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AN ELLIPTIC BOUNDARY VALUE PROBLEM FOR
G2-STRUCTURES

by Simon DONALDSON

Dedicated to Jean-Pierre Demailly, for his 60th birthday

Abstract. — We show that the G2 holonomy equation on a seven-dimensional
manifold with boundary, with prescribed 3-form on the boundary and modulo the
action of diffeomorphisms, is elliptic. The main point is to set up a suitable linear
elliptic theory. This result leads to a deformation theory, governed by a finite-
dimensional obstruction space. We discuss conditions under which this obstruction
space vanishes and as one application we establish the existence of certain G2
cobordisms between two small deformations of a Calabi–Yau 3-fold.
Résumé. — Nous montrons que l’équation d’holonomie G2 sur une variété

de dimension 7 à bord, avec 3-forme prescrite sur le bord et modulo l’action de
difféomorphismes, est elliptique. Le point clé est de mettre en place une théorie
linéaire elliptique adaptée. Avec ce résultat une théorie de la déformation est défi-
nie, gouvernée par un espace d’obstruction de dimension finie. Nous discutons les
conditions pour lesquelles cet espace d’obstruction est trivial, et donnons une ap-
plication en démontrant l’existence de certains G2-cobordismes entre deux petites
déformations d’une variété Calabi–Yau de dimension 3.

1. Introduction

The purpose of this paper is to develop a deformation theory for torsion-
free G2-structures on 7-manifolds with boundary. This extends the well-
established theory for closed manifolds, going back to Bryant and Harvey
(see [1, p. 561]) and further developed by Joyce [9, 10] and Hitchin [7, 8].
Recall that a torsion-free G2-structure on an oriented 7-manifoldM can be
viewed as a closed 3-form φ which is “positive” (in a sense we recall below)
at each point of M and which satisfies the nonlinear equation

(1.1) d ∗φ φ = 0,

Keywords: exceptional holonomy, G2-structures, elliptic boundary value problems.
2010 Mathematics Subject Classification: 53C26.



2784 Simon DONALDSON

where ∗φ is the ∗-operator of the Riemannian metric gφ defined by φ (which
we also recall below). Begin with the standard case when M is a closed
manifold and let c be a class in H3(M ; R). Write Pc for the set of positive
3-forms representing c. Certainly a torsion-free structure φ defines a point
in Pc with c = [φ]. Conversely, if we have a c such that Pc is not empty
then, as Hitchin observed, solutions of equation (1.1) in Pc correspond to
critical points of the volume functional

(1.2) V (φ) = Vol(M, gφ)

on Pc. In fact d(∗φφ) can be regarded as the derivative dV of the volume
functional on the infinite-dimensional space Pc. The basic results of the
standard theory can be summarised as follows.

(1) The derivative dV is a Fredholm section of the cotangent bundle of
the quotient Qc = Pc/G of Pc by the group G of diffeomorphisms
of M isotopic to the identity. Thus the kernel of the Hessian of the
volume functional on Qc at a solution of (1.1) is finite-dimensional.

(2) In fact this kernel is always 0, which implies that if φ is a solution
of (1.1) and if c′ is sufficiently close to c = [φ] in H3(M) then there
is a unique solution φ′ in Qc′ close to φ. (Throughout this paper,
cohomology is always taken with real coefficients.) In other words
the “period map” φ 7→ [φ] defines a local homeomorphism from the
moduli space of torsion-free G2-structures to H3(M).

(3) In fact the Hessian of V on Qc is negative-definite. A solution
of (1.1) gives a strict local maximum for the volume functional
on Qc.

Now we go on to the case of a compact, connected, oriented manifold M
with non-empty boundary ∂M . If ρ is a closed 3-form on ∂M we define an
enhancement of ρ to be an equivalence class of closed forms φ on M which
restrict to ρ on the boundary, under the equivalence relation φ ∼ φ+dα for
all 2-forms α which vanish on ∂M . So the set of enhancements is an affine
space with tangent space H3(M,∂M). There is an algebraic notion of a
positive 3-form on ∂M . One definition is that these are exactly the forms
which extend to positive forms on some neighbourhood of ∂M in M . Fix a
closed positive form ρ on ∂M and enhancement ρ̂. We write Pρ̂ for the set of
positive forms in the enhancement class (in general, Pρ̂ could be the empty
set) and Qρ̂ for the quotient by the identity component of the group of
diffeomorphisms of M fixing the boundary pointwise. The boundary value
problem, which was introduced in [5] and which we consider further here,
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BOUNDARY VALUES OF G2-STRUCTURES 2785

is to solve equation (1.1) for φ in Pρ̂. Just as before, this is the Euler–
Lagrange equation for the Hitchin volume functional, which descends to a
functional on Qρ̂.

The author has only been able to extend the first of the three results from
the standard theory above to this setting. That is (continuing the informal
discussion, more precise technical statements are given later), we will show
below (Proposition 4.5) that the derivative of the volume functional is
a Fredholm section of the cotangent bundle of Qρ̂. This comes down to
showing that our problem can be set up as an elliptic boundary value
problem. The crucial linear result is Theorem 3.5. The kernel of the Hessian
at a critical point φ is a finite dimensional vector space Hφ but this is not
0 in general. Similarly, we can show that the Hessian has finite index (i.e.
a finite dimensional negative subspace) but we have not been able to show
that the Hessian is semi-definite. We will discuss these questions at greater
length in Section 5 below. In any event, we do know cases in which the space
Hφ is zero and in such cases we get a straightforward deformation theory for
our problem: for any enhanced boundary data sufficiently close to ρ̂ there is
a unique solution to the corresponding boundary value problem close to φ
(Theorem 4.6). In Section 5 we give one application to the existence of “G2-
cobordisms” between closed 3-forms on a Calabi–Yau 3-fold (Theorem 5.8).
The authors’s work is supported by the Simons Collaboration Grant

“Special holonomy in Geometry, Analysis and Physics”.

2. Review of standard theory

We begin with some purely algebraic statements.
• A 3-form φ ∈ Λ3(V ∗) on an oriented 7-dimensional real vector space
V is called positive if the Λ7V ∗-valued quadratic form on V

(2.1) v 7→ iv(φ) ∧ iv(φ) ∧ φ

is positive definite. We fix a Euclidean structure gφ in this conformal
class by normalising so that |φ|2 = 7. Then, as in the Introduction,
we have a 4-form ∗φφ which we also write as Θ(φ). So Θ is a smooth
map from the space of positive 3-forms on V to Λ4V ∗. The positive
3-forms on V form a single orbit under the action of GL+(V ), so
they are all equivalent. A convenient standard model for this paper
is to take V = R ⊕C3 = {(t, z1, z2, z3)} and

(2.2) φ = ω ∧ dt+ Im(dz1dz2dz3),

where ω is the standard symplectic form
∑
dxa ∧ dya on C3.

TOME 68 (2018), FASCICULE 7



2786 Simon DONALDSON

• The stabiliser in GL(V ) of a positive 3-form is isomorphic to the
exceptional Lie group G2. Under the action of this group the forms
decompose as

(2.3) Λ2 = Λ2
7 ⊕ Λ2

14Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27.

Here Λ2
7 is the image of V under the map v 7→ iv(φ) and Λ2

14 is the
orthogonal complement; Λ3

7 is the image of V under the map v 7→
iv(∗φφ), Λ3

1 is the span of φ and Λ3
27 is the orthogonal complement

of their sum.
We have a quadratic form on Λ2 defined by α 7→ α ∧ α ∧ φ.

