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Abstract

This work presents a new geostatistical approach aimed at incorporating more accurate geologi-

cal input into existing Earth modelling tools. These tools play a key role in petroleum reservoir

and mining deposit modelling workflows as they are the basis for the estimation of resource

recovery and its associated uncertainty. Conventional geostatistics generate facies successions

that are statistically identical along one direction or its opposite. This impedes the modelling

of facies ordering, also called facies cyclicity, which is often characterized in shallow-marine car-

bonate and siliciclastic reservoirs by shallowing upward facies cycles. Cyclicity is often coupled

with another geological characteristic of sedimentary sequences, which is that facies usually ap-

pear repeatedly at almost constant stratigraphic intervals, a feature called facies rhythmicity.

The principal result of this thesis is a new method that can quantify and simultaneously model

facies cyclicity and rhythmicity. Cyclicity is quantified using transition probability analysis,

while rhythmicity is quantified using two point statistical tools such as transiograms. The new

method is an extension of the approach known as Pluri-Gaussian Simulations, which is signif-

icantly improved by developing new periodic covariances and a co-regionalization model with

spatial asymmetry. The method was tested on case studies of shallow marine deposits such as

the Latemar carbonate platform in Italy and the Blackhawk Formation siliciclastic shoreface

deposits in the Book Cliffs, USA. The choice of case studies was dictated by the desire to

model a range of geological patterns including different styles of diagenesis, the presence of

erosional surfaces, and non-stationarity. This was also an opportunity to evaluate the method

in relation with established geological concepts such as sequence stratigraphy or Walther’s Law.

By generating more realistic three-dimensional geological Earth models, the method has the

potential to significantly improve the quality of hydrocarbon and mining resource estimates

and the quantification of their associated uncertainty.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The exploitation of subsurface resources such as hydrocarbons, mineral deposits or aquifers

requires digital Earth models on which the production process can be simulated, allowing

prediction of the resource recovery and associated uncertainties. In the petroleum industry,

geologists and engineers have usually at their disposal only sparse or low resolution data, such

as well and seismic data. It is thus necessary to develop tools able to create three-dimensional

Earth models from wells or geological sections. This is possible with geostatistics, which can

be used to simulate realisations of subsurface properties in three dimensions from such datasets

(Chiles and Delfiner, 2012). More specifically, indicator geostatistics focus on discrete properties

such as geological facies or petrophysical rock-types, and can be used to build Earth models of

the subsurface representing possible facies architectures (Pyrcz and Deutsch, 2014).

Earth facies models should incorporate accurate geological concepts in order to be predictive.

This is a challenging task, because reservoirs can be very heterogeneous. Carbonate reservoirs

often present more complexity than siliciclastic reservoirs, because their formation is controlled

by complex biological and chemical processes, in addition to physical processes and prevalence

of diagenetic overprinting (Tucker and Wright, 2009). It is thus important to understand the

main patterns observed in carbonate facies successions in order to propose an appropriate
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geostatistical method.

Two stratigraphic features are often associated with carbonate successions: facies cyclicity

and rhythmicity (both of which can also be observed in siliciclastic reservoirs). Cyclicity is

an ordering of facies (Wilkinson et al., 1997; Burgess, 2016), which is often characterized by

shallowing upward facies cycles (Strasser, 1988; Goldhammer et al., 1990; Lindsay et al., 2006).

Rhythmicity is the observation of rhythms in the geological record (De Boer and Wonders, 1984;

House, 1985), so that facies appear repeatedly at stratigraphic intervals of similar thicknesses.

Another characteristic of most carbonate successions is diagenesis. Diagenesis corresponds to

the different transformations that the rock undergoes after deposition (Bathurst, 1972), and is

key for predicting reservoir quality, because it can considerably modify petrophysical properties

(e.g., Bartok et al., 1981; Moore, 2001). Diagenesis is extensive in carbonates and is spatially

distributed in very diverse styles. It can be either conformable to depositional facies (e.g.,

Ginsburg, 1957; Egenhoff et al., 1999; Peterhänsel and Egenhoff, 2008; Rameil, 2008), or it

can cut across depositional facies along fractures, faults, and karsts (e.g., Sharp et al., 2010;

Vandeginste et al., 2013; Jacquemyn et al., 2014; Beckert et al., 2015). This variety of patterns

should also be reproduced by the geostatistical methods.

It seems, however, that geostatistical methods have difficulty reproducing the geological pat-

terns mentioned above. Although the two concepts of facies cyclicity and rhythmicity are key

in geology, they are not part of the vocabulary of geostatisticians. For example, the indicator

variogram is a geostatistical tool widely used in Earth modelling software (Pyrcz and Deutsch,

2014) but a variogram computed in a vertical facies succession would be the same in the upward

direction as in the downward direction (Carle and Fogg, 1996). Therefore, variograms cannot

quantify cyclicity, which is a facies ordering in a specific direction. Other geostatistical methods

such as object-based methods (Deutsch and Tran, 2002), or Multi-Point Statistics (Strebelle,

2002) have not yet been specifically applied to the modelling of cyclic facies successions.

However some methods seem able to model facies cyclicity. Although Carle and Fogg (1996)

did not explicitly mention the word cyclicity, their method based on Markov Chains uses

transiograms, which are asymmetric. In their basic version, Pluri-Gaussian Simulations (PGS)
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are not able to model facies asymmetry (Armstrong et al., 2011), although some studies suggest

they can be modified to do so (e.g., Langlais et al., 2008). PGS and transiogram-based methods

could therefore provide a good starting point for modelling facies cyclicity.

Rhythmicity is known to be related to variograms with hole-effects (pseudo-oscillations) (Ma

and Jones, 2001), but the exact relation between the two is not explicit, and existing geosta-

tistical methods have trouble reproducing hole-effects for indicator variables (Dubrule, 2017).

New indicator variogram models should thus be built to render rhythmicity.

Most geostatistical methods focus more on modelling of depositional facies than on modelling

of diagenetic effects and this is an obvious limitation in the case of carbonate reservoirs. The

method of Renard et al. (2008), based on PGS, is the only one that stands out as seeming

well-suited to represent diagenesis. However, the method is not implemented in the context of

depositional facies cyclicity and rhythmicity.

The difficulty of modelling cyclicity, rhythmicity and diagenesis may be explained by the fact

that most geostatistical methods have been mainly designed for modelling siliciclastic reservoirs

and have been applied to model carbonates to a lesser extent. See for instance the number of

methods developed for modelling channel deposits (Strebelle, 2002; Deutsch and Tran, 2002),

which are characteristic of siliciclastic reservoirs, but much less prominent in carbonates (Tucker

and Wright, 2009). Even Carle and Fogg (1996) who pioneered the use of transiograms, applied

their method to siliciclastic deposits. By contrast, many applications of PGS are found in

carbonate deposits (e.g., Galli et al., 2006; Armstrong et al., 2011; Doligez et al., 2011; Hamon

et al., 2016).

This thesis is thus concerned with developing a novel geostatistical method that can account

for the geological heterogeneities listed above. More precisely, I will here investigate whether

facies cyclicity and rhythmicity can be modelled together with diagenesis, by improving one

of the existing mainstream geostatistical methods. The flexibility of PGS makes it a good

candidate for modelling carbonate deposits, but further analysis of the geostatistical literature

is necessary to understand whether other methods would be suitable alternatives.
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1.2 Contributions

The papers published during the PhD are under the names of myself, Thomas Le Blévec, and

my supervisors, Olivier Dubrule, Cédric M. John and Gary Hampson. Being the first author,

I have done all the research, which includes mathematical developments, the implementation

of such developments in the coding language R (the main part of the code has been published

at https://github.com/tleblevecIMP), and their application to case studies. I had weekly

meetings with my supervisors, who provided me with guidance and ideas on the project. I

also had more frequent exchanges with my main supervisor Olivier Dubrule. The papers were

first written by myself, and then proofread by the supervisors in order to improve the content,

structure, clarity and language.

Three peer-reviewed papers have been submitted respectively to the book Geostatistics Valencia

2016 (Le Blévec et al., 2017b, Chapter 4 of this thesis), to the journal Mathematical Geosciences

(Le Blévec et al., 2018, Chapter 5 of this thesis), and to the journal American Association of

Petroleum Geologists (AAPG) Bulletin (Le Blévec et al., in review, Chapter 6 of this thesis).

The first two of these papers have now been published. I also attended conferences at which

aspects of my work were presented: Geostats Valencia 2016, EAGE Paris 2017, les Journées

de la Géostatistique 2017, AAPG London 2017, EAGE Copenhagen 2018 and IAMG 2018. At

each of these conferences, I gave a presentation of my latest results.

1.3 Statement of Originality

The work contained in this thesis has not been previously submitted for a degree or diploma

at any other higher education institution. To the best of my knowledge and belief, the the-

sis contains no material previously published or written by another person except where due

references are made.
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1.4 Thesis Outline

The main chapters of this thesis are published papers, and are not modified from the published

versions. This structure creates some repetition in the text as aspects of the method are

explained several times, with minor differences in the nomenclature between chapters. These

repetitions can be useful as reminders for the reader, and are noteworthy in their own right as

the papers were adapted to different audiences. For instance the Valencia and Mathematical

Geosciences papers were targeted towards geostatisticians, whilst the AAPG Bulletin paper was

targeted towards geologists. The different chapters also present a gradual progression, because

each new paper is an extension of the method.

