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This paper considers the nonlinear optimal control of transition in a boundary layer
flow subjected to a pair of free stream vortical perturbations using a receding horizon
approach. The optimal control problem is solved using the Lagrange variational technique
that results in a set of linearised adjoint equations, which are used to obtain the optimal
wall actuation (blowing and suction from a control slot located in the transition region).
The receding horizon approach enables the application of control action over a longer time
period, and this allows the extraction of time-averaged statistics as well as investigation
of the control effect downstream of the control slot. The results show that the controlled
flow energy is initially reduced in the streamwise direction and then increased because
transition still occurs. The distribution of the optimal control velocity responds to the flow
activity above and upstream of the control slot. The control effect propagates downstream
of the slot and the flow energy is reduced up to the exit of the computational domain.
The mean drag reduction is 55% and 10% in the control region and downstream of the
slot, respectively. The control mechanism is investigated by examining the second order
statistics and the two-point correlations. It is found that in the upstream (left) side of the
slot, the controller counteracts the near wall high speed streaks and reduces the turbulent
shear stress; this is akin to opposition control in channel flow, and because the time-
average control velocity is positive, it is more similar to blowing-only opposition control.
In the downstream (right) side of the slot, the controller reacts to the impingement of
turbulent spots that have been produced upstream and inside the boundary layer (top-
bottom mechanism). The control velocity is positive and increases in the streamwise
direction, and the flow behavior is similar to that of uniform blowing.

Key words:

1. Introduction

In boundary layers, transition from laminar to turbulent flow is usually classified
as orderly (classic) or bypass. Orderly transition is a slow process, which involves the
exponential growth of Tollmien-Schlichting (TS) waves, their secondary instability and
finally breakdown to turbulence. On the other hand, bypass transition refers to all other
routes to turbulence. Bypass transition can be promoted by wall roughness, body forces,
acoustic noise etc. In this work, a pair of free stream vortical perturbations is used to
trigger the transition process.
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Laminar-turbulent transition in boundary layer flow is always associated with high
skin friction and enhanced mixing of momentum. Most of the turbulent energy genera-
tion and dissipation takes place inside the boundary layer and thus affects engineering
performance. In particular, bypass transition is found in gas turbines, where high levels
of free stream turbulence are present (Hodson & Howell 2005; Zaki et al. 2010; Wissink
et al. 2014). Therefore exploring possible control methods to delay or suppress transition
is of crucial importance for performance improvement.

1.1. Active control of wall-bounded flows

Active control methods provide better control performance and have been explored
widely in the literature. One simple type of active control is uniform blowing (UB) or
suction (US) at the wall. Park & Choi (1999) performed DNS with steady UB or US
with velocity magnitude less than 10% of the mean flow velocity from a narrow spanwise
slot in a turbulent boundary layer flow. They found that for UB, skin friction over the
control slot decreased rapidly but increased downstream due to enhanced tilting and
stretching of vorticity. Above the slot streamwise vortices are lifted up and weakened
by the actuation. The opposite is found for US. Kametani & Fukagata (2011) examined
the effect of UB and US with much smaller velocity magnitudes (less than 1% of the
mean flow velocity) in a spatially developing turbulent boundary layer using DNS. Their
control slot covered the entire computational domain. They applied the FIK identity
(Fukagata et al. 2002), which provides an analytic expression of the effect of streamwise
inhomogeneity and Reynolds stress on the local skin friction, to investigate the drag
reduction mechanism and concluded that the mean convection has a strong contribution
in reducing the drag for UB and increasing the drag for US. More recently, Kametani
et al. (2015) applied UB and US in a turbulent boundary layer at moderate Reynolds
number using large eddy simulations (LES). The actuation velocity had a magnitude of
0.1%U∞ and achieved more than 10% drag reduction (or enhancement) by UB (or US).
They also found that the drag reduction efficiency could be improved by using a wider
control region which starts at a more upstream location.
Many control strategies on drag reduction are guided by the underlying flow physics.

For example, Choi et al. (1994) proposed the opposition control method to suppress
the coherent structures in the wall region in a turbulent channel flow. They imposed
a transpiration velocity which is equal and opposite to the wall-normal velocity at a
detection plane located at some distance from the wall, in order to counteract the motion
of streamwise vortices. They found that drag is initially reduced as a result of suppressed
sweep events, and at later times drag reduction was due to the change of wall vorticity
layer by the active control. Stroh et al. (2015) compared the performance of opposition
control in a turbulent channel flow and a spatially developing turbulent boundary layer.
They found that for both configurations the drag reduction rates were similar, but the
mechanism was different. In channel flow, drag is reduced due to the attenuation of the
Reynolds stress, while in a boundary layer modification of the spatial flow development
is of critical importance.
Chang et al. (2002) investigated the effect of Reynolds number on opposition control

using LES and showed that drag reduction is less effective at higher Reynolds number.
Chung & Talha (2011) studied the effect of the amplitude of opposition control as well
as the location of the detection plane on the control performance and found that drag
reduction is proportional to the magnitude of the blowing and suction velocity.
Alternative strategies to the full opposition control have also been developed. Pamiès

et al. (2007) modified the opposition control, whereby only the blowing part was retained
and the suction part was suppressed. They applied this blowing-only opposition control
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using LES in a spatially developing turbulent boundary layer and demonstrated that
drag reduction efficiency is improved. Very recently, Abbassi et al. (2017) performed
control experiments in a high Reynolds number turbulent boundary layer using also the
opposition control framework. They used a spanwise array of wall-normal jets, which
were activated based on information of incoming high-speed flow zones. The latter were
detected with wall shear stress sensors placed upstream of the actuators. The wall-normal
jet velocity opposed only the down-wash action of the natural, large scale roll-modes.
Lee et al. (1997) used a neutral network to predict the opposition blowing and suction
actuations based on wall shear stress and achieved 20% skin friction reduction in a channel
flow. They observed a stable pattern in the distribution of the weights from the neutral
network and derived a simple control scheme based on a local weighted sum of spanwise
shear stress.
There are several other successful active control methods such as spanwise wall oscil-

lations (Quadrio & Ricco 2004; Yudhistira & Skote 2011; Lardeau & Leschziner 2013;
Hack & Zaki 2014) and wall-deformation (Nakanishi et al. 2012; Tomiyama & Fukagata
2013), but they are outside the scope of the present work.

1.2. Nonlinear optimal control

Most recent control approaches in delaying transition inside boundary layers are
based on linear control models (Chevalier et al. (2007); Monokrousos et al. (2008);
Papadakis et al. (2016); Bagheri et al. (2009)). The streamwise streaks, generated inside
the boundary layer by the free stream vortical disturbances, initially grow linearly. In
later stages however, when they breakdown to form turbulent spots, the nonlinear effects
become important. Very few nonlinear approaches for controlling transition in a boundary
layer have appeared in literature. These are gradient-based approaches i.e. the control
parameters are updated along the direction that minimizes a given cost function. The
gradient direction is obtained by solving repeatedly the Navier-Stokes and the adjoint
equations in a forward-backward iterative loop over an optimisation time interval. Since
the optimal control inputs are solely based on the governing equations and the objective
function, they do not rely on physical intuition. Instead, the optimal control solution,
which gives the best achievable performance, can be used posteriori to derive an effective
control strategy.
The aforementioned approach is also known as model predictive control (MPC). When

