a single EP through a perfect transmitter, i.e. Kt = 1 and Ke = 0. In addition, the

energy and data leakage caused by the standby and time-out operations of the node
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into the system have been introduced. These leakages have been modelled as Poisson

processes. These systems led to a one-dimensional random walk diagram to model the

behaviour of the state transitions. Following modelling the system, closed-form formulas

for the stationary probability distributions were obtained. Excessive packets resulting

from finite buffer capacities and obtained formulas for EP and DP loss rates were also

investigated. Moreover, the question of system stability was analysed by considering

infinite buffer sizes. Analysis revealed that systems with unlimited buffer capacity exhibit

stable behaviour only when certain conditions have been satisfied. Furthermore, DP

retransmission was studied by introducing the error probabilities π and p. It was shown

that closed-form formulas for stationary probability distributions can be found under

certain conditions according to new transition rates. In addition, the relation between

the correctly receiving probability and the error probabilities π and p was investigated.

Second, data transmission with K EPs through a perfect transmitter was studied. The

motivation lies in the fact that a sensor node may vary the transmission power level to

decrease the probability of unsuccessful transmissions or prevent energy waste in some

cases. This system led us to a two-dimensional random walk for modelling its state

behaviours. Closed-form formulas were obtained by modifying the system where a state

can be represented with a single index, not with integer pairs. The effect of noise and

interference on sensor node transmitting among a set of identical sensor nodes was also

investigated.

In Chapter 4, a more practical model that considered a packet transmission through

an imperfect transmitter was studied. First, we studied an imperfect transmitter that

consumes a single EP for node electronics and another EP for transmission. As a con-

sequence of this energy consumption model, the DP buffer could be either empty or can

only store a single DP. Thus, it may be expected that there would be a great number of

excessive DPs; however, this can be prevented for certain ratios of data and energy flows.

A closed-form formula was obtained for the stationary distributions and it was shown

that the system is always stable for the data queue and unstable for the energy queue.

Next, a generalised energy consumption model was investigated. This contained an im-

perfect transmitter which consumes an arbitrary number of EPs such that Ke > 1 and

Kt > 1 for both the node electronics and the transmission. A solution method was pro-

posed to reduce the computational complexity of the system by introducing companion

matrices and using linear algebra.

In Chapter 5, a network model in which N EHWSNs constitute a cascaded structure

was investigated. EHWSNs with a perfect transmitter were considered. It was assumed

that one EP consumption is sufficient for successful transmission. In addition, it was

assumed an EHWSN can forward its data to the immediate neighbour in zero time scale

when energy is available. However, if DPs must wait some time in the buffers for new
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energy arrivals, the buffers suffer from information loss. In this chapter, a new PFS was

developed for N -node tandem systems. In these systems external data arrives via the

first node, and the other nodes operate as relays to forward the data to the last node

without any other external information flow. It was shown that there must be a link

between data and energy flows to obtain PFS for such systems. It was also illustrated

using numerical results how the average backlog of DPs and the system throughput vary

with different system parameters thanks to computational convenience that the PFS

provides.

In Chapter 6, a modelling approach was proposed to evaluate effects of simple battery

attacks on battery life-time of EHWSNs for two cases: where ambient and intermittent

energy is used as energy source such that there is no need for battery replacement, and

the case of a replaceable battery without energy harvesting. First, a brief summary

of attacks was presented. Moreover, the effects of two attacks were considered in the

study: attacks that create additional redundant traffic and attacks that cause packet

errors and require packet retransmissions. Numerical examples reveal that these attacks

significantly impact on EHWSNs and they can reduce battery life-time from months

to days. Therefore, a mitigation method was proposed. This method forces the traffic

arrival rate to remain below a certain threshold with the sacrifice of some information

loss. Furthermore, the analysis revealed that using replaceable batteries is more stable

than using the renewable energy sources, even though it requires human intervention.

In Chapter 7, optimum sensor placement was investigated by considering two differ-

ent transmission schemes: the single-hop transmission, which can occur in small indoor

WSNs or in many network clusters, and the multi-hop transmission where N EHWSNs

constitute a cascade network. The study focused on several different network objectives

such as full area coverage, while minimising the backlog of traffic in the data buffers and

network connectivity, while maximising the final average throughput of the system. A

single node analysis studied in Chapter 3 was used, in which data and energy that flow

into the node are independent Poisson processes and a successful transmission can occur

with Ke = 0 and Kt = 1 values. Furthermore, it was shown that an N layered cascade

network has PFS for its joint probability, i.e, joint probability equals to the multiplica-

tion of marginal probabilities, which provides enormous computation simplifications to

analyse the system.
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8.2 Future Work

Several points have been raised in this thesis that can be expanded. This section discusses

the open issues and possible future directions.

In Chapter 3 and Chapter 4, the work focused on single node analysis where different

energy consumption models were studied by considering different energy uses by the node

electronics (Ke) and the transmission sub-system (Kt). A linear algebra technique was

proposed to reduce computation complexity for the systems with generalised Ke and Kt

values. For future work, further analysis can be made to obtain a closed-form formula for

the stationary probability distribution of states while considering independent energy and

data arrivals as well as independent energy and data losses. Furthermore, one possible

direction is to consider dependent traffic and energy arrivals and re-analyse the system.

In Chapter 5, an N layered cascade network was studied where only the first node can

sense the external traffic, and the other nodes relayed the information to the destination

point. Each relay node is capable of harvesting energy, storing data and energy in its

own buffers, but cannot sense data from external sources. It was assumed that each

layer has one node in this model. A re-analysis of the model could be carried out when

increasing the number of nodes for each layer, such that forwarding the data to a node

in the next layer can happen with a certain probability. The optimum values of these

probabilities can be investigated to maximise the throughput of the system. Moreover,

nodes in this model were assumed to consume single EP just for DP transmission but

not node electronics. Similar network models can be studied by considering different Ke

and Kt values.