In chapter 2, I provide a literature review presenting how geostatistical tools have been applied

in the past to carbonate reservoirs. Chapter 3 presents an outline of the research conducted

during the PhD study in more detail. Chapter 4 (Le Blévec et al., 2017b) provides a novel

method based on PGS to model facies asymmetry in the vertical direction. Chapter 5 (Le Blévec

et al., 2018) extends the method to jointly model facies cyclicity and facies rhythmicity in three

dimensions. Chapter 6 (Le Blévec et al., in review) extends the method to model diagenesis

using novel three dimensional truncation rules. Then, a general discussion of the proposed

method is provided in Chapter 7. Chapter 8 presents the overall conclusions of the PhD

thesis.



Chapter 2

Geostatistical Facies Modelling of

Carbonates, a Review

2.1 Introduction

Although geostatistics has provided sophisticated tools to model shallow-marine reservoirs

(Pyrcz and Deutsch, 2014), most of these tools were designed and applied to siliciclastic deposits

rather than carbonates (e.g., Deutsch and Tran, 2002; Strebelle, 2002). However, carbonates

differ from siliciclastic deposits in their grain types, aspects of depositional configuration, and

their diagenetic potential. It is estimated that more than 60 percent of the world’s oil and 40

percent of the world’s gas reserves are held in carbonate reservoirs (Schlumberger, 2018), which

means that geostatistical methods should be adapted to model them. Contrary to siliciclas-

tics, carbonates are formed in situ by living organisms and their spatial distribution is thus

controlled by external parameters (light, temperature, environmental conditions) as well as by

the extent to which sediments are reworked by physical processes (e.g. waves, tides) (Tucker

and Wright, 2009). Therefore, grain sizes and sediment textures in carbonates are not only

controlled by the energy of the environment, which adds additional complexity compared to

siliciclastic facies architectures. In addition, geometries are more varied in carbonates due to

early cementation and the ability of reef builders to create build-ups (Wilson, 2012). Calcium
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carbonate is chemically more reactive than silica, and therefore diagenesis is more extensive in

carbonates (Moore, 2001). Finally, the nature of carbonate deposits changes through geolog-

ical time (Wilson, 2012). For these reasons, it is harder to apply current facies geostatistical

methods to model carbonates.

There are two basic approaches in geostatistical facies modelling. The first approach, called

“object-based”, models geobodies, for example channels in fluvial siliciclastic deposits (Deutsch

and Tran, 2002; Ruiu et al., 2016; Parquer et al., 2017). This approach has been extended by

Aigner et al. (2007) and Adams et al. (2005) to the modelling of carbonate geobodies such as

shoals and reefs. In the case where the three-dimensional geometry of facies is poorly defined,

it may be preferable to use a geostatistical approach that is less geometrically-constrained and

focuses more on spatial correlations between facies occurrences at different locations (Carle and

Fogg, 1996; Strebelle, 2002; Armstrong et al., 2011). This is the second category of approaches,

also called “pixel-based” (this term is derived from the widespread practice of building geosta-

tistical models on a grid composed of grid cells or “pixels”, although that is not a requirement

for the application of such methods in reservoir modelling), which can either be applied to a

facies classification based on environments of deposition, or on petrophysical rock-types. Pixel-

based methods may be preferred for carbonates, especially if the facies classification is complex

and if, as frequently occurs, the geometry of the different facies is poorly constrained.

This literature review first investigates object-based methods (Deutsch and Tran, 2002) and

then focuses on pixel-based methods. This part of the review starts with SIS (Alabert, 1989),

which distributes facies independently from each other. Then, the review considers pixel-based

methods that are able to reproduce inter-facies relationships: cross-variograms modelled with

co-SIS (but no applications to carbonates are found in the literature), transiogram-based (Carle

and Fogg, 1996), Pluri-Gaussian Simulations (Armstrong et al., 2011) and Multi-Point Statistics

(Strebelle, 2002). Several previously published case studies are discussed, focusing on the facies

classification used, the modelling of non-stationarity, the nature of inputs and outputs, and the

advantages and limitations of each method. Then, I discuss how to improve these geostatistical

methods for modelling carbonates.
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2.2 Object-Based Approach

Introduction

Object-based stochastic approaches model individual facies as simple geometrical shapes con-

trolled by randomly selected values of parameters defined by the geologist (Pyrcz and Deutsch,

2014). The probability density functions (pdfs) of key geometrical parameters are usually de-

rived from analogues (usually seismic data or outcrops). Facies heterogeneities thus conform

to the geologist’s conceptual knowledge. However, most existing object-based methods do

not quantify inter-facies relationships. Four case studies in which carbonate facies have been

modelled with object-based methods are described below and summarised in Table 2.1.

Datasets

Qi et al. (2007) use ten cores from the St. Louis Limestone reservoir of Kansas (which has

produced so far 300 million bbl from fields in the Hugoton embayment) to assess the distribution

of oolitic deposits in Big Bow and Sand Arroyo Creek fields. Aigner et al. (2007) model an

outcrop analogue of carbonate shoals in the Triassic Upper Muschelkalk, in Germany (Braun,

2003), which provides a cross-section covering an area of 30 x 10 km laterally and 15 m vertically,

described by 21 logs. Adams et al. (2005) use outcrop data to construct a model with an area

of 1.6 x 2.8 km laterally and 104 m vertically, of Proterozoic strata, Namibia, containing

thrombolite-stromatolite reefs. Doligez et al. (2011) model an outcrop with an area of 2 x 2

km (thickness is not mentioned) in the Alveolina Formation, Early Eocene (Pyrenees).

Table 2.1: Different case studies of carbonate deposits modelled with object-based methods

Authors Type No. of facies Geo-object

Qi et al. (2007) Oolitic reservoir 6 Ellipses, baffles
Aigner et al. (2007) Shoal outcrop analogue 3 Elliptic shoals

Adams et al. (2005) Reefal outcrop analogue 3 Circular reefs

Doligez et al. (2011) Silici-carbonate outcrop analogue 5 Channels
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Facies Classification and Geo-objects

Outcrop studies are often used to derive facies geometries. For example, Adams et al. (2005)

define thrombolite-stromatolite reef geometries as dome structures, measured on 2D outcrop

cross-sections by width and height. They do not observe lateral anisotropy, so the reefs are

assumed to be circular. Aigner et al. (2007) model shoal facies association, shoal transition

facies association and offshoal (fore- and back-shoal) facies association, which are composed

internally of 15 lithofacies (Braun, 2003), and they choose elliptical geometries to represent

them based on previous mapping (Ruf and Aigner, 2004).

In case there are no available analogues or other sources of information on facies geometries,

authors use simple shapes to represent geobodies. For example Qi et al. (2007) simulate oolitic

complexes, tidal flats and eolianite deposits as elliptical objects defined by width, height, thick-

ness and azimuth, based on published satellite images of modern depositional environments

(Harris, 1994). Doligez et al. (2011) model channel deposits with their characteristic elongated

shape.

Input Parameters

Input parameters of object-based methods are pdfs of the different geometrical parameters.

Adams et al. (2005) fit the experimental distributions with splines which are then transformed

into pdfs by normalizing them. Disappointingly, the other studies do not describe the pdf

models constraining the geo-objects. They give nonetheless the parameters of the statistical

distributions. For example, Qi et al. (2007) choose the facies geometrical parameters for the

ooid shoals based on published satellite images of modern analogues (Harris, 1994), which have

approximately a thickness of 1 m, length of 3 km and width of 2 km. Aigner et al. (2007)

use outcrop mapping of the Muschelkalk by Ruf and Aigner (2004) to model the shoals with a

width of 11-13 km, length of 14-18 km, and thickness of decimetre scale.



38 Chapter 2. Geostatistical Facies Modelling of Carbonates, a Review

Figure 2.1: Two object-based realisations of carbonate environments, Aigner et al. (2007) in
Upper Muschelkalk, Germany (left) and Qi et al. (2007) in St. Louis Limestone (right).

Simulation Result

Figure 2.1 displays two models simulated by object-based methods from Aigner et al. (2007)

and Qi et al. (2007). One can observe the elliptical geometries of the shoals (Fig. 2.1, left) and

of the eolianite, cemented shoals, uncemented shoals, and tidal flats (Fig. 2.1, right). In the

different case studies, the realizations are inspected visually to assess the geological robustness

of the modelling methods and input data, but there is no quantitative validation.

Discussion

Object-based methods are useful to represent geobodies with geometries that can be measured

in modern analogues observed by satellite pictures (e.g., Harris, 1994) or outcrop pictures

(Adams et al., 2005). Such information were used here for the modelling reefs (Adams et al.,

2005) and tidal flats (Qi et al., 2007). It is noteworthy that the pictures are two-dimensional

while the Earth models are three-dimensional, which requires an assumption for the facies shape

in three dimensions. For example, Adams et al. (2005) do not have access to lateral information

of reef geometries and assume a circular shape, which could be false.

If no simple geometries can be observed in analogues, then a simple and convenient geometry

can be chosen (e.g., an ellipse, which defines the length of the geobodies in three principal

directions). However, such simple and convenient geometries may be a wrong approximation.

Object-based methods are thus limited if no information on geobody geometries are available.
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This is likely to be the case if the facies classification is complex and contains a large number

of facies.