MPC is applied to chaotic flows, the optimisation interval is limited by the growth of
instability of the adjoint equations when integrating backwards in time (Wang 2013). This
instability is physical and is due to (one or more) positive Lyapunov exponents that arise
when linearising along a solution trajectory. In order to perform control simulations for
longer time, the optimal control approach can be applied in a receding horizon framework.
The flow is locally optimised over a finite time period T using the forward/backward
iteration loop described above. Once the convergence is achieved within T , the flow is
advanced in time by some portion Ta of T and a new optimisation problem is solved.
The application of this framework to turbulence in channel flow was first introduced by
Bewley et al. (2001). The authors achieved relaminarization at Reτ = 180 (based on
mean friction velocity and the channel half-height).
Apart from channel flow, MPC has been applied also to flows around cylinders and

in boundary layers. For instance, Mao et al. (2015) applied this framework to suppress
vortex shedding behind a circular cylinder using wall normal transpiration. In Flinois
& Colonius (2015), the wake was controlled via cylinder rotation. They examined the
control performance for different T and found that long T was essential and resulted in
better performance.
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In this study, we apply MPC in a receding horizon framework to a boundary layer flow
in order to suppress bypass transition due to a pair of free stream vortical disturbances.
The same framework has been used to control a two-dimensional, separated, boundary
layer flow over a hump using blowing and suction (Passaggia & Ehrenstein 2013). For
this configuration, the flow is linearly unstable beyond a critical Reynolds number, and
low frequency oscillations appear due to the non-normal interaction of the global modes.
The mechanism is two-dimensional, it arises due to the recirculation behind the hump,
and is not related to the breakdown process that is the subject of this paper. Cherubini
et al. (2013) applied the same technique in a single time interval in order to control the
growth of non-linearly optimal perturbations (also known as minimal seed) superimposed
on a Blasius boundary layer flow. The simulations were 3D, but the time horizon was
short and the flow did not progress to full transition stage.
Xiao & Papadakis (2017) applied MPC to a transitional boundary layer for a very

short optimization period, T. The controller was effective in reducing the flow energy
above the control slot, but it was not possible to investigate the full interaction of the
transitioning flow with actuation. In the present paper, we report simulations with the
receding horizon approach over a much longer period. We explore the control mechanism,
we relate the actuation velocity to the flow physics above the slot and report converged
time-averaged statistics above and downstream of the slot.
The paper is organised as follows. In section 2, we introduce the numerical methodology

and the nonlinear optimal control algorithm. In section 3, results from optimal control
of bypass transition are presented. In particular, the control results are first investigated
through the flow energy and the distribution of the optimal control velocity. Then the
control performance is assessed by examining the time-averaged statistics above and
downstream of the actuation region. The correlation between the control velocity and
the flow above is studied in order to understand the control mechanism. The main findings
are summarised in section 4.

2. Methodology

2.1. Direct numerical simulations

The flow is governed by the continuity and Navier-Stokes equations. For a three-
dimensional incompressible flow, the non-dimensional form of this set equations reads,

∇ · u = 0, (2.1)

∂u

∂t
= −(u · ∇)u−∇p+

1

ReL0

∇2u (2.2)

The spatial variables are defined in Cartesian coordinates and non-dimensionalized by
the Blasius similarity variable L0 =

√

νx∗
0/U∞, where x∗

0 is the dimensional streamwise
distance between the leading edge of the flat plate and the inlet location of the computa-
tional domain, ν is the kinematic viscosity of the fluid and U∞ is the free stream velocity.
The velocity vector is non-dimensionalized as u = u∗/U∞, pressure as p = p∗/

(

ρU2
∞

)

,
where ρ is the fluid density, and time as t = t∗/ (L0/U∞).
Figure 1 shows the computational domain, which is a rectangular box of dimensions

1800 × 100 × 90. The boundary layer thickness δ (defined as the distance from the wall
at which the velocity reaches 0.99U∞) at inlet is 5, approximately 20 in the transition
region and 35 at the end of the domain. The Reynolds number at the inlet is ReL0

= 200
(based on the momentum thickness Reθ∗

0
= 134). The grid is uniformly distributed in
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Figure 1: Schematic representation of the boundary layer flow over a flat plate subjected
to free stream perturbations and the location of the blowing/suction control slot.

ω α β γ

mode A 0.0064 0.0064 + 0.0015i 0.393 0.374
mode B 0.128 0.128 + 0.0023i 0.628 0.209

Table 1: Parameters of the continuous modes. ω, frequency; α, streamwise wavenumber;
β, spanwise wavenumber; γ, wall-normal wavenumber.

both streamwise and spanwise directions, but is stretched in the wall-normal direction
with an expansion ratio 1.031. The mesh resolution is 1800× 150× 120.
Bypass transition is triggered by imposing at the inlet boundary vortical perturbations,

which are constructed using the continuous modes of the Orr-Sommerfeld and Squire
equations (Jacobs & Durbin 2001; Brandt et al. 2004). In current work, we only use two
modes, one of low and one of high frequency to trigger the transition (Zaki & Durbin
2005). As will be seen later, this makes the analysis of the control mechanism easier.
Parameters for the two modes are listed in table 1. A detail description of the boundary
conditions, numerical code, simulation parameters and validation can be found in Xiao
& Papadakis (2017).
Figure 2 shows contour plots of the instantaneous streamwise velocity fluctuation in x-

y plane. Streamwise elongated high and low speed streaks, resulting from the penetration
of the low frequency inlet perturbation inside the boundary layer, can be clearly seen. The
streamwise wavelength of these streaks is approximately 740 units and analysis show that
they convect downstream at 0.75U∞. These values are in agreement with the temporal
frequency of the penetrating inlet mode A (ω = 0.0064). The streamwise wavelength of
the undulations seen at top of the boundary layer is 50 units and their convection speed
is U∞. The resulting temporal frequency agrees with the high frequency inlet mode B
(ω = 0.128). The time difference between the two plots is ∆t = 480, which is equivalent
to half period of mode A. During this time, the positive streak at x = 400 in the top plot,
propagates downstream a distance of half wavelength. Negative streaks are lifted upwards
to top of the boundary layer, where they interact with the high frequency disturbance
and break down. This leads to secondary instability and the inception of turbulent spots.
Such an instability can be seen in the top figure, between x ≈ 800 − 1000 and in the
middle of the boundary layer, y ≈ 5 − 15. Once spots form, they grow in all directions
and impinge on the wall (top-bottom effect). For example, the aforementioned instability
has propagated in the x direction and has impinged on the wall, as shown in the bottom
figure. Similar observations were made in the simulations of Jacobs & Durbin (2001),
Zaki & Durbin (2005), Brandt et al. (2004). This type of secondary instability is known
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(a)

(b)

Figure 2: Instantaneous contour plots of streamwise velocity fluctuation in x-y plane at
z = 45 (uncontrolled flow) two time instants (a) 18T; (b) 26T, where T = 60 (time
separation ∆t = 480). White dashed line shows the boundary layer thickness. Vertical
black lines mark the location of the control slot from 1050 to 1300 (inactive).

as outer mode and has been studied by Andersson et al. (2001); Vaughan & Zaki (2011).
The high-speed streaks on the other hand are not affected by the external perturbations
and they stay close to the wall. One such high speed streak is shown to enter the region
of the control slot in the top figure; it is located between x ≈ 900− 1100 and y ≈ 0− 3.
Note that the interaction with high frequency mode occurs upstream of the control slot
and therefore in the controlled flow, the transition is also via the outer mode. As can be
seen in figure 2, the controller is located in the region of streak breakdown and the flow
is fully nonlinear.

A sketch that summarises the breakdown process due to the outer instability is shown
in figure 3. This sketch will be refered to later when the control action is characterised.

