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Abstract

This thesis focuses on the approximate message passing (AMP) based al-

gorithms for solving compressed sensing problems and provides corresponding

modifications and state evolution analyses based on the following situations.

We consider the correlated distributed compressed sensing (C-DCS) model,

in which multiple measurement instances are included. This model allows cor-

relation between measurement matrices and signals across different measure-

ment instances. We modified the AMP algorithm for the C-DCS model such

that it can handle correlated matrices and correlated signals. Correctness

justification is provided for our proposed algorithm for two special cases: dis-

tributed compressed sensing (DCS) and multiple measurement vectors (MMV)

models. Simulations show that the empirical results almost perfectly match

the theoretical predictions achieved by state evolution.

We consider a practical signal transmission/receiving application with fixed

energy budget and assume that the thermal noise is the dominant noise source.

Under such conditions, we observe that the overall signal-to-noise ratio (SNR)

per measurement decreases quadratically with the increase of the number of

measurements. By applying the AMP algorithm and state evolution analysis,

we are able to provide an optimal number of measurements to minimize the

mean squared error of the estimate which is different from the common wisdom
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where more measurements often mean a better performance. Numerical results

justify the correctness of our analysis.

The performance of AMP may severely deteriorate when the measurement

matrix is not a standard Gaussian random matrix. We propose an improved

AMP (IAMP) algorithm that works better for non i.i.d. Gaussian random

matrices when the correlations between elements of the measurement matrix

deviate from those of the standard Gaussian. The derivation is based on a

modification of the message passing mechanism that removes the conditional

independence assumption. Examples are provided to demonstrate the per-

formance improvement of IAMP where both a particularly designed matrix

and a matrix from real applications are used.
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Chapter 1

Introduction

1.1 Motivation of Compressed Sensing

In the traditional digital signal processing field, the Nyquist sampling theorem

plays as the fundamental role which says in order to capture all the information

of a finite bandwidth continuous-time signal, the minimum sampling rate must

at least twice (×2) the highest frequency component of the continuous-time

signal. Otherwise, aliasing will occur when converting the digital sequence back

to the continuous-time domain. Similarly, in linear algebra, the fundamental

rule tells us that at least n independent measurements is required in order to

ensure the reconstruction of an n-dimensional signal. Otherwise, the solution

is not unique. These principles underlie most devices of current technology,

such as analogue to digital conversion and medical imaging processing [2].

Compressed sensing (CS) is a novel theory which was introduced in [3, 4],

providing a new data acquisition approach which breaks the limitations of

above principles under the assumption that the original signal has a sparse

representation in some transform domain.

25
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Traditional compression techniques such as JPEG and MP3, firstly, require

a fully sampled sequence, then approximate the signal by only storing a small

set of the largest basis coefficients (e.g. in Fourier domain or Wavelet domain)

while setting other basis coefficients to zero. Ignoring small basis coefficients

will lose some information, but the compressed signal is still a good approxima-

tion of the original signal with a significantly reduced file size. The drawback

is that the fully sampled sequence should obey the Nyquist sampling theorem

in order to acquire full information which is sometimes a costly and difficult

measurement procedure. But at the same time, a lot of the (negligible) in-

formation will eventually be thrown away in the latter compression process,

this seems to be a waste of resources [2]. CS, alternatively, directly embeds

the compression process in the sampling stage by using a small number of

measurements to acquire the maximum amount of information from the signal

[5].

1.2 Mathematical Model of Compressed Sens-

ing

In CS, the problem is usually mathematically represented by the following

linear system:

y = Φα+w, (1.2.1)

where y ∈ Rm represents the observation, Φ ∈ Rm×n (m < n) denotes the

sensing matrix, α ∈ Rn is the unknown signal and w ∈ Rm is the additive

noise. In addition, the signal α is assumed to have a sparse representation in
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certain basis Ψ, mathematically say

α = Ψx,

where x ∈ Rn is the S-sparse representation of α in the basis of Ψ ∈ Rn×n.

We call a signal S-sparse when at most S (� n) of its coefficients are non-zero,

i.e.

‖x‖0 ≤ S,

where ‖·‖0 denotes the `0-pseudo norm which counts the number of non-zero el-

ements of x. The sparse representation assumption is reasonable because a lot

of natural signals and synthetic signals inherently have sparse representations

[6, 2], such as electrocardiogram (ECG) signals [7, 8], audio/music signals [9]

as well as image/video signals [10]. The corresponding basis might be discrete

Fourier transform (DFT) matrices, discrete cosines transform (DCT) matrices,

discrete sines transform (DST) matrices, Haar transform matrices or discrete

wavelet transform (DWT) matrices, to name a few.

Let A := ΦΨ, one can rewrite (1.2.1) as

y = Ax+w. (1.2.2)

In the rest of the thesis, the problem formula and analysis mainly focus on

(1.2.2). See Fig 1.2.1 for the intuitive representation.

The initial attempt to solve (1.2.2) for the noise free case is via `0-minimization:

minx ‖x‖0 s.t. Ax = y,



28 CHAPTER 1. INTRODUCTION

Figure 1.2.1: Sparse representation (without noise). y represents the observa-
tion, Φ is the sensing matrix, x denotes the sparse representation in the basis
Ψ and the sparsity S = 6.
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which, unfortunately, is an NP-hard problem thus there is no computation-

ally tractable algorithm currently exist to efficiently solve it. Alternative ap-

proaches should be tried either by relaxing the problem or seeking an approx-

imate answer.

1.3 Algorithms for Sparse Recovery

A number of reconstruction algorithms have been proposed during the recent

decades especially after [3, 4, 11] had been published around 2005. Most of

these algorithms can be categorized into three major classes as follows. (A

more detailed classification can be found in [5].)

1. Convex Relaxation

Algorithms in this class treat the reconstruction task as a convex op-

timization problem through linear programming (LP) [12] or quadratic

programming (QP) by replacing the `0-norm with the `1-norm. The rep-

resentative algorithms include basis pursuit (BP), BP denoising (BPDN)

[13] and least absolute shrinkage and selection operator (LASSO) [14]

and their corresponding mathematical formulas are

BP :minx ‖x‖1 s.t. Ax = y,

BPDN :minx ‖x‖1 s.t. ‖Ax− y‖2
2 ≤ εe,

LASSO :minx
1
2 ‖y −Ax‖

2
2 s.t. ‖x‖1 ≤ S,

where εe is a small positive value and S represents the number of non-

zero elements of x. BP is suitable for noise free case while BPDN and

LASSO are suitable for the noisy case. BPDN and LASSO are equivalent
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problems (for certain corresponding values of S and λ) both of which can

be solved via

BPDN/LASSO : minx
1
2 ‖y −Ax‖

2
2 + λ ‖x‖1 , (1.3.1)

where λ is a penalty parameter which controls the trade-off between

reconstruction fidelity and the sparsity level.

Other algorithms include least angle regression (LARS) [15] and Dantzig

selector [16], to name a few. The estimation performance achieved

through convex optimization usually is quite good (e.g. few measure-

ments required and low mean squared error (MSE)) at the cost of a

relatively high computational complexity compared with greedy algo-

rithms.

2. Greedy Algorithms

As its name, greedy algorithms solve the reconstruction problem iter-

ation by iteration. At each iteration, a local optimum is achieved by

minimizing a least squared error problem related with observation y and

the information of selected columns of A will be updated for the next

iteration. The process will continue until meeting some stopping criteria,

such as the maximum number of iterations, or the MSE of the current

estimation has already been smaller than a required value. Most greedy

algorithms are easy to implement and have low computational complexity

for each iteration, thus usually provide high speed reconstruction. The

representative algorithms include orthogonal matching pursuit (OMP)

[17], regularized OMP [18], stagewise OMP (StOMP) [19], subspace pur-
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suit (SP) [20], compressive sampling matching pursuit (CoSaMP) [21]

and gradient pursuits [22], etc. Unfortunately, in most situations, the

greedy algorithms will not provide a globally optimal solution because

the greedy choices are made based on a local criterion.

3. Iterative Thresholding Algorithms

In some articles, the iterative thresholding algorithms are considered as

a sub-category of greedy algorithms. Here we list these algorithms sepa-

rately from above because these iterative thresholding algorithms usually

do not need to update the information of selected columns ofA. Instead,

they estimate the signal through a noise corrupted version by soft or

hard thresholding functions [23, 24]. In addition, the accelerated itera-

tive thresholding algorithms such as fast iterative shrinkage-thresholding

algorithm (FISTA) [25] and Nesterov [26] are eventually fast convex op-

timization solvers for the LASSO problem [27].

Recently, a new proposed algorithm which is called approximate message pass-

ing (AMP) [1, 28] has triggered a lot of attention in the CS field. It has a very

similar structure as iterative soft-thresholding (IST) algorithm but with an

additional term to the residual part at each iteration:

IST :xt+1 =η
(
ATrt + xt

)
,

rt+1 =y −Axt+1,

AMP :xt+1 =η
(
ATrt + xt

)
,

rt+1 =y −Axt+1 + 1
δ

〈
η′
(
ATrt + xt

)〉
rt,
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Figure 1.3.1: Phase transition curves of IST (with non-optimally tuned thresh-
old value), `1 minimization and AMP algorithms [1]

where η (·) is an element-wise operator (e.g. a soft-thresholding function),

δ = m
n
> 0 is the undersampling ratio (m is the number of measurements and

n is the dimension of xt), and rt+1 represents the residual and the additional

term
1
δ

〈
η′
(
ATrt + xt

)〉
rt, (1.3.2)

is usually referred to as the Onsager term.

Here we give a short description of the effect of the Onsager term. We start

with the IST algorithm. The input of the η (x̃t) function can be decoupled

into the superposition of the ground truth signal x and the equivalent noise

wt
e (see Chapter 2 for the derivation):

x̃t = x+wt
e,

wt
e =

(
ATA− I

) (
x− xt

)
+ATw. (1.3.3)
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By assuming the terms of
(
ATA− I

)
, (x− xt) and ATw are mutually inde-

pendent and the elements of each of them are i.i.d. (or approximately i.i.d.),

the statistics of wt
e can be easily and well estimated. The problem of IST

is that after the first iteration, the terms of
(
ATA− I

)
and (x− xt) will

be dependent (the estimation of xt depends on A) and this correlation can-

not be ignored [29]. Thus, the statistics of wt
e obtained based on (1.3.3) and

the aforementioned independence assumption are no longer precise. In this

situation, the threshold value of the soft-thresholding function η (·) of IST is

not optimally tuned, which affects the performance. On the other hand, the

Onsager term of AMP plays the critical role which can asymptotically cancel

these correlations, keeping that mutual independence assumption valid across

iterations. It is proved in [1, 28] that for i.i.d Gaussian measurement matri-

ces by adding this Onsager term, the performance of AMP dramatically out-

performed IST (with non-optimally tuned threshold value) via substantially

improving the sparsity-undersampling trade-off (the phase transition curve)

see Fig 1.3.1 for illustration. For the optimally tuned IST algorithm, which

provably solves the LASSO problem as discussed in [27], should have the same

sparsity-undersampling trade-off of AMP but with a significantly larger num-

ber of iterations to achieve convergence. (Notice: the sparsity-undersampling

trade-off or the phase transition curve of an algorithm describes the rela-

tionship between the undersampling ratio δ and the normalized sparsity level

ρ := S
m
. It provides the information that for a given sparsity level, the min-

imum number of measurements required in order to successfully reconstruct

the signal with high probability. The theoretical results for AMP are for the

linear sparsity, constant undersampling ratio regime (i.e. S = O(n)), whereas

the original compressed sensing papers assume a sub-linear sparsity regime
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(i.e. S = o (n)). A detailed explanation of the phase transition curve will be

given in Chapter 2.)

The advantage of AMP algorithm is that the sparsity-undersampling trade-

off (the phase transition curve) achieved for the i.i.d Gaussian matrices match-

ing the theoretical curve of LP-based reconstruction, which is the best one

currently known [1]. At the same time, AMP is an iterative algorithm which

has low computational complexity per iteration and fast convergence speed

with i.i.d. Gaussian matrices. Moreover, the performance of AMP algorithm

can be predicted via a simple scalar iteration which is called state evolution

(SE) rather than restricted isometry property (RIP) (listed below). AMP is

essentially suitable for large-scale applications which traditional LP-based al-

gorithms may have difficulty to handle.

One drawback of AMP algorithm is that it is designed for a specific class

of measurement matrices (i.i.d. Gaussian/sub-Gaussian). The performance

of AMP may severely deteriorate if the measurement matrix is significantly

different from the standard Gaussian random matrix, whereas convex opti-

mization based algorithms such as (optimally tuned) IST/FISTA work with

general matrices.

A bunch of AMP related algorithms have been proposed after the first AMP

paper [1] had been published since 2009. Typical ones of the modified AMP

algorithms include generalized AMP (GAMP) [30], swept AMP (SwAMP) [31]

expectation-maximization Gaussian-mixture AMP (EM-GM-AMP) [32], com-

plex AMP (CAMP) [33] and vector AMP (VAMP) [34], etc. The performance

of AMP has been rigorously analysed in [29] in the limit for large dimensions

and in [35] for large but finite dimensions. The applications directly related

with AMP analysis include sparse superposition codes [36] and spatial coupling
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[37, 38].

1.4 Restricted Isometry Property

The reconstruction performances of CS algorithms largely depend on the struc-

ture of the measurement matrix A. The most popular tool used for judging

whether the current matrix A is a good choice for CS problems is called re-

stricted isometry property (RIP), which was first introduced in [3] to analyse

the stability and recoverability of CS [39].

Definition 1.4.1 (Restricted Isometry Property [3]). The matrix A has the

restricted isometry property (RIP) of order S if there exists a constant 0 <

δS < 1 such that

(1− δS) ‖x‖2
2 ≤ ‖Ax‖

2
x ≤ (1 + δS) ‖x‖2

2 ,

or (1− δS) ≤ ‖Ax‖
2
x

‖x‖2
2
≤ (1 + δS)

for all S-sparse vectors x.

In linear algebra, the RIP characterizes matrices which are nearly orthonor-

mal, at least when operating on sparse vectors and a smaller δS usually repre-

sents a better RIP for the current sparsity value S. The problem is that for a

given large matrix A, the RIP condition is usually difficult to check because

the computation of these constants (δS) is strongly NP-hard [40] and is hard

to approximate as well [41]. (It has been shown that for many random ma-

trices such as random Gaussian, Bernoulli and partial Fourier matrices, the

RIP condition is satisfied with high probability with number of measurements

nearly linear in the sparsity level [42].)
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1.5 Applications of Compressed Sensing

Due to the small amount of measurements required of CS and sparse represen-

tations of signals, it has lots of potential applications in various kinds of fields

include undersampling [1, 43], imaging and localization [44, 45, 46], sparse

learning [47] and denoising [48], to name a few. Some specific examples are as

follows:

1. Medical imaging such as ECG [49], magnetic resonance imaging (MRI)

[50, 51] and computerized tomography (CT) [52]. MRI scan requires the

patents to lie on a flat bed and keep as still as possible during the scan

which usually lasts 15 to 90 minutes [53]. The children and patients

suffer from attention deficit hyperactivity disorder (ADHD) may have

difficulty to meet the requirement of long time stillness. CT scan contains

x-ray radiation, reducing the scan time will reduce the radiation dosage

absorbed by the body.

2. Wireless sensor networks (WSNs) [54, 55]. Reducing the number of mea-

surements means reducing the energy consumption of wireless sensors for

both data acquisition and transmission. As most of the wireless sensors

are battery powered, it will further reduce the labour cost for battery

replacement.

3. Compressive radio detecting and ranging (RADAR) [56, 44]. The RADAR

systems designed based on CS framework can avoid the using of pulse

compression matched filter at the receiver thus simplify the hardware

design [44, 5]. Analysis and simulation results in [44, 57] demonstrate

that CS techniques can help to improve the resolution of the classical
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RADAR systems of which the resolution is restricted by transmitted

signal’s bandwidth and time-frequency uncertainty principles.

4. Machine learning such as multi-class classification [58] and feature se-

lection [59]. This kind of application requires the appropriate design of

matrix A in (1.2.2) based on the given training data set, and utilize the

inherent sparse property of the coefficient vector x. Taking the clas-

sification problem as an example, one can separate the columns of A

into different classes by adding labels. When a new data y (e.g. an

image) comes in, by applying a proper CS algorithm, an estimate of x

will be achieved. By finding the largest magnitude of elements inside the

estimated signal, one is able to label the new data.

1.6 Main Contributions

This thesis focuses on AMP based algorithms and the main contributions are

as follows:

1. We extend the AMP algorithm to the correlated distributed compressed

sensing (C-DCS) cases, i.e. yk = Akxk + wk ∀k ∈ {1, 2, ..., K}. This

model can universally tackle the distributed compressed sensing (DCS),

multiple measurement vectors (MMV) and the situations between these

two special cases. We consider the measurement matrices Ak’s and un-

known signals xk’s have the same dimensions and allow correlations ex-

ist in both Ak’s and xk’s across different measurement instances. By

grouping the correlated elements from different measurement instances

together to form the block signal and block matrix, we are able to explic-
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itly outline the matrices/signals correlation effects and apply SE tech-

nique to predict the reconstruction performance. Correctness justifica-

tions for the DCS and MMV cases are given. For the general cases, due

to the complexity and difficulty of applying the Gaussian conditional

lemma, the rigorous analysis is not provided but simulation results show

the probability of the correctness. Details are provided in Chapter 3.

2. We consider a practical signal transmission/receiving application with

fixed energy budget such as radar/sonar. This kind of system can be

modelled by linear equations as (1.2.2) with the assumption that the

total energy can be allocated to signals is fixed and thermal noise is

the dominant noise source. Under this circumstances, the signal energy

per measurement decreases linearly and the noise energy per measure-

ment increases approximately linearly with the increase of the number of

measurements. Thus the signal-to-noise ratio (SNR) decreases quadrati-

cally with the number of measurements. By applying the state evolution

technique for AMP algorithm, we are able to find an optimal number

of measurements required to achieve the minimum mean squared error

(MMSE) metric. We consider three typical signal models: Gaussian,

Bernoulli-Gaussian (BG) and least-favourite (LF) distributions (with a

soft-thresholding estimator) in both real and complex domains. Our

analysis shows that for these signal models, the optimal under-sampling

ratio (measurement number divided by signal dimension) is always upper

bounded by 2. Details are provided in Chapter 4.

3. We propose an improved AMP (IAMP) algorithm that can work better

for non i.i.d. Gaussian random matrices. The proposed algorithm is
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equivalent to AMP for standard Gaussian random matrices but provides

better recovery when the correlations between elements of the measure-

ment matrix deviate from the standard Gaussian random matrices. The

proposed algorithm is based on a new message passing mechanism with

all messages are computed at the variable nodes. Details are provided in

Chapter 5.

1.7 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we review the

background of AMP algorithm and recall the heuristic derivation of AMP

from a standard message passing algorithm. In Chapter 3, we discuss the

extended AMP algorithm for the C-DCS model. In Chapter 4, we apply SE

techniques for AMP algorithm to analyse the optimal number of measurements

required for a practical signal transmission/receiving application with fixed

energy budget. In Chapter 5, we discuss the IAMP algorithm. In the last

chapter, we give conclusions about the thesis and possible future research

work.
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Chapter 2

Approximate Message Passing

In this chapter, we briefly describe the background of the special algorithm

which is called AMP. Compared with other CS algorithms such as OMP [17],

SP [20] and CoSaMP [21], etc. whose performance guarantees are often based

on RIP condition, the performance of AMP algorithm is based on SE.

In order to make the chapter self-sufficient, we first review the required

information.

Consider the linear system

y = Ax+w, (2.0.1)

where y ∈ Rm denotes the vector of observations, A ∈ Rm×n is a Gaussian

random matrix with elements i.i.d drawn from distribution N
(
0, 1

m

)
, x ∈ Rn

stands for the sparse unknown signal vector and w ∈ Rm is the additive white

Gaussian noise (AWGN) with distribution N (0, σ2
w). In CS, m < n is usually

assumed such that (2.0.1) is an underdetermined linear system which cannot

be directly solved by the normal equation to achieve a unique solution. In

41
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addition, x is assumed to be S-sparse which means that x has at most S non-

zero components. The aim of CS is to find the sparest solution that satisfies

(2.0.1).

2.1 Overview of AMP

AMP is an iterative algorithm which can be simply described by the following

two equations with an initial guess x0 = 0, at each iteration t, we estimate

xt+1 via

xt+1 = η
(
ATrt + xt

)
, (2.1.1)

rt+1 = y −Axt+1 + 1
δ

〈
η′
(
ATrt + xt

)〉
rt, (2.1.2)

where η (·) is the component-wise denoiser, η′ (·) denotes the derivative of the

function η (·), AT is the transpose of matrix A, δ := m
n

and 〈v〉 := 1
n

∑n
i=1 vi

computes the average of v ∈ Rn. The last term of (2.1.2) is usually referred

to as the Onsager term.