The eigenspaces of this form, relative to the standard Euclidean
structure, are Λ2

7,Λ2
14. For α7 ∈ Λ2

7

(2.4) α7 ∧ α7 ∧ φ = 2|α7|2 vol,

and for α14 ∈ Λ2
14

(2.5) α14 ∧ α14 ∧ φ = −|α14|2 vol .

• The volume form vol is a Λ7-valued function on the open set of
positive 3-forms. Its derivative is given by

(2.6) vol(φ+ δφ) = vol(φ) + 1
3δφ ∧Θ(φ) +O(δφ2).

To identify the second derivative we write

δφ = δ1φ+ δ7φ+ δ27φ,

according to the decomposition (2.3). Then

vol(φ+ δφ) = vol(φ) + 1
3δφ ∧ (∗φφ) + 2

3q(δφ) vol(φ) +O(δφ3),

where q is the quadratic form

(2.7) q(δφ) = 4
3 |δ1φ|2 + |δ7φ|2 − |δ27|2.

This formula also gives the derivative of the map Θ ([10, Proposi-
tion 10.3.5]):

(2.8) Θ(φ+ δφ) = Θ(φ) +
(

4
3 ∗φ δ1φ+ ∗φδ7φ− ∗φδ27φ

)
+O(δφ2).

Now let M be an oriented 7-manifold and φ be a positive 3-form on M
which defines a torsion-free G2-structure, so both φ and ∗φφ are closed
forms. We can decompose the exterior derivative according to the decom-
position of the forms

Ω2 = Ω2
7 ⊕ Ω2

14Ω3 = Ω3
1 ⊕ Ω3

7 ⊕ Ω3
27.

ANNALES DE L’INSTITUT FOURIER



BOUNDARY VALUES OF G2-STRUCTURES 2787

The resulting operators satisfy various identities, akin to the Kähler iden-
tities on Kähler manifolds. The following Proposition states the main iden-
tities we will need in this paper (there is a comprehensive treatment in [2]).
Write χ : Λ1 → Λ3

7 for the bundle isomorphism χ(η) = ∗φ(η ∧ φ). We also
usually write ∗ for ∗φ and d∗ for the usual adjoint constructed using the
metric gφ.

Proposition 2.1.
(1) The component d1 : Ω2

14 → Ω3
1 is identically zero.

(2) The component d7 : Ω2
14 → Ω3

7 is equal to the composite 1
4χ ◦ d∗

where d∗ : Ω2
14 → Ω1, and the component d7 : Ω2

7 → Ω3
7 is equal to

the composite − 1
2χ ◦ d∗ where d∗ : Ω2

7 → Ω1.

(3) For d7 : Ω1 → Ω2
7 and d14 : Ω1 → Ω2

14 we have

d∗d14 = 2d∗d7 = 2
3d∗d

on Ω1.

Proof. — For the first item, it suffices to prove that for a compactly
supported α ∈ Ω2

14 and function f the L2-inner product 〈dα, fφ〉 is zero.
This inner product is∫

M

dα ∧ f ∗ φ = −
∫
M

α ∧ df ∧ ∗φ,

(using d ∗ φ = 0) which vanishes since df ∧ ∗φ lies in Ω5
7. For the second

item we consider first an α ∈ Ω2
14 as above and the inner product 〈d∗α, η〉

for a 1-form η. By definition this is 〈α,dη〉 and by (2.5) the latter can be
expressed as

−
∫
M

α ∧ dη ∧ φ.

By Stokes’ Theorem (using, this time, dφ = 0) this is∫
M

dα ∧ η ∧ φ = 〈dα, ∗(η ∧ φ)〉 = 〈d7α, χ(η)〉.

One computes readily that for any η we have

|χ(η)|2 = 4|η|2,

and it follows that d7α = 1
4χ ◦ d∗α. The argument for the second part of

the second item (for α ∈ Ω2
7) is the same using (2.4).

For the third item: the equality d∗d14 = 2d∗d7 follows from the second
item and the fact that the component of d2 from Ω1 to Ω3

7 is zero. The
equality d∗d14 = 2

3 d∗d follows in turn because d∗d = d∗d7 + d∗d14. �

TOME 68 (2018), FASCICULE 7



2788 Simon DONALDSON

The variation of the volume functional (1.2) with respect to compactly
supported variations of φ makes sense, even if M is not compact. Suppose
for the moment that φ is any closed positive 3-form on M and that α is a
2-form with compact support. The pointwise formula (2.6) and integration
by parts give

Vol(φ+ dα) = Vol(φ)− 1
3

∫
M

α ∧ dΘ(φ) +O(α2),

which shows that the torsion-free condition dΘ(φ) = 0 is the Euler–
Lagrange equation associated to the volume functional for exact variations.
For any such φ we have

(2.9) ∗φ dΘ(φ) ∈ Ω2
14(M).

This follows by direct calculation or, more conceptually, from the diffeo-
morphism invariance of the volume functional (see [4, Lemma 1]).
Now go back to assuming that φ defines a torsion-free G2-structure, i.e.

dΘ(φ) = 0. For α in Ω2(M) we define

(2.10) W (α) = ∗φdΘ(φ+ dα)

so the equation W (α) = 0 is the torsion-free equation, for such variations.
For any α we have d∗W (α) = 0 and W (α) takes values in the sub-bundle

∗φΛ5
14,φ+dα ⊂ Λ2,

in an obvious notation. Let L be the linearisation of the nonlinear operator
W at α = 0, i.e. W (α) = L(α) + O(α2). By (2.8) this linearised operator
is given by the formula

(2.11) L(α) = 4
3d∗d1α+ d∗d7α− d∗d27α.

Proposition 2.2. — The linear operator L vanishes on Ω2
7 and takes

values in Ω2
14. For α = α7 + α14 we have

L(α) = d∗d7α14 − d∗d27α14 = −∆α14 + 3
2d14d∗α14

Proof. — The fact that L vanishes on Ω2
7 follows from diffeomorphism

invariance (or by direct calculation). Similarly, the fact that L takes values
in Ω2

14 is a consequence of the fact above thatW (α) is a section of ∗φΛ5
7,φ+dα

(or can be shown by direct calculation). The formulae for L(α) follow from
items (1) and (3) in Proposition 2.1. �

There is a similar discussion for the Hessian of the volume functional.
For α of compact support Vol(φ+ dα) = Vol(φ) + 2

3Q(α) where

(2.12) Q(α) = 4
3‖d1α‖2 + ‖d7α‖2 − ‖d27α‖2.

ANNALES DE L’INSTITUT FOURIER
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This can also be expressed, for α = α7 + α14, as

(2.13) Q(α) = ‖d7α14‖2 − ‖d27α14‖2 = 〈Lα14, α14〉.

But we should emphasise that (2.12) is the “primary” formula (derived
pointwise on M) and the passage to the expressions in (2.13) involves an
application of Stokes’ Theorem.
We will now sketch a treatment of the standard results for closed mani-

folds mentioned in the Introduction. In this sketch we will just give a formal
treatment, ignoring the analytical aspects, but these will be taken up in a
more general setting in Section 4. To avoid unimportant complications we
suppose here that H2(M) = 0.

With c = [φ] ∈ H3(M), the tangent space of Pc at φ is

TPc = Im(d : Ω2 → Ω3).

The infinitesimal action of the group G of diffeomorphisms of M is by the
Lie derivative. But, since φ is closed, for a vector field v we have

Lvφ = d(iv(φ))

and the 2-forms iv(φ) are exactly Ω2
7. So the tangent space of Qc at φ is

TQc = Im(d : Ω2(M)→ Ω3(M))
dΩ2

7
.