Some authors (Aigner et al., 2007) record metre-scale vertical facies cycles that they do not

reproduce in the Earth model. Object-based methods are not good at modelling spatial rela-

tionships and hence at representing cyclicity. In addition, object-based methods model geobod-

ies randomly in space, or according to facies proportion curves, but they cannot fix intervals

between facies and thus do not model rhythmicity.

2.3 Sequential Indicator Simulation (SIS)

Introduction

SIS was one of the first methods designed for facies modelling (Alabert, 1989) and it is still

widely used in Earth modelling software. From vertical facies successions, the method derives

experimental indicator variograms, from which variogram models are calibrated and simulated

(Pyrcz and Deutsch, 2014), which ensures that facies properties such as proportions and thick-

nesses are accurately reproduced. An advantage of SIS is that each facies is modelled with one

variogram model, which means that different facies can be modelled with different characteris-

tics (thicknesses for example). However, facies relationships are lost as each facies is modelled

independently from the others.

A variogram model is defined by its type (exponential or Gaussian, for example) and a scale

parameter or scale factor (Chiles and Delfiner, 2012). Earth modellers also describe variograms

with the range, which is the distance at the which the variogram reaches its sill (Chiles and

Delfiner, 2012). If the variogram reaches its sill only asymptotically, the practical range is

defined as the distance at which the variogram reaches 95 % of its sill. For an indicator

variogram, the sill is related to the proportion of the corresponding facies. The facies variogram

tangent at the origin is directly related to the mean facies length in the corresponding direction

(Carle and Fogg, 1996). Variograms can also incorporate discontinuities at the origin, called
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Table 2.2: Different case studies of carbonate deposits modelled with SIS

Authors Type No. of facies Variogram models

Qi et al. (2007) Oolitic reservoir 6 Stable
Koehrer et al. (2010) Dolomitized outcrop analogue 11 Spherical
Lakzaie et al. (2009) reservoir 4 ?

Janson and Madriz (2012) Mound outcrop analogue 2 ?
Aigner et al. (2007) Shoal outcrop analogue 3 Gaussian

Amour et al. (2012) Ramp outcrop analogue 10 ?

nugget effects, which quantify geological variations at a smaller scale than the data spacing.

Nugget effects allow modellers to account for measurement errors at data location as they equal

to the variance of the measurement error (Chiles and Delfiner, 2012).

Most variogram models representing continuous variables are not valid for modelling facies

(Dubrule, 2017) because they are not associated with a random set (Emery, 2010). For example,

a facies variogram should be concave at the origin (Matérn, 1986), which is not the case for

the Gaussian variogram. In spite of this, such variogram models are still widely used in the

literature (cubic and Gaussian variograms, for example) to generate facies Earth models with

SIS as shown in the several case studies in carbonate environments reported in Table 2.2.

Datasets

The datasets used by Qi et al. (2007) and Aigner et al. (2007) are described in Section 2.2.

Koehrer et al. (2010) combine four outcrops and two cores in the Upper Muschelkalk in Ger-

many, to build an Earth model with an area of 25 x 15 km and thickness of 20 m. Lakzaie

et al. (2009) model an Iranian gas reservoir with areal dimensions of 45 x 11 km with 6 wells at

unknown locations with no further information. Janson and Madriz (2012) model an outcrop

4300 m long, 2430 m wide and 25 m thick, based on twenty one stratigraphic sections, contain-

ing Late Carboniferous algal mounds in the Sacramento Mountains, New Mexico, USA. Amour

et al. (2012) model Jurassic ramp deposits exposed in the Amellago Canyon in the High Atlas

Mountains, Morocco. The outcrop is 320 m long, 190 m wide and 20 m thick and exhibits
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metre-scale facies and diagenetic heterogeneities.

Facies Classification

Two main types of facies classification have been applied in the case studies, based on either

rock-types, or on environments of deposition. Koehrer et al. (2010) and Amour et al. (2012)

model facies based on the Dunham classification (Dunham, 1962) and Lakzaie et al. (2009)

classify the facies into good, fair and poor from their petrophysical properties, mainly deter-

mined by the degree of cementation. Qi et al. (2007) combine rock-types with depositional

environments. On the other hand, Aigner et al. (2007) use SIS to directly model facies associ-

ations related to environments of deposition: shoal, shoal transition, and offshoal. In another

study, Janson and Madriz (2012) model only two facies based on environments of deposition,

the core and flanking debris of carbonate mounds.

SIS is sometimes also used in the context of a nested approach at different scales. Koehrer et al.

(2010) first model five facies associations deterministically: limestones, dolomitic limestone,

dolomite, marlstone, and dolomitic marlstone, which vary at the regional scale. Then, eleven

facies are modelled within these facies associations such as bioturbated mudstone or massive

amalgamated skeletal packstone, which vary at the scale of 100s m. This procedure allows

modellers to represent in the same Earth model heterogeneities at different scales.

Input Parameters

As explained above, SIS uses individual facies variograms as inputs, which are characterized

by a model type, a sill and scale factors in three main directions. There is a great variety of

models used in the case studies (Table 2.2). Koehrer et al. (2010) use a spherical model, Qi

et al. (2007) use a stable model, and Aigner et al. (2007) use a Gaussian model (Table. 2.2).

The three other case studies do not mention which type of variogram model is used (Table. 2.2).

In order to derive the vertical range of the variogram, a fitting procedure is usually performed

between the experimental variograms computed on the vertical facies successions and the vari-
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ogram model. Here, none of the case studies give the details of the fitting procedure. Koehrer

et al. (2010) derive the variogram lateral range from geological cross-sections (Braun, 2003),

and the variogram lateral range varies from 10 m for amalgamated lime-packstones to 5000

m for microbially laminated dolo-mudstones. Similarly, Aigner et al. (2007) approximate that

the shoals are 10-20 km wide from interpreted geological cross-sections and ensure that the

variogram range is of the same order as that interpreted for the shoals. Sedimentary features

are usually more heterogeneous vertically than laterally, resulting in a high lateral-to-vertical

ratio in variogram range. The anisotropy ratio tends to be particularly high with carbonate

deposits. For example, Koehrer et al. (2010) model a microbially laminated dolo-mudstone with

a variogram that has a vertical range of 0.3 m and a lateral one of 5000 m. Most authors do

not discuss anisotropy in the lateral plane except for one study, for which Lakzaie et al. (2009)

construct a horizontal variogram map using acoustic impedance in seismic data. Authors also

use nugget effects (Lakzaie et al., 2009; Koehrer et al., 2010) with a maximum value of 0.7

(Lakzaie et al., 2009).

Algorithm Detail and Additional Data

SIS is performed by using kriging, which is usually employed in the form of simple kriging (Qi

et al., 2007). However, Qi et al. (2007) also use Bayesian kriging (Omre, 1987), which allows

the Earth modeller to incorporate uncertainty in the variogram model. The other authors do

not mention which type of kriging is used.

Additional constraints are also introduced to some of the case studies in the form of proportion

curves (Qi et al., 2007; Lakzaie et al., 2009; Janson and Madriz, 2012; Amour et al., 2012),

which are used to model the variation of facies proportions in space. This is important as many

geological facies distributions are non-stationary. For instance, Qi et al. (2007) model oolitic

complexes with the help of a 2D lateral trend and vertical proportion curves derived from well

data.
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Figure 2.2: Two realizations of carbonate environments modelled with SIS, Aigner et al. (2007)
in Upper Muschelkalk, Germany (left) and Qi et al. (2007) in St. Louis Limestone (right).

Simulation Results

Most authors neither provide much comment on the quality of their simulation results nor

quality control the realisations. The realizations are inspected visually (Amour et al., 2012),

and often identified qualitatively to be patchy (Koehrer et al., 2010) and not representative

of the original connectivity of the geobodies (Qi et al., 2007). Qi et al. (2007) observe that

using Bayesian kriging allows them to build facies models with more reasonable geometries,

as reflected in higher facies connectivity, but this is not confirmed quantitavely. The only

quantitative assessment was performed by Amour et al. (2012), who checked whether the facies

proportion curves were accurately reproduced. Some realizations are shown in Fig. 2.2. Facies

are indeed distributed with patchy geometries, and all facies are in contact with each other, a

characteristic feature of SIS.

Discussion

SIS is often criticized by geologists because it does not reproduce pre-conceived facies geome-

tries. However, this is not an issue when facies geometries are poorly defined such as for most

facies classifications used here. Some authors also model environments of deposition such as

mounds with SIS (Janson and Madriz, 2012). In their case, the overall geometries of the mounds

are controlled by a surface modelled with a random Gaussian function, and the facies within

the geometries are modelled with SIS and proportion curves. It is thus interesting to see that

some of the potential problems in using SIS may be addressed by combining SIS with other



44 Chapter 2. Geostatistical Facies Modelling of Carbonates, a Review

geostatistical methods. This is also the case for Koehrer et al. (2010), who model facies within

environment of depositions.

Another issue with modelling environments of deposition is that SIS is not able to model spatial

relationships between facies. In the case of Janson and Madriz (2012), this is not an issue

because there are only two facies. For Aigner et al. (2007), who model shoals, shoal transitions

and offshoals, the three facies associations are in contact in the interpreted cross-sections,

which is compatible with SIS. However, it may be possible to perform more quantification

of the inter-facies relationships and to use a more sophisticated method to model them. For

example, Koehrer et al. (2010) observe facies cycles of about 0.2-5 m thickness, some of which

are shallowing upward (massive bioturbated mudstones to oolitic grainstones), but they were

unable to model these facies cycles with SIS.