For the signal x, the elements are assumed to be i.i.d. drawn from an

unknown distribution px (only the sparsity ε = S
n
is given). Denote the class of

these kinds of signals as Fε, we have px ∈ Fε. In [1, 60] the soft-thresholding

function is selected as the estimator

xt+1
i = η

(
x̃ti
)

=



x̃ti − θt if x̃ti > θt

x̃ti + θt if x̃ti < −θt

0 otherwise

(2.1.3)
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where x̃t := ATrt + xt and the non-negative value θt is the corresponding

threshold (will be talked about later). The corresponding derivative is

η′
(
x̃ti
)

=


1 if |x̃ti| > |θt| ,

0 otherwise.
(2.1.4)

Worst case analysis considers the following minimax problem

inf
x̂

sup
px∈Fε

E
[
|x− x̂|2

]
,

where x̂ is the estimate of x. When the estimator (2.1.3) is applied, the

following least-favourite (LF) distribution is chosen [60],

pLF (x) = ε

2δ
f
x=−∞ + (1− ε) δfx=0 + ε

2δ
f
x=+∞, (2.1.5)

where δf is the Dirac delta function. The superscript f is used to distinguish

the delta function δf from the constant δ.

The soft-thresholding function with the LF distribution is a universal de-

noiser for different kinds of sparse signals, providing sub-optimal solutions for

distributions other than LF but with the same sparsity level. For other given

distributions, the η (·) function can be optimally designed as the MMSE esti-

mator which should outperform the soft-thresholding function.

2.2 Threshold Value: θt

In [29, 60], a heuristic argument was presented to derive the specific form of

x̃t and θt. The idea is to decouple the input of the η (·) function into the
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superposition of the original signal x and white Gaussian noise. Consider

three modifications at each iteration t: replace 1) the matrix A with a new

independent copy A (t), 2) the observation vector y with yt = A (t)x + w

and 3) the Onsager term in (2.1.2) with 0. The input of the η (·) function can

be written as

x̃t = A (t)T rt + xt,

= A (t)T
(
yt −A (t)xt

)
+ xt,

= A (t)T
(
A (t)x+w −A (t)xt

)
+ xt + x− x,

= x+wt
e (2.2.1)

which is the ground truth signal x plus an equivalent noise

wt
e :=

(
A (t)T A (t)− I

) (
x− xt

)
+A (t)T w. (2.2.2)

By the central limit theorem and the assumption that A (t)’s are indepen-

dent across t,
(
A (t)T A (t)− I

)
and (x− xt) are always independent, thus

the equivalent noise wt
e is always approximately Gaussian and contains i.i.d.

components. Then the statistics (variance) of the equivalent noise wt
e can be

computed based on (2.2.2) which gives

(
σte
)2

= 1
δ

Errt + σ2
w, (2.2.3)

where

Errt = lim
n→∞

1
n

∥∥∥x− xt∥∥∥2

2
(2.2.4)
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represents the MSE of the previous estimation (xt is achieved at the (t− 1)-th

iteration).

When the soft-thresholding function (2.1.3) is chosen as the estimator with

the corresponding LF distribution (2.1.5), Errt is computed via

Errt = M
(
ε, α†

) (
σt−1
e

)2
, (2.2.5)

where (σt−1
e )2 is the variance of the equivalent noise at the previous iteration

(with initial value (σ0
e)

2 = ‖y‖2
2

m
) and

α† = arg min
α∈R+

M (ε, α) , (2.2.6)

M (ε, α) := ε
(
1 + α2

)
+ (1− ε)

[
2
(
1 + α2

)
Φ (−α)− 2αφ (α)

]
, (2.2.7)

where φ (x) is the standard Gaussian density and Φ (x) =
∫ x
−∞ φ (t) dt is the

corresponding cumulative distribution function. The optimal threshold for

current iteration t is achieved by

θt = α†σte. (2.2.8)

AMP algorithm does not have independent copy of A (t) and new observa-

tion yt at each iteration, but with the efforts of the Onsager term in (2.1.2),

the Gaussianity of wt
e still holds. The Onsager term asymptotically cancels

the correlation between iterations.
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2.3 State Evolution and Phase Transition

SE describes the asymptotic performance of the AMP algorithm in the asymp-

totic region, in which m, n → ∞ and keep δ → m
n

as a constant. The per-

formance of the system can be described by a sequence {τ 2
t }t≥0 with initial

condition τ 2
0 = σ2

w + E [X2] /δ ( X with a density function px), for all t > 0,

we have

τ 2
t+1 = F

(
τ 2
t , θ

t
)
, (2.3.1)

F
(
τ 2, θ

)
:= 1

δ
E
[
(η (X + τZ; θ)−X)2

]
+ σ2

w, (2.3.2)

where Z ∼ N (0, 1) is independent of X. More details about SE can be found

in [60] and the correctness of SE has been rigorously proved in [29].

The sequence {τ 2
t }t≥0 can be calculated using (2.2.3) and (2.2.5). As long

as the sparsity level ε is given, the value of α† can be easily calculated via

(2.2.6) and M
(
ε, α†

)
becomes a constant. Assume AMP algorithm converges,

when t→∞, the value of σte (or τt) coverages to a steady state point and the

final MSE of the algorithm can be calculated. The SE technique is often used

to predict the asymptotic performance of the system even without applying

the AMP algorithm.

Let ρ = S
m
, then ε = ρδ. AMP algorithm has a phase transition curve

shown as in Fig 2.3.1 which is achieved under the asymptotic assumption.

The curve represents the trade-off between sparsity level and under-sampling

ratio, separating the figure into two regions [1], in the noise free case:

• Region 1 (below the curve): in this region, F (τ 2, θ) < τ 2 for all τ 2 ∈

(0,E (X2)]. When t→∞, τ 2
t → 0: the SE converges to zero.
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δ=m/n
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Figure 2.3.1: Phase transition curve of AMP. Below the curve is region 1 where
we can successfully reconstruct the signal with high probability, above the
curve is region 2 where we cannot reconstruct the signal with high probability.

• Region 2 (above the curve): in this region, the SE will not converge to

zero.

In the noisy case (with noise variance σ2
w), the same curve exists but τ 2

t will

converge to a non-zero value Mcσ
2
w/M

(
ε, α†

)
and the estimation error will

converge to Mcσ
2
w where

Mc =


M(ε,α†)

1−M(ε,α†)/δ , in Region 1

∞, in Region 2
(2.3.3)

which is called the noise sensitivity. Interested readers can refer to [61] for

more details.



48 CHAPTER 2. APPROXIMATE MESSAGE PASSING

2.4 A Heuristic Derivation fromMessage Pass-

ing

The authors of [29, 60] provide a heuristic derivation of AMP from the tra-

ditional message passing (MP) algorithm which contains the following two

iterative equations,

rta→i = ya −
∑

j∈[n]\i
Aajx

t
j→a, (2.4.1)

xt+1
i→a = η

 ∑
b∈[m]\a

Abir
t
b→i

 , (2.4.2)

where subscript a → i in (2.4.1) represents the message from the factor node

(contains information of observations) a ∈ [m] to the variable node (contains

information of signals) i ∈ [n], and i→ a in (2.4.2) represents the message from

the variable node i to the factor node a, [n] := {1, 2, ..., n} and [n] \i denotes

the set of [n] but without element i. A direct calculation of MP based on (2.4.1)

and (2.4.2) will not be practical especially for large dimension systems as it

requires to update mn messages per iteration. The computational complexity

of MP is extremely high and approximation must be applied.

The right-hand side of (2.4.1) contains a summation over Θ(n) messages.

For any fixed a, rta→i only depends on i as it excluded from the summation∑
j∈[n]\iAajx

t
j→a. Similarly, for any given i, xt+1

i→a only depends on a. Thus we

can set

rta→i = rta + ∆rta→i, xti→a = xti + ∆xti→a, (2.4.3)

where ∆rta→i and ∆xti→a denote some small values O
(
m−1/2

)
. Substituting
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(2.4.3) into (2.4.1) and (2.4.2) provides

rta + ∆rta→i = ya −
∑
j∈[n]

Aaj
(
xtj + ∆xtj→a

)
+ Aai

(
xti + ∆xti→a

)
,

xt+1
i + ∆xt+1

i→a = η

 ∑
b∈[m]

Abi
(
rtb + ∆rtb→i

)
− Aai

(
rta + ∆rta→i

) .

Recall that Aai = O
(
m−1/2

)
by definition, it will be safe to drop the terms

Aai∆xti→a and Aai∆rta→i (Note: the terms inside ∑ cannot be ignored). We

have

rta + ∆rta→i = ya −
∑
j∈[n]

Aaj
(
xtj + ∆xtj→a

)
+ Aaix

t
i, (2.4.4)

xt+1
i + ∆xt+1

i→a = η

 ∑
b∈[m]

Abi
(
rtb + ∆rtb→i

)
− Aairta

 .
By applying first order Taylor’s expansion to the second equation listed above,

we achieve the following approximation

xt+1
i + ∆xt+1

i→a ≈ η

 ∑
b∈[m]

Abi
(
rtb + ∆rtb→i

)− η′
 ∑
b∈[m]

Abi
(
rtb + ∆rtb→i

)Aairta,
(2.4.5)

where η (·) only needs to be almost-everywhere differentiable according to [29,

60], thus this approximation is suitable for the soft-thresholding function which

is only non-differentiable at η (±θ).

Now compare (2.4.4) and (2.4.5) with (2.4.3), a reasonable decomposition

will be

rta = ya −
∑
j∈[n]

Aaj
(
xtj + ∆xtj→a

)
, (2.4.6)
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∆rta→i = Aajx
t
i, (2.4.7)

xt+1
i = η

 ∑
b∈[m]

Abi
(
rtb + ∆rtb→i

) , (2.4.8)

∆xt+1
i→a = −η′

 ∑
b∈[m]

Abi
(
rtb + ∆rtb→i

)Aairta. (2.4.9)

Based on the definition ∑a∈[m] A
2
ai = 1, the AMP algorithm can be achieved

by substituting (2.4.9) into (2.4.6) and substituting (2.4.7) into (2.4.8).



Chapter 3

Correlated-Distributed

Compressed Sensing

In this chapter, we study the correlated distributed compressed sensing (C-

DCS) scenarios where the measurement matrices and the signals at different

sensors can be correlated. It is assumed that the measurement matrices are

Gaussian random matrices and the elements across signals at the the same

positions share a same distribution. Our model is a generalization of the

commonly used DCS model where the measurement matrices are independent

and the standard MMV model where the measurement matrices are identical.

Based on the famous AMP framework, an algorithm is developed to address

correlated matrices and correlated signals. Correctness justification of the two

special cases has been given. For the more general cases between DCS and

MMV, we outline the complexity and difficulty to justify the correctness but

simulation results validate the accuracy of SE .

51



52CHAPTER 3. CORRELATED-DISTRIBUTED COMPRESSED SENSING

3.1 Introduction

In many applications such as parallel magnetic resonance imaging [51], direc-

tion of arrival estimation [62], distributed sensor networks [63] and medical

imaging [64], the system can be modelled as compressed sensing with multiple

measurement instances (MMI), each involving a standard compressed sensing

procedure. It is typical that the unknown signals or/and the measurement ma-

trices from different measurement instances are not independent [65]. It has

been widely accepted that the performance gain is possible by joint processing

that explores the structure of multiple instances [65].

In this chapter, we model the C-DCS systems via yk = Akxk+wk, k ∈ [K]

whereK is the total number of measurement instances and [K] := {1, 2, ..., K}.

Let xk,i be the i-th element from the k-th signal xk. For the involved signals

xk’s, we consider the elements in the same xk (e.g. xk,i and xk,j for i 6= j,

i, j ∈ [n], k ∈ [K]) are independent from each other, whereas for elements

across different xk’s at the same location (e.g. xa,i and xb,i for a 6= b, a, b ∈ [k],

i ∈ [n]) are dependent. There are different ways to model the measurement

matrices Ak’s. In decades long MMV model, it is typically assumed that

Ak’s are identical. In DCS setting [65, 43], it is often assumed that Ak’s are

independent. In a more recent work [66], a matrix innovation model is used

where Ak’s are modelled as a times series and the matrices at adjacent time

instances, say Ak−1 and Ak, are correlated with a constant correlation factor.

In this chapter, we consider the general model (C-DCS) that accommodates all

the three cases above. In particular, we model each measurement matrix Ak

as a Gaussian random matrix and correlations across measurement matrices

by a multivariate Gaussian distribution.
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Special cases of the C-DCS model has been studied in the literature. Most

algorithmic solutions focus on exploring the common sparse support structure

of the signals, resulting in distributed subspace pursuit (DiSP) [67], distributed

and collaborative orthogonal matching pursuit (DC-OMP) [68, 69], subspace

augmented multiple signal classifier (SA-MUSIC) [70], MMV focal underde-

termined system solution (M-FOCUSS) [71], approximated message passing

MMV (AMP-MMV) [66] and joint approximated message passing [43, 72], to

name a few. Performance analysis mainly focuses on the DCS scenarios where

the measurement matrices are independent. RIP based analysis has been used

to analyse greedy algorithms [73, 67, 68, 69]. A more recent tool, SE for AMP,

has been used to exactly quantify the performance in an asymptotic regime

[66, 43].

The contributions of this chapter are

1. We consider both the measurement matrices and unknown signals in the

C-DCS model are correlated. By grouping the correlated coefficients

from different measurement instances together to form the block signal

and block matrix (see Definition 3.2.1 and Definition 3.2.2), we are able to

derive our algorithm which is called AMP-C-DCS based on the standard

message passing algorithm and explicitly outline the matrices/signals

correlation effects.

2. Although the derivation of our algorithm follows the same steps of the

original AMP algorithm which is clearly understandable, the rigorous

proof of the correctness is another story. Due to the correlation be-

tween measurement matricesAk’s, the extension of Gaussian conditional

lemma, which is a key technique in the AMP proof provided in [29], is
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not straightforward. We provide a detailed discussion about this problem

and show the complexity and difficulty to justify the correctness in the

general form of our algorithm. Simulation results validate the accuracy

of SE.

3. We pay particular attention to the special cases: DCS and MMV. By

certain rearrangement of the structure of the super components, which

are treated as diagonal matrices in the DCS model and as row vectors

in the MMV model, the general form of our algorithm degenerates to

the two simplified models, such that the analysis in [29, 37] can be ap-

plied to prove the correctness of our algorithm for the two special cases.

Our proposed algorithm can be considered as a generalized version of the

algorithm proposed in [74, 37] which is only designed for the MMV prob-

lem. Although the correlated measurement matrices condition has been

considered in [66] and performance improvements have been observed by

reducing the matrix correlation level, the matrix correlation effect has

not been inherently analysed in their algorithm.

The structure of this chapter is as follows. In section 2, we provides the detailed

description of our proposed system model and recall the background of AMP

algorithm. In section 3, we discuss the AMP-C-DCS algorithm. In section

4, we justify the correctness of our proposed algorithm. The case study of

the Bernoulli-Gaussian (BG) and Gaussian signals and simulation results are

listed in section 5.
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3.2 Preliminaries

3.2.1 System Model for C-DCS

Consider an application system contains K sensors (measurement instances

henceforth), each of which is represented by a linear system:

yk = Akxk +wk, ∀k ∈ [K], (3.2.1)

where yk ∈ Rm is the observation vector,Ak ∈ Rm×n denotes the measurement

matrix, xk ∈ Rn stands for the unknown signal vector, wk ∈ Rm represents

the additive measurement noise, and the set [K] := {1, 2, ..., K}. The overall

system can be written in a compact form with a diagonal structure as

D−model : yD = ADxD +wD, (3.2.2)

where yD := diag ([y1,y2, ...,yK ]) ∈ RKm×K is a block diagonal matrix with

diagonal elements (vectors or matrices) yk’s and same definition applies for

AD ∈ RKm×Kn, xD ∈ RKn×K and wD ∈ RKm×K . (Notice: in some cases such

as Gaussian conditional lemma which we will talk about later, we treat observa-

tion yD =
[
yT1 ,y

T
2 , ...,y

T
K

]T
∈ RKm as vector just for mathematical calculation,

the same applies for unknown signals and noise. As long as the measurement

matrix keeps the block diagonal structure, these models are mathematically

equivalent)

For the signal, we allow correlation between the elements across different

measurement instances. A statistical model is defined to allow more detailed

description of signal components as follows.
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Figure 3.2.1: Group signals. xk’s, ∀k ∈ [K] have the same signal dimension.
x:,i’s, ∀i ∈ [n] are the group signal elements, white colours represent zero
elements. The elements in xk, k ∈ [K] are independent from each other and
x:,i’s, i ∈ [n] are i.i.d drawn from a multivariate distribution (e.g. multivariate
BG distribution and multivariate Gaussian distribution).

Definition 3.2.1 (Block Signal Model). Consider K signals of the same di-

mension xk ∈ Rn, k ∈ [K]. Group the i-th components of xk’s together to form

the block component (super component) x:,i = [x1,i, ..., xK,i]T ∈ RK , i ∈ [n]

(see Fig 3.2.1). Define the block signal as xB :=
[
xT:,1, ...,x

T
:,n

]T
∈ RKn. The

block components (super components) x:,i’s are i.i.d drawn from a multivari-

ate distribution pX:,i (x) (e.g. multivariate BG distribution and multivariate

Gaussian distribution).

Following the convention in compressed sensing, the measurement matrices

Ak’s are assumed to be Gaussian random matrices. Different from standard

models in the literature, we allow the components of the measurement matri-

ces to be correlated. This is motivated by the fact that in most compressed

sensing applications, physical or design constraints do not allow independent

measurement matrices at sensors. Specifically, we have
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Definition 3.2.2 (Block Matrix Model). Consider K matrices of the same di-

mensionAk ∈ Rm×n, k ∈ [K]. Group the (i, j)-th components ofAk’s together

to form the block component (super component) a:,i,j = [a1,i,j, ..., aK,i,j]T ∈

RK , i ∈ [m] , j ∈ [n]. Assume that the block components (super components)

a:,i,j’s are i.i.d. multivariate Gaussian random variables based on the multivari-

ate Gaussian distribution N
(
0, 1

m
ΣA

)
1, where, for the normalization purpose,

the diagonal elements of the covariance matrix ΣA are one. Define the block

matrix as AB ∈ RKm×Kn where the (i, j)-th block AB,i,j := diag (a:,i,j) ∈

RK×K .

This proposed model generalizes several popular models in signal processing

and compressed sensing. The traditional subspace-based methods, for example

Multiple Signal Classification (MUSIC) and Estimation of Signal Parameters

by Rotational Invariance Techniques (ESPRIT), typically assume the MMV

model where the measurement matrices Ak’s are identical [75]. This model

can be interpreted as a special case of Definition 3.2.2 where all the entries

in the covariance matrix ΣA are one. A mathematical explanation is based

on (3.2.1), which can be used to represent a source localization problem with

multiple time samples. Assume that a same sensor takes multiple snapshots

from the source during a short period, we will have repeated measurement

matrices (i.e. Ak = A1 for k ∈ [K]), and xk’s may be highly correlated.

At the opposite extreme, the most common assumption of DCS is that the

measurement matricesAk’s are independent. This corresponds to the case that

the covariance matrix ΣA in Definition 3.2.2 is the identity matrix. We can

still use (3.2.1) and the source localization problem to explain this situation,

1The constant 1
m is introduced for normalization and convenience. The same normaliza-

tion appeared in the literature [29].
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(a) Multiple measurement instances

(b) B-model and super components

Figure 3.2.2: Equivalent model (K = 3). The elements at the same position
from different measurement instances are represented with the same colour
while the values of them are not necessary to be the same. Ai,j, x:,i and w:,i
are treated as super components.



3.2. PRELIMINARIES 59

but this time, completely different sensors are applied.

A more general model, referred to as matrix innovation model, proposed

in [66] which treats the measurement matrices Ak’s as a time series given by

Ak = (1− β)Ak−1 + βUk, k ∈ {2, 3, ..., K} , (3.2.3)

where β ∈ [0, 1] controls the correlation between the matrices at adjacent time

instances. They start with a Gaussian random matrix A1 with elements i.i.d.

drawn form N
(
0, 1

m

)
. Let Uk be a Gaussian random matrix with elements

i.i.d. drawn from N
(
0,
(

2
β
− 1

)
1
m

)
and independent of Ak−1 (Uk is not re-

quired when β = 0). This model is also a special case of Definition 3.2.2 : for

a given finite K, the elements in a row of the ΣA form a geometric series of

1− β. For example, when K = 3, we have

ΣA =


1 1− β (1− β)2

1− β 1 1− β

(1− β)2 1− β 1

 .

(Notice: as in Definition 3.2.2, we take the parameter 1
m

out from ΣA.)

Based on Definition 3.2.1 and Definition 3.2.2, the overall system can also

be written as the following compact form

B−model : yB = ABxB +wB, (3.2.4)

where yB, xB, wB have the structure as in Definition 3.2.1 and AB has the

structure as in Definition 3.2.2. (see Fig 3.2.2(b))

Remark 3.2.3. We consider B − model and D−model are mathematically
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equivalent. We will most often omit the subscript B and D for simplified

notation as long as the model is clear according to the context. With slight

abuse of notation, the mean vector and the covariance matrix of AB,i,j are

referred to as those of its diagonal vector a:,i,j. In addition, the block signal

element x:,i and block matrix element AB,i,j both can be referred to as super

components.