In Chapter 6, basic energy attacks were modelled to evaluate their impact on sensor

life-time. Moreover, a simple mitigation technique that maintains the life-time above a

certain threshold was proposed. This system can be improved by adding other attacks

into the model. Moreover, several results in this section assumed that the attack traffic

was proportional to the ongoing normal traffic. This may not be realistic as attackers

may inject a fixed traffic rate of attack traffic so that the proportion of attack traffic

is reduced when the normal traffic rate increases. Thus, future work will need to delve

deeper into mitigation techniques and their evaluation in order to propose new methods

to mitigate against battery attacks.

In Chapter 7, the optimum placement of sensor nodes for different transmission schemes

and objectives were investigated. It was assumed that sensors placed in the same unit

region can share the spatial traffic flow into that region while they all can take advantage

of capturing the full amount of available spatial energy on arrival (eg. from photovoltaic
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sources). This model can be changed so that sensor nodes also have to share the accessible

energy. Moreover, the effect of possible data capturing from neighbour unit regions by

limiting the sensing rage of nodes within an unit region have not been considered. Future

work can consider this effect to show more practical results. Furthermore, a multi-hop

communication of a cascade network where each node is capable of sensing data and

capturing energy from the ambient environment has been investigated. This pre-defined

routing model can be improved by studying the general network case where the network

objective can be optimised by choosing the best possible routing according to data and

energy availabilities of sensor nodes constituting the network.
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Proof of Product-form Solution Of

Cascade Networks

Let:

v1 = λ1, vi+1 =
viΛi

Λi + γi
= λ1

i∏
l=1

Λi

Λi + γi
. (A.1)

and assume that the following EDF equilibrium conditions are satisfied, i.e.:

vi + μi = Λi + γi, (A.2)

μ0
i = vi + 2μi, (A.3)

γ0i = Λi + 2γi. (A.4)

Then the steady-state probability distribution for the system π(n̄) = lim t→∞ p(n̄, t) is

given by:

π(n̄) =

N∏
i=1

πi(ni), (A.5)

where

πi(ni) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Ci, if ni = 0

Ci.
vi

Λi+γ0
i
( vi
Λi+γi

)ni−1, if ni ≥ 1

Ci.
Λi

vi+μ0
i
( Λi
vi+μi

)−ni−1, if ni ≤ −1

(A.6)

where the normalising constants Ci are :

Ci = (1 +

vi
Λi+γ0

i

1− vi
Λi+γi

+

Λi

vk+μ0
i

1− Λi
vi+μi

)−1. (A.7)
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Therefore, we may calculate the followings:

πi(ni + 1)

πi(ni)
� G+

i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

vi+μi

Λi
, if ni < −1

vi+μ0
i

Λi
, if ni = −1

vi

Λi+γ0
i
, if ni = 0

vi

Λi+γi
, if ni > 0

πi(ni − 1)

πi(ni)
� G−

i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Λi+γi

vi
, if ni > 1

Λi+γ0
i

vi
, if ni = 1

Λi

vi+μ0
i
, if ni = 0

Λi

vi+μi
, if ni < 0

The equilibrium equation is:

π(n̄) [λ1 +

N∑
i=1

(Λi + γi1ni>1 + γ0i 1ni=1 + μi1ni<−1 + μ0
i 1ni=−1)] (A.8)

=
N∑
i=1

[π(n̄+ ei)(γi1ni>0 + γ0i 1ni=0 + Λi1ni<01i �=N + ΛN1i=N )] (A.9)

+
N∑
i=1

[π(n̄− ei)(μi1ni<0 + μ0
i 1ni=0 + λ11n1>01i=1)] (A.10)

+
N−1∑
j=1

[π(n̄−
j+1∑
i=1

ei)λ1

j∏
i=1

1ni≤0 (1n1+j=N + 1nj+1≥11n1+j �=N
)] (A.11)

+
N−1∑
j=1

j∑
i=1

[π(n̄+ ei −
N−j∑
k=1

ei+k)Λi1ni≥0(1N−j≤1 + 1N−j≥2

N−j−1∏
k=1

1ni+k≤0)(1i=j + 1nN+i−j≥11i �=j)]

(A.12)

Dividing both sides of the equilibrium equation by π(n̄) we have:

[λ1 +
N∑
i=1

(Λi + γi1ni>1 + γ0i 1ni=1 + μi1ni<−1 + μ0
i 1ni=−1)] (A.13)

=
N∑
i=1

[G+
i (γi1ni>0 + γ0i 1ni=0 + Λi1ni<01i �=N + ΛN1i=N )] (A.14)

+
N∑
i=1

[G−
i (μi1ni<0 + μ0

i 1ni=0 + λ11n1>01i=1)] (A.15)

+
N−1∑
j=1

[

j+1∏
i=1

G−
i λ1

j∏
i=1

1ni≤0 (11+j=N + 1nj+1≥111+j �=N )] (A.16)

+
N−1∑
j=1

j∑
i=1

[G+
i

N−j∏
k=1

G−
k+i(Λi1ni≥0(1N−j≤1 + 1N−j≥2

N−j−1∏
k=1

1ni+k≤0)(1i=j + 1nN+i−j≥11i �=j))]

(A.17)
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Consider the line (A.14) so that we have the following:

N∑
i=1

[G+
i (γi1ni>0 + γ0i 1ni=0 + Λi1ni<01i �=N + ΛN1i=N )] = (A.18)