Some misuses of SIS parameters are also noted in the different case studies. For example, Aigner

et al. (2007) use a Gaussian variogram model, which is known to be invalid for facies variables

(Matheron, 1989; Armstrong, 1992; Dubrule, 2017). Another example is the nugget effect of

0.7 defined by Lakzaie et al. (2009). As they do not explain how they chose this value, it is

hard to assess its practical feasibility, but theoretically the maximum value for a nugget effect

on an indicator variogram is 0.25 (if the facies proportion is 0.5, and less otherwise). Thus, a

nugget effect of 0.7 amounts to assuming a pure nugget effect (facies extents are smaller than

the grid cell). There is also a tendency to derive the variogram range from the expected size

of the geobody (Aigner et al., 2007), although such a relation is false (Carle and Fogg, 1996)

as mentioned earlier. It is rather the tangent at the origin of the variogram, which defines the

mean length of facies in the corresponding direction (Carle and Fogg, 1996). These misuses

reflect the frequent gap of understanding existing between geology and geostatistics.

Most case studies do not show the match between experimental variogram and variogram model.

Therefore, the reader cannot check whether the facies Earth model is representative of the

vertical facies successions. This is a significant shortcoming. Moreover, showing experimental

variograms derived from vertical successions in carbonate successions would help to understand

which variogram models are most suitable for modelling carbonates. For example, it is known
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that hole-effects can be observed in facies variograms (Ma and Jones, 2001), which might have

been appropriate for one or more of the case studies.

2.4 Building Co-Regionalization Models With Transiograms

Introduction

In order to model spatial relationships between facies, it seems natural to use cross-covariances

or cross-variograms between facies. The cross-covariances or cross-variograms can be repro-

duced in an Earth model by using a generalization of SIS, called co-SIS, which uses co-kriging

(Pyrcz and Deutsch, 2014). The challenge is to find valid indicator cross-variograms or cross-

covariances for the simulation. For continuous variables, a co-regionalization model based on

auto- and cross-covariances between the variables is valid only if it is positive semidefinite

(Chiles and Delfiner, 2012). However, for indicator variables, or facies, there is no sufficient

and necessary known condition for the indicator covariances to be valid (Dubrule, 2017). For

this reason, it is not easy to build valid facies Earth models directly from two-point statistics

such as variograms.

Carle and Fogg (1996) use Markov Chain theory to build valid co-regionalization models based

on a new tool, the transiogram. Markov chains have been used for many decades in geology as

a quantitative tool to test whether interpreted facies cyclicity is statistically valid (Gingerich,

1969; Hattori, 1976; Wilkinson et al., 1997; Burgess, 2016), but also in geophysics, for lithology

and fluid predictions (e.g., Larsen et al., 2006). The transiogram is the generalization of tran-

sition probabilities for any continuous distance, and is equivalent to an indicator covariance

divided by a facies proportion. More precisely, it is the probability that a facies B is present

at a vector h from a given facies A. By using the Markovian assumption, Carle and Fogg

(1996) are able to build valid auto- and cross-transiogram models in one dimension, which are

then interpolated in three dimensions. Their method has the advantage of being able to model

asymmetry, because the transiogram is different in upward and downward directions. However,

the Markovian assumption limits the possible transiogram models (Dubrule, 2017).
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Figure 2.3: Two regions of the Lewis Canyon dataset modelled with Markov Chains tran-
siograms (Purkis et al., 2012) with corresponding cross-sections.

The simulation of the Earth model is then performed by using co-SIS and simulated quenching

(Carle and Fogg, 1996), or other methods are used, such as simulated annealing (Parks et al.,

2000). The only case study of this method published for carbonate environments is provided

by Purkis et al. (2012).

Case Study

Purkis et al. (2012) model the Lewis Canyon (Texas), which is a carbonate ramp intra-shelf

basin system of the Upper Cretaceous containing rudist reef buildups, studied using a cross

section of 30 m thick and of area approximately 1 x 1 km. Eleven facies based on the Dunham

classification are described and then grouped into five facies associations for the modelling: mud-

stone, grainstone, burrowed packstone, rudist packstone and bivalve packstone. The reservoir is

divided into 5 zones that are modelled independently, because of their different characteristics.

Facies asymmetry is not observed in the facies successions within each zone, and no hole-effect

is observed in the experimental transiograms, which can be accurately fitted by the transiogram

model. Visually, the outcrop and the simulation results show tabular facies beds, as shown by

Fig 2.3. The quality of the simulation is checked by picking random vertical successions and

testing that they honour the input statistics.
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Discussion

There is only one published case study of transiogram-based simulations in carbonate deposits.

The case study shows that the method is able to accurately reproduce the facies auto- and

cross-transiograms. In this case study, no facies asymmetry was observed, but the method is

capable of successfully modelling carbonate reservoirs that contain such asymmetry as shown by

Carle and Fogg (1996) on an alluvial fan siliciclastic example. This suggests that this method

is appropriate to model carbonates.

However, transiogram models derived from Markov Chains have two major disadvantages,

the first being that transition rates between facies in the lateral and vertical directions are

statistically equivalent (Purkis et al., 2012). This means that facies tend to have the same

transitions in the lateral and vertical directions. Such Markov Chains transiogram Earth models

are not strictly Waltherian, because the simulation also incorporates statistical noise, which

means that in the corresponding realisations, a facies occurrence can transition to a different

facies in the vertical and lateral direction. This allows Earth modellers to account for erosional

features between facies. However, it means that averaging transition probabilities between

facies over a realization would lead to similar values in the lateral and vertical directions. Such

three-dimensional Markov Chains transiogram models are thus said to honour Walther’s law in

a loose way (Doveton, 1994; Purkis et al., 2012). For this reason, Purkis et al. (2012) verify that

lateral and vertical transition rates are statistically similar in the outcrop before simulating the

Earth model with three dimensional Markov Chains. However, in some carbonate contexts,

and depending on the volume of rock sampled, authors have observed that facies transitions

are statistically not similar laterally and vertically (e.g., Hönig and John, 2015), such that even

a loose Walther’s law would not be valid. For instance, the transition between two facies might

be possible laterally but not vertically, which cannot be modelled with this method.

The second disadvantage of Markov Chains transiogram models is that they cannot properly

represent hole-effects (Dubrule, 2017). Although this does not seem to be a problem for the case

study of Purkis et al. (2012) because the experimental transiograms do not show hole-effects, it

is expected to be a problem in carbonate reservoirs where rhythmicity is present, as explained
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by Jones and Ma (2001).

2.5 Pluri-Gaussian Approach

Introduction

Pluri-Gaussian Simulations (PGS) simulate facies by truncating Gaussian random functions.

The method is derived from Truncated Gaussian Simulations (TGS) (Armstrong et al., 2011),

which use only one Gaussian random function while PGS use several Gaussian random func-

tions. The truncation rule applied to the Gaussian random functions directly controls the

proportions of facies and contacts between facies. The truncation rule, together with the latent

variograms, control the geometries of the facies. Therefore, PGS can represent both facies

geometries and spatial relationships between facies.

An improvement of the method, called bi-PGS, has been proposed specifically for modelling

diagenesis (Renard et al., 2008). It jointly simulates two facies fields, representing respectively

depositional and diagenetic facies, each of them constrained by a different truncation rule.

Depositional and diagenetic facies are modelled with several Gaussian random functions, which

the Earth modeller may choose to correlate to each other. The first simulation is used as

secondary data to constrain the proportions of the second simulation. Several case studies

using PGS to model carbonate deposits are summarized in Table 2.3, of which two use bi-PGS.

Table 2.3: Different case studies of carbonate deposits modelled with PGS

Authors No. of depositional facies No. of diagenetic facies bi-PGS

Hamon et al. (2016) 10 5 Yes
Doligez et al. (2011) 9 5 Yes

Doligez et al. (2011) 9 7 No

Galli et al. (2006) 9 0 No

Amour et al. (2012) 10 0 No
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Datasets

The datasets used by Amour et al. (2012) and Doligez et al. (2011) were presented previously

in Sections 2.2 and 2.3. Hamon et al. (2016) model an outcrop of a mixed siliciclastic-carbonate

ramp system, in the Early Eocene Alveolina Formation (Spain), from ten sedimentary sections

of about 100 m thickness. Doligez et al. (2011) also built an Earth model that is 50 km long,

50 km wide and 340 m thick, based on two outcrops of a carbonate ramp in the Mississipian

Madison Formation (Wyoming, Utah) studied in detail by Barbier et al. (2012) and two wells of

the Madison reservoir (in an unspecified field). Galli et al. (2006) model algal mound deposits

in the Paradox Basin (Utah) using an outcrop covering an area of several square kilometres

and is 30 m thickness.

Facies Classification

The different case studies model facies using the Dunham classification and/or facies associa-

tions interpreted as environments of deposition. Galli et al. (2006) and Amour et al. (2012)

model facies mainly based on the Dunham classification such as sponge mudstone facies and

black laminated mudstones. Similarly, Doligez et al. (2011) model nine lithofacies defined by

texture and fossil content in both of their studied datasets. Hamon et al. (2016) model ten

facies associations interpreted as environments of deposition, which are based on groupings of

sixteen textural facies.