3.2.2 AMP Algorithm with an MMSE Estimator

Recall that AMP algorithm is proposed in [1] for solving the linear equations

(3.2.2) when K = 1 (ignore the subscript D) by assuming A is a standard

Gaussian random matrix, x is a random vector and w is the additive white

Gaussian noise, all containing i.i.d. components. AMP algorithm updates the

estimated signal xt+1 at the t-th iteration via (2.1.1) and (2.1.2) and the input

of η (·) can be written as (2.2.1) which is the ground truth signal x plus the

equivalent noise wt
e (more detailed information can be found in Chapter 2).

If only the sparsity level of x is given without knowing its actual distribu-

tion, a soft-thresholding function (2.1.3) can be chosen for denoising. If the

distribution of the signal x (or more precisely, of the signal elements xi’s) is

given (e.g. BG distribution), the soft-thresholding function can be replaced

by an optimally designed MMSE estimator which usually provides a better

performance. Given the statistics of the signal and the equivalent noise, based

on (2.2.1), the specific form of the MMSE estimator can be obtained via the

following equation, for each element of xt+1,

xt+1
i = η

(
x̃ti
)

:= Exi|x̃ti

[
xi|x̃ti

]
, ∀i ∈ [n] , (3.2.5)
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then the statistics of the estimation error x−xt+1 can be calculated which will

be used to update the equivalent noise wt+1
e in the next iteration. ( The special

situation, in which the sparsity structure of the signal is given, i.e. group

sparse signals, has been recently discussed in [76, 77, 78]. Unfortunately, the

performances of these AMP based algorithms were not theoretically analysed,

i.e. SE technique cannot be used to predict their performances.)

3.2.3 State Evolution of AMP

The SE technique describes the asymptotic performance of the AMP algorithm

in the asymptotic region, in which m,n → ∞ and keep m
n
→ δ fixed. The

performance of the system can be described by a sequence of
{

(σte)
2}

t≥0
with

initial condition (σ0
e)

2 = 1
δ
E [X2] + σ2

w (X with a density function pX), for

t > 0, calculate

(
σte
)2

= 1
δ
E
[(
ηt
(
X + σt−1

e Z
)
−X

)2
]

+ σ2
w, (3.2.6)

where Z ∼ N (0, 1) is independent of X. The calculation of (3.2.6) is directly

based on the (2.2.2) and the Gaussianity of wt
e plays the key role during the

calculation. If AMP algorithm converges, when t → ∞, (σte)
2 converges to

a fixed point and the performance of the system can be predicted without

applying the AMP algorithm.

The rigorous proof of the correctness of the SE is given in [29] with a more

general form listed below, with initial condition q0 and define m−1 = 0,

ht+1 = ATmt − ξtqt, mt = gt
(
bt,w

)
,

bt = Aqt − λtmt−1, qt = ft
(
ht,x

)
, (3.2.7)
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where gt (·), ft (·) are assumed to be Lipschitz continuous (almost everywhere

continuously differentiable, see [29] for the rigorous definition) and applied

component-wise, ξt := 〈g′t (bt,w)〉, and λt := 1
δ
〈f ′t (ht,x)〉. As mentioned in

[29] , the AMP algorithm is a special case of (3.2.7) by defining

ht+1 = x−
(
ATrt + xt

)
, qt = xt − x,

bt = w − rt, mt = −rt. (3.2.8)

with ft (ht,x) = ηt−1 (x− ht) − x, gt (bt,w) = bt − w and initial condition

q0 = −x. (3.2.8) only can be applied for mathematical analysis as it requires

x to initialize q0. The terms ξtqt and λtmt−1 in (3.2.7) play the same role as

the Onsager term in (2.1.2) which ensure the Gaussianity of ht+1 and bt at

each iteration. For the AMP case, ht+1 eventually represents the equivalent

noise wt
e.

The key ideal of the proof in [29] is to avoid directly tracking the statistics

(conditional distributions) of mt, qt given A at each iteration. Instead, they

calculate the conditional distribution ofA given the σ-algebra Gt1,t2 ((t1, t2) =

(t, t) or (t1, t2) = (t+ 1, t)) generated by {bt}t≥0, {mt}t≥0, {ht}≥1 and {qt}≥1.

To be more explicit, define

[
h1 + ξ0q

0| . . . |ht + ξt−1q
t−1
]

︸ ︷︷ ︸
Xt

= AT

[
m0| . . . |mt−1

]
︸ ︷︷ ︸

Mt

,

[
b0| . . . |bt−1 + λt−1m

t−2
]

︸ ︷︷ ︸
Yt

= A

[
q0| . . . |qt−1

]
︸ ︷︷ ︸

Qt

, (3.2.9)

the proof in [29] tracks the conditional distribution of A given linear equations
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(3.2.9), i.e.

A|Gt1,t2
d= A|Xt2=ATMt2,Yt1=AQt1 , (3.2.10)

where d= represents equal in distribution. As long as A|Gt1,t2 is achieved, the

corresponding conditional distributions of bt|Gt,t and ht+1|Gt+1,t will be calcu-

lated and the Gaussianity can be checked.

3.3 AMP for C-DCS

The original AMP algorithm can be extended for the C-DCS model based on

(3.2.4) where both the measurement matrices and the signals can be correlated.

We call the derived algorithm as AMP-C-DCS which estimates the unknown

signal via

xt+1
B = ηt

(
AT
Br

t
B + xtB

)
,

rt+1
B = yB −ABx

t+1
B + 1

δ

(
Im �

(
ΣA �Dt

))
rtB, (3.3.1)

where � denotes the Kronecker product, � stands for the component wise

multiplication, xt+1
:,i = ηt

(
x̃t:,i

)
and Dt = 1

n

∑n
i=1 η

′
t

(
x̃t:,i

)
where η′t (vi) :=

∂ηt(vi)
∂v

denoting the Jacobian matrix of ηt (vi) : RK → RK . We provide a

heuristic derivation of AMP-C-DCS algorithm in Section 3.6.1.

The state evolution technique can also be applied for the AMP-C-DCS al-

gorithm, but this time, we are tracking the covariance matrix of the equivalent

noise rather than a scalar value as in (3.2.6). The corresponding equation

changes to

Σt
e = 1

δ
(ΣA) .2 � E

[(
ηt
(
X +Zt−1

e

)
−X

)2
]

+ σ2
wI. (3.3.2)
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where Zt−1
e ∼ N (0,Σt−1

e ) is independent of X ∈ RK with initial value Σ0
e =

n
m

(ΣA) .2�ΣX +σ2
wI where ΣX is the covariance matrix of the random vector

X ( i.e. the super component of the unknown signal as in Definition 3.2.1).

Equation (3.3.2) is achieved based on the equivalent noise (2.2.2) and the

following theorem.

Theorem 3.3.1. Let u =
(
ATA− I

)
v + ATw, where A ∈ RKm×Kn is a

block matrix as in Definition 3.2.2 with mean zero and covariance matrix 1
m

ΣA,

v ∈ RKn is a block random vector as in Definition 3.2.1 with mean vector zero

and covariance matrix Σv . w ∈ RKm is the white Gaussian noise with σ2
w,

and A,v and w are mutually independent. Then the vector u ∈ RKn is also

a block vector and the covariance matrix of each super-component u:,j ∈ RK ,

j ∈ [n] can be calculated by the following equation

Σu = n

m
(ΣA) .2 �Σv + σ2

wI, (3.3.3)

where (·) .2 means component-wise square operation, � stands for the component-

wise multiplication.

Proof. Consider the B−model of the system, the elements of u, v, w and A

are all super components. Let Hj,l ∈ RK×K be the j, l-th super component of(
ATA− I

)
∈ RKn×Kn with diagonal vector h:,j,l ∈ RK as in Remark 3.2.3.

Just like the original AMP algorithm, we can treat h:,j,l’s for j 6= l, j, l ∈ [n]

as approximately i.i.d. Gaussian vectors with mean 0 and covariance matrix

Cov (h:,j,l) =
m∑
i=1

Cov (Ai,ja:,i,l) ,

a= 1
m

(ΣA) .2,
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where a:,i,l ∈ RK is the diagonal vector of Ai,l ∈ RK×K , and a= holds by

Lemma 3.3.2 listed below. Next, we calculate the covariance matrix of the

super component u:,j ∈ RK , j ∈ [n]:

Cov (u:,j) = Cov
(

n∑
l=1
Hj,lv:,l +

m∑
i=1
Ai,jw:,i

)
,

=
n∑
l=1

Cov (Hj,lv:,l) +
m∑
i=1

Cov (Ai,jw:,i) ,

= n

m
(ΣA) .2 �Σv + σ2

wI,

which provides (3.3.3).

Lemma 3.3.2. Let u = diag (h)v where h, v ∈ RK are two independent ran-

dom vectors with mean zero and covariance matrices Σh and Σv respectively.

Then the vector u is of mean zero and covariance matrix Σh �Σv.

For the denoising function, based on the decoupled model in (2.2.1), we

have

x̃tB = xB +wt
B,e (3.3.4)

(B−model is used for joint estimation), at t-th iteration, the MMSE estimator

will act on each super component individually

xt+1
:,i = ηt

(
x̃t:,i

)
:= Ex:,i|x̃t:,i

[
x:,i|x̃t:,i

]
, (3.3.5)

based on the statistic information of the equivalent noise wt
e. The covariance

matrix (Σt
e) of the equivalent noise can be computed by Theorem 3.3.1.
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Then based on the following equation (see section 3.6.7 for the proof):

Σt+1
η = Ψ

(
Σt
e

)
:= Ex̃t:,i

[
Ex:,i|x̃t:,i

[
x:,ix

T
:,i|x̃t:,i

]]
− Ex̃t:,i

[
η
(
x̃t:,i

)
ηT

(
x̃t:,i

)]
, (3.3.6)

we are able to estimate the covariance matrix Σt+1
η of super component

(
x:,i − xt+1

:,i

)
which contains the statistic information of the estimated error by function ηt (·)

in (3.3.5). The matrix Σt+1
η then can be used to update Σt+1

e of the equivalent

noise at the next iteration.

Our approach is significantly different from that in [66]. There, the so-

called AMP-MMV algorithm was proposed for the MMV model based on the

authors’ previous work the turbo-AMP in [79]. Though the signal correlations

are considered by adding an extra layer for the signal components in the factor

graph, there is no inherent part in their algorithm to handle the correlations

in the measurement matrices. By contrast, we extend the original AMP by

grouping the correlated signal/matrix components to form super components.

The derivations of the denoising function ηt (·) and the Onsager term are based

on the super components.

(Notice: signal estimation is based on (3.3.4) and ΣA only affects the equiv-

alent noise (3.3.2). For the special case when ΣA = I, the elements in each

super component of the equivalent noise are uncorrelated due to (3.3.2), but

the correlations between signals are always required during the estimation of

signals at each iteration.)
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3.4 Correctness Justification of AMP-C-DCS

3.4.1 Gaussian Conditional Lemma

In the rigorous proof of [29], the Gaussian conditional lemma is the fundamen-

tal technique for the whole proof. In our case, it can be written as

Lemma 3.4.1. [29, Extension of Lemma 11] Let z ∈ Rn be a random vector

with N (0, Σz), and let D ∈ Rm×n be a linear operator with full row rank.

Then for any constant vector b ∈ Rm, the distribution of z conditioned on

Dz = b satisfies:

z|Dz=b
d= ΣzD

T
(
DΣzD

T
)−1

b+ P (z̃)

where z̃ is an independent copy of z, P (z̃) :=
(
I −ΣzD

T
(
DΣzD

T
)−1

D
)
z̃

and P := I −ΣzD
T
(
DΣzD

T
)−1

D is a projector.

Proof. The above lemma can be achieved via the standard version of Gaussian

conditional lemma (Lemma 3.4.2) listed below. For the mean value, we let

Σw → 0 which gives ΣzD
T
(
DΣzD

T
)−1

b. For the covariance matrix, we have

Σz−ΣzD
T
(
DΣzD

T
)−1

Σz = P Σz. In addition, Cov (P (z̃)) = P ΣzP T =

P Σz. The above lemma is proved.

Lemma 3.4.2. Given b = Dz+w whereD ∈ Rm×n is a deterministic matrix,

z ∼ N (0,Σz) and w ∼ N (0,Σw) are Gaussian random vectors. Assume all
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the matrix inverses exist, we have the following consequences

µz|b = ΣzD
T
(
DΣzD

T + Σw

)−1
b

=
(
Σ−1
z +DTΣ−1

w D
)−1

DTΣ−1
w b,

Σz|b =
(
Σ−1
z +DTΣ−1

w D
)−1

= Σz −ΣzD
T
(
DΣzD

T + Σw

)−1
Σz

where µz|b is the conditional mean and Σz|b is the conditional covariance ma-

trix.

Proof. The proof can be found in many books talking about multivariate Gaus-

sian density or related papers [80].

In [29, Lemma 11], Σz = Iσ2
z thus in their case, P (z̃) = P{Dz=0} is the

orthogonal projection onto the subspace {Dz = 0}. For the correlated case

where Σz 6= Iσ2
z , P (z̃) is no longer an orthogonal projection and usually the

statistic information contained by P (z̃) is much more complicated compared

with the orthogonal projection case. See the following as an example.

Example 3.4.3. Consider the case in which K = 2. LetD1 =
[
I2 02 02

]
,

D2 =
[

02 I2 02

]
where I2 ∈ R2×2 is the identity matrix and 02 ∈ R2×2

contains all zero elements. Assume b1, b2 ∈ R2 is given, z1, z2 ∈ R6 are

two Gaussian vectors with across correlation among super components z:,i ∼

N (0,Σ) where Σ =

 1 ρ

ρ 1

 ∈ R2×2. We can write the compact linear
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equations as  b1

b2


︸ ︷︷ ︸
b

=

 D1

D2


︸ ︷︷ ︸

D

 z1

z2


︸ ︷︷ ︸
z

with z ∼ N (0,Σz) and Σz = Σ�I6. This function is written in the D−model
but in order to apply Gaussian conditional lemma, we need to write b and z
in the vector form. Based on Lemma 3.4.1, we achieve the covariance matrix
after estimation

ΣP = Σz −ΣzD
T
(
DΣzD

T
)−1

DΣz

=



02

(1− ρ)I2

I2

02

02

ρI2

02

02

ρI2

(1− ρ)I2

02

I2


(3.4.1)

The blue elements in (3.4.1) show that the covariances between corresponding

elements in z after estimation can still be represented by Σ, while the red

elements can’t, which makes the analysis of state evolution complicated. The

exceptions are the cases when ρ = 1 and ρ = 0.

Next, we need to apply Lemma 3.4.1 to the Gaussian matrix A with

restrictions X = ATM , Y = AQ as in (3.2.10). But this extension is

not straightforward due to the structure of A. For simplicity, let’s consider

only one restriction X = ATM or equivalently XT = MTA. The matrix

A = diag (A1, ...,AK) has a diagonal structure (consider D−model). If we

directly estimate A column by column, we eventually estimate A1, A2,...,AK

separately without considering the correlation effects (described by ΣA, here
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we ignore the normalization factor 1
m
) between them. The correct way is to

jointly estimate i-th column form all Ak’s for i ∈ [n], k ∈ [K]. In order to

apply joint estimation, we define the reshuffle and inverse reshuffle operations

as follows

Definition 3.4.4. For any block diagonal matrix B, define the reshuffle τ1/τ2

and the corresponding inverse operations τ−1
1 /τ−1

2 as follows


B1

. . .

BK


︸ ︷︷ ︸

B

τ1(B)



τ−1
1 (BC)


B1

...

BK


︸ ︷︷ ︸

BC

(3.4.2)


B1

. . .

BK


︸ ︷︷ ︸

B

τ2(B)



τ−1
2 (BR)

[
B1 · · · BK

]
︸ ︷︷ ︸

BR

(3.4.3)

Thus the mean value ofA|X=ATM is calculated via τ−1
1

(
ΣmM

(
MTΣmM

)−1
τ1
(
XT

))
where Σm = ΣA � Im and � is the Kronecker product and the corresponding

mean value ofA|Y =AQ is τ−1
2

(
τ2 (Y )

(
QTΣnQ

)−1
QTΣn

)
where Σn = ΣA�In.

Based on [29, Lemma 10], we can achieve the extended version for our case.

Lemma 3.4.5. [29, Extension of Lemma 10] Given two linear systems Yt1 =

AQt1 and Xt2 = ATMt2 where each of them contains K measurement in-

stances denoted by Yk,t1 = AkQk,t1 , Xk,t2 = AT
kMk,t2 for k ∈ [K], respec-

tively. Define ΣA as the covariance matrix of super components of A. The

conditional distribution of the random matrix A given the σ-algebra Gt1,t2 will
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be

A|Gt1,t2
d= Et1,t2 + P t1,t2

(
Ã
)
,

where Ã d= A is a random matrix independent of Gt1,t2 and

Et1,t2 = τ−1
2

(
τ2 (Yt1)

(
QT
t1ΣnQt1

)−1
QT
t1Σn

)
+ τ−1

1

(
ΣmMt2

(
MT

t2ΣmMt2
)−1

τ1
(
XT

t2

))
− τ−1

1

(
ΣmMt2

(
MT

t2ΣmMt2
)−1

×τ1

(
MT

t2τ
−1
2

(
τ2 (Yt1)

(
QT
t1ΣnQt1

)−1
QT
t1Σn

)))
(3.4.4)

and

P t1,t2
(
Ã
)

= τ−1
2

(
τ2
(
τ−1

1

(
P

∦
Mt2τ1

(
Ã
)))

P
∦T
Qt1

)
(3.4.5)

where P ∦
Mt2 = I−P ‖Mt2 and P

∦
Qt1 = I−P ‖Qt1 and P

‖
Mt2 = ΣmMt2

(
MT

t2ΣmMt2
)−1

MT
t2

and P ‖Qt1 = ΣnQt1
(
QT
t1ΣnQt1

)−1
QT
t1 are two projectors.

According to example 3.4.3 and the reshuffle operations listed in Lemma

3.4.5, we found the analysis of tracking the statistics of A is extremely com-

plicated. Thus, in the following analysis, we focus on the two special cases: 1)

independent case where ΣA = I and 2) the identical case where ΣA = 1. We

can achieve the following corollary.

Corollary 3.4.6. For the two special cases: (1) Ak’s are independent, (2)
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Ak’s are identical, Et1,t2 and P t1,t2
(
Ã
)
can be simplified as

Et1,t2

=



Yt1
(
QT
t1Qt1

)−1
QT
t1 +Mt2

(
MT

t2Mt2
)−1

XT
t2

−Mt2
(
MT

t2Mt2
)−1

MT
t2Yt1

(
QT
t1Qt1

)−1
QT
t1 if ΣA = I

IK �
(
YR,t1

(
QT
R,t1QR,t1

)−1
QT
R,t1

)
+IK �

(
MR,t2

(
MT

R,t2MR,t2
)−1

XT
R,t2

)
−IK �

(
MR,t2

(
MT

R,t2MR,t2
)−1

MT
R,t2

× YR,t1
(
QT
R,t1QR,t1

)−1
QT
R,t1

)
if ΣA = 1

and

P t1,t2
(
Ã
)

=


P⊥Mt2

(
Ã
)
P⊥Qt1 if ΣA = I

IK �
(
P⊥MR,t2

ÃIP
⊥
QR,t1

)
if ΣA = 1

where � denotes the Kronecker product, Ã represents the independent copy of

A, and AI := A1 = ... = AK denotes the identical matrix inside of A for

the identical case. P⊥V = I −PV , and PV is the orthogonal projector onto the

column space of matrix V .

Proof. The proofs of the two special cases are given in section 3.6.2 and 3.6.3.

3.4.2 Special Cases Analysis

In order to justify the correctness of our proposed algorithm, we need go back

to the general form as (3.2.7). The corresponding formulas (apply B−model)
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based on (3.3.1) are

ht+1 = ATmt − (I � ξt) qt, mt = gt
(
bt,w

)
,

bt = Aqt − (I � λt)mt−1, qt = ft
(
ht,x

)
, (3.4.6)

where ξt = 〈g′t (bt,w)〉 , λt = 1
δ
ΣA� 〈f ′t (ht,x)〉 ∈ RK×K are two matrices, g′t,

f ′t are Jacobian matrices of gt (bt,w) = bt − w, ft (ht,x) = ηt (x− ht) − x

with respect to the first argument, respectively, and � denotes the element-

wise production. B−model is preferred here, because both gt and ft are

element-wise operations applied for each super component, thus the connect

between (3.4.6) and (3.2.7) is more explicit. The inputs of gt and ft are (super

components) always treated as vectors. In addition, ξt and λt are two matrices

that multiplied by each super component of qt and mt. The direct analysis

based on (3.4.6) is not adequate as the Gaussian conditional lemma suffers from

reshuffle operations and the analysis is extremely complicated. But for the two

special cases, (3.4.6) can be simplified by removing the reshuffle operations.