 

Inception 

of spots 

Growth of spot  

thickness 

High-speed streaks  

close to the wall 

Control slot 

Figure 3: Growth of spots and impingement on the control region.
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2.2. Nonlinear optimal control algorithm

The objective of the nonlinear optimal control algorithm is to find the actuation
velocity that locally minimises a cost function, within a finite optimisation time T . The
actuation method is blowing and suction at the wall, which varies in time and space. The
location of the control slot is in the late transition zone, from x = 1050 to 1300 (Figure
2). The cost function is defined as,

J =

∫ T

0

E(t)dt+ l2
∫ T

0

Ew(t)dt, (2.3)

where T is the length of optimisation time and l2 is a weighting parameter that penalise
the magnitude of actuation. For example, a small value of l2 indicates low penalization
and results in higher control velocities. The first term on the right hand side of the cost
function (2.3) is the energy of the flow, which is defined as a quadratic measure of the
deviation of the instantaneous velocity u(t) from the Blasius velocity profile UB ,

E(t) =

∫

V

[(u(t)−UB) ·Ω (x) · (u(t)−UB)] dV, (2.4)

where Ω (x) is an indicator function that specifies a subregion (1050 < x < 1350, 0 <
y < 5, 0 < z < 90) inside which the flow energy is to be reduced (Ω(x) = 1 inside and
Ω(x) = 0 outside). For simplicity, in the rest part of this paper, E is called flow energy.
Therefore the objective of the control algorithm is to drive the velocity fields towards
the Blasius profile. The analysis of the control performance is also easier since the target
profile is known.
The second term on the right hand side of the cost function (2.3) measures the cost of

the control and is defined as,

Ew(t) =

∫

Sw

[vw(t)]
2
dSw, (2.5)

where vw is the actuation velocity and Sw is the area of the wall, including the control
slot (of course outside the slot vw = 0).
The cost function is to be minimised while all the constraints describing the flow

problem (e.g. governing equations, initial conditions) are satisfied. Using the Lagrange
multiplier technique, the constrained flow problem is replaced by an unconstrained one
defined by the Lagrange cost function L,

L = J − a · F, (2.6)

where a is the Lagrange multiplier and F includes all the constraints. The problem now
becomes to find the flow variables (u and p) and the Lagrange multipliers (u† and p†) so
that L is minimised. A differentiate-then-discretize approach was used. The first order
variation of the Lagrangian with respect to each independent argument must be zero at
a stationary point. Setting the first variation of L with respect to u(u, v, w) and p to zero
and after integration by parts, the following system of adjoint equations is derived,

∇ · u† = 0, (2.7)

∂u†

∂t
= − (u · ∇)u† + u† ·

(

∇uT
)

−∇p† −
1

ReL0

∇2u† + 2 (u−UB)Ω, (2.8)

where u† and p† are the adjoint velocity and pressure, respectively. Note that the above
system of linear equations is solved by integrating backwards in time. The terminal
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Figure 4: Schematic representation of the receding horizon framework.

conditions for the adjoint variables are,

u†(T ) = v†(T ) = w†(T ) = 0. (2.9)

The boundary conditions are provided in Xiao & Papadakis (2017). The Navier-Stokes
equation and the adjoint equation form a nonlinear coupled system, which is solved
iteratively. The first variation of L with respect to the control input vw is used to update
the control velocity at each iteration,

vn+1
w (x, z, t) = vnw(x, z, t)− αn

(

∂L

∂vw(x, z, t)

)

, (2.10)

where n is the iteration number and α is an adjustable step length.
The optimization procedure for a finite time T is summarised as follows,
(i) Assume an initial distribution for the actuation velocity v0w(x, z, t) (usually 0) and

an initial value for α;
(ii) Solve the Navier-Stokes equations forward from t = 0 to t = T ;
(iii) At t = T , evaluate the values of the objective function (2.3) between two successive

iterations.
• If J decreases, and the change is smaller than a predefined threshold, stop
iteration loop, otherwise continue to step (iv);
• If J increases, halve the value of α and continue to step (iv);

(iv) Integrate the adjoint equation backward from t = T to t = 0;
(v) At t = 0, update the control velocity using (2.10) and return to step (ii).
As mentioned in the introduction, the maximum value of T is limited by the insta-

bility of the adjoint equations when integrating backwards in time. To perform control
simulations for longer time, the optimization approach is applied in a receding horizon
framework. A schematic representation of the procedure is shown in figure 4. Once
convergence is achieved within T , the flow is advanced in time by some portion Ta of T and
a new optimisation problem is solved again. As Bewley et al. (2001) correctly pointed out,
the actuation computed near the end of each optimisation interval is determined without
considering further development of the flow, as opposed to the actuation obtained near
the beginning of each interval. Therefore the actuation near the end of T may not be as
effective as the one at the beginning of T . In that sense, the actuation is optimal over T
and sub-optimal during the whole multi-T period examined.
In the present simulations we used the same uncontrolled flow scenario as in Xiao &
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Figure 5: Cost function J versus the total number of iterations n. The vertical dashed
lines delineate the optimization intervals. The two inset figures show the convergence of
the cost function in the 20th and 32nd interval.

Papadakis (2017) so that we can use the longest T = 60. Due to the high computational
cost required for the receding horizon method, we take Ta = T in order to maximise
the total time span. The weighting parameter l2 in the objective function (2.3) is set to
l2 = 150 so that the mean actuation velocity is less than 1%U∞. The maximum value of
the adjustable step length is set to be α = 0.001 to ensure smooth convergence.

3. Results

3.1. Flow energy

A total of 48 optimisation intervals, corresponding to a time duration equal to 48T =
2880, are considered. This is approximately equal to three complete periods of the low-
frequency, penetrating inlet mode A (table 1). This time span is long enough for the
controlled flow to reach the exit of the computational domain.
The convergence of the cost function J (defined in 2.3) within each optimization

interval is shown in figure 5. Recall that J is defined as the sum of the integral of
flow energy over time T plus the cost of actuation. Due to the high computational cost
required, the maximum number of iterations in each interval was set to 4. As figure
5 clearly demonstrates, there is a large drop of J in the first optimisation interval T
because the actuation starts from an uncontrolled transitional flow state. After the second
interval, J exhibits a repeatable oscillatory pattern, with frequency equal to that of
the low frequency inlet mode A (indeed 3 cycles can be detected). The shape of the
oscillatory pattern is related to the transition activity taking place inside the control
region and will be explored in more detail below. Two examples of convergence of the cost
function can be seen in the inset figures; both indicate smooth convergence. The reduction
of J between the 3rd and 4th iteration is small, so adding further iterations would
increase computational cost, without commensurate reduction of the cost function. The
low frequency penetrating mode also modulates the flow, again making more iterations
within a single T unnecessary.
The time evolution of the flow energy E for both uncontrolled and controlled flow is

shown in figure 6. Note that in the horizontal axis, time is expressed in terms of the
optimization length T (with T = 60). For the uncontrolled flow, three complete periods
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Figure 6: Evolution of the energy of the flow defined in the defined subregion. Solid line,
uncontrolled flow; dashed line, controlled flow.