Diagenetic facies are usually modelled separately, either with a nested approach (Doligez et al.,

2011, Wyoming) or with bi-PGS (Hamon et al., 2016), which allows to model all the observed

diagenetic facies and their appropriate geometries. For example, Doligez et al. (2011, Spain)

describe five types of calcite cement, which can overprint different depositional facies and cut

across their boundaries.
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Input Parameters

There are two inputs of PGS, the truncation rule defining facies contacts and proportions,

and the variograms of the latent Gaussian random functions, defining facies geometries. The

studies considered here mainly discuss the truncation rule, which can be quite elaborate (except

for Amour et al., 2012, who do not give the truncation rule). Galli et al. (2006) define two

truncation rules for two different zones, which have different transitions according to their

conceptual geological model. The conceptual geological model is normally used to define the

truncation rule. For instance, Doligez et al. (2011) assume that the wackestone facies should not

be in contact with the sandstone facies. Hamon et al. (2016) use a two-dimensional truncation

rule for depositional facies and a one dimensional truncation rule for diagenetic facies. The

case studies also use non-stationary facies proportions (Doligez et al., 2011; Amour et al., 2012;

Hamon et al., 2016), in the form of facies proportion curves and a facies proportion matrix.

The studies do not provide much discussion of the choice of the variogram model and do not

check that the resulting facies variograms or transiograms are well constrained by input data.

Doligez et al. (2011) and Hamon et al. (2016) explain that they chose Gaussian variograms so

that facies have smooth boundaries, and the variogram range is defined as the maximum extent

of the facies in the direction of interest. For example, Hamon et al. (2016) chose lateral ranges

of 100 m and 5 km but do not explicitly mention to which Gaussian random function or to

which direction they refer.

Results

The authors do not a posteriori examine the two-point statistics of the corresponding simula-

tions as a check of whether the input data have been honoured. Amour et al. (2012) observe

that the facies proportion curves inputed in the model are honoured in the realisations and that

facies have the right lateral extent compared to the outcrop. Amour et al. (2012) also observe

that facies are more ordered with PGS than by using SIS. Hamon et al. (2016) also observe

that the realisations reproduce accordingly the conceptual model of the outcrop. For instance,



2.5. Pluri-Gaussian Approach 51

Figure 2.4: Earth models of the Alveolina Formation simulated with bi-PGS (Hamon et al.,
2016). The realizations show depositional facies (top row) and diagenetic facies (bottom row).
The truncation rule for the depositional facies is also displayed, along with a table explaining
how diagenetic facies overprint depositional facies.

they check that patch reefs and channels have the right geometries, which are controlled by the

facies proportions curves.

Authors also inspect visually the realisations to confirm that the truncation rules are hon-

oured. For example, Fig. 2.4 shows a bi-PGS simulation with the associated truncation rule

and relationships between depositional and diagenetic facies (Hamon et al., 2016). The con-

tacts between facies are defined by the truncation rule and the distribution of the different

depositional facies controls the distribution of the diagenetic facies. For example, depositional

facies 2 (light green) is not overprinted by diagenesis as defined in the table (Fig. 2.4), which

is reproduced in the realisation (Fig. 2.4). Similarly, depositional facies 1 (yellow) is only over-

printed by diagenetic facies 1 and 2 (blue and pink) in the realisation, as defined in the table

(Fig. 2.4).
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Discussion

Authors have developed very sophisticated truncation rules to accurately model facies contacts.

This shows that PGS can be readily adapted when facies contacts are a key constraint in

the modelling. The work of Renard et al. (2008) extends this ability to the modelling of

specific contacts between depositional and diagenetic facies, which is not conducted with other

geostatistical methods. However, not much work has been carried out on the impact of the

latent variables variograms, and Gaussian variograms are mostly used. It would be possible to

use other types of variograms, for example containing hole-effects, and to study their impact

on simulated facies architectures (as in Beucher and Renard, 2016). This would allow PGS to

control spatial relationships between facies in addition to constraining facies contacts.

In none of the case studies were the two-point statistics of the facies distributions computed on

the data, in order to choose the variogram models of the latent Gaussian random functions and

their scale factors. Therefore, there are no guarantees that the Earth models are appropriately

constrained and that the facies architectures have the right properties. Some automatic ap-

proaches have been developed to define the variogram model from two-point statistics (Desassis

et al., 2015), and could be applied to case studies such as those described above.

2.6 Multi-Point Statistics Simulation

Introduction

Multi-Point Statistics (MPS) model facies distributions using a so-called “training image” as a

model parameter (Strebelle, 2002). Instead of simply reproducing two-point statistics between

facies like SIS, MPS reproduces high-order statistics between different facies. The resulting

models display complex facies architectures, such as those of fluvial channel deposits, with

accurate connectivity (Strebelle, 2002). However, building a facies Earth model in three di-

mensions requires a training image in three dimensions. Such a training image is not obtained

easily, especially for carbonate deposits. One of the challenges of using MPS for carbonate
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Table 2.4: Different case studies of carbonate deposits modelled with MPS

Authors heterogeneities Training image

Carrillat et al. (2010) Bars TGS
Janson and Madriz (2012) Algal-mounds Surface-based

Jung and Aigner (2012) Rudist reef mound object-based

Jung et al. (2012) Shoal bodies Hand-drawn

facies modelling is thus to create or to obtain (seismic, outcrop analogues, satellite images) an

appropriate training image. Table 2.4 reports case studies of carbonate facies modelling with

MPS along with the method used to create the training image.

Datasets

The dataset used by Janson and Madriz (2012) was described previously in Section 2.3. Carrillat

et al. (2010) modelled a carbonate reservoir from well data, with no further information about

the geological context. Jung and Aigner (2012) built an Earth model that is approximately 8

km long and 4 km wide (no thickness given) from outcrops of a Cenomanian carbonate platform

in southern France, studied by Philip (1993) and Gari (2008). Jung et al. (2012) built an Earth

model that is 36 km long, 25 km wide and 70 m thick from outcrop data at 49 locations collected

by Palermo et al. (2010) in Germany in the Muschelkalk and containing shoal bodies.

Facies Classification and Training Image

Table 2.4 shows a great diversity of methods to create the training images. In most of the case

studies, authors use a geostatistical method to create the training image itself. For example,

Carrillat et al. (2010) create a three-dimensional training image with Truncated Gaussian Sim-

ulation. The facies are simply shale, poor, medium and good reservoir lithologies. Janson and

Madriz (2012) create their training image based on a surface-based simulation constrained by

a Gaussian random function. The Gaussian random function is mathematically transformed in

order to render the desired mound geometries, and the result is then used as a training image.
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Similarly, Jung and Aigner (2012) create a training image of rudist patch reefs with an object-

based method from a conceptual model in the open platform zone of the outcrop dataset. The

conceptual model shows two facies with an asymmetrical contact: the reef-flank facies overlying

the reef-core facies. In the training image this asymmetrical contact is not preserved. Other

training images are used in the other zones of the outcrop dataset. For more details on the

generation of the training image, these authors refer to a tool called TiGenerator (Maharaja,

2008).

In another case study, Jung et al. (2012) hand-draw a training image in two dimensions from

a conceptual model. Some of the facies have an asymmetrical contact, for example oncoidal

wackestone to packstone facies are overlain by cross-bedded oolitic grainstone facies. However

the training image remains two-dimensional when it should be three-dimensional.

Simulation Results

Authors mainly comment on the Earth models based on visual inspection and do not provide

a quantitative assessment of the resulting realizations. Figure 2.5 shows two simulations with

MPS from Jung and Aigner (2012) (left) and Jung et al. (2012) (right). The Earth model of

Jung and Aigner (2012) is subdivided into three zones that transition laterally into each other

(Fig. 2.5, left), and was built using a different training image for each zone. The enlarged

image showing orange and yellow facies is from the zone with the reef-core and reef-flank

facies (Fig. 2.5, left). The reef-flank facies surrounds the reef-core facies but is not specifically

overlying it, as it should according to the conceptual geological model (Jung and Aigner, 2012).

It is difficult to check if the simulation of Jung et al. (2012) (Fig. 2.5, right) resulting from the

hand-drawn training image preserved the asymmetrical contact between oncoidal wackestone

to packstone facies and cross-bedded oolitic grainstone facies.

Janson and Madriz (2012) observe that mound debris overlies the mound cores, as observed in

the training image. Carrillat et al. (2010) observe that facies are all in contact in the Earth

model simulated with MPS, while they are not in the Earth model simulated with Truncated

Gaussian Simulations (TGS).
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Figure 2.5: Two realizations of Earth models simulated with MPS, from Jung and Aigner
(2012) (left) and Jung et al. (2012) (right). Jung and Aigner (2012) subdivide the Earth model
into three lateral zones: open platform, slope and basin, and use different training images in
each of these zones.

Discussion

Using MPS could be powerful for carbonate reservoirs because of MPS’ ability to capture

complex geometries and spatial relationships between facies. There is a great variety of em-

pirical methods to build three-dimensional training images, although it appears sometimes

self-contradictory to combine MPS with other geostatistical methods. For instance, Carrillat

et al. (2010) combine MPS with TGS. While the characteristic of TGS is to constrain facies

contacts in their Earth models, MPS does not necessarily honour the contacts observed in the

training image, as the authors noted (Carrillat et al., 2010). It would be simpler to only use

SIS or PGS rather than MPS combined with TGS if an Earth modeller wanted all facies to be

in contact.