For the independent case, where ΣA will be an identity matrix, thus both ξt

and λt are diagonal matrices. In addition, based on the Corollary 3.4.6, there is

no need for joint estimation and we can compute Ak|Xk,t2=AT
k
Mk,t2,Yk,t1=AkQk,t1

separately for each k ∈ [K]. Under this condition, we can rewrite (3.4.6) based

on D−model. For each measurement instance k ∈ [K], we have

ht+1
k = AT

km
t
k − ξk,tqtk, mt

k =
[
gt
(
bt,w

)]
k
,

btk = Akq
t
k − λk,tmt−1

k , qtk =
[
ft
(
ht,x

)]
k
, (3.4.7)

where ξk,t and λk,t represent the k-th diagonal elements of ξt and λt respec-
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tively. The notations in (3.4.7) have the same definition as those in (3.2.7)

except gt and ft operate on the super components. Although joint estimation

is applied for mt and qt, the correlations across mt
k’s and qtk’s are eventually

ignored by the effect of independent measurement matrices Ak’s which result-

ing independent ht+1
k ’s and btk’s (independent Gaussian noise). This property

is reflected in (3.3.2) by letting ΣA = I. Thus (3.4.7) should have a similar

behaviour as (3.2.7). In section 3.6.4 we provide an illustration of proving that

the conditional distribution ht+1 and bt will always be Gaussian for t ≥ 0 by

the effects of (I � ξt) qt and (I � λt)mt−1.

For the identical case, where ΣA is a matrix with all 1 value. Based on the

Corollary 3.4.6, we only need to compute the statistics for one measurement

matrix AI , and the corresponding two constraints can be replaced by YR,t1 =

AIQR,t1 and XR,t2 = AT
IMR,t2. Recall that

MR,t2 = [M1,t2,M2,t2, ...,MK,t2]

and based on (3.2.9) each Mk,t2 =
[
m0

k| . . . |mt−1
k

]
. Rearrange the columns of

MR,t2 to form the following form

[
m0

1 . . .m
0
K | · · · |mt−1

1 . . .mt−1
K

]
=:
[
m0

r|m2
r|...|mt−1

r

]

where mt
r = [mt

1| . . . |mt
K ]. Apply the corresponding rearrangement for XR,t2

(the same as YR,t1 and QR,t1), will change (3.4.6) to

ht+1
r = AT

Im
t
r − qtrξTt , mt

r = gt
(
btr,wr

)
,

btr = AIq
t
r −mt−1

r λTt , q
t
r = ft

(
htr,xr

)
, (3.4.8)
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where qr ∈ Rn×K is treated as an n-dimension vector with each super com-

ponent as a K-dimension row vector. The definitions for other notations with

subscript r are the same. The new form is exactly the same as the one pro-

posed in [37, Proposition 5]. The correctness of state evolution of this form

has already been analysed in [37].

3.5 Case Study and Simulations

3.5.1 Bernoulli-Gaussian Prior

In order to practically justify the correctness of our proposed algorithm, we

take the well known BG distribution px:,i (x) = (1− ε) δfx=0 + εp (x; 0, Σx)

as an example, where ε ∈ (0, 1] stands for the sparsity level, δfx=0 is the

Dirac delta function, p (x; 0, Σx) represents the Gaussian density with mean

0 and covariance matrix Σx ∈ RK×K . For each super component, we have

corresponding η (·)(ignoring the superscript t)

η (x̃:,i) =
∫
x:,ip (x:,i|x̃:,i) dx:,i

= Rx̃:,i

C1exp
(
−1

2 x̃
T
:,iΣ−1

e Rx̃:,i
)

+ 1
, (3.5.1)

where R = (Σ−1
x + Σ−1

e )−1 Σ−1
e and C1 = (1−ε)

ε
|Σx (Σ−1

x + Σ−1
e )|

1
2 (see section

3.6.8 for the detailed proof). The direct computation of Ση based on (3.3.6)

will be

Ση (p, q) = εΣx (p, q)− Σz (p, q) (3.5.2)
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where Σz (p, q) = Ex̃:,i

[
Ex|x̃:,i [xp|x̃:,i] Ex|x̃:,i [xq|x̃:,i]

]
and Σz (p, q) represents the

element at location (p, q) of matrix Σz and

Σz (p, q) =
∫ [Rx̃:,i]p [Rx̃:,i]q εpG (x̃:,i; 0, Σx + Σe)

C1exp
(
−1

2 x̃
T
:,iΣ−1

e Rx̃:,i
)

+ 1
dx̃:,i, (3.5.3)

where [Rx̃:,i]p represents the single element of vector Rx̃:,i at position p (proof

is given in section 3.6.9). The computation of (3.5.3) will be difficult or even

not achievable in practice as it contains high-dimensional integration (with

respect to x̃:,i). An alternative calculation of the covariance matrix is based

on the following lemma.

Lemma 3.5.1. Consider a random vector X ∈ RK with a conditional prob-

ability density function of the form pX|V (x|v) := 1
Z(v)exp

(
φ0 (x) + xTΣ−1

e v
)

where Z (v) is a normalization constant, then we have covariance matrix of X

conditioned on v is given by

ΣX|V=v = D
(
EX|V [X|V = v]

)
Σe, (3.5.4)

where D
(
EX|V [X|V = v]

)
= ∂EX|V [X|V = v] /∂v ∈ RK×K with the (l, j)-

th component calculated by ∂EX|V [X|V = v]l /∂vj.

Proof. See section 3.6.6.

Combine Lemma 3.5.1 with the Gaussian part of BG distribution (both

mean vector and covariance matrix of non-Gaussian part are zero), we have

x = x:,i, v = x̃:,i and Ex:,i|x̃:,i [x:,i|x̃:,i] = η (x̃:,i). The corresponding covari-

ance matrix of x:,i given x̃:,i, can be calculated by η′ (x̃:,i) Σe and the average
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covariance matrix for the whole system, can be calculated by

Ψ (Σe) = DΣe, (3.5.5)

where D = Ex̃:,i [η′ (x̃:,i)] and for the large system limit, D = 1
n

∑n
i η
′ (x̃:,i).

The (l, j)-th component of η′ (x̃:,i) is calculated by

η (x̃:,i)′l,j = Rl,j

C2 + 1 + [Rx̃:,i]l
(C2 + 1)2C2

[
Σ−1
e Rx̃:,i

]
j
, (3.5.6)

where C2 = C1exp
(
−1

2 x̃
T
:,iΣ−1

e Rx̃:,i
)
and Rl,j is the (l, j)-th component of R.

The pseudo code of AMP-C-DCS is give in Algorithm 3.1 and the correspond-

ing state evolution is given in Algorithm 3.2.

3.5.2 Gaussian Prior

Now consider Gaussian signals for the DCS and MMV cases. Then MMSE

estimator (3.5.1) and the associated covariance matrix of estimation error have

nice closed forms:

η (x̃:,i) = Ex:,i|x̃:,i [x:,i|x̃:,i] = Rx̃:,i, (3.5.7)

Ψ (Σe) =
(
Σ−1
x + Σ−1

e

)−1
. (3.5.8)

which can be achieved via the standard result of an MMSE estimator for

a Gaussian prior signal or derived form BG analysis by setting ε = 1 (see

detailed proof in section 3.6.10). When the signal covariance matrix Σx are of

special forms, i.e., either Σx = σ2
xI or Σx = σ2

x1 where all the entries of the

matrix 1 ∈ RK×K are one, the state evolution admits simple closed forms.
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Algorithm 3.1 Pseudo code of AMP-C-DCS algorithm.
Input: Measurement (block) matrix A, observation (block) vector y, covari-

ance matrices ΣA, Σx, σ2
w, sparsity level ε.

Output: Estimated signal xt.

Initialization: r0 = y, x0 = 0, Σ0
η = εΣx, t = 0.

Iteration: In the t-th iteration, do

1. Compute
x̃t = ATrt + xt,

2. Compute covariance matrix of equivalent noise

Σt
e = n

m
(ΣA) .2 �Σt

η + σ2
wI,

3. Estimate signal
xt+1

:,i = η
(
x̃t:,i

)
, ∀i ∈ [n]

and calculate Dt,
4. Update covariance matrix by fast calculation

Σt+1
η = DtΣt

e,

5. Update residual

rt+1 = y −Axt+1 + 1
δ

(
Im �

(
ΣA �Dt

))
rt,

6. t = t+ 1,
7. Go back to step 1 unless the stopping criteria are satisfied.
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Algorithm 3.2 State evolution of AMP-C-DCS algorithm.
Input: Covariance matrices ΣA, Σx, σ2

w, sparsity level ε.

Output: MSE of estimation.

Initialization: Σ0
η = εΣx, t = 0.

Iteration: In the t-th iteration, do

1. Compute covariance matrix of equivalent noise

Σt
e = n

m
(ΣA) .2 �Σt

η + σ2
wI,

2. Update theoretical value of covariance matrix

Σt+1
η = Ψ

(
Σt
e

)
,

3. t = t+ 1,

4. Go back to step 1 unless the stopping criteria are satisfied.

Define the average recovery distortion at the steady state by d∞ = 1
Kn
‖x− x∞‖2

2.

It can be verified, via steady state analysis, that when Σx = σ2
xI (independent

signals),

d∞MMV = d∞DS =δ

2

(1− δ
δ

σ2
x − σ2

w

)
+

√(1− δ
δ

σ2
x + σ2

w

)2
+ 4σ2

xσ
2
w

 , (3.5.9)

and when Σx = σ2
x1 (repeated signals: x1 = · · · = xK),

d∞MMV =δ

2

(1− δ
δ

σ2
x −

σ2
w

K

)
+

√(1− δ
δ

σ2
x + σ2

w

K

)2
+ 4σ2

wσ
2
x

K

 , (3.5.10)

d∞DS =δ

2

(1−Kδ
δ

σ2
x − σ2

w

)
+

√(1−Kδ
δ

σ2
x + σ2

w

)2
+ 4Kσ2

xσ
2
w

 . (3.5.11)

(see detailed proof in section 3.6.11.)
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It is interesting to observe that the same results can be obtained by solely

applying random matrix theory. Specifically, consider a linear system y =

Ax+w where A ∈ Rm×n is Gaussian random matrix with i.i.d. entries drawn

from N
(
0, 1

m

)
, x ∈ Rn is the signal drawn from N (0, σ2

xI), and w ∈ Rm

is the noise drawn from N (0, σ2
wI). Let (m,n) → ∞ simultaneously with

m
n
→ δ. The empirical distribution of the eigenvalues of ATA converges to

the Marchenko-Pastur distribution weakly. Based on this fact, the average

distortion of MMSE estimate, i.e., limn→∞
1
n
‖x− x̂MMSE‖2

2, can be computed

as [81, 82, 29]

f
(
δ, σ2

x, σ
2
w

)
= 1
n

tr
(
Σx|y

)
= 1
n

tr
((
σ−2
x I + σ−2

w A
TA

)−1
)

= δ

2

(1− δ
δ

σ2
x − σ2

w

)
+

√√√√(1− δ
δ

σ2
x + σ2

w

)2

+ 4σ2
xσ

2
w

 , (3.5.12)

where tr (M) calculates the trace of a square matrix M .

(A recent paper [83] proved that random matrix theory can also be used

to calculate the MMSE for non-Gaussian signal priors. The performance com-

parison between random matrix theory and SE technique is not included here

but should be an interesting future research topic)

3.5.3 Numerical Results

In Fig. 3.5.1, we focus on the case K = 2. Consider the block signal and

matrix models specified in Definition 3.2.1 and 3.2.2 respectively. Assume

ΣA = [1 ρA; ρA 1] and Σx = [1 ρx; ρx 1]. In the simulations, we numerically

study the performance of AMP-C-DCS as a function of ρA when ρx = 0.5 (in

Fig. 3.5.1a ) and ρx = 0.1 (in Fig. 3.5.1b). The signal sparsity level is set to ε =
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Figure 3.5.1: Simulation results. For AMP-C-DCS with BG prior where
K = 2, the off diagonal elements of Σx are denoted by ρx which controls
the correlation between signals, the off diagonal element of ΣA is denoted by
ρA which controls the correlation between matrices.
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Figure 3.5.2: Simulation results. For AMP-C-DCS with Gaussian prior where
K = 2, the off diagonal elements of Σx are denoted by ρ which controls the
correlation between signals.
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0.2 and the signal dimension is given by n = 3000. The simulated curves are

obtained from the average of 250 trials. We add the theoretical curve achieved

by state evolution (Algorithm 3.2) to judge the performance of AMP-C-DCS.

The difference between them is less than 1% and noticeable only when the

curves are zoomed in. Furthermore, from Fig. 3.5.1a, where signal components

are more correlated, it can be observed that AMP-C-DCS performs better

when the measurement matrices become more independent. Such gains become

tiny in Fig. 3.5.1b when the signal components are nearly independent. This

is consistent with the results in Theorem 3.3.1 which suggests the gain of

AMP-C-DCS comes from the independence of the measurement matrices and

the correlation of the signals. The special cases of DCS and MMV systems

with Gaussian prior (ε = 1) are illustrated in Fig 3.5.2. For empirical study,

the dimension of the signal xk is set by n = 1000. The numerical results are

obtained from the average of 100 trials. Similar comments can be made with a

more significant performance gain. Although the correctness of the proposed

algorithm for the general case where 0 < ρA < 1 has not be rigorously analysed,

simulation results validate the accuracy of SE .

The above observed phenomenon can be explained by the following exam-

ple: assume in the noise free case, we take several photos of an object (identical

signals) with a same camera (identical measurement matrices). No additional

information will be achieved compared with a single snapshot of the object. If

we take photos with different kinds of cameras, for example, one is an optical

camera which produces a regular colour image of the object and another is the

so called depth camera which provides a depth image of the object (less cor-

related measurement matrices). Each pixel of the depth image represents the

distance between a target point and the camera. With the information pro-
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vided by the colour image and the depth image, we may create the 3D model

of the object as more information is provided with less correlated measurement

matrices.

3.6 Proof

3.6.1 AMP-C-DCS Algorithm: A Heuristic Derivation

In this section we provide the heuristic derivation of our proposed AMP-C-

DCS algorithm. The steps are mainly based on the heuristic derivation of the

original AMP algorithm proposed in [60, Section 5.2] and based on B−model.

To simplify representation, we omit the subscript B in the following analysis.

We start from the following message passing algorithm, at t-th iteration,

rta→i = ya −
∑

j∈[n]\i
Aajx

t
j→a, (3.6.1)

xt+1
i→a = ηt

 ∑
b∈[m]\a

Abir
t
b→i

 , (3.6.2)

where subscript a→ i in (3.6.1) denotes the message passing from factor node

a ∈ [m] to variable node i ∈ [n], subscript i→ a in (3.6.2) denotes the message

passing from variable node i to factor node a and [n]\i represents the set [n]

without element i. Recall, in the C-DCS model, the elements (e.g. ya ∈ RK ,

Aaj ∈ RK×K , xtj→a ∈ RK , rta→i ∈ RK) are no longer scalars, instead, they

are super components. A natured guess is that rta→i = rta + −→O
(
n−1/2

)
and

xti→a = xti +−→O
(
m−1/2

)
, then setting

rta→i = rta +4rta→i, xti→a = xti +4xti→a. (3.6.3)
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Substituting in (3.6.1), (3.6.2) and ignore the terms Aai4xti→a and Aai4rta→i

which are of order 1/n (the magnitude of each element inside the super com-

ponent), provides

rta +4rta→i = ya −
∑
j∈[n]

Aaj

(
xtj +4xtj→a

)
+Aaix

t
i, (3.6.4)

xt+1
i +4xt+1

i→a = ηt

 ∑
b∈[m]

Abi

(
rtb +4rtb→i

)
−Aair

t
a

 .
By applying first order Taylor’s expansion to the ηt function, we have the

following approximation

xt+1
i +4xt+1

i→a = ηt

 ∑
b∈[m]

Abi

(
rtb +4rtb→i

)
− η′t

 ∑
b∈[m]

Abi

(
rtb +4rtb→i

)Aair
t
a (3.6.5)

where η′t is the Jacobian matrix of ηt. Now compare (3.6.3) with (3.6.4) and

(3.6.5), a reasonable decomposition will be

rta = ya −
∑
j∈[n]

Aaj

(
xtj +4xtj→a

)
, (3.6.6)

4rta→i = Aaix
t
i, (3.6.7)

xt+1
i = ηt

 ∑
b∈[m]

Abi

(
rtb +4rtb→i

) (3.6.8)

4xt+1
i→a = −η′t

 ∑
b∈[m]

Abi

(
rtb +4rtb→i

)Aair
t
a (3.6.9)
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Substituting (3.6.7) in (3.6.8) and ∑b∈[m]A
2
bi → I from the definition of the

block matrix model in Definition 3.2.2, we have

xt+1 = ηt
(
ATrt + xt

)

which is the first equation of our proposed algorithm.

Substituting (3.6.9) in (3.6.6) yields

rta = ya −
∑
j∈[n]

Aajx
t
j −

∑
j∈[n]

Aaj4xtj→a

= ya −
∑
j∈[n]

Aajx
t
j

+
∑
j∈[n]

Aajη
′
t

 ∑
b∈[m]

Abjr
t−1
b + xt−1

j

Aajr
t−1
a

Define Dt−1
j := η′t−1

(∑
b∈[m]Abjr

t−1
b + xt−1

j

)
and Dt−1 = 1

n

∑
j∈[n]D

t−1
j , we

have

rta = ya −
∑
j∈[n]

Aajx
t
j +

∑
j∈[n]

AajD
t−1
j Aajr

t−1
a

≈ ya −
∑
j∈[n]

Aajx
t
j + nE

[
AajD

t−1
j Aaj

]
rt−1
a

= ya −
∑
j∈[n]

Aajx
t
j + 1

δ

(
ΣA �Dt−1

)
rt−1
a

which provides the second equation of our proposed algorithm. This finishes

our derivation.
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3.6.2 Independent Case Where ΣA = IK

Apply D−model and we have Σm = IKm and Σn = IKn. The first term in

(3.4.4) becomes

τ−1
2

(
τ2 (Y )

(
QTΣnQ

)−1
QTΣn

)
=τ−1

2

(
τ2 (Y )

(
QTQ

)−1
QT

)
=Y

(
QTQ

)−1
QT .

Similarly, the second term in (3.4.4) becomes

τ−1
1

(
ΣmM

(
MTΣmM

)−1
τ1
(
XT

))
=M

(
MTM

)−1
XT ,

then the third term in (3.4.4) is

τ−1
1

(
M
(
MTM

)−1
τ1

(
MT τ−1

2

(
τ2 (Y )

(
QTQ

)−1
QT

)))
=τ−1

1

(
M
(
MTM

)−1
τ1

(
MTY

(
QTQ

)−1
QT

))
=M

(
MTM

)−1
MTY

(
QTQ

)−1
QT .

For the projection (3.4.5), first calculate the left projection

τ−1
1

(
P

∦
Mτ1

(
Ã
))

=τ−1
1

((
I −M

(
MTM

)−1
MT

)
τ1
(
Ã
))

=
(
I −M

(
MTM

)−1
MT

) (
Ã
)

:=P⊥M
(
Ã
)
,
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then calculate the right projection

τ−1
2

(
τ2
(
P⊥M

(
Ã
))
P

∦T
Q

)
=τ−1

2

(
τ2
(
P⊥M

(
Ã
)) (

I −Q
(
QTQ

)−1
QT

))
:=P⊥M

(
Ã
)
P⊥Q .

The proof finished for the independent case.

3.6.3 Identical Case Where ΣA = 1K

Apply D−model and we have Σm = 1K � Im and Σn = 1K � In. Follow the

same steps as in section 3.6.2. The first and second terms in (3.4.4) can be

easily achieved as

τ−1
2

(
τ2 (Y )

(
QTΣnQ

)−1
QTΣn

)
=IK �

(
YR

(
QT
RQR

)−1
QT
R

)
τ−1

1

(
ΣmM

(
MTΣmM

)−1
τ1
(
XT

))
=IK �

(
MR

(
MT

RMR

)−1
XT
R

)
,

and the third term is

τ−1
1

(
ΣmM

(
MT

RMR

)
−1τ1

(
MT

[
IK�

(
YR

(
QT
RQR

)
−1QT

R

)]))
=τ−1

1

(
ΣmM

(
MT

RMR

)
−1τ1

(
MT

))[
IK�

(
YR

(
QT
RQR

)
−1QT

R

)]
=
[
IK�

(
MR

(
MT

RMR

)
−1MT

R

)] [
IK�

(
YR

(
QT
RQR

)
−1QT

R

)]
= IK�

(
MR

(
MT

RMR

)
−1MT

RYR
(
QT
RQR

)−1
QT
R

)
.
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For the projection (3.4.5), first calculate the left projection

τ−1
1

(
P

∦
Mτ1

(
Ã
))

=τ−1
1

(
τ1
(
Ã
)
−ΣmM

(
MT

RMR

)−1
MT τ1

(
Ã
))

=τ−1
1

(
1K×1 � ÃI −ΣmM

(
MT

RMR

)−1
τ1
(
MT Ã

))
=τ−1

1

(
1K×1 � ÃI −ΣmM

(
MT

RMR

)−1
MT

R ÃI

)
=IK �

[(
I −MR

(
MT

RMR

)−1
MT

R

)
ÃI

]
=IK �

(
P⊥MR

ÃI

)
,

where 1K×1 ∈ RK×1 with all one value. then calculate the right projection

τ−1
2

(
τ2
(
IK �

(
P⊥MR

ÃI

))
P

∦T
Q

)
= τ−1

1

((
I−ΣnQ

(
QT
RQR

)
−1QT

)
τ1

(
IK�

(
P⊥MR

ÃI

)T))T
= IK �

((
I −QR

(
QT
RQR

)−1
QT
R

)
ÃT
I P
⊥
MR

)T
= IK �

(
P⊥MR

ÃIP
⊥
QR

)
.