of the low frequency mode (0 − 16T , 16 − 32T and 32 − 48T ) can be detected from
the shape of E; these are delineated by 2 vertical dash-dot lines. It is clear that the
breakdown process that determines E is modulated by the low frequency penetrating
mode A. The first few intervals (the very first interval is exactly the same as in Xiao &
Papadakis (2017)) can be regarded as the initial transient period until the control effect
is established after 16T . In the current work, we mainly focus on the control effect and
the associated control mechanism in time domain 16T −48T , during which the controlled
flow is very different compared to the one during the first few intervals.
In figure 6, the controlled flow energy is reduced significantly within the first few opti-

misation intervals, and then stays in the range between 3000−4500. This is approximately
43% of the uncontrolled flow energy. In the first low frequency period (0− 16T ), there is
a small phase difference between controlled and uncontrolled flow. This is because when
the controller is activated at t = 0, the uncontrolled flow is in a state of increasing E.
From t = 16T onwards, the two energies evolve in phase. Similar flow processes take
place in the controlled flow, but with reduced flow energy.
The evolution of E indicates that two local maxima appear within each period.The

evolution of the uncontrolled and controlled flow is examined by visualising the instan-
taneous u in figure 7 at 4 successive time instants. The total duration corresponds to
one quarter of the period of the low frequency mode. Figure 7 demonstrates in detail the
evolution of one patch of streaks as it convects into the control region. In the uncontrolled
flow at t = 16T , the head of one patch of high-speed streaks is seen to enter the control
slot, while the downstream side is occupied by turbulent flow. Secondary instabilities
distort the streaks entering the slot. The front part convects more rapidly than the rear
and soon overtakes the downstream turbulent region. The ragged edge of the turbulent
region is maintained by turbulent spots that continuously overtake the main turbulent
zone. Without this sustenance the turbulent flow would convect out of the numerical
domain (Jacobs & Durbin 2001). In figure 6 it can be seen that E is at a local minimum
at t = 16T . This is due to the region of inactivity between the entering high-speed streaks
and the turbulent spot. At t = 19T , the actuation region is almost full of turbulent flow,
and the flow energy is approaching a local peak value, as expected.
In the controlled flow, at all time instants, the high-speed streaks are still visible and

distorted, indicating that the penetrating mode is present, but they have been clearly
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Uncontrolled (left) and controlled (right) instantaneous streamwise velocity in
x-z plane at y = 2 at four successive time instants: (a), (b) 16T; (c), (d) 17T; (e), (f)
18T; (g), (h) 19T.

quenched by the control action, while the turbulent zone has also been significantly
affected. Between them, there is extended region with very low velocities and small
spanwise variation in u. In the downstream end, there are some small localised patches
of large u but they appear random. This figure indicates that the controller has been
very effective in suppressing the energy of the flow. It is very interesting to notice that
the control effect has propagated downstream of the control slot. This aspect of control
action will be further investigated in section 3.4.
To further understand the control effect, we define Ez(x, t) as the energy integrated in

the spanwise and wall-normal directions,

Ez(x, t) =

∫ ylim

0

∫ Lz

0

[(u(t)−UB) ·Ω (x) · (u(t)−UB)] dydz (3.1)

The time averaged value 〈Ez〉t is plotted in figure 8 against x. From the definition of
Ez(x, t), the area under the curve is equal to the total energy of the flow above the slot.
In the uncontrolled case, the energy increases almost linearly as a result of the transition
process taking place over the control slot, as described above. In the controlled flow,
〈Ez〉t is already reduced at x = 1050 (starting position of the control slot) compared to
the uncontrolled flow. This indicates that, in a time-average sense, the actuation effect
is already felt upstream of the slot. The controlled 〈Ez〉t then decreases and reaches a
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Figure 8: Streamwise variation of 〈Ez〉t. Solid line, uncontrolled flow; dashed line,
controlled flow.

minimum value just before x = 1100. After this location, it increases linearly, but with
a much smaller rate compared to the uncontrolled flow. This behaviour is in agreement
with the u velocity contours of figure 7.

3.2. Optimal control velocity

The spatially (streamwise and spanwise) averaged optimal blowing and suction velocity
〈vw〉x,z is shown in figure 9 as a function of time. Only the first 30 optimisation intervals
are shown; the rest have very similar behaviour. The actuation velocity 〈vw〉x,z attains its
maximum value at the beginning of each interval and gradually reduces towards the end,
which is in agreement with the actuation from control in a single optimisation horizon
(Xiao & Papadakis 2017). After a short transient period at the beginning of actuation,
the value of 〈vw〉x,z within each interval stabilises to an average of 0.685%U∞. It was
demonstrated in figure 6 that the flow energy is reduced dramatically in the first few
intervals and then fluctuates around a lower value. The control velocity has a similar
behaviour. This suggests that a larger actuation velocity is required to bring down the
uncontrolled flow at the beginning of actuation, and subsequently a smaller vw is enough
to maintain the flow energy at that lower level.
In figure 10 the variation of the time- and spanwise- averaged actuation velocity

〈vw〉z,t with streamwise distance inside the control slot is plotted. Time averaging here
is performed over one period of the low frequency inlet mode A (i.e. over 16T ), starting
from 4 different time instants (mentioned in the figure caption). All four curves collapse
reasonably well. This indicates that the spanwise averaged actuation velocity is repeatable
in a time scale equal to the period of the low frequency inlet mode. We noticed in figure
6 that the flow energy is periodically modulated by the slow mode, so it is not surprising
that 〈vw〉z,t also demonstrates periodic behaviour. Note also that when no constraint on
mass is imposed, the control velocity results in a net positive mass flow rate.
It is interesting to examine the streamwise variation of 〈vw〉z,t. When the optimisation

was performed on a single interval (Xiao & Papadakis 2017), 〈vw〉z increased monotoni-
cally in the streamwise direction and a physical explanation was provided based on the
flow pattern and the definition of the objective function. However when the actuation
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Figure 9: Spatially averaged actuation velocity against time. Vertical dashed lines
demarcate optimisation intervals.

velocity is averaged over much longer time, there is a local peak at around 1070, a local
minimum at 1130, and 〈vw〉z,t then increases linearly with x.
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Figure 10: Time- and spanwise- averaged actuation velocity. The 4 distributions shown
are averaged over one period of low frequency inlet mode (i.e. 16T) starting from different
time instants: solid line, 6T; dashed line, 18T; dash-dot line, 22T; dotted line, 26T.

This behaviour is consistent with the instantaneous flow patterns of the controlled flow
(right column of figure 7). The peak at 1070 corresponds to the control action to quench
the incoming distorted high-speed streaks. The minimum value corresponds to the low
velocity region (black area), and the linear growth to the suppression of the turbulent
patches with large u that appear in the right half of the slot, but they originate upstream
(refer to figure 3).
It is interesting to notice that the profiles of both the controlled energy 〈Ez〉t (figure

8) as well as the actuation 〈vw〉z,t (figure 10) reduce due to the control action in the
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streamwise direction, but then rise again. This behaviour is the result of the competition
between the control action and the transition process. If transition to turbulence had not
taken place above the control slot, the flow energy as well as 〈vw〉z,t would continue to
reduce, in a manner similar to that found by Monokrousos et al. (2008). In their work,
the control slot is placed in the upstream laminar flow region and both the flow and
control velocity reduce monotonically in the streamwise direction within the slot. This is
the expected behaviour if there is no transition.
In the present case however, the interaction between the elevated negative streaks and

the external high frequency mode that leads to secondary instability, starts inside the
boundary layer and upstream of the control slot as seen in figure 2. Nolan & Zaki (2013)
used laminar-turbulent discrimination techniques and managed to detect the inception
and growth of spots. They showed that the highest turbulent spot count appears inside
the boundary layer, in the region y/δ = 0.4 − 0.8, where δ is the local boundary layer
thickness. The current objective function minimises the flow energy closer to the wall,
below y/δc = 0.25, where δc is the average boundary layer thickness over the control slot
(see also top plot in figure 13). The spots are then brought towards the wall, and the
control velocity in response to this, increases along x as seen in figure 10. This top-to-
bottom process in relation to the control slot was sketched in figure 3.
In the following two sections, the effect of control action on the time-average flow

above and downstream of the slot until the end of the domain is examined. For a more
accurate and meaningful comparison, all the mean flow properties for both controlled
and uncontrolled flow are obtained by averaging over two periods of low frequency mode
A, starting from t = 16T until t = 48T . The reason is that at t = 16T the effect of
actuation has reached the end of the domain (as will be shown later), so the same time
window can be used for the flow both above and downstream of the slot.