Let π : Ω2
14 → TQc be the map induced by exterior derivative. This is

obviously surjective and the kernel consists of those α14 ∈ Ω2
14 such that

there is an α7 ∈ Ω2
7 with dα7 = dα14. Under our assumption that H2(M) =

0 this means that α14−α7 = dη for some η ∈ Ω1, so α14 = d14η. Conversely,
if α14 = d14η we can define α7 = −d7η. So we see that the kernel of π is
the image of d14 : Ω1 → Ω2

14 and

TQc = Ω2
14/ Im d14.

By standard elliptic theory this can be identified with the kernel of the
adjoint:

TQc = ker d∗ : Ω2
14 → Ω1.

Now by items (1) and (2) of Proposition 2.1, for α ∈ ker d∗ ⊂ Ω2
14

the only component of dα is d27α ∈ Ω3
27. It follows that for such α the

linearised operator L(α) is −∆α. In other words, after taking account of
the diffeomorphism group action in this way, the linearised operator is

−∆ :
(
ker d∗ ⊂ Ω2

14
)
→
(
ker d∗ ⊂ Ω2

14
)
,

which is invertible. Similarly, with this representation of TQc the Hessian is

Q(α) = −‖dα‖2,

TOME 68 (2018), FASCICULE 7
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which is negative definite.

3. The boundary value problem–linear theory

This section represents the heart of this paper, in which we set up a linear
elliptic boundary value problem. We suppose, as in the Introduction, that
M is a compact, connected, oriented 7-manifold with non-empty boundary
and that the 3-form φ defines a torsion-free G2-structure onM . We will give
a representation of the tangent space of Qρ̂ at φ for the enhanced boundary
value ρ̂ determined by φ and study the linearisation of the torsion-free
equation in this representation.
As a preliminary, note that there are two different notions of “restriction

to the boundary” of a p-form σ on M . One is that the pull back under the
inclusion map, an element of Ωp(∂M), vanishes. We will denote this by the
usual notation σ|∂M = 0. For the other, stronger, notion we mean that the
restriction vanishes regarded as a section of the bundle ΛpT ∗M |∂M . We
will denote this by the notation σ‖∂M = 0.
To begin we define a vector space

(3.1) TQ = {dγ : γ ∈ Ω2(M), γ|∂M = 0}
{dβ : β ∈ Ω2

7(M), β‖∂M = 0} .

The definition of our space Pρ̂ and the identification of the vector fields
on M with Λ2

7 suggests that this should represent the tangent space of the
infinite dimensional manifold Qρ̂ but we postpone any precise treatment of
this for the present and just take (3.1) as a definition. Similarly we do not
at this stage consider any topology on the vector space. In the same vein,
we define a vector space Hφ ⊂ TQ to be

(3.2) Hφ = {dγ : γ ∈ Ω2(M), L(γ) = 0, γ|∂M = 0}
{dβ : β ∈ Ω2

7(M), β‖∂M = 0} .

This is the space of solutions of the linearised equations modulo infini-
tesimal diffeomorphisms. Note that on the right hand side of (3.2) the
denominator is a subspace of the numerator since L vanishes on Ω2

7.
We now discuss the linear algebra of the decomposition Λ2

7 ⊕Λ2
14 on the

boundary. We have a 3-form ρ = φ|∂M and a 2-form ω ∈ Ω2(∂M) given
by ω = iν(φ) where ν is a unit outward-pointing normal. At a point p
on ∂M the situation corresponds to the model (2.2) on R ⊕C3. There is
a complex structure on the tangent space of ∂M at p; the 2-form ω is a

ANNALES DE L’INSTITUT FOURIER



BOUNDARY VALUES OF G2-STRUCTURES 2791

positive (1, 1) form and ρ is the real part of a complex volume form. In
terms of the splitting TM = T∂M ⊕Rν at p the form φ is

φ = ω ∧ ν∗ + ρ,

where ν∗ is the 1-form dual to ν. We define a bundle map

χ6 : Λ1(∂M)→ Λ2(∂M)

by
χ6(ivω) = iv(ρ),

for v ∈ T∂M . We have a decomposition

(3.3) Λ2(∂M) = Λ2,∂
6 ⊕ Λ2,∂

8 ⊕ Λ2,∂
1

where, in terms of the complex structure, the summand Λ2,∂
6 consists of

the real parts of forms of type (2, 0), the summand Λ2,∂
8 consists of the real

(1, 1) forms orthogonal to ω and Λ2,∂
1 is the 1-dimensional space spanned

by ω. Then χ6 is a bundle isomorphism from Λ1(∂M) to Λ2,∂
6 .

Lemma 3.1. — At a boundary point:
(1) Λ2

7 = Λ2,∂
1 ⊕ {a ∧ ν∗ + χ6(a) : a ∈ Λ1(∂M)},

(2) Λ2
14 = Λ2,∂

8 ⊕ {2a ∧ ν∗ − χ6(a) : a ∈ Λ1(∂M)}.

This is straightforward to check, from the definitions. For a form α ∈
Ω2

14(M) we write α‖∂,8 for the section of Λ2,∂
8 over ∂M defined by the

decomposition in the second item of Lemma 3.1. Note that for a 2-form α

in either of the spaces Ω2
7,Ω2

14 the two notions α|∂M = 0, α‖∂M = 0 are
equivalent. Now define a vector space

(3.4) Â = {α ∈ Ω2
14(M) : d∗α = 0, α‖∂,8 = 0}.

We define a linear map FÂ : Â → TQ as follows. It is clear from
Lemma 3.1 that if α14 ∈ Ω2

14 satisfies α14‖∂,8 = 0 we can find a form
β7 ∈ Ω2

7 such that (α14 + β7)|∂M = 0. For α14 ∈ Â we define FÂ(α14) to
be the equivalence class of d(α14 + β7) in TQ. The definition of TQ means
that this is well-defined, independent of the choice of β7.

We digress here to review some standard Hodge Theory for manifolds
with boundary. For any p we consider the Laplace operator ∆ : Ωp(M)→
Ωp(M) and the equation with boundary conditions

(3.5) ∆µ = ρ, µ|∂M = 0, d∗µ|∂M = 0.

Proposition 3.2.
• If d∗ρ = 0 then any solution µ of (3.5) satisfies d∗µ = 0. In fact
this holds without assuming that µ|∂M = 0.

TOME 68 (2018), FASCICULE 7
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• If ρ = 0 then a solution satisfies dµ = 0. The space of such solutions

Hp = {µ ∈ Ωp : dµ = 0, d∗µ = 0, µ|∂M = 0},

represents the relative cohomology group Hp(M,∂M).
• There is a solution of (3.5) if and only if ρ is L2-orthogonal to Hp.
In this case we define Gρ to be the unique solution µ orthogonal
to Hp.

• If ρ = d∗σ for some σ ∈ Ωp+1 then ρ is orthogonal to Hp.

Apart from the third item, the proofs are straightforward variants of the
usual theory for closed manifolds, checking boundary terms. The third item
is an application of elliptic boundary value theory. These results go back
to Spencer and Duff, Morrey and Friedrichs. A standard modern reference
is Section 2.4 in [11].

With this theory at hand we can return to the space Â.

Lemma 3.3. — For α ∈ H2 the component π14(α) ∈ Ω2
14 lies in Â and

the induced map π14 : H2 → Â is injective.