The proof finished for the identical case.

3.6.4 Gaussianity Analysis

The rigorous proof requires to check all the steps appeared in [29], but here

we just provide an illustration to analyse the Gaussianity of ht+1 and bt based

on the conditional distribution A|Gt1,t2 and assume the induction hypothesis

used in [29] where K = 1 can be extended to our case where K > 1 and

ΣA = I. We use h= to denote the requirements of certain induction hypothesis.

Recall, according to Section 3.4.2, for the independent Ak’s, we can consider
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all the super components in (3.4.6) and ξt, λt as diagonal matrices. The

analysis in Corollary 3.4.6 is based on D−model, but we can easily rewrite it

to B−model without changing the formula (Note: we can’t do this operation

in the identical case) and the following analysis in this section will mainly

based on B−model, unless mentioned otherwise. Define the following

mt
|| =

t−1∑
i=0
αi �mi, qt|| =

t−1∑
i=0
βi � qi

−→α = −→α t = [α0, ...,αt−1]T

−→
β =

−→
β t = [β0, ...,βt−1]T

where αi, βi ∈ RK×K are diagonal matrices, � is the operation that multiple

each super components of mi and qi with the same diagonal matrices αi and

βi , i.e αi �mi = (I �αi)mi = mi � αi. Let v,u ∈ RmK×K as Definition

3.2.1 but with diagonal super components, define the following inter product

〈v,u〉 := 1
m

m∑
i=1
viui.

We are going to show:

ht+1|Gt+1,t
d=
t−1∑
i=0
αi � hi+1 + ÃTmt

⊥ + Q̃t+1~ot+1 (1) (3.6.10)

bt|Gt,t
d=
t−1∑
i=0
βi � bi + Ãqt⊥ + M̃t~ot (1) (3.6.11)

where ~ot (1) ∈ RtK×K is a t-dimensional vector contains diagonal super com-

ponents with all the diagonal elements converges to 0 almost surely as n→∞.

Based on (3.2.9) and (3.4.6), we have

Xt = Ht +QtΞt, Yt = Bt + [0|Mt−1] Λt (3.6.12)
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where Ht = [h1|...|ht], Ξt = diag (ξ0, ..., ξt−1), Bt = [b0|...|bt−1] and Λt =

diag (λ0, ...,λt−1). As the conditional distribution A|Gt1,t2 has the same form

as in [29], just changing the scalar elements to the block diagonal super com-

ponents. Let mt = mt
|| +mt

⊥ and qt = qt|| + qt⊥, we can get the same results

as [29, Lemma 12]:

ET
t+1,tm

t = Xt

(
MT

t Mt

)−1
Mmt

||

+Qt+1
(
QT
t+1Qt+1

)−1
Y T
t+1m

t
⊥, (3.6.13)

Et,tq
t = Yt

(
QT
t Qt

)−1
Qqt||

+Mt

(
MT

t Mt

)−1
XT

t q
t
⊥. (3.6.14)

Now focus on bt|Gt,t , with (3.6.14) and Corollary 3.4.6, we have

bt|Gt,t
d= Aqt|St,t −mt−1 � λt

= Yt
(
QT
t Qt

)−1
QT
t q

t
|| +Mt

(
MT

t Mt

)−1
XT

t q
t
⊥

+ P⊥Mt
ÃP⊥Qtq

t −mt−1 � λt
a= Bt

(
QT
t Qt

)−1
QT
t q

t
|| + P⊥Mt

ÃP⊥Qtq
t

+ [0|Mt−1] Λt

(
QT
t Qt

)−1
QT
t q

t
||

+Mt

(
MT

t Mt

)−1
HT

t q
t
⊥ −mt−1 � λt (3.6.15)

where a= is achieved based on (3.6.12) and the following

XT
t q

t
⊥ = HT

t q
t
⊥ + ΞT

t Q
T
t q

t
⊥

= HT
t q

t
⊥
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as qt|| = Qt

−→
β and QT

t q
t
⊥ = 0. Next we are going to show

[0|Mt−1]Λt

(
QT
t Qt

)−1
QT
t q

t
||

+Mt

(
MT

t Mt

)
−1HT

t q
t
⊥−mt−1� λt=Mt~ot (1) .

The left-hand side can be treated as a linear combination of vectorsm0, ...,mt−1.

For any l = 1, ..., t we are going to show that coefficients ( denoted by diagonal

matrices) of ml−1 converges to 0. The coefficient is

[(
MT

t Mt

)−1
HT

t q
t
⊥

]
l
− λl (−βl)8l 6=t (3.6.16)

where 8l 6=t is the indicator function. Note: the subscript l is the index of the

super component. Let G := MT
t Mt

m
for simplicity, then

[(
MT

t Mt

)−1
HT

t q
t
⊥

]
l

=
t∑

r=1

(
MT

t Mt

m

)−1

l,r

n

m

〈
hr, qt − qt||

〉

=
t∑

r=1
G−1
l,r

1
δ

〈
hr, qt −Qt

−→
β
〉

=
t∑

r=1
G−1
l,r

1
δ

〈
hr, qt −

t−1∑
s=0
qs � βs

〉
.

We have

lim
n→∞

1
δ

〈
hr, qt −

t−1∑
s=0
qs � βs

〉

h= lim
n→∞

1
δ

〈
hr, qt

〉
−

t−1∑
s=0

lim
n→∞

1
δ
〈hr, qs〉βs
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and recall qt = ft (ht,x), then

lim
n→∞

1
δ

〈
hr, qt

〉
= lim

n→∞

1
δ

〈
hr,ft

(
ht,x

)〉
a= lim
n→∞

1
δ

〈
hr,ht

〉 (
I �

〈
f ′t
(
ht,x

)〉)
h= lim
n→∞

1
δ

〈
mr−1,mt−1

〉 (
I �

〈
f ′t
(
ht,x

)〉)
b= lim
n→∞

Gr,tλt

where a= holds based on Lemma 3.6.1 but only focus on the diagonal elements,
b= holds due to the definition of λt = 1

δ
ΣA � 〈f ′t (ht,x)〉 and ΣA = I. Thus,

the coefficient of ml−1 can be computed via

lim
n→∞

{
t∑

r=1

(
G−1

)
l,r

[Gr,tλt]−
t∑

r=1

(
G−1

)
l,r

[
t−1∑
s=0
Gr,sλsβs

]

−λl (−βl)8l 6=t
}

a.s= lim
n→∞

{
λt 8l=t −

t−1∑
s=0
λsβs 8l=s −λl (−βl)8l6=t

}
a.s= 0.

where a.s= means the equality holds almost surely. Thus (3.6.15) can be simpli-

fied as

bt|Gt,t
d= Bt

(
QT
t Qt

)−1
QT
t q

t
|| + P⊥Mt

ÃP⊥Qtq
t +Mt~ot (1) .
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based on [29, Corollary 2], we can write

−→
β =

(
QT
t Qt

n

)−1
QT
t q

t

n

=
(
QT
t Qt

n

)−1 QT
t q

t
||

n

as QT
t q

t
⊥ = 0 then we reach

bt|Gt,t
d=
t−1∑
i=0
βi � bi + P⊥Mt

ÃP⊥Qtq
t +Mt~ot (1) .

=
t−1∑
i=0
βi � bi + (I − PMt) Ãqt⊥ +Mt~ot (1)

=
t−1∑
i=0
βi � bi + Ãqt⊥ − PMtÃq

t
⊥ +Mt~ot (1)

=
t−1∑
i=0
βi � bi + Ãqt⊥ +Mt~ot (1)

base on the fact that PMtÃq
t
⊥

d= M̃t~ot (1), which can be proved by rewriting

PMtÃq
t
⊥ in the D−model then apply Lemma 3.6.2(c) to each PMK,t

Ãkq
t
k⊥

for k ∈ [K], separately. Proof of (3.6.10) is similar.

3.6.5 Additional Lemmas

Lemma 3.6.1 (Stein’s Lemma [37, Lemma 5]). For jointly Gaussian random

vectors x1,x2 ∈ RK with zero mean and any function f : RK → RK where

E
[
∂f(x1)
∂X

]
and E

[
x1f (x2)T

]
exist, the following holds

E
[
x1f (x2)T

]
= Cov (x1,x2)E

[
∂f (x2)
∂X

]T

Lemma 3.6.2 ([29, Lemma 2]). For any deterministic u ∈ Rn and v ∈ Rm
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with ‖u‖ = ‖v‖ = 1 and a Gaussian matrix Ã distributed as A ∈ Rm×n we

have

1. vT Ãu d= Z/
√
m where Z ∼ N (0, 1).

2. limn→∞

∥∥∥Ãu∥∥∥2
= 1 almost surely.

3. Consider, for d ≤ m, a d-dimensional subspace W of Rm, an orthogonal

basis w1, ...,wd of W with ‖wi‖2 = m for i = 1, ..., d, and the orthogonal

projection PW onto W . Then for D = [w1|...|wd], we have PWAu
d=

Dx with x ∈ Rd that satisfies: limm→∞ ‖x‖
a.s.= 0 (the limit being taken

with d fixed). Note that x is ~od (1) as well.

3.6.6 Proof of Lemma 3.5.1

Define the following probability function

pX|V (x|v) := 1
Z (v)exp

(
φ0 (x) + xTΣ−1

e v
)
,

Z (v) :=
∫

exp
(
φ0 (x) + xTΣ−1

e v
)
dx,

where Z (v) is a normalization constant, x and v are vectors with a same

dimension and Σe denotes a positive semi-definite matrix.

Firstly, calculate the derivative of Z (v):

∂Z (v)
∂v

= ∂

∂v

∫
exp

(
φ0 (x) + xTΣ−1

e v
)
dx,

=
[∫
xT exp

(
φ0 (x) + xTΣ−1

e v
)
dx
]
Σ−1
e ,

= Z (v) EX|V [x|v]T Σ−1
e ,
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then rearrange the formula which provides

EX|V [x|v] = Σe

Z (v)

[
∂Z (v)
∂v

]T
,

=
∫
xpX|V (x|v) dx.

Secondly, calculate the derivative of EX|V [x|v]:

∂EX|V (x|v)
∂v

=
∫ xxTΣ−1

e

Z (v) exp
(
φ0 (x) + xTΣ−1

e v
)
dx

−
∫ xZ (v) EX|V [x|v]T Σ−1

e

Z2 (v) exp
(
φ0 (x) + xTΣ−1

e v
)
dx,

=
[∫ xxT

Z (v)exp
(
φ0 (x) + xTΣ−1

e v
)
dx

]
Σ−1
e

−
[∫ x

Z (v)exp
(
φ0 (x) + xTΣ−1

e v
)
dx

]
EX|V [x|v]T Σ−1

e ,

=EX|V
[
xxT |v

]
Σ−1
e − EX|V [x|v] EX|V [x|v]T Σ−1

e .

Finally, multiply Σe on both sides, we achieve

∂EX|V (x|v)
∂v

Σe = EX|V
[
xxT |v

]
− EX|V [x|v] EX|V [x|v]T ,

= Cov (x|v) .
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3.6.7 Proof of Estimation Error of an MMSE Estimator

Define the estimator x̂ = η (x̃) = Ex|x̃ [x|x̃], the covariance matrix of x − x̂

which is defined as Ση can be calculated via

Ση = E
[
(x− x̂) (x− x̂)T

]
= E

[
xxT − 2Ex|x̃ [x|x̃]xT + Ex|x̃ [x|x̃] Ex|x̃ [x|x̃]T

]
= Ex̃

[
Ex|x̃

[
xxT − 2Ex|x̃ [x|x̃]xT + Ex|x̃ [x|x̃] Ex|x̃ [x|x̃]T

]]
= Ex̃

[
Ex|x̃

[
xxT |x̃

]]
− Ex̃

[
Ex|x̃ [x|x̃] Ex|x̃ [x|x̃]T

]
= Ex̃

[
Ex|x̃

[
xxT |x̃

]]
− Ex̃

[
η (x̃)η (x̃)T

]

3.6.8 Proof of η (·) with Bernoulli-Gaussian Prior

Recall the BG distribution:

px (x) = (1− ε) δfx=0 + εp (x; 0, Σx) , (3.6.17)

where

p (x; 0, Σx) = |2πΣx|−
1
2 exp

(
−1

2x
TΣ−1

x x
)
. (3.6.18)

Define the system model

x̃ = x+we, (3.6.19)

where we is the additive Gaussian noise, thus we have

pwe (we; 0, Σe) = p (we; 0, Σe) , (3.6.20)
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The joint probability of x and x̃ has the following formula,

px,x̃ (x, x̃) = p (x̃− x; 0, Σe) (1− ε) δfx=0 + εp (x̃− x; 0, Σe) p (x; 0, Σx) ,

and based on (3.6.19), we have

px̃ (x̃) = (1− ε) p (x̃; 0, Σe) + εp (x̃; 0, Σx + Σe) .

Let x̂ = Ex|x̃ [x|x̃] and based on Bayes’ theorem, we have

x̂ =
∫
x
px,x̃ (x, x̃)
px̃ (x̃) dx

=
∫
xp (x̃− x; 0, Σe) p (x; 0, Σx) dx

(1−ε)
ε
p (x̃; 0, Σe) + p (x̃; 0, Σx + Σe)

. (3.6.21)

Based on Lemma 3.4.2, we have

∫
xp (x̃− x; 0, Σe) p (x; 0, Σx) dx

p (x̃; 0, Σx + Σe)
=
(
Σ−1
x + Σ−1

e

)−1
Σ−1
e x̃ (3.6.22)

which is the MMSE estimate for a Gaussian prior signal with an identity

measurement matrix. Apply the fact (3.6.22) in (3.6.21), we will reach (3.5.1).

3.6.9 Proof of Ση with Bernoulli-Gaussian Prior

Define Ση = Ex̃

[
Ex|x̃

[
xxT |x̃

]]
− Ex̃

[
η (x̃)η (x̃)T

]
where η (x̃) = Ex|x̃ [x|x̃].

Assume the system model as (3.6.19) with signal and noise distributions as

(3.6.17) and (3.6.20). Note that Ex̃

[
Ex|x̃

[
xxT |x̃

]]
= E

[
xxT

]
= εΣx based

on the law of total expectation. We focus on the calculation of the (p, q)-

th elements of Ex̃

[
η (x̃)η (x̃)T

]
and , let R = (Σ−1

x + Σ−1
e )−1 Σ−1

e , based on
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(3.6.21), we have

Ex̃

[
[η (x̃)]p [η (x̃)]q

]
= Ex̃

[
ε2 ∫ xpp (x̃− x; 0, Σe) p (x; 0, Σx) dx

∫
xqp (x̃− x; 0, Σe) p (x; 0, Σx) dx

((1− ε) p (x̃; 0, Σe) + εp (x̃; 0, Σx + Σe))2

]

=
∫ ε2 ∫ xpp (x̃− x; 0, Σe) p (x; 0, Σx) dx

∫
xqp (x̃− x; 0, Σe) p (x; 0, Σx) dx

(1− ε) p (x̃; 0, Σe) + εp (x̃; 0, Σx + Σe)
dx̃

= ε
∫ ∫

xpp(x̃−x; 0,Σe)p(x;0,Σx)dx
p(x̃;0,Σx+Σe)

∫
xqp(x̃−x; 0,Σe)p(x;0,Σx)dx

p(x̃;0,Σx+Σe)
(1−ε)p(x̃;0,Σe)
εp(x̃;0,Σx+Σe) + 1

p(x̃;0,Σx+Σe)

dx̃

(a)=
∫ [Rx̃]p [Rx̃]q εp (x̃; 0 Σx + Σe)

(1−ε)
ε
|Σx (Σ−1

x + Σ−1
e )|

1
2 exp

(
−1

2 x̃
TΣ−1

e Rx̃
)

+ 1
dx̃

where (a)= is based on (3.6.22). The final Ση can be written in a compact form

as

Ση = Ex̃

[
Ex|x̃

[
xxT |x̃

]]
− Ex̃

[
η (x̃)η (x̃)T

]
= εΣx −

∫ [Rx̃] [Rx̃]T εp (x̃; 0 Σx + Σe)
(1−ε)
ε
|Σx (Σ−1

x + Σ−1
e )|

1
2 exp

(
−1

2 x̃
TΣ−1

e Rx̃
)

+ 1
dx̃ (3.6.23)

3.6.10 Proof of η (·) and Ση with Gaussian Prior

The results can be directly achieved from Lemma 3.4.2, but here, we derive

the results based on the consequences from BG prior.

For the estimator η (·), we start from (3.6.21), by setting ε = 1, we directly

achieve

x̂ =
∫
xp (x̃− x; 0, Σe) p (x; 0, Σx) dx

p (x̃; 0, Σx + Σe)
,

and based on (3.6.22) we can prove (3.5.7)
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For the Ση, we start form (3.6.23), by setting ε = 1, we have

Ση = Σx −R
[∫
x̃x̃T εp (x̃; 0 Σx + Σe) dx̃

]
RT ,

= Σx −RE
[
x̃x̃T

]
RT . (3.6.24)

Recall that

R =
(
Σ−1
x + Σ−1

e

)−1
Σ−1
e ,

= Σx (Σx + Σe)−1 , (3.6.25)

substituting (3.6.25) into (3.6.24) will give

Ση = Σx −Σx (Σx + Σe)−1 Σx,

(WMI)=
(
Σ−1
x + Σ−1

e

)−1
,

where (WMI)= is based on Woodbury Matrix Identity (WMI) listed below. The

achieved result coincides with Lemma 3.4.2.

Lemma 3.6.3 (Woodbury matrix identity (WMI)[84]). For matrices A, U ,

C and V of the correct sizes, assuming all the matrices have inverses, then

we have the following

(A+UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1.
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3.6.11 Heuristic State Evolution Analysis for Gaussian

Signals

For the C-DCS model, we are tracking the covariance matrices of the equivalent

noise (Σt
e) and the estimation error (Σt

η). The SE analysis is based on the

following equations:

Σt
e = 1

δ
(ΣA) .2 �Σt

η + σ2
wI, (3.6.26)

Σt
η =

(
Σ−1
x +

(
Σt−1
e

)−1
)−1

. (3.6.27)

where δ = m
n
.

Case 1: Assume Σx = σ2
xI (independent signals), for both MMV and DCS

cases, Σt
e and Σt

η will keep as diagonal matrices. Thus, (3.6.26) will degenerate

into the following scalar version

(
σte
)2

= 1
δ

σ2
x (σt−1

e )2

σ2
x + (σt−1

e )2 + σ2
w (3.6.28)

and by assumption σt−1
e = σte = σ∞e at the steady state point, we have equiv-

alent noise with variance

(σ∞e )2 =

(
1−δ
δ
σ2
x + σ2

w

)
+
√(

1−δ
δ
σ2
x + σ2

w

)2
+ 4σ2

wσ
2
x

2

where the negative part has been ignored. The corresponding MSE can be

calculated via δ
(
(σ∞e )2 − σ2

w

)
which provides (3.5.9)

Case 2: Assume Σx = σ2
x1(identical signals) and consider DCS case where

ΣA = I. The inverse of Σx is not exist, thus, we consider the pseudo inverse

Σ+
x instead. The Singular Value Decomposition (SVD) of Σx and Σ+

x can be
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written as

Σx = σ2
xU

 K

0K−1

UT , Σ+
x = 1

σ2
x

U

 1
K

∞K−1

UT

where U is an orthogonal matrix, 0K−1, ∞K−1 ∈ R(K−1)×(K−1) are diagonal

matrices with diagonal elements 0 and ∞, respectively. Due to the property

of ΣA, Σt
e = (σte)

2
I will always be a diagonal matrix, thus we can write the

following decomposition

Σt
e =

(
σte
)2
UUT ,

(
Σt
e

)−1
= 1

(σte)
2UU

T ,

and Σt
η can be achieved via

(
Σ+
x +

(
Σt
e

)−1
)−1

=

U
 1

σ2
xK

+ 1
(σte)2

∞K−1

UT


−1

= (σte)
2

σ2
xK + (σte)

2 Σx.