G+
NΛN1nN≥0 +

N∑
i=1

[
viγi

Λi + γi
1ni>0 +

viγ
0
i

Λi + γ0i
1ni=0 + (vi + u0i )1ni=−1 + (vi + ui)1ni<−1]

(A.19)

Consider the line (A.15) so that we have the following:

N∑
i=1

[(G−
i )(μi1ni<0 + μ0

i 1ni=0 + λ11n1>01i=1)] = (A.20)

G−
1 λ11n1>0 +

N∑
i=1

[
Λiμi

vi + μi
1ni<0 +

Λiμ
0
i

vi + μ0
i

1ni=0]. (A.21)

The summation of the lines (A.19) and (A.21):

= G−
1 λ11n1>0 +G+

NΛN1nN≥0 (A.22)

+

N∑
i=1

[
viγi

Λi + γi
1ni>0 + (

viγ
0
i

Λi + γ0i
+

Λiμ
0
i

vi + μ0
i

)1ni=0 + .

.(vi + u0i +
Λiμi

vi + μi
)1ni=−1 + (vi + ui +

Λiμi

vi + μi
)1ni<−1],

where

viγ
0
i

Λi + γ0i
+

Λiμ
0
i

vi + μ0
i

=
vi(Λi + 2γi) + Λi(vi + 2μi)

2(Λi + γi)
= vi +

Λiμi

Λi + γi
, (A.23)

and

viγi
Λi + γi

= vi +
Λiμi

Λi + γi
+

viγi
Λi + γi

− vi − Λiμi

Λi + γi
(A.24)

= vi +
Λiμi

Λi + γi
+

viγi − viΛi − viγi − Λiμi

Λi + γi
(A.25)

= vi − Λi +
Λiμi

Λi + γi
. (A.26)



Appendix A 136

When we use the lines (A.23) and (A.26) into (A.22) we have:

= G−
1 λ11n1>0 +G+

NΛN1nN≥0 (A.27)

+

N∑
i=1

[vi +
Λiμi

Λi + γi
+ μ0

i 1ni=−1 + μi1ni<−1 − Λi1ni>0] (A.28)

= G−
1 λ11n1>0 +G+

NΛN1nN≥0 (A.29)

+

N∑
i=1

[Λi +
viγi

Λi + γi
+ μ0

i 1ni=−1 + μi1ni<−1 − Λi1ni>0] (A.30)

Thus, up to this point the equilibrium equation is simplified to the following:

λ1 +
N∑
i=1

[γi1ni>1 + γ0i 1ni=1] (A.31)

= G−
1 λ11n1>0 +G+

NΛN1nN≥0 +

N∑
i=1

[
viγi

Λi + γi
− Λi1ni>0] (A.32)

+
N−1∑
j=1

[

j+1∏
i=1

G−
i λ1

j∏
i=1

1ni≤0 (11+j=N + 1nj+1≥111+j �=N )] (A.33)

+
N−1∑
j=1

j∑
i=1

[G+
i

N−j∏
k=1

G−
k+iΛi1ni≥0(1N−j≤1 + 1N−j≥2

N−j−1∏
k=1

1ni+k≤0). (A.34)
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Now consider the line (A.33):

N−1∑
j=1

[

j+1∏
i=1

G−
i λ1

j∏
i=1

1ni≤0 (11+j=N + 1nj+1≥111+j �=N )] (A.35)

= λ1G
−
N

N−1∏
i=1

G−
i 1ni≤0 (A.36)

+
N−2∑
j=1

[λ1G
−
j+11nj+1≥1

j∏
i=1

G−
i 1ni≤0] (A.37)

= λ1G
−
N

N−1∏
i=1

[
Λi

vi + μ0
i

1ni=0 +
Λi

vi + μi
1ni<0] (A.38)

+
N−2∑
j=1

[λ1(
Λ1+j + γ1+j

v1+j
1n1+j>1 +

Λ1+j + γ01+j

v1+j
1n1+j=1)

j∏
i=1

Λi

vi + μ0
i

1ni=0 +
Λi

vi + μi
1ni<0]

(A.39)

= [λ1G
−
N

N−1∏
i=1

(
vi+1

vi
)(
1ni=0

2
+ 1ni<0)] (A.40)

+
N−2∑
j=1

[
λ1

v1+j
((Λ1+j + γ1+j)1n1+j>1 + (Λ1+j + γ01+j)1n1+j=1)

j∏
i=1

(
vi+1
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)(
1ni=0

2
+ 1ni<0)]

(A.41)

= vNG−
N

N−1∏
i=1

(
1ni=0

2
+ 1ni<0)] (A.42)

+
N−2∑
j=1

[
(
(Λ1+j + γ1+j)1n1+j>1 + (Λ1+j + γ01+j)1n1+j=1

) j∏
i=1

(
1ni=0

2
+ 1ni<0)] (A.43)

= vNG−
N

N−1∏
i=1

f(ni) (A.44)

+
N−2∑
j=1

[G−
j+1vj+11nj+1≥1

j∏
i=1

f(ni)]. (A.45)

where vi+1

vi
= Λi

Λi+γi
and f(ni) �

1ni=0

2 + 1ni<0.
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When we consider the line (A.34):

+

N−1∑
j=1

j∑
i=1

[G+
i

N−j∏
k=1

G−
k+iΛi1ni≥0(1N−j≤1 + 1N−j≥2

N−j−1∏
k=1

1ni+k≤0)(1i=j + 1nN+i−j≥11i �=j)]

(A.46)

= G+
N−1 G−

N ΛN−11N−1≥0 (A.47)

+

N−2∑
i=1

[G+
i G−

i+1 Λi1i≥01i+1≥1] (A.48)

+
N−2∑
j=2

j−1∑
i=1
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i

N−j∏
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G−
k+iΛi1ni≥0

N−j−1∏
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+
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j=1
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j
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N−j−1∏
k=1
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N h(nN−1) (A.51)

+

N−2∑
i=1

vi+1 G−
i+1 1ni+1≥1 h(ni) (A.52)

+
N−2∑
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j−1∑
i=1

[G+
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N−j−1∏
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+
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N−j−1∏
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k+jlnj+k≤0] (A.54)
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+
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+
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+
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+
N−2∑
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N−j+i1nN−j+i≥1h(ni)
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N
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f(nk+j)]. (A.62)
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where
∏M

i=1G
−
i δni≤0 =

vM+1

v1

∏M
i=1 f(ni), G+

i Λiδni≥0 = vi+1h(ni) and h(ni) � 1ni=0

2 +

1ni>0.