Generally, the case studies lack rigour in the creation of the training images. For instance,

variograms could have been calculated on the training images to check whether they are rep-

resentative of the case study datasets. In several examples the inter-facies relationships of the

conceptual model were not honoured in the resulting Earth model, for example when the train-

ing image is built with an object-based method that does not reproduce spatial relationships

between facies (Jung and Aigner, 2012).
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2.7 Summary

Which is the Optimal Method for Facies Modelling of Carbonate Reservoirs?

All of the geostatistical techniques used in facies modelling of siliciclastic reservoirs have also

been tested on carbonate reservoirs, although to a lesser extent for Markov Chains transiogram-

based methods. This is surprising because Markov Chains transiograms can accurately repre-

sent spatial relationships between facies, which can be crucial for carbonate strata.

The optimal method obviously depends on the geology to be modelled and on the geologist’s

conceptual model. If the facies geometries are well-defined and the facies classification relatively

simple, object-based simulations might be optimal. If this is not the case, it might then be better

to use a pixel-based approach such as SIS, which gives more flexibility in facies geometries.

However, SIS is unable to model spatial relationships between facies, which are commonly

key to defining facies architecture in reservoirs. MPS is potentially able to model inter-facies

relationships, but these are difficult to incorporate in the three-dimensional training image. My

recommendation is rather to use transiogram-based methods or PGS, which both seem capable

of capturing the required inter-facies relationships.

Cyclicity and Rhythmicity

In the Introduction of this thesis (Chapter 1), cyclicity and rhythmicity were defined respec-

tively as facies ordering and repetition of facies at stratigraphic intervals of constant thickness.

It is noteworthy that none of the case studies described in this chapter model these features,

even though these concepts are characteristic aspects of many carbonate facies successions

(Strasser, 1988; Goldhammer et al., 1990; Lindsay et al., 2006; De Boer and Wonders, 1984;

House, 1985). For example, Amour et al. (2012), Koehrer et al. (2010) and Aigner et al. (2007)

observe some metre-scale cycles, but do not attempt to model them.

In the case study by Jung et al. (2012), the training image shows a facies ordering, but it is not

clear if the resulting Earth model retains this ordering, and it is not discussed by the authors.
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Theoretically, MPS should be able to model facies cyclicity but the challenge remains to build

cyclic three-dimensional training images. It is difficult to assess if rhythmicity is present in the

case studies because the experimental variograms are not shown, but SIS and PGS should be

able to model hole-effects.

Diagenesis

The bi-PGS method seems the most promising approach to model diagenesis. It is the only

method that is capable of using a separate classification for depositional and diagenetic facies

and jointly simulating the two corresponding facies fields. It allows the Earth modeller to define

specific diagenetic facies that can be correlated to depositional facies. In other applications not

based on bi-PGS, authors either combine depositional and diagenetic observations into a single

facies classification, or use a nested approach to simulate diagenesis within depositional facies.

These two approaches are limited because they do not allow diagenetic facies to cut across

boundaries between depositional facies in a consistent manner. Therefore, it seems logical to

recommend the use of bi-PGS for modelling diagenesis.



Chapter 3

Research Overview

This chapter gives a brief overview of the research that I conducted in the past three years.

It also serves as a logical link between the different chapters that have been submitted for

publication as separate peer-reviewed papers.

3.1 First Year, Modelling Facies Asymmetry

The starting point of this thesis was the work of Carle and Fogg (1996), who developed the tran-

siogram as a tool to quantify transition probabilities between facies as a function of distance.

Crucially, as compared to the variogram, the transiogram can quantify asymmetry between

facies transitions along one direction or its opposite. One may wonder why mathematical geol-

ogists have not addressed this limitation of the variogram earlier, given that facies asymmetry

characterizes (for example) shallowing upward facies cycles, a feature extensively observed in

shallow-marine carbonate and siliciclastic reservoirs (e.g., Lindsay et al., 2006). I found the ex-

istence of facies asymmetry by studying papers on the Latemar carbonate platform (Egenhoff

et al., 1999) and the method of Carle and Fogg (1996) appeared as a good candidate to model

such a dataset.

However, the method of Carle and Fogg (1996) is based on Markov Chains, which restrict

the use of hole-effects (pseudo-oscillations) in transiograms (Dubrule, 2017). Such oscillations

58
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are common in data such as those from the Latemar carbonate platform (Egenhoff et al.,

1999). Hole-effects were observed in the associated experimental transiograms and could not

be reproduced. The development of another method was thus needed.

Meanwhile, I found that hole-effect models could be generated by Pluri-Gaussian Simulations

(PGS) (see an example in Mosser et al. (2018)). Moreover, a few studies suggested that PGS

could also be adapted to model facies asymmetry (e.g., Langlais et al., 2008). This narrowed

down my research goal for the first year: to develop PGS based-methods in order to include

facies asymmetry and hole-effect transiograms, and to test the new method to model data from

the Latemar carbonate platform.

After reading the book of Armstrong et al. (2011), I developed a PGS method with an asymmet-

ric shifted co-regionalization model, which successfully modelled vertical successions of asym-

metric facies successions. The method generated new transiogram models that could be calcu-

lated by numerical integration (Genz, 1992), and which represent the asymmetry observed in

the Latemar platform dataset. Unfortunately the observed hole-effects could not be modelled

with traditional covariance models (Renard et al., 2015). This is explained further in Chapter 4

(Le Blévec et al., 2017b) and Le Blévec et al. (2016). The next research step would have to be

the extension of PGS in order to properly model hole-effects in the Latemar platform dataset.

3.2 Second Year, Modelling Facies Cyclicity and Rhyth-

micity

First, I showed the necessity of modelling hole-effects by studying their impact on the proba-

bility distribution function (pdf) of facies thicknesses. Using the work of Matheron (1968) on

renewal processes, I was able to calculate transiogram models associated with various facies

thicknesses pdfs. From that, I found that facies thicknesses modelled with Gamma pdf of high

order could be used to characterize hole-effects transiograms (Appendix A). This was also

observed experimentally in some case studies (Le Blévec et al., 2017a). It was thus understood
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that the presence of hole-effects was often linked to a low variability in the thickness of facies

cycles (Appendix A).

This finding helped in characterizing rhythmicity, defined as a repetition of facies at strati-

graphic intervals of more or less constant thickness, while cyclicity is defined as an ordering in

the succession of facies. Although sometimes not clearly distinguished in the literature, these

two definitions could clearly be differentiated by transiograms. Rhythmicity is characterized

by transiogram oscillations at given distances, while cyclicity is expressed in the tangent at the

origin of the transiograms (different in opposite directions). In the next step of my research, I

developed a method based on transiograms for jointly modelling rhythmicity and cyclicity, as

shown in the paper Le Blévec et al. (2018, Chapter 5).

The shifted PGS approach could readily model cyclicity (Le Blévec et al., 2016, 2017b, Chap-

ter 4). I reasoned that the same method could probably be improved to model vertical (and

horizontal) rhythmicity, by adding a covariance model with hole-effect. For that, I defined a

covariance in the vertical direction as a product between a Gaussian covariance and the cosine

function (Ma and Jones, 2001). The cosine function could provide flexibility in the covari-

ance periodic oscillations. In lateral directions, the covariance was simply chosen to follow a

Gaussian or stable model (Chiles and Delfiner, 2012). By truncation of the Gaussian random

function, the covariance successfully resulted in hole-effect transiograms.

This new covariance model was not available in geostatistical packages such as RGeostats (Re-

nard et al., 2015). Thus, I implemented a method simulating Gaussian random functions with

such covariance using spectral simulations (Shinozuka, 1971). The simulations were conditioned

to data via the use of Gibbs sampling and simple kriging. This last step, often time-consuming

in applications, was significantly improved thanks to the screening property of separable co-

variances.

The method was applied to data from the Latemar carbonate platform (Peterhänsel and Egen-

hoff, 2008) and successfully captured the observed cyclicity and rhythmicity. However, the

facies classification was simplified to only three facies although the data from the Latemar car-

bonate platform have previously been interpreted to contain the deposits of four depositional
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environments and at least two overprinting diagenetic facies (Peterhänsel and Egenhoff, 2008).

The method was thus adapted to model more facies and to represent diagenesis.

3.3 Third Year, Method Extensions

The work done in the third year of the project, and briefly summarised here, is captured in

Chapter 6 (Le Blévec et al., in review). First, I extended the method for more diverse truncation

rules, with a larger number of facies, and checked whether this would impede facies cyclicity and

rhythmicity. By applying the method on the Latemar carbonate platform dataset (Peterhänsel

and Egenhoff, 2008) with the four original depositional facies, I used a new truncation rule and

the method satisfactorily modelled both facies cyclicity and rhythmicity.

Next, I was aware that Renard et al. (2008) developed a method based on PGS to model

diagenesis. It seemed natural to use it for the project because it could represent diagenesis

as a second superimposed facies field with much flexibility. However, it did not model facies

asymmetry and so I improved it by applying the shifted linear model of co-regionalization to

three instead of just two Gaussian random functions. Therefore, depositional and diagenetic

facies could be ordered with respect to each other, which is appropriate in some cases such as

for some syn-depositional diagenesis. This approach was successfully applied to the Latemar

platform dataset (Le Blévec et al., in review, Chapter 6). Moreover, the method was calibrated

by fitting cross-transiograms between the depositional and diagenetic facies fields.