We only focus on the diagonal elements of
(
Σ+
x + (Σt

e)
−1)−1

which should be
(σte)2

σ2
x

σ2
xK+(σte)2 , the state evolution will also degenerate into the following scalar

form (
σt+1
e

)2
= 1
δ

(σte)
2
σ2
x

σ2
xK + (σte)

2 + σ2
w (3.6.29)

notice the difference between (3.6.29) and (3.6.28). Following the rest analysis

steps in Case 1, we will achieve (3.5.11)

Case 3: Assume Σx = σ2
x1(identical signals) and consider MMV case

where ΣA = 1. The analysis is the same as in DCS case, the only difference is
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that Σt
e is no longer a diagonal matrix. Instead, we have

αt1 = αtU

 K

0K−1

UT := (ΣA) .2 �Σt
η

then

Σt
e = 1

δ
αt1 + σ2

wUU
T (3.6.30)

= U

 1
δ
αtK + σ2

w

σ2
wIK−1

UT

and Σt
η can be achieved via

(
Σ+
x +

(
Σt
e

)−1
)−1

=

U


1
σ2
xK

+ 1
1
δ
αtK+σ2

w

∞K−1

UT


−1

=

(
1
δ
αtK + σ2

w

)
1
δ
αtK + σ2

w + σ2
xK

Σx = Σt+1
η

which indicates

αt+1 =

(
1
δ
αtK + σ2

w

)
σ2
x

1
δ
αtK + σ2

w + σ2
xK

.

We still focus on the diagonal elements of
(
Σ+
x + (Σt

e)
−1)−1

, define

(
σte
)2
I := Diag

(
Σt
e

)

where Diag(·) is the operator that keeps the diagonal elements of a matrix
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unchanged but set others to zero and based on (3.6.30), we have

(
σte
)2

= 1
δ
αt + σ2

w, (3.6.31)

αt = δ
(
σte
)2
− δσ2

w,

then αt+1 can be rewritten as a function of σte, which gives

αt+1 = K (σte)
2
σ2
x − (K − 1)σ2

wσ
2
x

K (σte)
2 +Kσ2

x − (K − 1)σ2
w

. (3.6.32)

Substituting (3.6.32) into (3.6.31) will provide

(
σt+1
e

)2
= 1
δ

K (σte)
2
σ2
x − (K − 1)σ2

wσ
2
x

K (σte)
2 +Kσ2

x − (K − 1)σ2
w

+ σ2
w.

The following steps are the same as in Case 1 and finally achieve (3.5.10).



Chapter 4

Number of Measurements

Selection via AMP

In this chapter, we consider a practical signal transmission/receiving applica-

tion with fixed energy budget such as radar/sonar. The system is modelled

by linear equations with the assumption that the total energy that can be

allocated to signals is fixed and thermal noise is the dominant noise source.

Under this circumstances, we discover that the signal energy per measurement

decreases linearly and the noise energy per measurement increases approxi-

mately linearly with the increase of the number of measurements. Thus the

SNR decreases quadratically with the number of measurements. This model

suggests an optimal operation point different from the common wisdom where

more measurements often mean a better performance. Our analysis shows that

there is an optimal number of measurements, neither too few nor too many, to

minimize the mean squared error of the estimate. The analysis is based on a

state evolution technique which is proposed for the approximate message pass-

ing algorithm. We consider the Gaussian, BG and LF distributions (when the

105
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soft-thresholding function is chosen as the estimator) in both real and complex

domains. Numerical results justify the correctness of our analysis.

4.1 Introduction

This chapter focuses on a system design inspired by practical scenarios where

the total energy budget of the linear measurements is fixed, the signal energy

per measurement decreases linearly and the noise energy per measurement

increases approximately linearly with the number of measurements. This sce-

nario arises in many active sensing applications where measuring means ob-

serving the responses of a physical system to the stimulants that we actively

put in. One example is radar systems. The number of measurements could cor-

respond to the number of pulses per unit time (pulse frequency) or the number

of sub-channels in the entire spectrum. When the number of measurements is

increasing, the signal energy per measurement (per pulse/sub-channel) is de-

creasing linearly with the number of measurements. For the measurement

noise, we adopt the commonly used additive white Gaussian noise model.

Based on the famous thermal noise effect of a sampling circuit [85, 86, 87],

which shows that the noise in a sampling circuit increases with the increase of

the sampling rate, we assume that the noise variance increases approximately

linearly with the increase of the number of measurements. With the above

assumptions, the SNR per measurement should decrease quadratically if we

add more measurements. Our goal in this chapter is to address this trade-off

and determine the optimal number of measurements. It is worth noting that

although this chapter focuses on sparse signals, the same trade-off exists for

non-sparse signals as we show in Section 4.3.
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The main contribution of this work is that we analyse the quadratic de-

creasing SNR model and find the exact optimal number of measurements re-

quired to minimize the MSE under certain mathematical assumptions. For

the purpose of analysis, we assume a Gaussian measurement matrix, i.e., the

elements in the measurement matrix are independently drawn from a Gaussian

distribution. Let m be the number of measurements, n be the dimension of

the unknown signal, and S be the number of non-zero elements. Further, let

m, n, S → ∞ with constant ratios δ := m
n

(normalized number of measure-

ments, under-sampling ratio) and ε := S
n
(sparsity level). By characterizing

the asymptotic distortion as a function of the normalized number of measure-

ments δ, one can find the optimal number of measurements δ† that minimizes

the distortion. The δ† may be directly achieved by a closed-form formula or by

numerical calculation which depends on the statistics of the unknown signal.

In order to provide intuition about the value of δ† for different unknown sig-

nals, we study upper bounds on δ† for three typical signal models: Gaussian,

BG and LF distributions in both real and complex domains. The first two

signal models are commonly used for non-sparse and sparse signal analysis,

respectively. The third model is used for worst case analysis meaning the re-

sulting MSE performance is an upper bound on that of signals with arbitrary

distribution with the same sparsity level. The worst case analysis result is

pessimistic in general but at the same time universal. Our analysis shows that

for all three models, in both real and complex domains, the optimal value δ†

is upper bounded by 2.

Our results are based on the AMP algorithm and the associated state

evolution analysis. It is noteworthy that though the rigorous derivation of

state evolution of AMP requires a random Gaussian matrix, numerical results
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in [28] show that the same results are relatively accurate for partial Fourier and

Rademacher matrices when the sizes of these matrices are sufficiently large.

4.2 Problem Formulation

4.2.1 System Model

Consider a signal transmission/receiving system with fixed energy budget such

as radar/sonar. If we sample a signal with more measurements m then the

energy allocated to each single measurement is reduced. Thus, we assume

the signal variance is proportional to m−1. This effect can be modelled by

multiplying each measurement by a factor of 1/
√
m. In addition, based on [88],

when considering the noise power of a receiving system especially for radar,

an adequate assumption is that the receiver system is ideal and only consider

the thermal noise. It is known that the thermal noise in a sampling circuit

increases with the sampling rate [85, 86, 87], we assume a linear relationship

between the noise variance (σ2
w) and the number of measurements (m). Let H

represents the real (R) or complex (C) domain. The system is modelled as

y = Ax+w, (4.2.1)

where y ∈ Hm denotes the observation vector; A ∈ Hm×n is the standard

Gaussian random matrix with elements scaled by 1/
√
m; x ∈ Hn represents

the unknown signal and w ∈ Hm is additive Gaussian noise with mean zero.

In addition, based on the assumption of the linear relationship between σ2
w and

m, we define

σ2
w := δσ2

0, (4.2.2)
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where δ := m
n

and σ2
0 denotes the noise base level which is a constant. Let x̂

be the estimated signal. The performance of the system is given by the MSE

Err := lim
n→∞

1
n
‖x− x̂‖2 . (4.2.3)

In particular, we are interested in the value of δ that minimizes the MSE

(4.2.3). We consider the system model (4.2.1) for both non-sparse and sparse

signals.

4.2.2 Non-Sparse Setting

For the non-sparse setting, we consider the widely used Gaussian signal as an

example. The asymptotic MSE analysis for the traditional problem is well

known. Assume that A is a Gaussian random matrix with i.i.d. elements

drawn from N
(
0, 1

m

)
when H = R (or CN

(
0, 1

m

)
when H = C), x is drawn

from N (0, σ2
xI
)
when H = R (or CN (0, σ2

xI
)
when H = C) and the noise w

is drawn from N (0, σ2
wI
)
when H = R (or CN (0, σ2

wI
)
when H = C). The

asymptotic MSE of the MMSE estimator can be directly calculated based on

random matrix theory [29]. Denoting c = (1−δ)
δ

, we have

lim
n→∞

1
n
‖x− x̂‖2 = δ

2

[(
cσ2

x − σ2
w

)
+
√

(cσ2
x + σ2

w)2 + 4σ2
wσ

2
x

]
. (4.2.4)

By replacing the noise variance with our model (4.2.2), a trade-off between

MSE and δ is achieved. Figure 4.2.1 plots an example, where we set σ2
x = 1

and vary the value of σ2
0. For each given σ2

0, by increasing the number of

measurements, the MSE first decreases until reaches the optimal point; further

increasing the number of measurements, the MSE becomes larger.
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Figure 4.2.1: Trade-off for Gaussian signals. σ2
0 is the noise base level. The

optimal δ decreases with increasing σ2
0.

For sparse signals, we want to find a similar relationship, taking into ac-

count the non-linear property of the sparse decoder. Instead, we use the state

evolution technique of the well known AMP algorithm [29, 1]. Although AMP

was originally proposed for solving CS problems in which the unknown signals

are assumed to be S-sparse, we will show that the same analysis is also valid

for non-sparse signals in Section 4.3.3. The background of AMP has been

given in Chapter 2. Here we just recall the key parts. At each iteration, AMP

estimates the signal based on (2.2.1) which requires the information of the

ground truth signal and the equivalent noise. When the actual distribution of

x is unknown, a worse case analysis will be applied (see Section 2.1). When

the distribution of x is given, then the corresponding MMSE estimator will

be used (see Section 3.2.2). The statistics of the equivalent noise is calculated

based on (2.2.2) which requires the knowledge of the estimation error of the
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previously iteration. When the measurement matrix is a standard Gaussian

random matrix, the performance of AMP can be described by SE which tracks

the variance of the equivalent noise via

(
σte
)2

= 1
δ

Errt + σ2
w, (4.2.5)

where Errt represents the estimation error of the previously iteration which

is defined by (2.2.4). Thus, in order to apply AMP algorithm and the corre-

sponding SE technique, we need to choose the estimator η(·) and calculate Errt,

properly. When AMP algorithm converges, we have t → ∞, σte = σt+1
e = σ∞e

and Errt = Errt+1 = Err∞. In the following sections, we will study the relation-

ship between MSE (Err∞) and δ according to some specific signal distributions

such as LF and BG distributions in both real and complex domains.

4.3 Analysis in Real Domain

In this section, we analyse the relationship between MSE and δ (or equivalently

m) in the real domain for both LF and BG distributions. Then we extend the

analysis to the complex domain in the next section. We first consider the

situation that the actual distribution of the unknown signal is not given and

we only know the sparsity level ε = S
n
. The analysis in this case will provide

a worst case universal solution. A designed decoder based on a given signal

distribution should outperform the universal decoder. To study this case, we

consider the BG distribution.
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4.3.1 Least-Favourite Distribution (Worst Case Analy-

sis)

For the worst case analysis, the soft-thresholding function (2.1.3) will be chosen

as the η (·) function and the corresponding LF distribution is defined by (2.1.5).

The optimal threshold value θt and Errt+1, at each iteration, are calculated via

θt := α†σte, α
† = arg min

α∈R+
M (ε, α)

and

Errt+1 = M
(
ε, α†

) (
σte
)2
. (4.3.1)

where M
(
ε, α†

)
is given by (2.2.7).

We apply the above results to our system model and achieve the following

theorem

Theorem 4.3.1. For a linear measurement system (4.2.1) with signal model

(2.1.5) and additive white Gaussian noise with variance (4.2.2), apply AMP

algorithm with estimator (2.1.3). By the convergence assumption of (4.2.5),

we have

δ† = 2M
(
ε, α†

)
, (4.3.2)

which is independent of the noise variance.

Proof. By the convergence assumption, when t→∞, we have σt+1
e = σte = σ∞e

and Errt+1 = Errt = Err∞. Substituting (4.2.5) into (4.3.1) provides Err∞ =

M
(
ε, α†

) (
1
δ
Err∞ + δσ2

0

)
which can be rewritten as Err∞ = M(ε,α†)δ2σ2

0

δ−M(ε,α†) . Now

Err∞ is a function of δ. Take the derivative of Err∞ with respect to δ and set it

equal to zero, for δ > M
(
ε, α†

)
(which ensures that Err∞ is a positive value),
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we have the only saddle point δ† = 2M
(
ε, α†

)
. As δ →∞, we have Err∞ →∞,

thus, δ† is a local minima which is the required solution. In addition, δ† does

not depend on the base noise level σ2
0, that is because Err∞ = M(ε,α†)δ2σ2

0

δ−M(ε,α†) and

σ2
0 works as a scalar factor which will not affect δ†.

4.3.2 Bernoulli-Gaussian Distribution

Next we consider the BG prior [89, 72, 43] with probability density given by

px = (1− ε) δfx=0 + εpG
(
x; 0, σ2

x

)
, (4.3.3)

where pG
(
x; 0, σ2

x

) represents the Gaussian density with mean 0 and variance

σ2
x.

The η (·) function can be designed based on the prior information of x. Let

Rt := σ2
x/
((
σte
)2 + σ2

x

)
and define

I
(
Rt, ε

)
:=
∫ φ (x)

1 + 1−ε
ε

1√
1−Rt exp

(
− Rt

1−Rt
x2

2

)x2dx. (4.3.4)

The component-wise function η (·) can be chosen as the MMSE estimator, for

each element of x̃t:

η
(
x̃ti
)

:=
pG
(
x̃ti; 0, (σte)

2 + σ2
x

)
p (x̃ti)

εRtx̃ti, (4.3.5)

with p
(
x̃ti
)

:= (1− ε) pG
(
x̃ti; 0,

(
σte
)2)+εpG

(
x̃ti; 0,

(
σte
)2+σ2

x

)
. For simplified nota-

tion, define

v1 := 1− ε
ε

√√√√(σte)
2 + σ2

x

(σte)
2 , v2 := Rt

(σte)
2 , v3 :=v1 exp

(
−1

2v2
(
x̃ti
)2
)
,
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we have η′ (xti|x̃ti) = Rt/ (v3 + 1) +Rtv3v2
(
x̃ti
)2
/ (v3 + 1)2 and

Errt+1 :=
[
Rtε

1−Rt

(
1−RtI

(
Rt, ε

))] (
σte
)2
. (4.3.6)

(See Section 4.6.1 for the detailed proof.)

Fast calculation of Errt+1: We can increase the efficiency of AMP algo-

rithm by avoiding the integration of (4.3.4). Based on Lemma 4.3.2, Errt+1

can be approximately calculated by

Errt+1 ≈
[

1
n

n∑
i=1

η′
(
x̃ti
)] (

σte
)2
. (4.3.7)

Proof. As mentioned before, the input of η (·) can be written as x̃ = x + we

(we ignore the subscript i and superscript t for simplification). Consider the

conditional probability

p (x|x̃) = p (x, x̃)
p (x̃) = (1− ε) pG (x̃− x; 0, σ2

e) δ
f
x=0

p (x̃) +εpG (x; 0, σ2
x) pG (x̃− x; 0, σ2

e)
p (x̃) ,

in which we only care about the second term (the first term has no contribu-

tions to E [x|x̃] and var [x|x̃] due to δfx=0). The numerator of the second term

can be written as

εpG
(
x; 0, σ2

x

)
pG
(
x̃− x; 0, σ2

e

)
= ε

1√
2πσ2

x

exp
(
− x2

2σ2
x

)
1√

2πσ2
e

exp
(
−(x̃− x)2

2σ2
e

)

= ε
1

2πσxσe
exp

(
− x̃2

2σ2
e

)
exp

(
−σ2

e − σ2
x

2σ2
xσ

2
e

x2 + xx̃

σ2
e

)
.

The term ε 1
2πσxσe exp

(
− x̃2

2σ2
e

)
can be moved to the denominator. Compare the

remaining part exp
(
−σ2

e−σ2
x

2σ2
xσ

2
e
x2 + xx̃

σ2
e

)
with the term exp (φ0 (u) + uv) in Lemma
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4.3.2 listed below, we have u = x
σ2
e
and v = x̃. Based on (4.3.5) and Lemma

4.3.2, we have

E [U |V = x̃] = E [X|V = x̃]
σ2
e

= η (x̃)
σ2
e

,

var (U |V = x̃) = η′ (x̃)
σ2
e

= var
(
X

σ2
e

|V = x̃

)
= 1
σ4
e

var (X|V = x̃) ,

which provides

var (X|V = x̃) = η′ (x̃)σ2
e .

Recall that the MSE considers the average value of var (X|V = x̃) with respect

to different x̃’s, thus (4.3.7) is proved.

Lemma 4.3.2. [30, Lemma 2] Consider a random variable U with a condi-

tional probability density function of the form pU |V (u|v) := 1
Z(v)exp (φ0 (u) + uv) ,

where Z (v) is a normalization constant, Then,

∂

∂v
logZ (v) = E [U |V = v]

∂2

∂v2 logZ (v) = ∂

∂v
E [U |V = v] = var (U |V = v) .

We do not have a closed form of Errt, thus we cannot directly achieve the

optimal δ† as in Theorem 4.3.1. On the other hand, when AMP converges,

Errt and σte will converge to fixed points Err∞ and σ∞e , respectively. Based on

the relationship between Err∞ and σ∞e given in (4.3.6), the optimal δ† can be

obtained by the following theorem.

Theorem 4.3.3. For a linear measurement system (4.2.1) with signal model

(4.3.3) and additive white Gaussian noise with variance (4.2.2), apply AMP al-

gorithm with estimator (4.3.5). For any given set of parameters {ε, σ∞e , σ2
x, σ

2
0}
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such that (σ∞e )4 − 4σ2
0Err∞ ≥ 0, by the convergence assumption of (4.2.5), we

have

δ =
(σ∞e )2 ±

√
(σ∞e )4 − 4σ2

0Err∞
2σ2

0
. (4.3.8)

The optimal value δ† = (σ∞e )2

2σ2
0

is achieved when (σ∞e )4 = 4σ2
0Err∞.

Proof. If AMP algorithm converges, in which t → ∞, σt+1
e = σte = σ∞e and

Errt+1 = Errt = Err∞. Based on (4.2.5), we have the following equation

(σ∞e )2 = 1
δ

Err∞ + δσ2
0, (4.3.9)

where Err∞ is a function of σ∞e (4.3.6). Treat δ as the only unknown variable,

we achieve the corresponding solutions (4.3.8). For any given set of parameters

{ε, σ∞e , σ2
x, σ

2
0} such that δ is a positive real value, we say that this is a valid

parameter set. Because
√

(σ∞e )4 − 4σ2
0Err∞ ≤ (σ∞e )2, the only constraint is

that (σ∞e )4 − 4σ2
0Err∞ ≥ 0. The optimal δ will have a unique solution when

(σ∞e )4 = 4σ2
0Err∞, and the optimal value is δ† = (σ∞e )2

2σ2
0
.

This can be explained by Figure 4.2.1, when σ∞e is set relatively large (Err∞

will also be large), there are two possible δ’s that satisfy (4.3.9). Eventually,

the conclusions from Theorem 4.3.3 can be used to derive the result of Theorem

4.3.1. Recall that in the worst case analysis, based on (4.3.1), we have Err∞ =

M
(
ε, α†

)
(σ∞e )2. In Theorem 4.3.3, the optimal δ is achieved when (σ∞e )4 =

4σ2
0Err∞ = 4σ2

0M
(
ε, α†

)
(σ∞e )2, which provides (σ∞e )2 = 4σ2

0M
(
ε, α†

)
. The

optimal value is δ† = (σ∞e )2

2σ2
0

= 4σ2
0M(ε,α†)

2σ2
0

= 2M
(
ε, α†

)
which coincides with the

solution achieved in Theorem 4.3.1.
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4.3.3 Non-Sparse Case (Gaussian)

The state evolution analysis for sparse signals is also valid for the non-sparse

case by considering the BG prior with ε = 1. In this case, (4.3.4) will degen-

erate to the variance of a standard Gaussian distribution which is a constant

with value equal to 1. The estimated error (4.3.6) then has a closed form

Errt = Rt
(
σte
)2
. (4.3.10)

Substituting (4.3.10) into (4.2.5) and setting σte = σt+1
e = σ∞e , leads to

(σ∞e )2 =
(cσ2

x + δσ2
0) +

√
(cσ2

x + δσ2
0)2 + 4σ2

xδσ
2
0

2 ,

where c := (1−δ)
δ

. We ignore the negative value due to the non-negative prop-

erty of the error. The final estimation error at the fixed point will be

Err∞ = δ
(
(σ∞e )2 − δσ2

0

)

which is exactly the same as (4.2.4) (i.e. AMP achieves the optimal MMSE).

4.4 Analysis in Complex Domain

The analysis in the complex domain follows the same line as it in the real

domain but we need to take care of the modifications.