3.3. Effect of actuation on mean and turbulent quantities above the control slot

3.3.1. Mean velocity profiles

The mean (time- and spanwise- averaged) velocity profiles u at three streamwise
locations ,x = 1075, 1130 and 1250, are shown in figure 11. These locations are selected
based on the previous analysis on the streamwise variation of the optimal control velocity.
They correspond to the peak of actuation close to the inlet, the trough in the quiescent
region between steaks and turbulent flow and to a location inside the fully developed
region, respectively.
It can be seen clearly that the control has imparted significant changes in the mean

profiles in the three locations. At x = 1075, the controlled velocity profile is between the
uncontrolled and Blasius profile, while at x = 1130, the controlled flow matches well with
the Blasius solution. Further downstream at x = 1250, the uncontrolled profile is steeper
as a result of the enhanced mixing arising from the transition process. The controlled
flow velocity has milder slope, but still larger than the Blasius one, indicating that the
controlled flow is still disorganised, but with reduced mixing activity. This is in agreement
with the findings of the previous section. As already mentioned, the upper boundary of
the box in which the objective function is defined is at y = 5; this position is indicated
by a horizontal dashed line in figure 11. The optimal controller performs its ”duty” as
expected; it brings the velocity profile close to the Blasius velocity only below y = 5.

The optimal actuation velocity depends on the choice of the objective function. If the
location of the upper boundary were set closer to the wall, one would expect that the
controlled velocity profile would approach even better the Blasius profile in the near wall
region, leading to lower drag (closer to laminar drag). It is therefore clear that minimizing



Nonlinear optimal control of transition 15

(a)

0 0.5 1
0

5

10

15

20

25 (b)

0 0.5 1
0

5

10

15

20

25 (c)

0 0.5 1
0

5

10

15

20

25

Figure 11: Time- and spanwise averaged velocity profiles at three locations: (a) x = 1075;
(b) x = 1130; (c) x = 1250. Solid line, uncontrolled flow; dashed line, controlled flow;
dotted line, Blasius profile. The horizontal dashed line marks the upper boundary in the
wall-normal direction in which the cost function is defined.

energy is not expected to lead to drag minimization if the upper boundary is set far from
the wall.
The spatial correlation between vw and u, Rs

vw,u, evaluated over the whole control slot
is now examined. Rs

vw,u is defined as,

Rs
vw,u =

〈(vw − 〈vw〉x,z) (u− 〈u〉x,z)〉x,z
[

〈(vw − 〈vw〉x,z)
2
〉x,z〈(u− 〈u〉x,z)

2
〉x,z

]1/2
(3.2)

where 〈〉x,z denotes average in streamwise and spanwise directions. Figure 12 shows Rs
vw,u

averaged over one period of time with u extracted from four wall-normal locations. It can
be seen that Rs

vw,u peaks at y = 2.5, which means vw is most responsive to the flow in
this region. The explanation for this is that the difference between the uncontrolled u and
Blasius velocity is larger between y = 2−3 as seen in figure 11. Note also that vw is very
weakly correlated with u at y = 6. This is not surprising since this location is outside the
region where the objective function is defined and the controller does not respond to the
flow in this region, therefore Rs

vw,u is very small. Above y = 5, the controlled flow profile
deviates strongly from Blasius profile compared to the uncontrolled flow. This again ties
with the low correlation between vw and u at y = 6.

The effect of the control action on the spatial development of the boundary layer is
further investigated by examining the boundary layer thickness δ (defined as the location
of 0.99U∞), the Reynolds number based on momentum thickness Reθ and the shape
factor H, which are plotted in figure 13. In the control region, both δ and Reθ increase,
i.e. the boundary layer is thickened by the control action. This is expected since the
current controller imparts a positive net mass flow rate and it is known that uniform
blowing increases the boundary layer thickness (Kametani & Fukagata 2011; Kametani
et al. 2015; Stroh et al. 2016). Note that δ starts to increase before the control slot
is reached, and this is due to the upstream effect of the pressure gradient induced by
the actuation, as will be discussed below. The shape factor H is also increased above the
control slot, in agreement with the findings from uniform blowing (Kametani & Fukagata
2011; Kametani et al. 2015).
The effect of control action extends downstream region of the control slot. The shape

factor H gradually recovers and approaches the value of the uncontrolled flow. At the
exit of the domain, H ≈ 1.5 for both flows. At the moderate values of Reθ shown in
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Figure 12: Time-averaged (over one period) correlation coefficient between control
velocity over the whole control region and instantaneous streamwise velocity at various
wall-normal locations over the whole control region.
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Figure 13: Effect of optimal control on spatial development of the boundary layer: top,
boundary layer thickness δ; middle, Reynolds number based on momentum thickness
Reθ; bottom, shape factor H. Solid line, uncontrolled flow; dashed line, controlled flow.
In (a) the shaded area denotes the region where the cost function is defined.

the middle figure (less than 1000), H depends on the history of transition, Schlatter &
Orlu (2012). Although transition in the present work is due to interacting modes in the
free-stream (and not due to tripping at the wall), the value at the exit is within the range
of values reported in Schlatter & Orlu (2012). Note also the constant negative shift of
Reθ plot for the controlled flow downstream of the slot; this is very similar to the shift
reported in Stroh et al. (2016) for uniform blowing.
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Figure 14: Variation of mean wall pressure.

3.3.2. Pressure distribution

Figure 14 shows the variation of the mean wall pressure. The mean pressure changes
significantly near the entrance and the exit of the control slot. The time-average x-
momentum equation at the wall can be written as,

∂p

∂x

∣

∣

∣

∣

w

=
1

Re

∂2u

∂y2

∣

∣

∣

∣

w

− vw
∂u

∂y

∣

∣

∣

∣

w

− v′w
∂u′

∂y

∣

∣

∣

∣

w

(3.3)

where the overbar denotes the average in time and the spanwise direction (z) and the
prime (′) denotes the fluctuation. Upstream and downstream of the control slot the
pressure increases in the streamwise direction, i.e. there is an adverse pressure gradient
(APG). This is because at these places vw = 0 and ∂2u/∂y2|w > 0. The same is reported
by Park & Choi (1999), who applied uniform blowing to a turbulent boundary layer.
The presence of the adverse pressure gradient upstream of the slot explains the upsteam
effect of the control action mentioned earlier. Above the slot, vw (∂u/∂y) is always positive
because vw > 0 as shown in figure 10. Our computations reveal that the third term in
the right hand side of equation (3.3) is much smaller than the second term, and therefore
can be neglected. ∂2u/∂y2|w is positive above the control slot and its magnitude is
comparable to that of −vw (∂u/∂y). Therefore the sign of the pressure gradient depends
on the relative size of these two terms. In the work of Park & Choi (1999), the viscous term
was much smaller as they used relatively large uniform blowing velocity, consequently
they had favourable pressure gradient (FPG) over the entire control slot. In the present
case, as seen in figure 14, the pressure gradient is initially favourable, and is followed by
a weak adverse pressure gradient, starting from about x = 1100, which is the location
where vw is decreasing to the local minimum (figure 10). After x = 1200, the pressure
starts to decrease again as vw keeps increasing. Near the exit of the domain, there is a
small deviation of pressure from 0, probably due to the effect of the convective outlet
boundary condition.