Another extension of the method was to add lateral components to the shift. This allowed

lateral facies asymmetry in the interior of the modern Bermuda carbonate platform to be

modelled from a satellite image. Thanks to the introduction of the lateral shift, both vertical

and lateral facies asymmetry was obtained, which resulted in 3D geometries in the model similar

to progradational facies belts and satisfying Walther’s law. The method was also applied to

data from siliciclastic shoreface deposits in the Blackhawk Formation, Book Cliffs, Utah, which

display non-stationary facies proportions. The dataset was quantified with embedded transition

probabilities instead of transiograms to best capture the non-stationarity in facies proportions,
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which was then reproduced thanks to an adaptive truncation rule.

The research conducted for this thesis thus successfully incorporated new geological constraints

to facies Earth modelling. The novel method models facies cyclicity and rhythmicity but also

different styles of diagenesis, and can model non stationary facies distributions in 3D.



Chapter 4

Modelling Asymmetrical Facies

Successions Using Pluri-Gaussian

Simulations

4.1 Abstract

An approach to model spatial asymmetrical relations between indicators is presented in a pluri-

Gaussian framework. The underlying Gaussian random functions are modelled using the linear

model of co-regionalization, and a spatial shift is applied to them. Analytical relationships

between the two underlying Gaussian variograms and the indicator covariances are developed

for a truncation rule with three facies and cut-off at zero. The application of this trunca-

tion rule demonstrates that the spatial shift on the underlying Gaussian functions produces

asymmetries in the modelled one dimensional facies sequences. For a general truncation rule,

the indicator covariances can be computed numerically, and a sensitivity study shows that the

spatial shift and the correlation coefficient between the Gaussian functions provide flexibility

to model the asymmetry between facies. Finally, a case study is presented of a Triassic verti-

cal facies succession in the Latemar carbonate platform (Dolomites, Northern Italy) composed

of shallowing-upward cycles. The model is flexible enough to capture the different transition

63
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probabilities between the environments of deposition and to generate realistic facies successions.

4.2 Introduction

Variogram-based indicator simulation aims to distribute facies in space using first- and second-

order spatial statistics as a constraint. It is widely used for modelling heterogeneous subsurface

rock volumes such as hydrocarbon reservoirs and groundwater aquifers, in which data are

usually sparse and deterministic methods are not appropriate. In standard oil industry practice,

the facies represent regions of the reservoir where petrophysical properties such as porosity and

permeability can be assumed to have statistically homogeneous distributions. Therefore, the

spatial distribution of facies has a great impact on the reservoir model predictions.

While it is easy to constrain the models with the proportion and auto-covariance of each facies

(Alabert, 1989; Armstrong et al., 2011), it is more complex to model the cross-indicator covari-

ances between facies. For instance, SIS (Sequential Indicator Simulation) by modelling every

facies independently (Alabert, 1989) does not reproduce cross-covariances between different

facies, possibly resulting in non-realistic geological models.

With the aim of modelling spatial relationships between different facies, Carle and Fogg (1996)

constrain cross-covariances using the parameters of a continuous-time Markov chain. An im-

portant outcome of their method is the possibility to model spatial asymmetry between the

indicator variables. The probability of facies A to be on top of facies B can be different from

that of facies A being under B. Such asymmetrical vertical stacking patterns of facies are

common in the stratigraphic record as sedimentological processes tend to create and preserve

shallowing-upward facies successions which are asymmetrical (Tucker, 1985; Grotzinger, 1986a;

Strasser, 1988; Burgess et al., 2001). However, the model used by Carle and Fogg (1996) is

memoryless and so prevents from using a hole-effect covariance and reproducing rhythmicity,

which is another common feature of vertical facies successions (Fisher, 1964; Grotzinger, 1986a;

Goldhammer et al., 1990; Masetti et al., 1991; Burgess et al., 2001). Another approach uses non-

parametric indicator variograms for bivariate probabilities to simulate facies with asymmetrical
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patterns (D’Or et al., 2008; Allard et al., 2011). The approach presented in the current paper

aims to use parametric auto- and cross-covariance models that are realizable, that is associated

with valid random set models (Chiles and Delfiner, 2012).

Pluri-Gaussian simulations (PGS) can handle facies interactions thanks to the use of underlying

continuous Gaussian variables and truncation rules defining facies ordering and geometries

(Armstrong et al., 2011). Moreover, by construction, the PGS formalism leads to a general

cross-covariance model between facies that is realizable (Chiles and Delfiner, 2012). Developing

a flexible multivariate Gaussian framework allows to increase the range of facies patterns.

For instance, the original linear model of co-regionalization (Wackernagel, 2003), applied to

the underlying Gaussian functions, provides flexibility in the resulting facies thicknesses and

distributions. However, the cross-correlations between the underlying Gaussian functions are

symmetrical and so are the facies relations.

To overcome this limitation, some authors have proposed to use spatial shifts to transform the

cross-covariances between Gaussian functions (Oliver, 2003; Apanasovich and Genton, 2010; Li

and Zhang, 2011). Armstrong et al. (2011) proposed to use a similar approach when defining the

linear model of co-regionalization of the underlying Gaussian variables. Although it is natural

to expect that an asymmetrical cross-correlation between the Gaussian functions should lead

to asymmetrical relations between facies, this approach has not yet, to our knowledge, been

fully developed and tested. Moreover, the relation between the spatial shift, the correlation

and the facies asymmetry has not been studied explicitly.

In this paper, we expand on the previous work described above to demonstrate that a spatial

shift applied to the underlying Gaussian functions can be used to create asymmetries in the

vertical stacking of facies. The sensitivity of vertical facies stacking patterns to selected param-

eters is then investigated. Synthetic examples are produced, and the usefulness of this method

is demonstrated by modelling a real facies succession from the Triassic Latemar carbonate

platform (Dolomites, Northern Italy).



66 Chapter 4. Modelling Asymmetrical Facies Successions Using Pluri-Gaussian Simulations

Figure 4.1: Truncation rule defining 3 facies with two Gaussian random functions Z1 and Z2.
t1 and t2 are the truncations associated to each Gaussian functions and G is the Gaussian
cumulative function. The red curve is defined by equation 4, with the correlation ρ = 0.7. 1000
random generations with a correlation ρ = 0.7 are performed thanks to the R package MASS
(Venables and Ripley, 2013) and displayed.

4.3 Methodology

4.3.1 Context and Notations

We focus here on a simple example with three facies. The truncation rule that defines the

contacts between facies and their proportion, relative to their area, can be drawn as in Fig. 4.1.

If I1, I2 and I3 are the indicators of the three facies, the truncation rule defines them as follows

for every location x on a vertical section

I1(x) = 1, I2(x) = 0, I3(x) = 0 if Z1(x) < q1, (4.1a)

I1(x) = 0, I2(x) = 1, I3(x) = 0 if Z1(x) ≥ q1, Z2(x) > q2, (4.1b)

I1(x) = 0, I2(x) = 0, I3(x) = 1 if Z1(x) ≥ q1, Z2(x) ≤ q2. (4.1c)

When the indicator of a facies equals one, the corresponding facies is present at the location

x. The marginal Gaussian cumulative function G applied to each Gaussian function Z1 and Z2

allows to have a truncation rule on which the area of a facies equals its proportion. However,
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if there is a correlation between the two functions, it affects the proportion as the points tend

to be located along the transformation of the correlation line ρ (Fig. 4.1) which is plotted in

the axes (G(Z1), G(Z2)) and thus has for equation

Y = G[ρ G−1[X]]. (4.2)

In the example of Fig. 4.1, a positive correlation increases the proportion of facies 2 over facies

3 as shown by the larger number of points generated in the domain of facies 2. With a negative

correlation, it would be the opposite. A uniform truncation rule could be obtained by applying

the bi-normal Gaussian cumulative function with correlation ρ on Z1 and Z2, but its analytical

expression is not known.

The truncation rule does not contain spatial information and so does not control asymmetries.

As the aim of this study is to model asymmetrical relations, the transition probability from

one facies i to another j should be different in opposite directions h and −h

tij(h) =
Pr{Ij(x+ h) = 1, Ii(x) = 1}

Pr{Ii(x) = 1} 6= tij(−h). (4.3)

Under the stationary hypothesis, the transition probability is independent of location. This

transition probability results from the Gaussian function parameters: correlation ρ, thresholds

t1 and t2, Gaussian correlation models ρZ1(h) and ρZ2(h) and the cross-correlation ρZ1Z2(h)

that can be asymmetric.