For LF distribution: The Complex AMP (CAMP) algorithm for LF

distribution has been analysed in [33] providing a new Onsager term. The LF

distribution becomes p|x| = (1− ε) δf|x|=0 + εδf|x|=+∞ with the assumption that
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the phase of x is isotropic and based on [33], the η (·) function will be,

η
(
x̃ti, θ

t
)

:=
(
x̃ti −

θt (x̃ti)
|x̃ti|

)
8{|x̃ti|>θt} (4.4.1)

where 8{|x̃ti|>θt} denotes the indicator function. The formula of ErrC,t will be

the same as in real case but with a new MC (ε, α) function:

MC (ε, α) := ε
(
1 + α2

)
+ (1− ε)

[√
2πφ

(√
2α
)
− 2α

√
πΦ

(
−
√

2α
)]
. (4.4.2)

Compare (4.4.2) with (2.2.7), we can find the estimation error of non-zero

components of signal are the same (first term). The difference between them

comes from the de-noising for the zero components of signal (second term).

For the complete derivation of new Onsager term and calculation of η′ (x̃ti, θt),

please refer to [33].

For BG distribution: We assume that the real part and imaginary part

of a complex variable share the same mean and variance and they are uncor-

related. For example, let x ∼ CN (µ, σ2
x

), then we have (x)R , (x)I ∼ N
(
µ, σ

2
x
2

)
.

Under this assumption, we have

pCG
(
x;µ, σ2

x

)
= pG

(
(x)R ;µ, σ

2
x

2

)
pG

(
(x)I ;µ, σ

2
x

2

)

= 1
πσ2

x

exp
(
−|x− µc|

2

σ2
x

)
, (4.4.3)

where µc = µ +
√
−1µ and the BG distribution in the complex domain be-

comes p(x) = (1− ε) δf|x|=0 + εpCG (x). For the estimate function η (·), we just

replace the pG probability in (4.3.5) with pCG defined above. Now let ptx̃,1 :=

pCG
(
x̃ti; 0, (σte)

2 + σ2
x

)
, ptx̃,2 := pCG

(
x̃ti; 0, (σte)

2), ptx̃,3 := (1− ε) ptx̃,2 + εptx̃,1 and
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pto := − 2
σ2
x+(σte)2ptx̃,3 + 2(1−ε)

σ2
w
ptx̃,2 + 2ε

σ2
x+(σte)2ptx̃,1 , the four derivatives of η (·) can

be calculated based on the following formulas:

∂ηR
(
x̃tj
)

∂
(
x̃tj
)R = pto(

ptx̃,3
)2p

t
x̃,,1εR

((
x̃tj
)R)2

+
ptx̃,1
ptx̃,3

εR (4.4.4)

∂ηR
(
x̃tj
)

∂
(
x̃tj
)I =

∂ηI
(
x̃tj
)

∂
(
x̃tj
)R = pto(

ptx̃,3
)2p

t
x̃,1εR

(
x̃tj
)R (

x̃tj
)I

(4.4.5)

∂ηI
(
x̃tj
)

∂
(
x̃tj
)I = pto(

ptx̃,3
)2p

t
x̃,1εR

((
x̃tj
)I)2

+
ptx̃,1
ptx̃,3

εR, (4.4.6)

Finally, (4.3.6) will be replaced by

ErrC,t+1 =
[
Rtε

1−Rt

(
1−RtIC

(
Rt, ε

))] (
σte
)2
, (4.4.7)

IC
(
Rt, ε

)
=
∫
xR

∫
xI

φC (x)
1 + 1−ε

ε
1

1−Rt exp
(
− Rt

1−Rt |x|
2
) |x|2 dxIdxR (4.4.8)

where φC (x) = pCG (x; 0, 1) is the standard complex normal distribution.

(4.4.7) and (4.3.6) are exactly the same except the integration terms (see Sec-

tion 4.6.1 for the detailed proof).

Fast calculation of ErrC,t+1: The same as in the real domain, we can

efficiently calculate Equation (4.4.7) by focusing on the real part of the signal

only,

ErrRC,t+1 ≈
1
n

n∑
i=1

∂ηR
(
x̃tj
)

∂
(
x̃tj
)R

 (σte)
2

2 (4.4.9)

ErrC,t+1 ≈ 2ErrRC,t = 1
n

n∑
i=1

∂ηR
(
x̃tj
)

∂
(
x̃tj
)R

(σte)2
(4.4.10)

which based on the assumption that the real part and imaginary part of the
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complex random variable are i.i.d..

The optimal δ† can be achieved by using the same theorems in section 4.3,

just replacing M
(
ε, α†

)
and Errt+1 functions with MC

(
ε, α†

)
and ErrC,t+1,

respectively.

4.5 Discussion and Numerical Justification

4.5.1 Discussion on the Optimal of δ†

The optimal δ† for LF distribution can be directly achieved by (4.3.2), while

for BG, δ† is achieved by numerically calculation. In order to find the common

attribute of δ† and get an intuition into the values of δ† for different kinds of

signals, we analyse the upper bounds for Gaussian, BG and LF distributions.

We first focus on the real domain. For the Gaussian case, based on (4.2.4),

we are able to achieve δ† =
(√

σ4
x/σ

4
0 + 16σ2

x/σ
2
0 − σ2

x/σ
2
0

)
/4, which is a mono-

tonically decreasing function of σ0 ∈ (0,∞], and δ† is upper bounded by 2.

For the LF distribution, based on Theorem 4.3.1 and the fact thatM
(
ε, α†

)
∈

(0, 1], the same upper bound applies. For the BG case, based on Theorem

4.3.3, δ† is an increasing function of Err∞, which is upper bounded by the

Gaussian case. Thus, δ† is also upper bounded by 2. The same results can be

shown also in the complex domain (the detailed proof is given in Section 4.6).

4.5.2 Numerical Justification

For the simulation, we set n = 1000, σ2
0 = 0.01 as constants. Each simulation

point is the average of 100 independent trials. The simulation results provided

in Fig. 4.5.1 and Fig. 4.5.2 show the relationship between the MSE and the
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Figure 4.5.1: MSE (Err∞) vs δ for real case. For the same sparsity and noise
levels, the MMSE estimator provides better performances.
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Figure 4.5.2: MSE (Err∞) vs δ for complex case. For the same sparsity and
noise levels, the MMSE estimator provides better performances.
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measurement ratio δ for a given sparsity level ε. From the figure, one can

observe that, when δ increases, initially, the MSE decreases dramatically until

it reaches a minimum. After that, further increase in δ will increase the MSE.

This phenomenon verifies our presumption that there exists an optimal δ† (or

m†) for a limited energy transmission system. The overall performance of BG

distribution is better than the one of LF distribution which coincides with

our explanation at the beginning of Section 4.4. The numerical results of BG

signals match the theoretical curves quite well but for the LF distribution,

the numerical results are slightly larger than the theoretical curves. The main

reason is that for the theoretical analysis in this case, we assume that the values

of the non-zero coefficients are ±∞, but in simulations, these values can only

be set as certain large numbers which results in a lower SNR compared with

the one in the theoretical case. For both signal distributions, the trends in δ†

for different ε values coincide with above optimal analysis.

The relationship between optimal δ† and the sparsity level ε for different

types of distributions are listed in Fig. 4.5.3 and Fig. 4.5.4. For LF distribu-

tion, at the same sparsity level, the optimal δ in the complex case is smaller

than the value in the real case. For BG distribution, at the same sparsity level

and same noise base level, a similar phenomenon can be observed. In addition,

if the sparsity level is relatively small (e.g. ε = 0.1, depends on the current

noise base level), when the noise base level increases, the optimal δ will move

up which means we need to slightly increase the number of measurements; if

the sparsity level is relatively large (e.g. ε = 0.35, depends on the current noise

base level), when the noise base level increases, the optimal δ may move down

which means we may need to decrease the number of measurements.
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Figure 4.5.3: Optimal δ vs sparsity level for real case. For LF distribution,
the curve is not related with noise; for BG distribution, the noise base level
changes from 0.005 to 0.1. All curves are upper bounded by 2.
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Figure 4.5.4: Optimal δ vs sparsity level for complex case. For LF distribution,
the curve is not related with noise; for BG distribution, the noise base level
changes from 0.005 to 0.1. All curves are upper bounded by 2.
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4.6 Proof

4.6.1 Proof of η (·) and Err for Real and Complex Bernoulli-

Gaussian Prior

For the real case, we directly apply the conclusion from Chapter 3. Based

on (3.5.1) by setting K = 1, we achieve (4.3.5). Based on (3.6.23) by setting

K = 1, we have

Err = εσ2
x − εR2

∫ pG (x̃; 0σ2
x + σ2

e)
(1−ε)
ε

√
1

1−Rexp
(
− (x̃)2

2σ2
e
R
)

+ 1
x̃2dx̃. (4.6.1)

Changing the variable by defining γ := x̃√
σ2
e+σ2

x

, then dx̃ =
√
σ2
e + σ2

xdγ.

Substituting these into (4.6.1) will produce

Err = εσ2
x − εσ2

xR
∫ 1√

2πexp
(
−γ2

2

)
(1−ε)
ε

√
1

1−Rexp
(
−γ2σ2

x

2σ2
e

)
+ 1

γ2dγ,

= εσ2
x (1−RI (R, ε)) ,

= Rε

1−R (1−RI (R, ε))σ2
e ,

and (4.3.6) is proved.

For the complex case, we starts from (4.4.3). Following the same steps in

section (3.6.8) , we have

pCG (x) = (1− ε) δfx=0 + εpCG
(
x; 0, σ2

x

)
,

pX,x̃ (x, x̃) = (1− ε) pCG
(
x̃− x; 0, σ2

e

)
δfx=0 + εpCG

(
x;Rx̃,Rσ2

e

)
pCG

(
x̃; 0, σ2

e + σ2
x

)
pC (x̃) = (1− ε) pCG

(
x̃; 0, σ2

e

)
+ εpCG

(
x̃; 0, σ2

e + σ2
x

)
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and

x̂ = E [x|x̃] =
∫
xp (x|x̃) dx,

= pCG (x̃; 0, σ2
e + σ2

x)
pC (x̃) εRx̃.

The MSE calculation is based on section (3.6.7) and in the complex case, it

becomes

ErrC = Ex2 − Ex̃
[∣∣∣Ex|x̃ [x|x̃]

∣∣∣2] .
where we still have Ex2 = εσ2

x. The second term provides

Ex̃

[∣∣∣Ex|x̃ [x|x̃]
∣∣∣2] =

∫ ∣∣∣Ex|x̃ [x|x̃]
∣∣∣2 pC (x̃) dx̃

= ε2R2
∫ p2

CG (x̃; 0, σ2
e + σ2

x)
pC (x̃) |x̃|2 dx̃

= εR2
∫
x̃R

∫
x̃I

pCG (x̃; 0, σ2
e + σ2

x)
(1−ε)
ε

pCG(x̃;0,σ2
w)

pCG(x̃;0,σ2
w+σ2

x) + 1
|x̃|2 dx̃Rdx̃I (4.6.2)

Recall that φc (x) = pCG (x, 0, 1) which is the standard complex Gaussian

distribution, by defining x = σxy we have

pCG
(
x; 0, σ2

x

)
= 1
σ2
x

1
π

exp
(
−σ

2
x |y|

2

σ2
x

)

= 1
σ2
x

φc (y)

= 1
σ2
x

φc

(
x

σx

)
.
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This implies that (4.6.2) can be rewritten as

Ex̃

[∣∣∣Ex|x̃ [x|x̃]
∣∣∣2] = εR2

∫
x̃R

∫
x̃I

1
σ2
e+σ2

x
φc

(
x̃√
σ2
e+σ2

x

)
(1−ε)
ε

pCG(x̃;0,σ2
e)

pCG(x̃;0,σ2
e+σ2

x) + 1
|x̃|2 dx̃Rdx̃I .

Define γ := x̃√
σ2
w+σ2

x

, we have dx̃R =
√
σ2
e + σ2

xdγ
R , dx̃I =

√
σ2
e + σ2

xdγ
I ,

|x̃|2 = (σ2
e + σ2

x) |γ|
2 and substituting into Ex̃

[∣∣∣Ex|x̃ [x|x̃]
∣∣∣2], the MSE will be

ErrC = εσ2
x − σ2

xεR
∫
γR

∫
γI

φc (γ)
(1−ε)
ε

1
1−Rexp

(
− R

1−R |γ|
2
)

+ 1
|γ|2 dγRdγI ,

= εσ2
x (1−RIC (R, ε)) ,

= Rε

1−R (1−RIC (R, ε))σ2
e ,

(4.4.7) is proved.

4.6.2 Boundary Analysis for Gaussian Distribution

We have the MSE for Gaussian estimator with σ2
w = δσ2

0,

lim
n→∞

1
n
‖x− x̂‖2 = δ

2

[(
−δσ2

0 + cσ2
x

)
+
√

(δσ2
0 + cσ2

x)
2 + 4δσ2

0σ
2
x

]
.

where c = 1−δ
δ
. Define

f(δ) =
(
−δ2σ2

0 + (1− δ)σ2
x

)
+
√

(δ2σ2
0 + (1− δ)σ2

x)
2 + 4δ3σ2

0σ
2
x

g(δ) = f(δ)
σ2

0
=
(
−δ2 + (1− δ) σ

2
x

σ2
0

)
+

√√√√(δ2 + (1− δ) σ
2
x

σ2
0

)2

+ 4δ3σ
2
x

σ2
0

=
(
−δ2 + (1− δ)C1

)
+
√

(δ2 + (1− δ)C1)2 + 4δ3C1
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where C1 = σ2
x

σ2
0
. Let ∂g(δ)

∂δ
= 0 which provides

2C2
1δ

3 + C3
1δ

2 − 2C3
1δ = 0

as C1 is a positive value, the only possible solution is the positive roots of

2δ2 + C1δ − 2C1 = 0

which gives

δ† =

√
C2

1 + 16C1 − C1

4 =: L (C1) .

We have

∂L(C1)
∂C1

= (C1 + 8)
(C2

1 + 16C1)
1
2
− 1 > 0

then for C1 > 0, L(C1) is a monotonic increasing function and

δ† =

√
C2

1 + 16C1 − C1

4 <

√
C2

1 + 16C1 + 64− C1

4 = (C1 + 8)− C1

4 = 2

4.6.3 Boundary Analysis for Least-Favourite Distribu-

tion

Firstly, we consider (2.2.7) for the real case analysis, which can be rewritten

as

M (ε, α) = εT1 + T2,
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where

T1 =
(
1 + α2

)
+ 2αφ (α)− 2

(
1 + α2

)
Φ (−α) ,

T2 = 2
(
1 + α2

)
Φ (−α)− 2αφ (α) .

For any α ≥ 0, we have Φ (−α) ≤ 1
2 , thus

T1 =
(
1 + α2

)
+ 2αφ (α)− 2

(
1 + α2

)
Φ (−α)

≥
(
1 + α2

)
− 2

(
1 + α2

)
Φ (−α)

=
(
1 + α2

)
(1− 2Φ (−α))

≥ 0

which means for any fixed α ≥ 0, M (ε, α) is a monotonic increasing function.

Thus, for any 0 < ε1 < ε2 ≤ 1, we have M (ε1, α) < M (ε2, α) ≤ M (1, α).

Where

M (1, α) = 1 + α2

and based on

α† = arg min
α≥0

M (1, α)

we have α† = 0 and M
(
1, α†

)
= 1. Finally, we found that

0 < M
(
ε, α†

)
≤ 1

the lower bound is by definition. Based on Theorem 4.3.1, δ† is upper bounded

by 2.
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For the complex case, we also can rewritten (4.4.2) as MC (ε, α) = εT1 +T2

where

T1 = 1 + α2 −
√

2πφ
(√

2α
)

+ 2α
√
πΦ

(
−
√

2α
)
,

T2 =
√

2πφ
(√

2α
)
− 2α

√
πΦ

(
−
√

2α
)
.

and for any given α ≥ 0, we have

T1 = 1 + α2 −
√

2πφ
(√

2α
)

+ 2α
√
πΦ

(
−
√

2α
)

≥ 1 + α2 −
√

2πφ
(√

2α
)

= 1 + α2 − exp
(
−α2

)
≥ 0

By following the same analysis in the real case, a same result can be achieved.

4.6.4 Boundary Analysis for Bernoulli-Gaussian Distri-

bution

Firstly, we consider the real case analysis. Based on Theorem 4.3.3, we have

δ =
(σ∞e )2 ±

√
(σ∞e )4 − 4σ2

0Err∞ (ε)
2σ2

0

and

δ† = (σ∞e )2

2σ2
0

where (σ∞e )4 = 4σ2
0Err∞ (ε) which means δ† will increase with the increasing

of Err∞ (ε)(here we use Err∞ (ε) instead of Err∞ to highlight that Err∞ (ε) is
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a function of ε). Recall (4.3.6) which is

Err (ε) :=
[
Rε

1−R (1−RI (R, ε))
]
σ2
e

= σ2
xε− σ2

xRI (R, ε) ε

where

I (R, ε) :=
∫ φ (x)

1 + 1−ε
ε

1√
1−Rexp

(
− R

1−R
x2

2

)x2dx.

Then for any given R = σ2
x

σ2
x+σ2

e
> 0, let 0 < ε1 < ε2 ≤ 1, we have

0 < I (R, ε1) < I (R, ε2) ≤ 1.

Define

f1(ε) := σ2
xε,

f2 (ε) := σ2
xRI (R, ε) ε = σ4

x

σ2
x + σ2

e

I (R, ε) ε,

f3 (ε) := σ4
x

σ2
x + σ2

e

ε,

and

f13 (ε) := f1(ε)− f3 (ε) ,

f32 (ε) := f3(ε)− f2 (ε) .

Because we have f1 (ε) /f3 (ε) ≥ 1 and f3 (ε) /f2 (ε) ≥ 1 for any 0 < ε ≤ 1,

which means f13 (ε) and f32 (ε) are both monotonic increasing functions. In
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addition

Err (ε) = f13 (ε) + f32 (ε) = f1(ε)− f2 (ε) ,

which is also a monotonic increasing function. Thus for 0 < ε1 < ε2 ≤ 1, we

have

0 < Err(ε1) ≤ Err(ε2) ≤ Err(1)

and for ε = 1, the BG distribution degenerates to the Gaussian signal and δ†

is also upper bounded by 2.

For the complex case, we focus on (4.4.8) which has the same behaviour of

I (R, ε), the analysis should be exactly the same as above.
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Chapter 5

Improved AMP for Non I.I.D.

Gaussian Random Matrices

This chapter studies the sparse recovery problem of AMP algorithm with non

i.i.d. Gaussian random matrices. AMP enjoys low computational complexity

and good performance guarantees. However, the algorithm and performance

analysis rely heavily on the assumption that the measurement matrix is a stan-

dard Gaussian random matrix with i.i.d. components. The main contribution

of this chapter is an improved AMP (IAMP) algorithm that works better for

non i.i.d. Gaussian random matrices. The algorithm is equivalent to AMP

for standard Gaussian random matrices but provides better recovery when

the correlations between elements of the measurement matrix deviate from

those of the standard Gaussian random matrices. The derivation is based on a

modification of the message passing mechanism that removes the conditional

independence assumption. Examples are provided to demonstrate the perfor-

mance improvement of IAMP where both a particularly designed matrix and

a matrix from real applications are used.

135
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5.1 Introduction

The AMP algorithm has received wide attention due to its two nice proper-

ties: low computational complexity and good performance guarantees. It only

involves matrix-vector products and scalar operations and therefore the com-

plexity is O (n2). At the same time, if the measurement matrix is a standard

Gaussian random matrix, it has been rigorously proved that AMP achieves

the same phase transition curve as `1-minimisation does. Furthermore, AMP

allows complicated statistical models for both the unknown sparse signal and

the noise [1, 60, 30, 29, 90]. It has been proved in [60] that any signal model

can be applied as long as the corresponding denoiser is Lipschitz continuous.

This extends the applicability of AMP.

One drawback of AMP is that both the algorithm and the performance

analysis rely heavily on the standard Gaussian random matrix. It has been

numerically observed that the performance of AMP may severely deteriorate if

the measurement matrix is significantly different from the standard Gaussian

randommatrix. A particularly designed example is given in Section 5.4 to high-

light this phenomenon. This drawback limits the applicability of AMP. There

have been methods proposed to address this issue, including damped GAMP

[91] which linearly combines the results from two adjacent iterations, SwAMP

[31] which updates components in x sequentially, ADMM-GAMP [92] which

considers the inference problem of generalized linear models (GLM) as a large-

system-limit approximation of the bethe free energy (LSL-BFE) minimization

problem and uses alternating direction method of multipliers (ADMM) method

to solve it, orthogonal AMP [93] which is based on de-correlated linear esti-

mation and divergence-free non-linear estimation, and vector AMP [94] which
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is derived using an approximation of belief propagation on a factor graph with

vector-valued variable nodes.

The major contribution of this chapter is an improved AMP (IAMP) al-

gorithm that works better for non i.i.d. Gaussian random matrices. The

derivation of AMP is based on a factor graph representation of the system

and Gaussian approximations of the passed messages on the factor graph. We

observe that the conditional independence assumption used in the message

computation is not valid any more when the elements of the Gaussian random

matrix are not i.i.d.. It turns out that the correlation profile of the elements of

the measurement matrix needs to be taken into consideration. Based on this

observation, a new message passing mechanism is derived where all messages

are computed at the variable nodes. This is quite different form previous ap-

proaches in [91, 31, 92]. The developed IAMP algorithm reduces to AMP when

the measurement matrix is standard Gaussian; at the same time, substantial

performance improvements of IAMP are demonstrated for non i.i.d. mea-

surement matrices. It is noteworthy that IAMP involves extra computations.