The summation of the lines (A.59) and (A.62):

vN G−
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N
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[h(nj)

N−j−1∏
k=1

f(nk+j)] (A.64)

= vNG−
N

N−1∑
j=1

[(1− f(nj))

N−j−1∏
k=1

f(nk+j)] (A.65)

= vNG−
N

N−1∑
j=1

[

N−j−1∏
k=1

f(nk+j)− f(nj)

N−j−1∏
k=1

f(nk+j)] (A.66)

= vNG−
N

N−1∑
j=1

[

N−1∏
k=j+1

f(nk)− f(nj)

N−1∏
k=j+1

f(nk)] (A.67)

= vNG−
N (1−

N−1∏
k=1

f(nk)). (A.68)

The summation of the lines (A.44) and (A.68):

vNG−
N

N−1∏
i=1

f(ni) + vNG−
N (1−

N−1∏
k=1

f(nk)) = vNG−
N . (A.69)

After these simplifications, we may re-write the equilibrium equation as the following:

λ1 +
N∑
i=1

(γi1ni>1 + γ0i 1ni=1) (A.70)

= G−
1 λ11n1>0 +G+

NΛN1nN≥0 +

N∑
i=1

[
viγi

Λi + γi
− Λi1ni>0] (A.71)

+
N−2∑
j=1

[G−
j+1vj+11nj+1≥1

j∏
i=1

f(ni)] (A.72)

+vNG−
N (A.73)

+
N−2∑
i=1

[vi+1 G−
i+1 1ni+1≥1 h(ni)] (A.74)

+
N−2∑
j=2

j−1∑
i=1

[vN−j+iG
−
N−j+i1nN−j+i≥1h(ni)

N−j−1∏
k=1

f(nk+i)]. (A.75)
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When we consider the summation of the lines (A.71) and (A.73):

= G−
1 λ11n1>0 +G+

NΛN1nN≥0 +

N∑
i=1

viγi
Λi + γi

−
N∑
i=1

Λi1ni>0 (A.76)

+vNG−
N1nN>0 + vNG−

N1nN≤0,

where

G+
NΛN1nN≥0 + vNG−

N1nN≤0 =
vNΛN

ΛN + γN
, (A.77)

and

vNΛN

ΛN + γN
+

N∑
i=1

viγi
Λi + γi

= λ1. (A.78)

Thus the equilibrium equation has been simplified to:

N∑
i=1

[γi1ni>1 + γ0i 1ni=1 + Λi1ni>0]−G−
1 λ11n1>0 −G−

NvN1nN>0 (A.79)

=
N−2∑
j=1

G−
j+1vj+11nj+1≥1

j∏
i=1

f(ni) (A.80)

+
N−2∑
i=1

vi+1 G−
i+1 1ni+1≥1 h(ni) (A.81)

+
N−2∑
j=2

j−1∑
i=1

vN−j+iG
−
N−j+i1nN−j+i≥1h(ni)

N−j−1∏
k=1

f(nk+i) (A.82)
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Define Θi � G−
i vi 1ni≥1 so that (A.82) becomes:

N−2∑
j=2

j−1∑
i=1

vN−j+iG
−
N−j+i1nN−j+i≥1h(ni)

N−j−1∏
k=1

f(nk+i) (A.83)

= ΘN−1h(n1)f(n2)f(n3) · · · f(nN−2) (A.84)

+ΘN−1h(n2)f(n3)f(n4) · · · f(nN−2) (A.85)
...

+ΘN−1h(nN − 4)f(nN−3)f(nN−2) (A.86)

+ΘN−1h(nN − 3)f(nN−2) (A.87)

+ΘN−2h(n1)f(n2)f(n3) · · · f(nN−3) (A.88)

+ΘN−2h(n2)f(n3)f(n4) · · · f(nN−3) (A.89)
...

+ΘN−2h(nN − 5)f(nN−4)f(nN−3) (A.90)

+ΘN−2h(nN − 4)f(nN−3) (A.91)
...

+Θ5h(n1)f(n2)f(n3)f(n4) (A.92)

+Θ5h(n2)f(n3)f(n4) (A.93)

+Θ5h(n3)f(n4) (A.94)

+Θ4h(n1)f(n2)f(n3) (A.95)

+Θ4h(n2)f(n3) (A.96)

+Θ3h(n1)f(n2). (A.97)

Since h(ni) = 1− f(ni) we may re-write from (A.84) to (A.87) as:

ΘN−1f(n2)f(n3) · · · f(nN−2)−ΘN−1f(n1)f(n2)f(n3) · · · f(nN−2) (A.98)

+ΘN−1f(n3)f(n4) · · · f(nN−2)−ΘN−1f(n2)f(n3)f(n4) · · · f(nN−2) (A.99)
...