Proof. — First suppose that α = α7 + α14 lies in H2. Since d∗α and
d7α both vanish it follows from the second item of Proposition 2.1 that
d∗α14 = 0. Since α vanishes on the boundary it follows that α14‖∂,8 = 0
and thus α14 ∈ Â. Suppose that α14 = 0. Then α7|∂M = 0 and, as we noted
above, this implies that α7‖∂M = 0. The 2-form α7 is harmonic and by the
general theory (see [10, Section 3.5.2] for example) the Bochner formula
on Ω2

7 is the same as that on Ω1. Thus we have ∇∗∇α7 = 0 (since the
Bochner formula on Ω1 involves the Ricci curvature, which vanishes in our
case). Now integration by parts, using the boundary condition α7‖∂M = 0,
shows that ∇α7 = 0, and since α7 vanishes on the boundary it must be zero
everywhere. This shows that π14 induces an injection from H2 to Â. �

Define A ⊂ Â to be the orthogonal complement of π14H2.

Proposition 3.4. — The map FÂ : Â → TQ is surjective with kernel
π14(H2). Hence there is an induced isomorphism FA : A→ TQ.

Proof. — Consider any γ = γ14 + γ7 ∈ Ω2(M) with γ|∂M = 0. We apply
Proposition 2.2 with ρ = d∗γ14, so we find an η = G(d∗γ14) with η|∂M = 0
and d∗dη = d∗γ14. Now, by the third item of Proposition 2.1, we have
d∗d14η = 2

3 d∗dη = 2
3 d∗γ14. This means that α14 = γ14 − 3

2 d14η satisfies
d∗α14 = 0. Also, since η vanishes on the boundary so does dη, and this
means that α14‖∂,8 = 0. Thus α14 lies in Â. Going back to the definition
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of FÂ: the form

Γ = α14 + γ7 −
3
2d7η = γ − 3

2dη

vanishes on the boundary, so FÂ(α14) is the equivalence class of dΓ in TQ.
But d2η = 0 so dΓ = dγ. This shows that FÂ is surjective.

In the other direction, suppose that FÂ(α14) = 0, for some α14 ∈ Â. This
means that we can choose an α7 ∈ Ω2

7 such that α = α7 + α14 restricts
to zero on the boundary and dα = 0. As in the proof of Lemma 3.3, the
condition d∗α14 = 0 implies that d∗α = 0, so α lies in H2 and α14 is in
π14(H2). �

We can now set-up the linear boundary value problem which is the main
point of this paper.

Theorem 3.5. — For ρ in Ω2
14(M) the equation ∆α = ρ for α ∈ Ω2

14,
with boundary conditions

α‖∂,8 = 0, d∗α|∂M = 0,

is a self-adjoint elliptic boundary value problem. Moreover if d∗ρ = 0 then
a solution α satisfies d∗α = 0.

The statement that this is a self-adjoint elliptic boundary value problem
has the following standard consequences. Define

(3.6) H̃ = {α ∈ Ω2
14 : ∆α = 0, α‖∂,8 = 0, d∗α|∂M = 0}.

Then
(1) H̃ is finite dimensional;
(2) a solution to the boundary value problem in Theorem 3.5 exists if

and only if ρ is L2-orthogonal to H̃;
(3) in such a case we have elliptic estimates

‖α‖L2
k
6 Ck‖ρ‖L2

k−2
.

The proof of Theorem 3.5 extends across the next few pages, including
Lemmas 3.6 and 3.7.

There is a standard definition of an elliptic boundary value problem
(see [12, Chapter 5] for example) but the general theory is somewhat com-
plicated and we do not need much of it here. We take as known the theory
of the Dirichlet problem for the Laplace operator on Ω2

14 and, for simplic-
ity, we assume initially that the only solution α ∈ Ω2

14 of ∆α = 0 with
α‖∂M = 0 is α = 0. Then, by the standard theory, for any ρ ∈ Ω2

14 and sec-
tion θ of the restriction of Λ2

14 to ∂M there is a unique solution α = α(ρ, θ)
of the equation ∆α = ρ with α‖∂M = θ. Now consider a 1-form a on ∂M
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and set θ(a) = 2a ∧ ν∗ − χ6(a) as in Lemma 3.1. The boundary value
problem in Theorem 3.5 then becomes an equation for a:

d∗α(ρ, θ(a))|∂M = 0.

Write d∗α(ρ, 0)|∂M = −σ and let

P : Ω1(∂M)→ Ω1(∂M)

be the operator which maps a to d∗α(θ(a), 0)|∂M . Then the equation to
solve for a is

(3.7) P (a) = σ.

The claim that the boundary value problem is elliptic is equivalent to the
claim that P is an elliptic pseudo-differential operator of order 1 on ∂M .
When this holds the equation (3.7) can be solved for a provided that σ lies
in a subspace of finite codimension and the solution a is unique up to a finite
dimensional kernel. These facts imply the corresponding statements about
the boundary value problem. The simplifying assumption on the solubility
of the Dirichlet problem is unnecessary since the whole discussion can take
place modulo finite dimensional subspaces. From another point of view we
can run the arguments above in a model “flat” case (as in the proof of
Lemma 3.6 below) and use the solution there to construct a parametrix for
our boundary value problem.
The ellipticity of the operator P is a condition on the symbol and this

symbol can be described as follows.

Lemma 3.6. — Define an operator P̃ : Ω1(∂M)→ Ω1(∂M) by

P̃ (a) = 2∆1/2a− d∗∂Mχ6(a).

Then P and P̃ have the same symbol.

Proof. — To see this we can consider a situation where the geometry is
locally flat, so we can work in C3× (−∞, 0] with boundary C3 = C3×{0}
and co-ordinate t in the R factor. We write a 2-form as

α = 2at ∧ dt−Ψt

where at,Ψt are respectively t-dependent 1-forms and 2-forms on C3. Then

d∗α = 2dat
dt − d∗6Ψt + 2(d∗6at)dt,

where d∗6 denotes the d∗ operator on C3. In our situation we have α ∈ Ω2
14

so Ψt = χ6at + Θt, where Θt takes values in Λ2
∂,8 and Θ0 = 0. Thus the
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restriction of d∗α to the boundary is given by

2dat
dt |t=0 − d∗6(χ6(a0)),

where a(t) is the harmonic extension of the given 1-form a on the boundary.
Thus da

dt |t=0 is obtained from a0 by applying the “Dirichlet-to-Neumann”
operator, whose symbol is the same as that of ∆1/2, and this gives the
statement in the Lemma. �

The symbol of ∆1/2 at a cotangent vector ξ on ∂M is multiplication by
|ξ|. Thus the ellipticity of our boundary value problem follows from the
following statement.

Lemma 3.7. — If ξ is a unit cotangent vector on ∂M the symbol of
a 7→ d∗∂Mχ6(a) at ξ has eigenvalues 0,±1

Proof. — To prove this Lemma we can compute in the flat model C3 as
in (2.2), with standard co-ordinates zi = xi +

√
−1yi, with ω = dx1dy1 +

dx2dy2 + dx3dy3 and with

ρ = −dy1dy2dy3 + dy1dx2dx3 + dx1dy2dx3 + dx1dx2dy3.

One finds from the definition that if a =
∑3
i=1 λidyi + µidxi then

χ6(a) =
∑

cyclic
µi(dyjdyk − dxjdxk) + λi(dyjdxk + dxjdyk),

where the notation means that (ijk) run over cyclic permutations of (123).
Since the symmetry group SU(3) acts transitively on the unit sphere it
suffices to check any given unit co-tangent vector ξ, so we take ξ = dx1. In
other words we have to pull out the ∂1 = ∂

∂x1
term in d∗χ6(a). This is

(∂1µ3)dx2 − (∂1µ2)dx3 + (∂1λ2)dy3 − (∂1λ3)dy2.

To get the symbol we replace the derivative ∂1 by multiplication by
√
−1.