3.3.3. Turbulent profiles

In this section, the control effect on second order turbulent statistics is examined.
Figure 15 shows the rms profiles of the three velocity fluctuations at the same streamwise
locations. The variables take physical values (first row), or are expressed in wall units
based on local uncontrolled (second row) or case-specific, local friction velocity (third
row).
In the uncontrolled flow, the wall-normal location for maximum urms gradually reduces

from y = 1.7 (0.135δ) at x = 1075 to y = 1.54 (0.07δ). This is due to the fact that
the transition process is initiated at the edge of the boundary layer and progressively
penetrates inside the boundary layer, as already mentioned. In the controlled case, the
values of urms are reduced close to the wall (within the region where the cost function
is defined) at all three locations; the reduction is largest at x = 1075. Further away
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Figure 15: Root mean square of the velocity fluctuations profile at three locations: first
column, x = 1075; second column, x = 1130; third column, x = 1250. First row, physical
variables; second row, variables in wall units based on local uncontrolled friction velocity;
third row, variables in wall unites based on case-specific, local friction velocity. ◦, urms, ⋄,
vrms, ×, wrms. Solid line, uncontrolled flow; dashed line, controlled flow. The dotted line
in the top row represents the extent of the region in which the cost function is defined.

from the wall however, the values are increased, and more so in the two downstream
locations. When normalised by the case-specific (i.e. actual) local friction velocity, u+case

rms

is increased all along the wall-normal direction, expect near the wall at x = 1075. The
enhanced u+case

rms is due to the fact that the friction velocity is decreased, as will be
demonstrated later.
The wall-normal turbulence intensity is positive at the wall due to the unsteady

actuation velocity. At the first location x = 1075, wrms is slightly decreased close to
the wall while away from the wall slightly increased. vrms is only increased at peak.
At two downstream locations, x = 1130 and x = 1250, the behaviour of vrms and
wrms is different compared to the upstream point. All values increase in the wall-normal
direction, which is also found in uniform blowing (Sumitani & Kasagi 1995). The overall
effect is that in the right half of the slot turbulence intensity increases, and more so as
the downstream end of the slot is approached.
Differences are also found in the profiles of the Reynolds and viscous shear stresses,
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Figure 16: Reynolds stress −u′v′
+nc

(◦) and viscous shear stress du/dy+nc (⋄) profiles
at three locations: (a) x = 1075; (b) x = 1130; (c) x = 1250. Solid line, uncontrolled flow;
dashed line, controlled flow. All quantities non-dimensionalized by the local uncontrolled
friction velocity.

shown in figure 16. To facilitate comparison, the variables are expressed in wall units
based on the local friction velocity of the uncontrolled flow. At all three locations, the
viscous part du/dy+nc is decreased close to the wall, which is a direct result of the
reduction of the friction velocity. The behaviour of Reynolds stress is different at the

first location compared to the other two locations. At x = 1075, −u′v′
+nc

is reduced

close to the wall. At x = 1130, the controlled −u′v′
+nc

is very close to that of the
uncontrolled flow in the near wall region, while further downstream at x = 1250, it is

increased in the controlled case. Away from the wall, −u′v′
+nc

is increased in all three

locations. The behaviour of −u′v′
+nc

at x = 1075, i.e. decreased close to the wall and
increased away from the wall, is also observed when using a blowing-only opposition

control by Pamiès et al. (2007). On the other hand −u′v′
+nc

at x = 1130 and x = 1250
is similar to those obtained from uniform blowing (Kametani & Fukagata 2011; Pamiès
et al. 2007).

3.4. Control effect downstream of the slot

To investigate how the control effect propagates, we divide the distance between the
downstream end of the control slot until the end of the computational domain in small
segments of length ∆x = 50. The variation of E with time is computed in each segment
(in the wall normal and spanwise directions the segment dimensions are 0 < y < 5,
0 < z < 90 respectively). The results are displayed in figure 17. E is reduced immediately
at the first segment x = 1300− 1350 and as the control effect propagates, reduction also
appears downstream at later time instants. This shows that the control effect does affect
the flow downstream of actuation slot. In fact, the flow energy is reduced right until the
end of the domain.
The propagation of the control effect can be seen in figure 18, where the evolution of

the energy reduction rate for each segment, defined as r(t) = (Enc − Ec) /Enc, is plotted.
The reduction rate varies from an average of 60% in the first segment x = 1300 − 1350
(closest to the exit of control slot) to an average of about 30% near the end of the domain
(furthest from the control slot). On the right a space-time diagram of the point at which
|r| > 3% is shown. The linear trend suggests that the actuation effect propagates at
an average speed of 0.74U∞, which is very close to the convection speed of the streaks
upstream as mentioned before.
After the control effect has reached the end of the domain and the flow has stabilised,

the time-average (between 32T and 48T ) energy reduction rate downstream of the control
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Figure 17: Evolution of energy downstream of the control slot. Each subplot corresponds
to a segment of length ∆x = 50; the start and end positions are indicated at the top.
Solid line, uncontrolled case; dashed line, controlled case.

slot can be computed. The results are shown in figure 19, and as expected, the energy
reduction rate decreases further downstream. The computational domain is not big
enough however to capture the full recovery to the uncontrolled state.

Attention is turned to the velocity profiles. Figure 20 presents the mean velocity profiles
at several downstream locations. The change in u in the near wall region (y < 2) is small
compared to the velocity profile above the control slots in figure 11. Above y = 2, there
is large deviation of the controlled from the uncontrolled flow, but the difference becomes
smaller further downstream. This is because the cost function is defined up to x = 1350.
There is a small difference of the profile slope at the wall, so we expect a small reduction
on drag. The controlled u is reduced above the control slot (figure 11) and downstream
of the control slot (figure 20). The positive actuation introduces additional mass into the
system and it is found that the controlled v is increased above the control slot to satisfy
continuity.
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Figure 18: (a) energy reduction rate r = (Enc − Ec) /Enc as a function of time; line
color from dark to light corresponds to increasing starting x of the 10 segments of figure
17. (b) space-time diagram of the point when |r| > 3% (indicated by a dash horizontal
line in (a)).
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Figure 19: Mean energy reduction rate (averaged from 32T to 48T ) against distance x
downstream of the control slot.

3.5. Effect on skin friction

The time- and spanwise-averaged skin friction profile is shown in figure 21. It can be
seen that the controlled skin friction starts to deviate from the uncontrolled line upstream
of the control region, which is also observed in other controlled flows (Park & Choi 1999;
Pamiès et al. 2007; Kim & Sung 2006; Kametani et al. 2015). This is also in agreement
with the mean pressure field shown in figure 14, where p̄ at wall starts to increase from
around x = 900. The controlled Cf,c reduces quickly inside the control slot and reaches
the laminar level at around x = 1130. Between x = 1130 to 1200, Cf,c increases along
the streamwise direction, at a rate similar rate to that of the uncontrolled flow. After
x = 1200, the controlled Cf,c is almost constant until the end of the control region. At
this location the actuation velocity vw increases linearly to counteract the transition.
The local drag reduction rate RCf

= (Cf,nc − Cf,c)/Cf,nc is also shown at the bottom
subplot. Inside the control region, RCf

is between 45% to 60%.
Downstream of the control slot, Cf,c recovers very quickly, but remains at a lower value

than that of the uncontrolled flow up to the end of the domain. In terms of the average
boundary layer thickness δc of the uncontrolled flow, the distance between the end of
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Figure 20: Mean velocity profile. Solid line, uncontrolled flow; dashed line, controlled
flow; dotted line, Blasius solution. Streamwise axis shows the downstream location of
each profile.