+ΘN−1f(nN−3)f(nN−2)−ΘN−1f(nN − 4)f(nN−3)f(nN−2) (A.100)

+ΘN−1f(nN−2)−ΘN−1f(nN − 3)f(nN−2) (A.101)

= ΘN−1f(nN−2)−ΘN−1

N−2∏
k=1

f(ni). (A.102)



Appendix A 142

Similarly, we consider the Θi’s for i ∈ {3, · · · , N − 1} and have:

N−2∑
j=2

j−1∑
i=1

[vN−j+iG
−
N−j+i1nN−j+i≥1h(ni)

N−j−1∏
k=1

f(nk+i)] (A.103)

=
N−1∑
j=3

[Θjf(nj−1)]−
N−1∑
j=3

[Θj

j−1∏
k=1

f(nk)]. (A.104)

Thus, the equilibrium equation has now been reduced to:

N∑
i=1

[G−
i vi1ni≥1]−G−

1 λ11n1>0 −G−
NvN1nN>0 (A.105)

=
N−2∑
j=1

[G−
j+1vj+11nj+1≥1

j∏
i=1

f(ni)] (A.106)

+
N−2∑
i=1

[vi+1 G−
i+1 1ni+1≥1 h(ni)] (A.107)

+
N−1∑
j=3

[Θjf(nj−1)]−
N−1∑
j=3

[Θj

j−1∏
k=1

f(nk)], (A.108)

where γi1ni>1 + γ0i 1ni=1 + Λi1ni>0 = G−
i vi1ni≥1 so that we may write:

N−1∑
i=2

Θi (A.109)

=
N−1∑
j=3

[Θj

j−1∏
i=1

f(ni)] + Θ2f(n1) (A.110)

+
N−1∑
i=3

[Θih(ni−1)] + Θ2h(n1) (A.111)

+
N−1∑
j=3

[Θjf(nj−1)]−
N−1∑
j=3

[Θj

j−1∏
k=1

f(nk)], (A.112)

where

N−1∑
i=3

[Θih(ni−1)] +
N−1∑
j=3

[Θjf(nj−1)] =
N−1∑
i=3

Θi, (A.113)

and

Θ2f(n1) + Θ2h(n1) = Θ2. (A.114)

So finally we see that the left and right hand sides of the equilibrium equation cancel

each other. Also, Ci values can be calculated by using the fact that summation of the
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probabilities is 1:

1 (A.115)

=

∞∑
ni=−∞

πi(ni) (A.116)

=

−1∑
ni=−∞

Ci.
Λi

vi + μ0
i

(
Λi

vi + μi
)−ni−1 +

∞∑
ni=1

Ci.
vi

Λi + γ0i
(

vi
Λi + γi

)ni−1 + Ci (A.117)

Thus,

Ci = (1 +

vi
Λi+γ0

i

1− vi
Λi+γi

+

Λi

vi+μ0
i

1− Λi
vi+μi

)−1. (A.118)

completing the proof.
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Proof of Product-form Solution of

Multi-Hop Transmission Scheme

Let:

v1 = λ1, vi+1 = λi+1 +
i∑

j=1

λj

i∏
k=j

Λk

Λk + γk
. (B.1)

and the conditions

vi + μi = Λi + γi, (B.2)

μ0
i = vi + 2μi, (B.3)

γ0i = Λi + 2γi. (B.4)

are satisfied, then the steady state probability distribution:

π(n̄) = P

N∏
i=1

πi(ni), (B.5)

where n̄ = (n1, n2, · · · , nN ) and

πi(ni) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if ni = 0

1
2(

vi
Λi+γi

)ni , if ni ≥ 1

1
2(

Λi
vi+μi

)−ni , if ni ≤ −1

(B.6)

where the normalising constants P is:

P =
N∏
k=1

(1 +
vk
2μk

+
Λk

2γk
)−1, (B.7)

144
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and

πi(ni + 1)

πi(ni)
� G+

i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

vi+μi

Λi
, if ni < −1

vi+μ0
i

Λi
, if ni = −1

vi

Λi+γ0
i
, if ni = 0

vi

Λi+γi
, if ni > 0

πi(ni − 1)

πi(ni)
� G−

i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Λi+γi

vi
, if ni > 1

Λi+γ0
i

vi
, if ni = 1

Λi

vi+μ0
i
, if ni = 0

Λi

vi+μi
, if ni < 0

The equilibrium equation is the following:

π(n̄)
N∑
i=1

[λi + Λi + γiδni>1 + γ0i δni=1 + μiδni<−1 + μ0
i δni=−1] (B.8)

=
N∑
i=1

[π(n̄+ ei)(γiδni>0 + γ0i δni=0 + Λiδni<0δi �=N + ΛNδi=N )] (B.9)

+
N∑
i=1

[π(n̄− ei)(μiδni<0 + μ0
i δni=0 + λiδni>0δi �=N + λNδi=N )] (B.10)

+
N−1∑
j=1

N−1∑
i=j

[π(n̄−
i+1∑
k=j

ek)λj

i∏
k=j

δnk≤0 (δ1+i=N + δni+1≥1δ1+i�=N )] (B.11)

+

N−1∑
j=1

j∑
i=1

[π(n̄+ ei −
N−j∑
k=1

ei+k)Λiδni≥0 (δN−j≤1 + δN−j≥2

N−j−1∏
k=1

δni+k ≤ 0) (δi=j + δnN+i−j≥1δi �=j)]

(B.12)

⇒ Dividing both sides by π(n̄)

N∑
i=1

[λi + Λi + γiδni>1 + γ0i δni=1 + μiδni<−1 + μ0
i δni=−1] (B.13)

=
N∑
i=1

[(G+
i )(γiδni>0 + γ0i δni=0 + Λiδni<0δi �=N + ΛNδi=N )] (B.14)