We see that the symbol at dx1 is the linear map Σ with

Σ(dx1) = 0 Σ(dx2) = −
√
−1dx3 Σ(dx3) =

√
−1dx2

Σ(dy1) = 0 Σ(dy2) =
√
−1dy3 Σ(dy3) = −

√
−1dy2.

This linear map Σ has eigenvalues 0, 1,−1 (each with multiplicity
two). �

Next we establish the self-adjoint property. Let us denote the boundary
conditions in the statement of Theorem 3.5 by (BC). Recall that in general
the adjoint boundary conditions (BC)∗ are defined by saying that β ∈ Ω2

14
satisfies (BC)∗ if and only if we have an equality of L2 inner products
〈∆α, β〉 = 〈α,∆β〉 for all α satisfying (BC). We want to show that the
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boundary conditions (BC)∗ are the same as (BC). To do this it suffices,
by a simple dimension-counting argument, to show that if α, β both satisfy
(BC) then 〈∆α, β〉 = 〈α,∆β〉. We can see this by an indirect argument
using the operator L given by (13). First we claim that if α, β ∈ Ω2

14 satisfy
α‖∂,8 = β‖∂,8 = 0 then 〈Lα, β〉 = 〈α,Lβ〉. Indeed choose α′, β′ ∈ Ω2

7 such
that (α+ α′)|∂M , (β + β′)|∂M vanish. Then

〈Lα, β〉 = 〈L(α+ α′), β + β′〉,

since L vanishes on Ω2
7 and maps to Ω2

14. Let 〈 · , · 〉Q be the symmetric
bilinear form associated to the quadratic form Q on Ω2

M

(3.8) 〈γ1, γ2〉Q = 4
3 〈d1γ1,d1γ2〉+ 〈d7γ1,d7γ2〉 − 〈d27γ1,d27γ2〉.

Then if γ1, γ2 vanish on ∂M we have

(3.9) 〈γ1γ2〉Q = 〈Lγ1, γ2〉 = 〈γ1Lγ2〉.

We apply this to α+α′, β+β′, which vanish on the boundary by construc-
tion, so we have

〈L(α+ α′), β + β′〉 = 〈α+ α′, β + β′〉Q

which is symmetric in α, β. This we have shown that 〈Lα, β〉 is symmetric
in α, β. Now, using Proposition 2.1 we can write ∆ = L+ 3

2 d14d∗ on Ω2
14. If

α, β satisfy the other part of (BC) that is, if d∗α|∂M = d∗β|∂M = 0, then

〈dd∗α, β〉 = 〈d∗α,d∗β〉 = 〈α,dd∗β〉

since the relevant boundary terms vanish. This completes the proof of self-
adjointness.
The last statement in Theorem 3.5 (that d∗ρ = 0 implies d∗α = 0) is

a particular case of the first item in Proposition 2.2. This completes the
proof of Theorem 3.5.
The operator L and the symmetric form 〈 · , · 〉Q are related by a boundary

term. For α ∈ Ω2
14 with α‖∂,8 = 0 we define a 1-form on ∂M :

α‖∂,6 = χ−1
6 (α|∂M ).

Recall also that we have a 2-form ω on ∂M given by the contraction of φ
with the normal vector.

Proposition 3.8. — If α14, β14 are in Ω2
14 with α14‖∂,8, β14‖∂,8 = 0

then
〈Lα14, β14〉 = 〈α14, β14〉Q + 〈α14‖∂,6, β14‖∂,6〉∂
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where, for 1-forms a, b on ∂M ,

〈a, b〉∂ = −
∫
∂M

χ6(a) ∧ d(b ∧ ω).

It follows from this proposition that, given ρ ∈ Ω2
14 with d∗ρ = 0, our

linear boundary value problem is the Euler–Lagrange equation associated
to the functional on A given by

(3.10) − ‖dα‖2 + 〈α‖∂,6, α‖∂,6〉∂ − 〈ρ, α〉.

Proof. — We give a derivation of Proposition 3.8 although we will not
use the result, so this is a digression from our main path. First, one can
check that 〈 · , · 〉∂ is symmetric, so by polarisation it suffices to prove the
formula for β14 = α14. As before, choose α7 so that α = α14 + α7 vanishes
on the boundary. It follows then by integration by parts that

〈α, α7〉Q = 〈α,Lα7〉 = 0

and
〈α, α14〉Q = 〈α,Lα14〉 = 〈α14, Lα14〉.

Thus
〈α14, α7〉Q = −〈α7, α7〉Q

and
〈α14, α14〉Q = 〈α14, Lα14〉+ 〈α7, α7〉Q.

Let v be the vector field on M such that α7 = iv(φ) and let S : Λ3 → Λ3

be the bundle map equal to 4
3 ,+1,−1 on the factors Λ3

1,Λ3
7,Λ3

27 respec-
tively. Thus by (2.8) the first variation of Θ(φ) for a variation δφ in φ is
∗S(δφ). Take δφ = dα7 = Lvφ, so that by diffeomorphism invariance of the
constructions ∗S(dα7) = Lv(∗φ) = div(∗φ). Now

〈α7, α7〉Q = 〈dα7, S(dα7)〉 =
∫
M

dα7 ∧ d(iv(∗φ)),

and we can write this as a boundary integral∫
∂M

α7 ∧ d(iv ∗ φ).

On the boundary the assumption that (α7 + α14)|∂M = 0 implies that v is
tangential to ∂M . Then

iv(∗φ) = 1
2 iv(ω

2) = −a ∧ ω,

where a = −iv(ω). Thus, on the boundary α7 = −a ∧ ν∗ − χ6(a) and
α14|∂M = χ6(a), so a = α14‖∂,6 and the boundary term is the integral of
−χ6(a) ∧ d(a ∧ ω) as required. �
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Remarks 3.9.

• The ellipticity of our boundary value problem depends crucially on
the factor 2 appearing in the decomposition of Λ2

14 in Lemma 3.1;
more precisely that this factor is not ±1. By contrast there is a
similar-looking boundary value problem for forms in Ω2

7 which is
not elliptic. For this we consider the equation ∆γ = 0 for γ ∈ Ω2

7
with boundary condition, in the obvious notation, d∗γ|∂M = 0 and
γ‖∂,1 = 0. Under the identification between Ω2

7 and Ω1, the solutions
correspond to 1-forms η on M with d7η = 0,d∗η = 0 and with
iν(η) = 0 on ∂M . This is the gauge-fixed, abelian, “G2-instanton”
equation and the space of solutions is infinite-dimensional.

• By standard theory, there is a complete set of eigenfunctions as-
sociated to our problem i.e. solutions of −∆α = λα satisfying
(BC). The spectrum is discrete and bounded above so there are
only finitely many positive eigenvalues. This 1-sided boundedness
can be seen by considering the 1-parameter family of product met-
rics on M ×S1 with the length of the S1-factor equal to κ, lying in
the interval [2π, 4π] say. We consider sections of the bundle π∗(Λ2

14)
lifted by the projection π : M × S1 →M . There is an obvious way
to lift the boundary conditions (BC) to M × S1 and we consider
the operator

−∆M×S1 = −∆M +
(

d
dθ

)2
,

with these lifted boundary conditions. The same discussion as be-
fore shows that this is an elliptic boundary value problem. The
crucial fact is that the eigenvalues of the symbol Σ in the proof of
Lemma 3.6 have modulus less than 2. If the spectrum of our origi-
nal problem is not bounded above there are eigenfunctions αi with
eigenvalues λi →∞. For all large i we can choose parameter values
κi such that

√
λi = 0 mod κi Then the sections

α̃i = αi cos(
√
λiθ)

satisfy ∆M×S1 α̃i = 0, and this plainly contradicts the elliptic es-
timate on M × S1, which holds uniformly for parameter values
κ ∈ [2π, 4π].
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4. The nonlinear problem