However the extra computations can be made offline so that the ‘operational’

complexity of IAMP is in the same order as that of AMP.

5.2 Message Passing of Approximate Message

Passing

In [60], it has been shown that AMP can achieve the same phase transition

curve as the famous LASSO/BPDN problem

x̂ = arg min
x

1
2 ‖y −Ax‖

2
2 + λ ‖x‖1 (5.2.1)
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for an appropriately chosen constant λ ∈ R+.

AMP is based on the well known belief propagation mechanism. Describe

the probability model of the system using the factor graph in Fig. 5.2.1, where

a variable node i ∈ [n] contains information of xi and a factor node a ∈ [m]

specifies the conditional probability p (ya|x). The message from a factor node

a to a variable node i, denoted by ma→i (xi), can be considered as

ma→i (xi) := p (xi|ya) ∝
∫
p (ya|xi,x∼i) p (x∼i) dx∼i (5.2.2)

=
∫
p (ya|xi, za→i) p (za→i) dza→i, (5.2.3)

where x∼i denotes all the components in x except xi, and za→i := ∑
j 6=iAajxj.

Note that generally speaking, p (za→i) is complicated and it is computationally

expensive to compute the integral involved in ma→i (xi). However, when A

is a standard Gaussian random matrix, za→i is a Gaussian random variable

[60, 95]. The message ma→i (xi) can be easily obtained and is also Gaussian.

Now consider the message from a variable node i to a factor node a. Let

x̂i→a := arg max
xi

p (xi|y∼a), where

p (xi|y∼a)
(a)
∝ p (xi)

∏
b6=a

p (yb|xi) ∝ p (xi)
∏
b 6=a

mb→i (xi) , (5.2.4)

where the relation (a) is based on the conditional independence assumption.

When each mb→i (xi) is in Gaussian form, the computation of p (xi|y∼a) is

highly simplified. In summary, the Gaussian approximation and conditional

independence assumption are the two key elements in the derivation.



5.3. IMPROVED APPROXIMATE MESSAGE PASSING (IAMP) 139

Figure 5.2.1: Factor graph and message passing: Squares represent factor
nodes and circles represent variable nodes.

5.3 Improved Approximate Message Passing

(IAMP)

5.3.1 Modification of Message Passing

The main difference between AMP and IAMP is the message passing mecha-

nism to handle general measurement matrix A. When the matrix A is suffi-

ciently dense, za→i can be approximated by a Gaussian random variable so the

Gaussian assumption for AMP is still valid. However, when the elements of A

are highly correlated, the independence assumption (among mb→i’s, b ∈∼ a) is

not true any more and neither is (5.2.4). To address this issue, a new message

passing mechanism has to be designed. In particular, due to the dependence

between mb→i’s, the computation at the factor nodes becomes unnecessary.

We focus on the message at the variable node

my→i (xi) = p (xi|y) ∝
∫
p (y|xi,x∼i) p (x∼i) dx∼i, (5.3.1)

where we stick to the common assumption that p (x∼i) = ∏
j 6=i p (xj). With

the assumption that the measurement noise w ∼ N (0, σ2
wI), the following

Lemma suggests that p (xi|y) can be approximated by a simple Gaussian pdf.
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Lemma 5.3.1. Let Ai be the ith column of A and AT
i is the transpose of Ai.

Define ỹi := AT
i y , zi := AT

i

(∑
j 6=iAjxj

)
, E [xj] = 0, σ2

xj
:= E

[
x2
j

]
, and

σ2
zi

:= var (zi) =
∑
j 6=i

(
AT
i Aj

)2
σ2
xj

(5.3.2)

Assume that ‖Ai‖2 = 1, ∀i ∈ [n], and Ax is jointly Gaussian. Then p (xi|y)

can be approximated by N
(
ỹi, σ

2
w + σ2

zi

)
.

Proof. See Section 5.6.1.

5.3.2 Algorithm Description

At the variable nodes, the operation of IAMP is the same as that of AMP:

each signal component is denoised individually from its noisy observation

ỹi = xi + w̃i, (5.3.5)

where w̃i is additive Gaussian noise with distribution N
(
0, σ2

w̃i

)
. Based on

Lemma 5.3.1, σ2
w̃i

= σ2
w + σ2

zi
. To make the notation more intuitive, we also

denote σ2
w̃i

by σ2
in,i. Now consider the popular denoiser of the form [60]

x̂i = η (ỹi; θi) =



ỹi − θi ỹi > θi

0 − θi ≤ x̃i,≤ θi

ỹi + θi ỹi < −θi.

(5.3.6)

where θi is the corresponding threshold. In this chapter, (5.3.6) is different

from (2.1.3), as we allow different threshold values θi’s for different ỹi’s. Define

the mean squared error of this denoiser by σ2
out,i := E

[
(x̂i − xi)2

]
. Consider
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Algorithm 5.1 Pseudo code of IAMP algorithm
Import: y: the observation vector. A = [A1, A2, A3, ..., An]: the measure-

ment matrix. σ2
w: the noise variance. ε: the nonzero probability (defined

as the ratio between the number of nonzero elements in x and n the
dimension of x).

Output: x̂: the estimated signal.

Initialization: Let r0 = y, x0 = 0 and t = 0. Set σ2
out,i = σ2

x =(
‖y‖2

2 −mσ2
w

)
/ ‖A‖2

F .

Iteration: In the t-th iteration, do

1. Based on (5.3.2), compute

σ2
in,i =

∑
j 6=i

(
AT
i Aj

)2
σ2

out,j + σ2
w, ∀i ∈ [n] . (5.3.3)

2. Let ỹti = xti +∑
aAair

t
a. Update the estimated signal

xt+1
i = η

(
ỹti ; θti

)
, ∀i ∈ [n] ,

where the denoiser η (·) and the threshold θti are defined in (5.3.6) and
(5.3.7) respectively.

3. Update the “residual” signal rt+1 by

rt+1
a = ya −

n∑
i=1

Aaix
t+1
i +

n∑
i=1

A2
aiη
′
(
ỹti ; θti

)
rta, ∀a ∈ [m] . (5.3.4)

4. Compute σ2
out,i via Equation (5.3.9).

5. [Optional] Adjust the “output” noise variance.
Let σ̄2

r = 1
m

∑n
i=1 ‖Ai‖2

2 σ
2
out,i. Set σ2

out,i = cσ2
out,i, where

c =
( 1
m

∥∥∥rt+1
∥∥∥2

2
− σ2

w

)
+
/σ̄2

r .

6. t = t+ 1.

7. Go back to step 1 unless the stopping criteria are satisfied.
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the worst case analysis as in Section 2.1, the optimal threshold θi (to minimise

σ2
out,i) and the corresponding mean squared error σ2

out,i are given by

θi = α†σin,i, (5.3.7)

α† := arg min
α
M (ε, α) (5.3.8)

σ2
out,i = M

(
ε, α†

)
σ2

in,i. (5.3.9)

where M (ε, α) is given by (2.2.7).

With above notations, the IAMP algorithm is detailed in Algorithm 5.1. In

the initialisation step, an estimation of the variance of σ2
x will be needed. From

the model y = Ax+w, it is approximately true that ‖Ax‖2
2 = ‖y‖2

2 −mσ2
w.

On the other hand, assume that xi’s are independent and σ2
xi

= σ2
xj

= σ2
x,

∀i 6= j. Then ‖Ax‖2
2 ≈

∑
i σ

2
xi
‖Ai‖2

2 = σ2
x ‖A‖

2
F . As a result, one can set

σ2
x =

(
‖y‖2

2 −mσ2
w

)
/ ‖A‖2

F .

In the IAMP algorithm, 1
m
‖rt+1‖2

2 measures the uncertainty that still ex-

ists after current estimation which contains two parts, one part comes from the

current estimation of xt+1
i ’s and another comes from the measurement noise.(

1
m
‖rt+1‖2

2 − σ2
w

)
+

calculates the practical uncertainty from the current es-

timation and σ̄2
r is the corresponding theoretical value. c (in step 5) can be

treated as the practical-theoretical ratio and by the operation of σ2
out,i = cσ2

out,i,

we transfer the theoretical value of σ2
out,i into the ‘practical’ value. It is not

guaranteed that with the optional step, the performance of IAMP algorithm

will always be improved as it will affect each threshold value θt+1
i at the next

iteration.

The major differences between AMP and IAMP are as follows. Assume

that σ2
in,j = σ2

in,k and σ2
out,j = σ2

out,k, j 6= k, and therefore σ2
in,i and σ2

out,i
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are replaced by σ2
in and σ2

out respectively. In AMP, Equation (5.3.3) becomes

σ2
in = 1

δ
σ2

out +σ2
w with δ := m

n
. The implementation of the denoising function η

in (2.1.1) depends on this information. The second difference is that the last

term in (5.3.4) becomes 1
m

∑n
i=1 η

′ (ỹti ; θti) rta = 1
δ
〈η′ (ỹti ; θti)〉 rta.

The ‘operational’ complexity of IAMP is the same as that of AMP. The

most computationally intensive step is the evaluation of (5.3.3), of which the

complexity is O (n3). However, AT
i Aj, ∀i 6= j, can be computed off-line. All

other steps only involve at most O (n2) computations.

5.4 Performance Discussions

In this section, we will first show that if the measurement matrix A is a stan-

dard Gaussian randommatrix, then IAMP reduces to AMP. Next, we construct

a Gaussian random matrix such that the marginal distribution of each entry

is still N
(
0, 1

m

)
but the entries are dependent. For this scenario, we show

the significant performance improvement of IAMP. Finally, we demonstrated

the improvement of IAMP using synthetic data of a real application — radar

imaging.

5.4.1 The Standard Gaussian Random Matrix

In this subsection, we consider the behaviour of IAMP for standard Gaussian

random matrices, i.e., the entries are independently generated from N
(
0, 1

m

)
.

Under this assumption and using the approximation techniques mentioned in

[60] , the IAMP algorithm can be simplified when the sizes of the systemm and

n are sufficiently large. In particular, it can be shown that AT
i Aj = 1

m
+o

(
1
m

)
and hence Equation (5.3.3) becomes σ2

in = 1
δ
σ2

out+σ2
w+o (1). Furthermore, each
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Figure 5.4.1: Phase transition for a standard Gaussian matrix. AMP and
IAMP both achieve the same performance.

component of the matrix Aa,i = O
(

1√
m

)
. The last term in (5.3.4) becomes

1
m

∑n
i=1 η

′ (ỹti ; θti) rta = 1
δ
〈η′ (ỹti ; θti)〉 rta. Hence, IAMP reduces to AMP.

Figure 5.4.1 provides the numerical comparison between AMP and IAMP

(without the adjustment of the “output” noise variance). We consider the noise

free case, i.e., σ2
w = 0. We are interested in the phase transition curve, that

is, the exact reconstruction happens with dominant probability in the region

below the curve while the recovery is not accurate with dominant probability

in the region above the curve. (In empirical study, we use 50% probability to

draw the phase transition curve.) The theoretic curve is obtained by asymp-

totic analysis presented in [60]. The empirical results are obtained via 100

independent trials. In the simulations, n = 1000, so that asymptotic analysis

should be accurate. The simulation results suggest that the theoretical phase

transition curve predicts the actual performance and the AMP and IAMP

algorithms give the identical numerical performance.
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Figure 5.4.2: Phase transition for non i.i.d. Gaussian random matrices with
ρ = 0. The gap between theoretical curve and practical curve of IAMP algo-
rithm is smaller than AMP algorithm.

5.4.2 Non I.I.D. Gaussian Random Matrices

The more interesting results are obtained when the measurements are not the

standard Gaussian matrix. Let B ∈ Rm×n be a standard Gaussian random

matrix. Let D ∈ Rm×m be a diagonal matrix whose first m/2 diagonal entries

(denoted by dk, k ∈ [m] ) are
√
ρ/2 and the rest m/2 diagonal entries are

given by
√

(4− ρ) /2, where ρ ∈ [0, 4] is a given design constant. Let H be

a normalised Hadamard matrix such that HTH = HHT = I. Define the

measurement matrix as A = HDB.

This definition is motivated by equation (5.3.2). It is clear that A is a

Gaussian random matrix. The marginal distribution of an entry Aa,i is given

by Aa,i ∼ N
(
0, 1

m

)
. Furthermore, it can be shown that the cross-correlation
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between two columns has variance given by

E
[(
AT
i Aj

)2
]

= E
[(
BT
i D

THTHDBj

)2
]

= E
[(
BT
i D

TDBj

)2
]

= E
(∑

k

d2
kBk,iBk,j

)2


= 1
m2

m∑
k=1

d4
k = ρ2 + (4− ρ)2

8m =: 1
m
σ2
c (ρ) ,

which is not 1/m (the value for standard Gaussian random matrix) unless

ρ = 2. The resulted IAMP behaves quite different from AMP. Equation (5.3.3)

can be approximated by σ2
in = 1

δ
σ2
c (ρ)σ2

out + σ2
w.

Figure 5.4.2 compares AMP and IAMP (with the adjustment of the “out-

put” noise variance). IAMP gives much better performance than AMP, and

theoretic prediction of IAMP is also better than that of AMP. Unfortunately,

in this case, neither of the theoretical predictions is accurate. The main reason

is that the Onsager terms in AMP and IAMP will no longer completely cancel

the correlations across iterations, as the matrix A is not a standard Gaussian

random matrix. Thus, after first iteration, A and xt become dependent which

makes the calculation of (5.3.2) no longer precise. In this case, the threshold

values θti ’s for the η (·) functions in both algorithms are not optimally tuned.

The practical performances of the non-optimally tuned AMP and IAMP can-

not match the theoretical curves (see the behaviour of the non-optimally tuned

IST algorithm in Fig 1.3.1 as an example).

5.4.3 Radar Imaging

For simplicity, we consider the 1-D radar imaging. (The 2-D image in Figure

5.4.3 is obtained by scan the picture line by line. The size of the image is
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Original signal. Resolution=1.8m
Pseudoinverse SNR=0dB

MSE=0.51242

AMP Noise Free

MSE=0.088593

AMP SNR=0dB

MSE=0.095119

IAMP Noise Free

MSE=0.024687

IAMP SNR=0dB

MSE=0.087582

Figure 5.4.3: Radar imaging. IAMP algorithm is robust against noise.
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207×194). A linear frequency modulated signal is transmitted and reflected by

the existing targets in the scene. The received signal is then the superposition

of the reflected signals. When the number of existing targets is small, this

superposition is sparse. Depending on the distances between the radar system

and the targets, the reflected signals are scaled versions of the transmitted

signal with different delays. Mathematically, the received signal is given by

y = Ax, where columns of A ∈ Cm×n are the transmitted signal with different

delays, and x ∈ Cn denotes the reflection coefficient vector and is sparse. The

matrixA has two interesting structures. First, it is deterministic and Toeplitz.

Second, it is tall rather than flat. Here we do not consider the compressed

sensing scenario, i.e., no sub-sampling is performed. In practice, the sampling

rate can be very high resulting m > n.

The simulated results are given in Figure 5.4.3. Besides AMP and IAMP

(with the adjustment of the “output” noise variance), the least squares ap-

proach is also included. This is motivated by the fact that least squares ap-

proach can perfectly recover the signal x for the noise free case. However, least

squares approach cannot incorporate the sparse prior information and there-

fore does not give a sparse solution for the noisy case. Figure of pseudo inverse

demonstrates this point at SNR = 0dB. By contrast, due to accommodating

sparse prior information, both AMP and IAMP perform well consistently for

both high SNR and low SNR. As of the comparison between AMP and IAMP,

it can be observed that IAMP results in less artifacts (see bottom left corner)

and sharper images.1 In summary, among the tested algorithms, IAMP is the

most robust one against the noise.

1It is interesting to observe that the visual performance of AMP improves when SNR
decreases. We don’t fully understand the reason but suspect that it may be because the
biased estimation of σ2

in (5.3.3) is neutralised by the large noise variance σ2
w.
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5.5 Conclusions

An improved AMP algorithm has been derived for non i.i.d. Gaussian mea-

surement matrices. The performance improvement has been demonstrated by

using a particularly constructed Gaussian matrix and a matrix from real ap-

plications. It turns out that the improvement is obtained by considering the

correlation profile of the elements of the measurement matrix.

5.6 Proof

5.6.1 Proof of Lemma 5.3.1

We first calculate p(y|xi, x∼i) by treating y and x∼i as constant vectors:

lnp (y|xi, x∼i) (5.6.1)

= − 1
2σ2

w

∑
a

ya − Aaixi −∑
j 6=i

Aajxj

2
+ c (5.6.2)

= − 1
2σ2

w

(
x2
i − 2ỹixi + 2zixi

)
+ c+ c′ (5.6.3)

= − 1
2σ2

w

(ỹi − zi − xi)2 + c+ c′ + c′′, (5.6.4)

where c is a constant, ỹi = AT
i y, zi = AT

i

(∑
j 6=iAjxj

)
, and c′ and c′′ are two

constants and their sum is given by

c′ + c′′ = − 1
2σ2

w

(
‖y‖2

2 +
∥∥∥A⊥Ti A∼ix∼i

∥∥∥2

2
− ỹ2

i

+2ỹizi − 2 (A∼ix∼i)T y
)
, (5.6.5)
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where A⊥i is the orthogonal complement of Ai. As a result, the integral in

(5.3.1) becomes

∫
p (y|xi,x∼i) p (x∼i) dx∼i (5.6.6)

a=
∫
p (y|xi, zi) p (zi) dzi (5.6.7)

b=
∫
c1 exp

(
− 1

2σ2
w

(ỹi − zi − xi)2 − z2
i

2σ2
zi

)
dzi (5.6.8)

where a= holds as zi = AT
i

(∑
j 6=iAjxj

)
is a function of x∼i and we only care

about the conditional probability p (y|xi), b= holds as we treat zi as a Gaussian

variable (based on the joint Gaussian assumption of Ax), thus, we have

p (xi|y) ∝ c2 exp
− 1

2
(
σ2
w + σ2

zi

) (ỹi − xi)2

 ,
where c1 and c2 are two constants. This lemma is therefore proved.



Chapter 6

Conclusion and Future Research

In this chapter, we summarise the contents provided in the thesis and consider

some potential problems for future research.

In Chapter 3, we discussed about the AMP-C-DCS algorithm proposed

for solving the correlated DCS model. This model assumed that correlations

existed in both measurement matrices and unknown signals across different

measurement instances. In order to mathematically describe the correlation

effects, we grouped the elements at the same location from different measure-

ment instances to form the super components which were i.i.d drawn from

some distributions pA and px respectively. State evolution technique was used

to analyse the asymptotic performance of the new algorithm in the asymp-

totic region. Correctness justification of the state evolution was provided for

the two special cases in which the measurement matrices were assumed to be

independent (DCS model) and identical (MMV model), respectively. While

for the cases between them, due to the complexity and difficulty of applying

the Gaussian condition lemma, we haven’t found an efficient way to complete

the justification. We consider this unsolved task is worth for future research, of
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course, new techniques should be introduced to simplify the proof or to avoid

the complexity issue that appeared during our analysis. Another potential

work is to consider the measurement matrices and signals that do not have the

same dimensions by considering that different kinds of sensors may be applied

in practice. Thus how to describe the correlation effects among these super

components reasonably becomes an urgent subtask.

In Chapter 4, we proposed a quadratically decreasing SNR model according

to a practical signal transmission/receiving system with fixed energy budget.

Under this condition, we were able to find an optimal number of measurements

to minimize the MSE of estimation by applying the state evolution technique

of the AMP algorithm. We considered the Gaussian, Bernoulli-Gaussian and

Least-Favourite distributions for signal models in both real and complex do-

mains. The analysis showed that for these distributions, the normalized opti-

mal number of measurements (δ†) was upper bounded by 2. Although based

on the simulation results, we could always find an optimal δ† for different kinds

of distributions listed above and different noise base level σ2
0, the uniqueness

of the optimal δ† was not rigorously proved. In order to make our analysis and

model more solid, the justification of the uniqueness of δ† should be necessary

and physical system should be built to check the correctness of our proposed

model.

In Chapter 5, we considered the drawback of the AMP algorithm which was

the assumption that the measurement matrix was a standard Gaussian random

matrix. This kind of assumption is difficult to achieve in practice. It had been

numerically observed that the performance of AMP might severely deteriorate

if the measurement matrix was significantly different from the assumption.

Under this circumstance, we proposed an improved AMP algorithm based
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on a new message passing mechanism where all messages were computed at

the variable nodes. Simulations showed that the improved AMP algorithm

outperformed the AMP algorithm for the non-ideal measurement matrices but

achieved same performance for the ideal case. The main problem was that

for both algorithms, when the measurement matrices were not ideal Gaussian,

there were gaps between the practical performances and theoretical curves

achieved by state evolution, although, the gap of our proposed algorithm was

smaller. We consider this phenomenon may be caused by the Onsager term

which is not optimally designed based on the structure or information provided

by the measurement matrix. Future research is required in this direction.
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