+
N∑
i=1

[(G−
i )(μiδni<0 + μ0

i δni=0 + λiδni>0δi �=N + λNδi=N )] (B.15)

+
N−1∑
j=1

N−1∑
i=j

[
i+1∏
k=j

(G−
k )λj

i∏
k=j

δnk≤0 (δ1+i=N + δni+1≥1δ1+i�=N )] (B.16)

+

N−1∑
j=1

j∑
i=1

[G+
i

N−j∏
k=1

(G−
k+i)Λiδni≥0(δN−j≤1 + δN−j≥2

N−j−1∏
k=1

(δni+k ≤ 0)) (δi=j + δnN+i−j≥1δi �=j)]

(B.17)
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⇒ Consider the line (B.14)

=

N∑
i=1

[(G+
i )(γiδni>0 + γ0i δni=0 + Λiδni<0δi �=N + ΛNδi=N )] (B.18)

= G+
NΛNδnN≥0 +

N∑
i=1

[
viγi

Λi + γi
δni>0 +

viγ
0
i

Λi + γ0i
δni=0 + (vi + u0i )δni=−1 + (vi + ui)δni<−1]

(B.19)

⇒ Consider the line (B.15)

=
N∑
i=1

[(G−
i )(μiδni<0 + μ0

i δni=0 + λiδni>0δi �=N + λNδi=N )] (B.20)

= G−
NλNδnN≤0 +

N∑
i=1

[
Λiμi

vi + μi
δni<0 +

Λiμ
0
i

vi + μ0
i

δni=0 +
λi

vi
(Λi + γ0i )δni=1 +

λi

vi
(Λi + γi)δni>1]

(B.21)

⇒ Consider the summation (B.19)+(B.21)

= G+
NΛNδnN≥0 +G−

NλNδnN≤0 (B.22)

+

N∑
i=1

[(vi + ui +
Λiμi

vi + μi
)δni<−1 + (vi + u0i +

Λiμi

vi + μi
)δni=−1 + (vi +

Λiμi

vi + μi
)δni=0]

(B.23)

+
N∑
i=1

[
λi

vi
(Λi + γ0i )δni=1 +

λi

vi
(Λi + γi)δni>1 +

viγi
Λi + γi

δni>0] (B.24)

where

vi +
Λiμi

vi + μi
= Λi +

viγi
vi + μi

(B.25)
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⇒ So that the equilibrium equation reduces :

N∑
i=1

[λi + (1− λi

vi
)(Λiδni>0 + γiδni>1 + γ0i δni=1)] (B.26)

= G+
NΛNδnN≥0 +G−

NλNδnN≤0 (B.27)

+

N∑
i=1

[
viγi

vi + μi
] (B.28)

+
N−1∑
j=1

N−1∑
i=j

[

i+1∏
k=j

(G−
k )λj

i∏
k=j

δnk≤0 (δ1+i=N + δni+1≥1δ1+i�=N )] (B.29)

+

N−1∑
j=1

j∑
i=1

[G+
i

N−j∏
k=1

(G−
k+i)Λiδni≥0(δN−j≤1 + δN−j≥2

N−j−1∏
k=1

(δni+k ≤ 0)) (δi=j + δnN+i−j≥1δi �=j)]

(B.30)

where

N∑
i=1

[
viγi

Λi + γi
] =

N∑
i=1

[(vi − Λi +
Λiμi

Λi + γi
)] =

N−1∑
i=1

[(vi − vi+1 + λi+1)] +
vNγN

ΛN + γN
(B.31)

=
N∑
i=1

[λi]− vNΛN

ΛN + γN
(B.32)

⇒ After further simplification, the equilibrium equation:

N∑
i=1

[(1− λi

vi
)(Λiδni>0 + γiδni>1 + γ0i δni=1)] (B.33)

= G+
NΛNδnN≥0 +G−

NλNδnN≤0 − vNΛN

ΛN + γN
(B.34)

+

N−1∑
j=1

N−1∑
i=j

[

i+1∏
k=j

(G−
k )λj

i∏
k=j

δnk≤0 (δ1+i=N + δni+1≥1δ1+i�=N )] (B.35)

+

N−1∑
j=1

j∑
i=1

[G+
i

N−j∏
k=1

(G−
k+i)Λiδni≥0(δN−j≤1 + δN−j≥2

N−j−1∏
k=1

(δni+k ≤ 0)) (δi=j + δnN+i−j≥1δi �=j)]

(B.36)

where

G+
NΛNδnN≥0 +G−

NλNδnN≤0 − vNΛN

ΛN + γN
(B.37)

= (λN − vN )G−
NδnN≤0 (B.38)
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⇒ Thus, it has been simplified so far as the following:

N∑
i=1

[(1− λi

vi
)(Λiδni>0 + γiδni>1 + γ0i δni=1)] + (vN − λN )G−

NδnN≤0 (B.39)

+
N−1∑
j=1

N−1∑
i=j

[

i+1∏
k=j

(G−
k )λj

i∏
k=j

δnk≤0 (δ1+i=N + δni+1≥1δ1+i�=N )] (B.40)

+

N−1∑
j=1

j∑
i=1

[G+
i

N−j∏
k=1

(G−
k+i)Λiδni≥0(δN−j≤1 + δN−j≥2

N−j−1∏
k=1

(δni+k ≤ 0)) (δi=j + δnN+i−j≥1δi �=j)]

(B.41)
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⇒ Consider the line (B.40)

N−1∑
j=1

N−1∑
i=j

[

i+1∏
k=j

(G−
k )λj

i∏
k=j

δnk≤0 (δ1+i=N + δni+1≥1δ1+i�=N )] (B.42)