4.1. Gauge fixing

So far in this paper the connection between the linear theory and the
deformations ofG2-structures has only been made at a formal level. We now
correct this and develop the full nonlinear theory. There are two aspects
to the nonlinearity, the first involving the action of the diffeomorphism
group and the second involving the nonlinear nature of the torsion-free
condition. For the first, happily, we are able to refer to the careful treatment
of Fine, Lotay and Singer in [6]. This treats a 4-dimensional problem, but
the proofs, extending the well-known results of Ebin for closed manifolds,
go over immediately to our situation.
The standard approach to constructing a slice for the action of the dif-

feomorphism group on some space of tensors is to consider, at a tensor τ ,
the variations δτ which are L2 orthogonal to the Lie derivatives Lvτ , for
all vector fields τ . Under the identification of tangent vectors with Λ2

7 the
Lie derivatives of the closed 3-form φ are the image of d : Ω2

7 → Ω3. So
in our case the standard slice for the diffeomorphism group action is given
by variations δφ with π7(d∗(δφ)) = 0, where π7 is the projection to Λ2

7. As
usual, it is convenient to work with Banach spaces and following [6] we will
use Sobolev spaces, although Hölder spaces would work just as well. We fix
some suitably large s, say s = 5, and consider the set of maps fromM toM
which are equal to the identity on the boundary and with s+ 1 derivatives
in L2. Such maps are C1 and it makes sense to consider diffeomorphisms
of this class. These diffeomorphisms form a topological group and we de-
fine Gs+1 to be the identity component of these L2

s+1 diffeomorphisms. The
group Gs+1 acts on the space of L2

s 3-forms on M . With our choice of the
Sobolev index s these forms are also C1. In particular the notion of positive
3-form makes sense. For δ > 0 let

Sδ = {φ+ χ : ‖χ‖L2
s
< δ, π7d∗χ = 0}.

Proposition 4.1. — There are constants ε, δ > 0 such that for every
3-form φ̃ with ‖φ̃ − φ‖L2

s
< ε there is a unique diffeomorphism f ∈ Gs+1

such that f∗(φ̃) lies in Sδ.

The statement is modelled on Theorem 2.1 of [6] and the proof is essen-
tially the same so we do not go into it in detail here. However we do want
to recall the linear result which underpins the proof.
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Lemma 4.2. — For any σ ∈ Ω2
7 there is a unique γ = Γ(σ) ∈ Ω2

7 with
γ‖∂M = 0 and π7d∗dγ = σ. The map Γ extends to a bounded map from
L2
s−1 to L2

s+1.

Proof. — It is easy to check that π7d∗d is a self-adjoint elliptic operator
on Ω2

7. Thus by the standard theory it suffices to show uniqueness, in other
words that for γ ∈ Ω2

7 if π7d∗dγ = 0 and γ‖∂M = 0 then γ = 0. Integrating
by parts, the conditions imply that dγ = 0. Using the identification of Λ2

7
with tangent vectors, γ corresponds to a vector field v, vanishing on the
boundary ofM , with Lv(φ) = 0. This implies that v is a Killing field for the
metric gφ and it is a simple fact from Riemannian geometry that vanishing
on the boundary forces v to vanish everywhere. �

The set of closed 3-forms in a given enhancement class is preserved by
the diffeomorphism group G. Thus we immediately get from Proposition 3.8
a model for a neighbourhood in Qρ̂. Define

T = {dα : α ∈ Ω2(M), α|∂M = 0, π7d∗dα = 0},

and let Ts be the L2
s completion of T . Let Psρ̂ be the L2

s version of Pρ̂, in an
obvious sense, andQsρ̂ be the quotient by Gs+1 Then Proposition 3.8 implies
that for suitable small δ > 0 the map χ 7→ φ+χ induces a homeomorphism
from the ball {χ ∈ Ts : ‖χ‖L2

s
< δ} to a neighbourhood of [φ] ∈ Qsρ̂. Slightly

more generally, if a 3-form φ1 is sufficiently close to φ in L2
s norm and if

ρ̂1 is the corresponding enhancement class, the map χ 7→ φ1 + χ induces
a homeomorphism from this same ball in Ts to a neighbourhood of [φ1]
in Qsρ̂1

.
It follows immediately from Lemma 4.2 that the natural map from T to

TQ is an isomorphism. Define a vector space

B = {α = α7 + α14 ∈ Ω2(M) : α14 ∈ A, α|∂M = 0, π7d∗dα = 0}.

The map α 7→ α14 induces a map p : B → A and Lemma 4.2 implies that
this is an isomorphism. To spell this out, it is clear from the decomposition
of the forms on the boundary that we can choose a smooth bundle map
τ : Λ2

14 → Λ2
7, supported in a neighbourhood of the boundary, such that

for all β ∈ Ω2
14 we have β + τ(β)|∂M = 0. Now for α14 ∈ A define

(4.1) F (α14) = α14 + τ(α14)− Γ(π7d∗d(α14 + τ(α14)).

Then F maps to B and is the inverse to p. It is clear from the formula that
this extends to an isomorphism (of topological vector spaces) F : As+1 →
Bs+1 where Bs+1 is the L2

s+1 completion of B. Now the exterior derivative
induces a map from B to T and it follows from Proposition 3.2 and the
above-noted isomorphism of T and TQ that this is an isomorphism and
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also for the corresponding Sobolev versions. Putting all this together we
have the following result.

Proposition 4.3. — There is a δ′ > 0 such that, if φ1 is sufficiently
close to φ in L2

s, the map α 7→ φ1 + dF (α) induces a homeomorphism from
the ball in As+1: {α ∈ As+1 : ‖α‖L2

s+1
< δ′} to a neighbourhood of [φ1] in

Qsρ̂1
where ρ̂1 is the enhanced boundary value determined by φ1.

4.2. A Fredholm equation

We want to represent the solutions of our boundary value problem, for
given data ρ̂, as the zeros of a Fredholm map. Recall that for α ∈ Ω2(M)
we defined W (α) = ∗φdΘ(φ+ dα). In our description from Proposition 4.3
of a neighbourhood in Qsρ̂ the torsion-free equation is W (F (α)) = 0, for
small α ∈ As+1. The complication is that for general α the term W (F (α))
lies in the subspace ∗φΩ5

14,φ̃ where φ̃ = φ + dF (α) and this space also
depends on φ̃. We use a projection construction to get around this, which
essentially amounts to constructing a local trivialisation of the cotangent
bundle of Qsρ̂.

For any α as above, write σ = W (F (α)) = ∗φdφ̃. Then d∗σ = 0 and σ
is a section of the bundle ∗φΛ5

14,φ̃. Let σ = σ7 + σ14. By our Hodge theory
result, Proposition 2.2, there is a unique η ∈ Ω1 orthogonal to H1 solving
the equation d∗dη = d∗σ7 with η|∂M = 0. Now recall (as in the proof of
Proposition 3.2) that d∗d = 3

2 d∗d14 on Ω1. Thus

d∗σ14 = −d∗σ7 = −3
2d∗d14η.

Set σ̃14 = σ14 + 3
2 d14η, so σ̃14 lies in Ω2

14 and satisfies d∗σ̃14 = 0.

Lemma 4.4. — There is a δ′′ > 0 such that if ‖α‖L2
s+1

< δ′′ then σ = 0
if and only if σ̃14 = 0.