(a)

200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7
10 -3

Turbulent flow

Laminar flow

(b)

0 200 400 600 800 1000 1200 1400 1600 1800

0

0.2

0.4

0.6

Figure 21: Mean skin friction profiles (a) and corresponding local drag reduction
rate RCf

= (Cf,nc − Cf,c)/Cf,nc (b). Solid line, optimal controlled flow; dashed line,
uncontrolled flow; dash-dot line, controlled flow using repeated vw.



Nonlinear optimal control of transition 23

0 16T 32T 48T 64T 80T 96T 112T

200

400

600

800

1000

Figure 22: Evolution of the flow energy defined in the control box. Black solid line,
uncontrolled flow; thick dashed line, optimal controlled flow; thin dashed line, controlled
flow using repeated application of vw.

the control slot and the exit of the computational domain is about 25δc. The average
drag reduction rate in this region is 10%, with a maximum RCf

of 14.5% at 7δc and a
minimum RCf

of 7.5% at the exit.

These results have similarities to those of Stroh et al. (2016). The effect of uniform
blowing was also extended significantly downstream of the control slot until the exit of
the domain, as in our case. This is interesting because in our case turbulence is sustained
by instabilities that are initiated inside the boundary layer and not close to the wall.

It has been shown that the optimal control velocity is repeatable in a time scale
equivalent to the period of the slow mode (figure 10). The Cf,c from optimal control
shown in figure 21 (black dashed line) was averaged from t = 16T to 48T , which is
limited by the heavy computational cost for this control method. Although our results
are in agreement with those of Stroh et al. (2016) as mentioned above, we performed
an additional check to confirm that the drag reduction observed downstream of the slot
is indeed robust, and it is not an artifact of the short time-averaging window. To this
end, the temporal and spatial evolution of the optimal control velocity was stored, and
then applied repeatedly for 64T (equivalent to 4 periods of the slow mode and two flow
through times).

The evolution of flow energy in the same control box is shown in figure 22. The vertical
dotted lines indicate repeated application of vw, i.e. the optimal control velocity from
16T to 48T was repeated from 48T to 80T and 80T to 112T . The figure demonstrates
that the repeated application of vw is able to maintain the flow energy at a level very
similar to that obtained from piece-wise optimisation. The controlled E also has a clearly
periodic behaviour over the time, as expected.

The long time-averaged Cf,lc from 16T to 112T (i.e. including both piece-wise optimal
control and control using repeated vw profiles) is shown in figure 21 by the dash-dot line.
It is somewhat surprising that in the control slot, Cf,lc is slightly lower than the Cf,c

from the receding horizon control. It must be borne in mind however that the objective
of the optimal control is to minimise the flow energy, and not Cf . Most importantly, the
results demonstrate that in the downstream region, the long time-averaged Cf,lc remains
reduced and has a very similar value as the Cf,c from receding horizon control.
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Figure 23: Time history of control velocity vw(x = 1080, z = 30) (a) and instantaneous
streamwise velocity u(x = 1080, y = 2.5, z = 30) (b). Solid line, uncontrolled u; dashed
line, controlled u; thin horizontal solid line, time averaged value over each optimisation
interval.

3.6. Correlation between actuation and the flow field

In the present work, the control velocity distribution was obtained solely based on the
objective function and the governing equations. In this section we explore the relationship
between the optimal actuation and the flow above the slot.
Figures 23 shows the time history of vw and u at x = 1080, which is close to the inlet

of the control slot. Velocity u is recorded at a distance y = 2.5 from the wall. The time is
from 4T − 36T , which covers two complete periods of the slow inlet mode. It was shown
earlier that at this location the flow contains distorted streaks. The control velocity vw
and both uncontrolled and controlled u exhibit periodic behaviour as a function of time
and it is clearly that they are correlated.
In order to explore quantitatively the relationship between the optimal actuation

and the flow above the slot over time, we compute the two-point correlation coefficient
between vw(x, z) and a general variable of interest φ(x, y, z); in the present case φ(x, y, z)
represents velocities u, v. The coefficient is defined as,

Rt
vw,φ(x, z; y) =

〈(vw − 〈vw〉t) (φ− vw − 〈φ〉t)〉t
[

〈(vw − 〈vw〉t)
2
〉t〈(φ− 〈φ〉t)

2
〉t

]1/2
(3.4)

.
The superscript t denotes averaging in time from 4T to 36T , and the correlation is

computed using data from two periods of time, i.e. 32T. Note that due to the finite
value of T , velocity vw decreases over time within each interval and rapidly increases at
the beginning of next interval. On the other hand the velocity field is relatively smooth
compared to vw. The correlation coefficients are computed using data from each time
instant from 4T to 36T and also from data averaged within each optimisation interval
(shown by horizontal line in figure 23 ).
Before examining the correlation between the control velocity and flow field above it,

we first recall in figure 24 the flow properties corresponding to an idealized vortex pair.
The largest (smallest) velocity fluctuations u′ (v′) at the height of the vortex center
occurs in-between the vortices, while at the centre of the vortex they are zero. Note also
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that u′ and v′ are negatively correlated (leading to ejections and sweeps events). The
spanwise variation of the streamwise shear stress τx is consistent with u′. On the other
hand, the largest τz is directly beneath the vortex center and therefore is offset from the
peak u′ position by a quarter of the average streak spacing (Naguib et al. 2010).
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Figure 24: Sketch of a pair of streamwise vortices and corresponding variation in velocity
fluctuations (u′, v′) at the height of vortex center and wall shear stresses τ ′x, τ

′
z (Naguib

et al. 2010).

Figure 25 shows contour of Rt
vw,u over the slot for u and v extracted at y = 2.5.

The correlation was computed using averaged data from 4T to 36T ( correlation with
non-averaged data has similar distribution, but reduced value). When averaged data are
used, the sample is much smaller (there is one sample per interval, corresponding to the
horizontal line of figure 23). It can be seen that for u, there is strong positive correlation
over the entire slot; it is only towards the downstream end where some patches with
negative correlation appear. Rt

vw,u has a strong spatial dependence that weakens along
the streamwise direction while the correlation of Rt

vw,v remains more uniform over the
entire slot. The values of Rt

vw,v are negative in most part of control region, indicative of
opposition control.

In order to remove the effect of the transient behavior at the beginning of each interval
due to the instability of the adjoint equations, we recomputed the correlations using the
non-averaged data but discarding the first 150 time steps (equivalent to t = 12) in each
optimisation interval. We further process the correlation over the entire slot and produce
a (smoothed-out) normalised histogram of the correlation distribution. Figure 26 shows
the histogram of Rt

vw,u for non-averaged data (denoted by ’all’) and non-averaged data
with first 150 time steps removed (denoted by ’partial’) for various wall-normal locations.
The results show that the transient in vw has small effect on the correlation distribution.
There is positive correlation between vw and u′ at all four locations and Rt

vw,u is larger
at y = 2.5 and y = 4 than at y = 1 and y = 5.6. This wall-normal dependence is very
similar to Rs

vw,u (figure 12). The histogram peaks at average Rs
vw,u ≈ 0.3− 0.35.

Figure 27 shows the distribution of Rt
vw,v at the same four wall normal locations. The

correlation is negative at 3 locations, apart from y = 1 where it is slightly positive. This
is because this location is close to the wall and v′ is strongly affected by the actuation.