=

N−1∑
j=1

[
N∏
k=j

(G−
k )λj

N−1∏
k=j

δnk≤0] (B.43)

+

N−2∑
j=1

N−2∑
i=j

[

i+1∏
k=j

(G−
k )λj

i∏
k=j

δnk≤0 δni+1≥1] (B.44)

= G−
N

N−1∑
j=1

[λj

N−1∏
k=j

G−
k δnk≤0] (B.45)

+

N−2∑
j=1

N−2∑
i=j

[λjG
−
i+1δni+1≥1

i∏
k=j

G−
k δnk≤0] (B.46)

= G−
N

N−1∑
j=1

[λj

N−1∏
k=j

Λk

Λk + γk
f(nk)] (B.47)

+

N−2∑
j=1

N−2∑
i=j

[λjG
−
i+1δni+1≥1

i∏
k=j

Λk

Λk + γk
f(nk)] (B.48)

= G−
N (vN − λN )

N−1∑
j=1

[
λj

vj
f(nj)

N−1∏
k=j+1

(1− λk

vk
)f(nk)] (B.49)

+

N−2∑
j=1

N−2∑
i=j

[
λj

vj
G−

i+1(vi+1 − λi+1)δni+1≥1f(nj)
i∏

k=j+1

(1− λk

vk
)f(nk)] (B.50)

= G−
N (vN − λN )

N−1∑
j=1

[
λj

vj
f(nj)

N−1∏
k=j+1

(1− λk

vk
)f(nk)] (B.51)

+

N−2∑
j=1

N−2∑
i=j+1

[
λj

vj
G−

i+1(vi+1 − λi+1)δni+1≥1f(nj)
i∏

k=j+1

(1− λk

vk
)f(nk)] (B.52)

+

N−2∑
j=1

[
λj

vj
G−

j+1(vj+1 − λj+1)δnj+1≥1f(nj)] (B.53)
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⇒ Consider the line (B.41)

N−1∑
j=1

j∑
i=1

[G+
i

N−j∏
k=1

(G−
k+i)Λiδni≥0(δN−j≤1 + δN−j≥2

N−j−1∏
k=1

(δni+k ≤ 0)) (δi=j + δnN+i−j≥1δi �=j)]

(B.54)

= G+
N−1 G−

N ΛN−1δN−1≥0 (B.55)

+
N−2∑
i=1

[G+
i G−

i+1 Λiδi≥0δi+1≥1] (B.56)

+
N−2∑
j=1

j∑
i=1

[G+
i

N−j∏
k=1

(G−
k+i)(Λiδni≥0

N−j−1∏
k=1

(δni+k ≤ 0) (δi=j + δnN+i−j≥1δi �=j)] (B.57)

= G+
N−1 ΛN−1δN−1≥0 G−

N (B.58)

+

N−2∑
i=1

[G+
i Λiδi≥0 G−

i+1 δi+1≥1] (B.59)

+
N−2∑
j=2

j−1∑
i=1

[G+
i

N−j∏
k=1

(G−
k+i)(Λiδni≥0

N−j−1∏
k=1

(δni+k ≤ 0) δnN+i−j≥1] (B.60)

+
N−2∑
j=1

[G+
j

N−j∏
k=1

(G−
k+j)(Λjδnj≥0

N−j−1∏
k=1

(δnj+k ≤ 0)] (B.61)

= (vN − λN ) G−
N h(nN−1) (B.62)

+

N−2∑
i=1

[(vi+1 − λi+1) G
−
i+1 δni+1≥1 h(ni)] (B.63)

+
N−2∑
j=2

j−1∑
i=1

[G+
i Λiδni≥0 G−

N−j+iδnN−j+i≥1

N−j−1∏
k=1

(G−
k+iδnk+i≤0)] (B.64)

+
N−2∑
j=1

[G−
NG+

j Λjδnj≥0

N−j−1∏
k=1

(G−
k+jδnj+k ≤ 0)] (B.65)

= (vN − λN ) G−
N h(nN−1) (B.66)

+

N−2∑
i=1

[(vi+1 − λi+1) G
−
i+1 δni+1≥1 h(ni)] (B.67)

+
N−2∑
j=2

j−1∑
i=1

[(vi+1 − λi+1)h(ni) G
−
N−j+iδnN−j+i≥1

1

vi+1
(vN−j+i − λN−j+i). (B.68)

.f(n1+i)

N−j−1∏
k=2

(1− λk+i

vk+i
)f(nk+i)]

+ (vN − λN )G−
N

N−2∑
j=1

[(vj+1 − λj+1)h(nj)
1

vj+1
f(n1+j)

N−j−1∏
k=2

(1− λk+j

vk+j
)f(nk+j)]

(B.69)
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= (vN − λN ) G−
N h(nN−1) (B.70)

+
N−2∑
i=1

(vi+1 − λi+1) G
−
i+1 δni+1≥1 h(ni) (B.71)

+
N−2∑
j=2

j−1∑
i=1

h(ni) G
−
N−j+iδnN−j+i≥1(vN−j+i − λN−j+i)

N−j−1∏
k=1

(1− λk+i

vk+i
)f(nk+i) (B.72)

+ (vN − λN )G−
N

N−2∑
j=1

h(nj)

N−j−1∏
k=1

(1− λk+j

vk+j
)f(nk+j) (B.73)

⇒ Consider the summation (B.70)+(B.73)

(vN − λN ) G−
N h(nN−1) + (vN − λN )G−

N

N−2∑
j=1

h(nj)

N−j−1∏
k=1

(1− λk+j

vk+j
)f(nk+j) (B.74)

= (vN − λN )G−
N

N−1∑
j=1

h(nj)
N−1∏
k=1+j

(1− λk

vk
)f(nk) (B.75)