Proof. — We know that σ is a section of the bundle ∗φΛ5
14,φ̃. When

φ̃ = φ this is exactly the bundle Λ2
14. If φ̃ is close to φ in C0 we can use the

standard graph construction. There is a bundle map

Sφ̃ : Λ2
14 → Λ2

7

such that elements of ∗φΛ5
14,φ̃ are of the form τ14 + Sφ̃τ14. If α is small in

L2
s+1 then Sφ̃ is small in L2

s. In the preceding discussion, we have σ7 =
Sφ̃σ14 so

‖σ7‖L2
k
6 ε‖σ14‖L2

k
,
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for k 6 s− 1, where we can make ε as small as we please by taking α small
in L2

s+1. On the other hand, the elliptic estimates for the boundary value
problem give

‖d14η‖L2
k
6 C‖σ7‖L2

k
.

The Lemma follows by choosing δ′′ such that 3
2Cε < 1. �

Write σ̃14 = Πφ̃(σ). The conclusion of Proposition 4.3 and Lemma 4.4 is
that the solutions of the torsion free equation in a neighbourhood of [φ] in
Qρ̂ correspond to the zeros of a map F defined by

(4.2) F(α) = Πφ̃ (W (φ+ dFα)) .

This map F takes values in the space A′ = {α ∈ Ω2
14 : d∗α = 0}. Write

A′s−1 for the L2
s−1 completion.

Proposition 4.5. — F extends to a smooth Fredholm map of index
0 from a neighbourhood of the origin in As+1 to A′s−1. The derivative at
α = 0 is −∆ : As+1 → A′s−1.

Proof. — The proof is straightforward, given Theorem 3.5. We compute
the derivative formally:

W (F (α)) = L(F (α)) +O(α2),

(by definition of the linearised operator L);

L(F (α)) = L(α),

(since F (α) differs from α by a term in Ω2
7 and L vanishes on Ω2

7);

L(α) = −∆α,

(by the discussion in Section 3). Clearly the derivative of the projection
term Πφ̃ at α = 0 is the identity on Ω2

14. Now one can check that these
calculations are compatible with the Sobolev structures.
We know that ∆ is self-adjoint on A so the index is zero and the cokernel

can be identified with the kernel. This kernel is

Hφ = A ∩ H̃ = {α ∈ Ω2
14 : d∗α = 0, ∆α = 0, α‖∂,8 = 0},

and the isomorphism from A to TQ takes Hφ to the space Hφ defined
in (3.2). �

This proposition achieves our goal of representing the solutions of the
torsion-free equation in Qsρ̂ as the zeros of a Fredholm map. By standard
elliptic regularity any L2

s+1 solution is smooth.
To complete the discussion, we consider varying the boundary data ρ̂.

Let θ be a closed 3-form on M which is small in L2
s, so that φ + θ is a
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closed positive 3-form on M which defines perturbed enhanced boundary
data ρ̂(θ). By Proposition 4.3, the map

α 7→ φ+ θ + dF (α)

gives a homeomorphism from the δ′′-ball in As+1 to a neighbourhood of
[φ + θ] in Qρ̂(θ). In this neighbourhood the solutions of the torsion-free
equation correspond to the zeros of a perturbed map

Fθ(α) = Πφ̃ (W (φ+ θ + dFα)) ,

where φ̃ = φ + θ + dF (α). This is a smooth map in the two variables
θ ∈ ker d ∩ L2

s, α ∈ As+1, taking values in A′s−1. Thus we can apply stan-
dard theory to study the solutions of the torsion-free equation for nearby
boundary data. In particular we have by the implicit function theorem:
Theorem 4.6. — If the vector spaceHφ is zero then for smooth θ which

are sufficiently small in L2
s there is a unique solution of the torsion-free

equation in Qρ̂(θ) close to ρ+ θ.
More generally, if Hφ is not zero the standard theory of Fredholm maps

gives a finite-dimensional “Kuranishi model” for the solutions of the torsion-
free equation.
This discussion of the local structure in Qρ̂ can be extended to the

Hitchin functional. We define a quadratic form on A by

(4.3) qφ(α) = −〈α,∆α〉.

So the eigenvalues associated to our boundary value, which we discussed in
Section 3, are the eigenvalues of the quadratic form qφ relative to the L2

form. Standard theory (as described in [3, Proposition 2.5], for example)
gives a diffeomorphism from one neighbourhood of the origin in As+1 to
another which takes the Hitchin functional to a sum f ◦ π + 2

3qφ where f
is a real-valued function on Hφ and π : As+1 → Hφ is L2 projection.

We emphasise that the crucial difference in this case of manifolds with
boundary, compared with the closed case, is that the quadratic form qφ
is not manifestly negative definite due to the boundary term in Proposi-
tion 3.8.

5. Examples and questions

We have seen that the deformation theory for our boundary value prob-
lem is governed by a finite-dimensional vector space

Hφ = {dα : α|∂M = 0, L(α) = 0}
{dα7 : α7|∂M = 0} .
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Now we define another vector space

(5.1) Kφ = {dα7 : α7 ∈ Ω2
7(M)} ∩ {dα : α ∈ Ω2(M), α|∂M = 0}
{dα7 : α7|∂M = 0} .

There is an obvious map E : Kφ → Hφ arising from the fact that L(α7)
vanishes for any α7 ∈ Ω2

7 and it also obvious that this map E is injective.
Next recall that we have a decomposition of forms on the boundary

Ω2(∂M) = Ω2,∂
1 ⊕ Ω2,∂

6 ⊕ Ω2,∂
8 ,

and write
Ω2,∂

7 = Ω2,∂
1 ⊕ Ω2,∂

6 .

Thus the forms in Ω2,∂
7 are exactly the restrictions to the boundary of forms

in Ω2
7(M). We define

Vφ = {θ ∈ Ω2,∂
7 : dθ = 0},

and
Wφ = {α7 ∈ Ω2

7(M) : dα7 = 0}.
So there is a restriction map

ι : Wφ → Vφ.

The space Wφ corresponds to the vector fields on M preserving φ (which
are Killing fields for the metric) and, as we have noted in the proof of
Lemma 4.4, the map ι is an injection.
The exact sequence of the pair (M,∂M) gives a co-boundary map from

H2(∂M) to H3(M,∂M). Since an element of Vφ defines a class in H2(∂M)
we have a map, which we denote by

p : Vφ → H3(M,∂M).

Proposition 5.1. — There is an isomorphism

Kφ
∼= ker p/(ker p ∩ Im ι).

Proof. — For simplicity, we just prove that if the right hand side is zero
then so also is Kφ (which is what we will use). So suppose that we have
a pair α, α7 representing a class in Kφ (i.e. dα = dα7 and α|∂=0). Thus
the restriction of α7 to the boundary is a 2-form, θ say, in Vφ. Recall that
in general the definition of the boundary map is that we extend θ to some
2-form Θ over M and take the cohomology class of dΘ in H3(M,∂M). In
our case we can take Θ = α7 and the fact that dα7 = dα with α|M = 0
says exactly that p(θ) = 0. So by assumption θ lies in the image of ι, say
θ = ι(α̃7). But now we can replace α7 by α7 − α̃7, representing the same
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class in Kφ. Thus we may as well suppose that α7 restricts to zero on the
boundary, which means that the class in Kφ is zero. �

Theorem 5.2. — Suppose that M is a domain with smooth boundary
in a closed manifold with torsion-free G2 structure (M+, φ+) and that φ is
the restriction of φ+. Then E : Kφ → Hφ is an isomorphism.

As we mentioned before, injectivity is trivial so we have to prove that
the map is surjective. The proof is simply to extend deformations from M

to M+ and then apply the standard theory on the closed manifold. The
only complication is that we have to work with forms that are not smooth.