26 D. Xiao and G. Papadakis

(a) (b)

.

Figure 25: Contour of correlation between actuation velocity vw(x, z) and averaged data;
(a) instantaneous streamwise velocity u(x, y = 2.5, z), (b) instantaneous wall normal
velocity v(x, y = 4, z).
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Figure 26: Distribution of the correlation coefficient Rt
vw,u between vw(x, z) and u(x, y, z)

at different wall-normal locations.
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Figure 27: Distribution of the correlation coefficient Rt
vw,v between vw(x, z) and v(x, y, z)

at different wall-normal locations.

As for Rt
vw,u, removing the transient data results in slight changes. The histogram peaks

at average Rs
vw,v ≈ −0.10.

The standard opposition control (Choi et al. 1994) imposes the opposite of the wall-
normal velocity at a distance away from the wall (detection plane) with the aim to
counteract the up-and-down motion induced by the vortex. In this case the correlation
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Figure 28: Scatter plot of time-average (over one interval) vw at x = 1071, z = 63 and
u at x = 1071, y = 2.5, z = 63, at this location Rt

vw,u = 0.92.

at the detection plane is Rs
vw,v = −1. The predicted negative sign of the Rs

vw,v correlation
in our case indicates that opposition control is at play, but the small value of the
correlation indicates that it significantly deviates from the standard opposition control.
The correlation is positive with the streamwise velocity, so the optimal wall actuation is
broadly consistent with the streamwise vortex model shown in figure 24.

Recall that the current actuation has mean positive velocity (figure 10). Figure 28
presents a scatter plot of vw and u from averaged data at one particular location with
averaged Rt

vw,u = 0.92 as an example. A positive Rt
vw,u implies that a larger positive

vw is applied to area with positive u′, while smaller positive vw is applied to area with
negative u′. Therefore the actuation is closer to the blowing-only opposition control of
Pamiès et al. (2007), where the suction part from the opposition control is removed.
Chang et al. (2002) showed that the effectiveness of standard opposition control reduces
as Reynolds number increases in channel flow. Pamiès et al. (2007) demonstrated the
blowing-only opposition control can improve drag reduction efficiency when compared to
the classic opposition control as well as uniform blowing with same mean control velocity.
Another similar example was the recent experimental work of Abbassi et al. (2017), in
which wall-normal jet flow was injected in regions where high-speed streamwise velocity
fluctuations were presented. The jet operated in the blowing-only mode.

In section 3.3 it was found that the turbulent profiles (r.m.s. of velocity fluctuations,
Reynolds stress) have different behaviour over the control slot. In particular, the con-
trolled flow at x = 1075 is different from that at x = 1130 and x = 1275. In figure
25 is can be seen Rt

vw,u is larger in the upstream side of the control slot, especially
upstream of x = 1100. As discussed above, this indicates the control action is similar to
blowing-only opposition control in this region. This is supported by the behaviour of the
controlled turbulent profiles at x = 1075 is very similar to those obtained by blowing-only
opposition control (Pamiès et al. 2007). The blowing-only opposition control is designed
to counteract the sweep events only. Wallace (2016) reported that close to the wall, for
y+ < 15, the sweep events contribute considerably more to the total Reynolds stress than

the ejection events. In figure 16, at x = 1075 −u′v′
+nc

is largely reduced near the wall
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at x = 1075. There is very small reduction in −u′v′
+nc

at x = 1130 while at x = 1250
an increase is observed. This behavior agrees with the spatial distribution of Rt

vw,u.
In the rear part of the control slot when Rt

vw,u is weak, the mean positive actuation
indicates the controller might work in a similar way as the uniform blowing. This is also
proved by the behaviour of turbulent statistics in this region.
The change of the control mechanism over the slot is related to the flow activity in

the control region. As shown in section 3.1, near the inlet of the control region, there are
mainly distorted streaks entering from upstream and the controller tends to counteract
the motion of the streaks (vortices) using blowing-only opposition control. This is effective
as the flow energy initially reduces along x (figure 8). As mentioned, the transition still
occurs in the controlled flow after x = 1100 and there are turbulent structures, but
with reduced strength. In this region (x > 1100), the optimal results reveal that the best
solution to control the flow is to impose strong positive actuation. Although the controlled
flow properties are similar to those obtained from uniform blowing, the distribution of
optimal vw in this region is not uniform. In Xiao & Papadakis (2017) it was shown that
a variable vw is more efficient in reducing the objective function than uniform blowing
in a single interval. The same is also demonstrated in the receding horizon control.

4. Conclusions

In the present work, a nonlinear optimal control strategy is applied in a receding
horizon framework in order to suppress bypass transition in a zero-pressure-gradient flat-
plate boundary layer. The transition process is triggered by a pair of free stream vortical
perturbations, which consist of two continuous Orr-Sommerfeld and Squire modes. The
optimal control problem is solved using the Lagrange multiplier technique. The objective
is to find the optimal blowing and suction velocity that results in the minimum of the
weighted sum of energy of velocity perturbations around the Blasius profile and the
actuation energy. The control slot is located in the late transition region, where turbulent
spots break down, grow and merge into turbulence. Using the receding horizon approach,
the control is applied for longer time so that time-averaged statistics can be examined in
order to gain more insight into the control action.
The results show that the controller is very effective in reducing the objective function.

The uncontrolled flow energy increases monotonically in the streamwise direction as a
result of the transition process taking place over the control slot. On the other hand,
the controlled flow energy initially decreases along the streamwise direction near the
beginning of the control slot, then increases towards the rear, but with a reduced strength.
This spatial dependence results from the competition between the control action and the
transition activity. The optimal control velocity has a positive net mass flow rate and its
spatial distribution is found to reflect the transition process.

The control performance is further investigated through time-averaged statistics. Over
the control slot, the controller does its duty, and brings the mean velocity towards the
Blasius profile. The control effect propagates downstream of the slot up, right up to the
end of the computational domain. An average drag reduction of 55% and 10% is achieved
over the control slot and in the downstream region, respectively.
The correlations between the optimal control velocity and various flow properties above

the slot are also examined. It is found that the actuation velocity is positively correlated
with instantaneous streamwise velocity, especially near the upstream half of the control
slot. This implies that the controller works similar to the blowing-only opposition control
near the beginning of the slot, while near the rear side of the control region, the controller
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works similar to uniform blowing. This is supported by the second-order statistics of the
controlled flow (r.m.s. and Reynolds stress).
The present nonlinear optimal control strategy has been shown to be effective in

suppressing bypass transition triggered by a pair of vortical perturbations in the free
stream. Without any constraint on the mass flow rate of the actuation, the optimal
control law results in a positive net mass flow rate. A natural extension of this work
would be to enforce zero mass flow rate constraint, which is easier to implement in
practice.
Application to transition triggered by a prescribed turbulence spectrum in the free

stream, rather than just two vortical modes, could be also a next step. It is expected
that the control strategy will be equally effective in suppressing the flow energy. In the
present work, control was applied in the region where nonlinearities have fully developed
and the flow is transitioning. This means that the memory effect of the inlet conditions
is significantly attenuated, but not completely eliminated, mainly because the Reynolds
number based on momentum thickness Reθ is moderate (less than 1000, see figure 13(b)).
Schlatter & Orlu (2012) found that numerical simulation of turbulent boundary layers
is sensitive to inflow condition for Reθ < 1000. The fundamental mechanism depicted in
figure 3 will however remain the same, and we expect that the main conclusions of this
study will also remain valid. Simulations with full turbulence spectrum are required in
order to confirm that this is indeed the case.
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