⇒ Consider the summation (B.51)+(B.75)

= G−
N (vN − λN )(

N−1∑
j=1

[(
λj

vj
f(nj) + h(nj))

N−1∏
k=j+1

(1− λk

vk
)f(nk)]) (B.76)

= G−
N (vN − λN )(

N−1∑
j=1

[
N−1∏
k=j+1

(1− λk

vk
)f(nk)− f(nj)(1− λj

vj
)

N−1∏
k=j+1

(1− λk

vk
)f(nk)])

(B.77)

= G−
N (vN − λN )(

N−1∑
j=1

[
N−1∏
k=j+1

(1− λk

vk
)f(nk)−

N−1∏
k=j

(1− λk

vk
)f(nk)]) (B.78)

= G−
N (vN − λN )(1−

N−1∏
k=1

(1− λk

vk
)f(nk)) (B.79)

= G−
N (vN − λN ) (B.80)
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⇒ Consider the summation (B.53)+(B.71)

N−2∑
j=1

[
λj

vj
G−

j+1(vj+1 − λj+1)δnj+1≥1f(nj)] +

N−2∑
i=1

(vi+1 − λi+1) G
−
i+1 δni+1≥1 h(ni)

(B.81)

=
N−2∑
j=1

[G−
j+1(vj+1 − λj+1)δnj+1≥1]−

N−2∑
j=1

[(1− λj

vj
)f(nj)G

−
j+1(vj+1 − λj+1)δnj+1≥1]

(B.82)

=
N−1∑
j=2

[(1− λj

vj
)(Λjδnj>0 + γjδnj>1 + γ0j δnj=1)]−

N−2∑
j=2

[(1− λj

vj
)f(nj)G

−
j+1(vj+1 − λj+1)δnj+1≥1]

(B.83)

⇒ Thus, the equilibrium equation reduces:

N∑
i=1

[(1− λi

vi
)(Λiδni>0 + γiδni>1 + γ0i δni=1)] + (vN − λN )G−

NδnN≤0 −G−
N (vN − λN )

(B.84)

+

N−2∑
j=1

N−2∑
i=j+1

[
λj

vj
G−

i+1(vi+1 − λi+1)δni+1≥1f(nj)

i∏
k=j+1

(1− λk

vk
)f(nk)] (B.85)

+

N−2∑
j=2

j−1∑
i=1

h(ni) G
−
N−j+iδnN−j+i≥1(vN−j+i − λN−j+i)

N−j−1∏
k=1

(1− λk+i

vk+i
)f(nk+i) (B.86)

+
N−1∑
j=2

[(1− λj

vj
)(Λjδnj>0 + γjδnj>1 + γ0j δnj=1)]−

N−2∑
j=2

[(1− λj

vj
)f(nj)G

−
j+1(vj+1 − λj+1)δnj+1≥1]

(B.87)

⇒ After further simplifications:

(1− λN

vN
)(ΛNδnN>0 + γNδnN>1 + γ0NδnN=1)− (vN − λN )G−

NδnN>0 (B.88)

=
N−2∑
j=1

N−2∑
i=j+1

[
λj

vj
G−

i+1(vi+1 − λi+1)δni+1≥1f(nj)

i∏
k=j+1

(1− λk

vk
)f(nk)] (B.89)

+

N−2∑
j=2

j−1∑
i=1

h(ni) G
−
N−j+iδnN−j+i≥1(vN−j+i − λN−j+i)

N−j−1∏
k=1

(1− λk+i

vk+i
)f(nk+i) (B.90)

−
N−2∑
j=2

[(1− λj

vj
)f(nj)G

−
j+1(vj+1 − λj+1)δnj+1≥1] (B.91)
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where

(1− λN

vN
)(ΛNδnN>0 + γNδnN>1 + γ0NδnN=1) = (vN − λN )G−

n δnN>0 (B.92)

⇒ Thus, the equilibrium equation has became as the following:

N−2∑
j=2

[(1− λj

vj
)f(nj)G

−
j+1(vj+1 − λj+1)δnj+1≥1] (B.93)

=
N−2∑
j=1

N−2∑
i=j+1

[
λj

vj
G−

i+1(vi+1 − λi+1)δni+1≥1f(nj)
i∏

k=j+1

(1− λk

vk
)f(nk)] (B.94)

+

N−2∑
j=2

j−1∑
i=1

h(ni) G
−
N−j+iδnN−j+i≥1(vN−j+i − λN−j+i)

N−j−1∏
k=1

(1− λk+i

vk+i
)f(nk+i) (B.95)

⇒ Summation of (B.94) and (B.95) reduces:

N−2∑
j=2

(1− λj

vj
)f(nj)G

−
j+1(vj+1 − λj+1)δnj+1≥1 −

N−2∑
j=2

G−
j+1(vj+1 − λj+1)δnj+1≥1

j∏
k=1

(1− λk

vk
)f(nk)

where

N−2∑
j=2

G−
j+1(vj+1 − λj+1)δnj+1≥1

j∏
k=1

(1− λk

vk
)f(nk) = 0

since, v1 = λ1 and
∏j

k=1 (1− λk
vk
)f(nk) = 0.

⇒ So finally the left and right hand sides of the equilibrium equation cancel each other.

Also, P value can be calculated by using the fact that summation of the probabilities is

1:

1 (B.96)

=

∞∑
ni=−∞

πi(ni) (B.97)

= P (

−1∑
ni=−∞

(
Λi

2(vi + μi)
)−ni +

∞∑
ni=1

(
vi

2(Λi + γi)
)ni + 1) (B.98)

Thus,

P =

N∏
k=1

(1 +
vk
2μk

+
Λk

2γk
)−1, (B.99)

completing the proof.
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