Let α ∈ Ω2(M) represent a class in Hφ, so α|∂M = 0 and L(α) = 0. The
first step is to show that we can suppose thatα satisfies the stronger condi-
tion α‖∂M = 0. Indeed suppose that in a normal product neighbourhood,
with normal coordinate t,

α = atdt+ bt,

where at, bt are t-dependent forms on ∂M . The hypothesis is that b0 = 0.
Let ε be the 1-form ta0 in this product neighbourhood, extended smoothly
over M . Then dε = tda0t−a0dt and α′ = α+ dε satisfies α′‖∂M = 0. Since
α′ represents the same class in Hφ we may as well suppose that α‖∂M = 0.

Next let α be the 2-form on M+ equal to α on M and extended by
zero over the complement. This extension is not smooth but it is Lipschitz,
so α ∈ Lp1(M+) for all p. We apply the standard theory, as sketched in
Section 2, to α. Thus we solve the equation ∆η = d∗α14. The Lipschitz
condition means that d∗α14 has no distributional component and standard
elliptic theory gives η ∈ Lp2(M+) for all p. We find a harmonic form h14
on M+ such that α̃14 = α14 − d14η + h14 is orthogonal to the harmonic
space. Then by construction d∗α̃14 = 0. Now we bring in the hypothesis
that L(α) = 0. Taking the inner product with α this implies that Q(α) = 0
(since the relevant boundary term vanishes). The arguments for smooth
forms all extend to Lp1 forms, and we deduce that Q(α̃14) = 0. But since
d∗α̃14 = 0 we have Q(α̃14) = ‖dα̃14‖2 so dα̃14 = 0 and hence α̃14 is
harmonic. But this means that α̃14 vanishes, since it was chosen to be
orthogonal to the harmonic forms.
Then

dα = d(α7 + α14 + d7η + d14η + h) = d(α̃7)
with α̃7 = α7 + d7η. If we know that α̃7 is smooth on the manifold-with-
boundary M , then we have shown that the pair α, α̃7 represents a class in
Kφ mapping by E to the given class in Hφ, thus completing the proof of
the theorem. This smoothness follows from the following Lemma.
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Lemma 5.3. — Suppose α̃7 is an Lp1 section of Λ2
7 over M+ such that

dα̃7 is smooth up to the boundary on M . Then α̃7 is also smooth up to
the boundary on M .

Proof. — Let D be the operator d : Ω2
∂,7 → Ω3(∂M). This is an overde-

termined elliptic operator, so if θ lies in some Sobolev space on ∂M and Dθ
is smooth on ∂M then θ is also smooth. We apply this to the restriction of
α̃7 to ∂M . This lies a priori in a Sobolev space Lp1−1/p but now we see that
it is a smooth form on ∂M . The relation between d∗ and d7 on Ω2

7 shows
that d∗α̃7 is also smooth up to the boundary on M . So the same is true of
∆α̃7. Thus α̃7 solves an elliptic boundary value problem

∆α̃7 = ρ, α̃7|∂M = σ, d∗α̃7|∂M = τ,

with ρ smooth up to the boundary onM and σ, τ smooth on ∂M . It follows
by elliptic regularity that α̃7 is smooth up to the boundary on M . �

The example discussed in [5] is an annular region in R7 which can be
embedded in a compact torus, so Theorem 5.2 applies. In that example
Kφ is not zero, so the same is true of Hφ and the deformation problem is
obstructed.
In a similar vein we have

Proposition 5.4. — For (M,φ) ⊂ (M+, φ+) as in Theorem 5.2 the
quadratic form qφ is negative semi-definite.

This is essentially the same (in slightly different language) as [5, Propo-
sition 1].

These results raise the following questions.

Question 5.5. — Is it true that for all (M,φ) we have Hφ = Kφ?

Question 5.6. — Is it true that for all (M,φ) the form qφ is negative
semi-definite?

The author has spent some effort attempting to answer these questions,
without success. By the same argument as in [5, Proposition 1] an equiva-
lent form of Question 5.6 is to ask whether the inequality

‖d27α14‖ > ‖d7α14‖

holds for all compactly supported α14 ∈ Ω2
14.

The equation Dθ = 0 (in the notation of Lemma 5.3) is highly overde-
termined, so one expects that typically the space Vφ is 0, and hence also
Kφ. If the answer to Question 5.5 above is affirmative it would follow that
in most situations the space Hφ is zero i.e. that the same three facts for the
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closed manifold theory reviewed in the introduction hold for the boundary
value problem, in most situations.
Leaving aside this question aside: Theorem 5.2 and Proposition 5.1 can be

used to supply examples where Hφ vanishes. We will just consider one class
of examples here. Let N be a closed Calabi–Yau 3-fold i.e. a complex 3-fold
with Kähler form ω and holomorphic 3-form Θ such that ω and ρ = Im(Θ)
are equivalent to the standard model (2.2) at each point. For L > 0 let ML

be the manifold with boundary N × [0, L] with 3-form φ = ωdt+ ρ.

Lemma 5.7. — For this φ on ML we have Hφ = 0.

Proof. — We can embedML in a closed manifoldM×S1 so Theorem 5.2
applies. Thus we have to identify the space Vφ which is the sum of two copies
of the kernel kerD of the operator D on N . Taking cohomology we have
a map h : kerD → H2(N) and it follows from the Hodge decomposition
that the image of this is V = R[ω] + H2,0

R where H2,0
R denotes the real

part of complex cohomology. We claim that h is injective, so that kerD is
isomorphic to V . Suppose that θ lies in the kernel of h, so θ = dη for some
1-form η on N . In other words the component of dη in Λ1,1

0 vanishes. The
Hodge–Riemann bilinear relations give that

dη ∧ dη ∧ ω =
(
2|d1η|2 + |d6η|2

)
vol6,

(where d1 denotes the component in Rω and d6 the component in Λ2,0
R ).

So we have, by Stokes theorem,

0 =
∫
N

dη ∧ dη ∧ ω = 2‖d1η‖2 + ‖d6η‖2.

Hence dη = 0 and the claim is proved.
We now have Vφ = V ⊕ V with one copy of V for each boundary

component. In this case H3(ML∂ML) = H2(N) and the map p : Vφ →
H3(ML∂ML) is

p(θ1, θ2) = θ1 − θ2.

So the kernel of p is the diagonal copy of V in V ⊕ V . On the other hand
it is clear that the space Wφ is isomorphic to V and that ι maps on to the
diagonal so we see from Proposition 5.1 that Kφ = 0. �

We can apply our main result to get an existence theorem for defor-
mations of these product manifolds. To state this we need to pin down
the choice of enhancement data. Recall that the space of enhancements is
an affine space modelled on H3(M,∂M) but with no canonical origin. In
our case we have H3(ML, ∂ML) = H2(N), as above. Fix 2-cycles σa in N
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representing a basis for H2(N). Then for any 3-form ψ on ML we define

Ia =
∫
σa×[0,L]

ψ.

The collection of these integrals can be regarded as an element I(ψ) ∈
H2(N). This induces an identification between the enhancements of a given
boundary form and H2(N). Clearly I(φL) = L[ω].

Theorem 5.8. — For L and (N,ω, ρ) as above there is a neighbourhood
U of ρ in the space of closed forms on N (in the C∞ topology) and a
neighbourhood U ′ of L[ω] in H2(N) such that if ρ0, ρL are in U and define
the same cohomology class in H3(N) and ν is in U ′ then there is a torsion
free G2-structure φ on ML which restricts to ρ0, ρL on the two boundary
components and with I(φ) = ν.

Of course there is also a uniqueness statement, for solutions close to φL.
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