4.3.2 Relation Between the Indicators and Gaussian Functions

Understanding the link between the facies transition probabilities and the parameters of the

underlying bi-Gaussian function would help in inferring a pluri-Gaussian model resulting in the

correct asymmetrical transition probabilities. Armstrong et al. (2011) show that the covariance

of the facies indicator can be expressed as a multi-variable integral of the underlying bi-Gaussian

density. For instance, the non-centered cross-covariance, between facies 2 and 3, C23(h), is
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defined as

C23(h) = E[I2(x) I3(x+ h)] = Pr{I2(x) = 1, I3(x+ h) = 1}. (4.4)

According to Eqs. (4.1), we have

C23(h) = Pr{Z1(x) > q1, Z2(x) > q2, Z1(x+ h) > q1, Z2(x+ h) < q2}. (4.5)

This is the joint probability of four Gaussian events with their dependence described by the

correlation matrix

Σ(h) =



















1 ρ ρZ1(h) ρZ1Z2(h)

ρ 1 ρZ1Z2(−h) ρZ2(h)

ρZ1(h) ρZ1Z2(−h) 1 ρ

ρZ1Z2(h) ρZ2(h) ρ 1



















. (4.6)

C23(h) can then be expressed as an integral of the quadri-variate Gaussian density gΣ(h)(u, v, w, z)

with the covariance matrix previously described

C23(h) =

∫ ∞

q1

∫ ∞

q2

∫ ∞

q1

∫ q2

−∞
gΣ(h)(u, v, w, z) du dv dw dz. (4.7)

As we work with three facies (Fig. 4.1), the covariance between facies 1 and facies 2 is expressed

by a triple integral, while a double integral defines the auto-covariance of facies 1.

4.3.3 The Spatial Shift Applied to the Linear Model of Co-regionalization

The linear model of co-regionalization presented by Wackernagel (2003) is a flexible model for

p-multivariate simulations and is chosen here. We also incorporate a shift on the covariance

matrix C as proposed by Li and Zhang (2011). (Armstrong et al., 2011) propose a way to

simulate such a multivariate field from two independent Gaussian functions Y1 and Y2 with

covariances ρY1(h) and ρY2(h)

Z1(x) = Y1(x), (4.8a)



4.3. Methodology 69

Z2(x) =
ρ

ρY1(α)
Y1(x+ α) +

√

1− ρ2

ρY1(α)
2
Y2(x). (4.8b)

The spatial shift, α, is the distance at which the correlation between the two Gaussian functions

Z1 and Z2 is maximal, and ρ is the correlation between the two simulated Gaussian functions

Z1 and Z2 at the same location. We can directly deduce from the square root term in Eq. (4.8b)

the condition of validity of the model

−ρY1(α) < ρ < ρY1(α) (4.9)

This condition originally results from the fact that the variance of the Gaussian functions Z1

and Z2 is one. It is now possible to relate the covariances ρZ1 and ρZ2 of the Gaussian random

functions Z1 and Z2 to the covariances of Y1 and Y2

ρZ1(h) = ρY1(h), (4.10a)

ρZ2(h) =
ρ2

ρY1(α)
2
ρY1(h) + [1− ρ2

ρY1(α)
2
] ρY2(h), (4.10b)

and the cross-correlations between Z1 and Z2, which are asymmetric

ρZ1Z2(h, α) = ρ
ρZ1(|h+ α|)

ρZ1(α)
, (4.11a)

ρZ1Z2(−h, α) = ρ
ρZ1(|h− α|)

ρZ1(α)
. (4.11b)

It is also interesting to see that

ρZ1Z2(−h,−α) = ρZ1Z2(h, α). (4.12)

The different parameters of the model are summarized in Tab. 4.1.
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Table 4.1: Symbols of the different parameters of the shifted pluri-Gaussian model

Parameter Signification
Z1 First Gaussian field
Z2 Second delayed Gaussian field
tij(h) Upward transition probability from facies i to facies j as a function of distance h
pi Proportion of facies i
ρZ1(h) Covariance function of Z1

ρZ2(h) Covariance function of Z2

ρ Correlation coefficient between Z1 and Z2

ρZ1Z2(h) Cross-correlation between Z1 and Z2 at distance h
α Shift in the cross-correlation between Z1 and Z2

a1 Range of the first Gaussian function with a Gaussian variogram, practical range a1
√
3

a2 Range of the first Gaussian function with a Gaussian variogram, practical range a2
√
3

4.4 Result

In this section, we study the indicator transiograms derived from the shifted linear model of co-

regionalization applied with PGS and with the truncation rule in Fig. 4.1. We first express the

analytical expressions for a special case and then develop a sensitivity study in the general case

thanks to numerical Gaussian integrations. Gaussian variograms for the Gaussian functions

are used in order to have a linear behaviour at the origin on the indicator transiograms.

4.4.1 Analytical Study of the Asymmetry

We focus here on the special case where q1 = q2 = 0 as some analytical expressions can be

found between the Gaussian functions and the transition probabilities.

Behaviour of the Asymmetrical Transition Probability

With the truncation rule used in Fig. 4.1, the transition probability between facies 1 and 2 can

be written as a triple integral. Its analytical expression, developed in the appendix (Eqs. 4.22

and 4.23), is the following

t12(h) = −
1

4
+

1

2π

[

arccos
(

ρ
ρZ1(|h+ α)

ρZ1(α)

)

+ arccos(ρZ1(h)) + arcsin(ρ)
]

. (4.13)
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Figure 4.2: Influence of a positive shift on the transition probabilities from facies 1 to facies
2 with different values of the proportion p2 of facies 2. The coefficient ρ is either 0.8 or -0.8.
The Gaussian function has a Gaussian variogram with range 8 (practical range =13.85) and
the shift is 3. The upward and downward transitions are deduced from Eq. 4.13, such as the
dotted line obtained with a shift equal to 0, and the black tangents are obtained from Eqs 4.17
4.18.

Therefore, the shift α and the correlation ρ must be non-zero to bring asymmetry (Fig. 4.2).

We can also deduce the relation

t12(−h,−α) = t12(h, α), (4.14)

which means that changing the sign of the shift allows the asymmetry between the two facies

to be switched.

We can see that if the correlation and shift are positive, and the transition probability tends

towards a facies with low proportions, the curve has a very high concavity with a maximum

before the range (Fig. 4.2, right). If the correlation is negative and the transition probability

tends towards a facies with high proportion, the curve has an inflexion point (Fig. 4.2, left). In

the opposite direction, the behaviour is always different, highlighting the asymmetry. If there

is no shift, there is no asymmetry (Fig. 4.2).
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Asymmetry in facies contacts

The frequency of contacts between two given facies can be derived from the derivative of the

cross-transition probability at the origin, which is the rate of transition from one facies to the

other per unit length. We can express the rate of transition upward T+
12 and downward T−

12 in

the case of a Gaussian variogram by differentiating Eq. (4.13)

T+
12(α, ρ, a1) =

1

2π

[

√
2

a1
+ α

2ρ

a21
√

1− ρ2
] (4.15a)

T−
12(α, ρ, a1) =

1

2π

[

√
2

a1
− α

2ρ

a21
√

1− ρ2
] (4.15b)

From these equations, it is clear that if the correlation ρ and the shift α are positive, the

probability of having facies 2 on top of facies 1 is higher than of having facies 1 on top of facies

2. It can be interesting to see for which shift the transition rate is maximal. Lets take

αlim = a1

√

2(1− ρ2)

2ρ
(4.16)

In that case, we have

T+
12(αlim, ρ, a1) =

√
2

a1 π
(4.17a)

T−
12(αlim, ρ, a1) = 0 (4.17b)

With this shift, facies 1 cannot make a transition to facies 2 going downwards as the transition

rate is 0. For the upward transition, it can be noticed that the expression of the transition rate

is the inverse of the mean length of facies 1 (Lantuéjoul, 2002). This implies that the upward

transition rate from facies 1 to facies 3 is zero with the closing relations of the transition rate

matrix Q

Q =













−1/L1 1/L1 0

0 −1/L2 1/L2

1/L3 0 −1/L3













, (4.18)

with Li as the mean lengths of the different facies. Therefore, this shift gives the maximum of

asymmetry and allows to build perfect geologic asymmetrical sequences. However, the shift is
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also bounded by Eq. (4.9), and consequently Eqs. (4.16, 4.17, 4.18) are not possible. As the

transition rates increase linearly with the shift, the maximum of asymmetry is obtained for the

higher shift which is the following according to Eq. (4.9)

αmax = a1
√

− log ρ. (4.19)

It can be noted that the expressions of αlim and αmax converge to each other when ρ tends to

one. Thus, for a correlation that tends to one, αmax gives upward and downward transition

rates that tend, respectively, to 1/Li and 0, allowing to create perfect asymmetrical sequences

(Eq. 4.18). This limit case can also be obtained by simulating only one Gaussian function and

use the shifted equivalent as the second Gaussian function.

The expressions of the multi-Gaussian integrals have allowed asymmetries for a truncation rule

with cut-off at 0 to be analytically expressed. Lantuéjoul (2002) gives a solution for a general

truncation rule when the correlation tends to 1. This might allow development of more general

expressions with thresholds.

4.4.2 Sensitivity Analysis for a General Truncation Rule

The Gaussian integral cannot be computed analytically in the general case with cut-offs different

from 0. However, it can be computed numerically (Genz, 1992) using a code available on R

(Genz et al., 2019; Renard et al., 2015). Consequently, we have access to all the transition

probabilities, and the correlation ρ can be changed while keeping the proportions constant

which is not possible analytically.

This is carried out by minimizing an objective function quantifying the difference between the

targeted and simulated proportions computed with the Gaussian numerical integral (Genz,

1992). It can also be done with a maximum likelihood estimation of the target proportions by

generating random correlated Gaussian values. Understanding the impacts of the correlation

and the shift at constant proportions is important for manually fitting transition probabilities

(Fig. 4.3).
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Figure 4.3: Comparison of the impact of the correlation and the shift on the transition proba-
bility from facies 2 to facies 1 upwards. The step for the black curves is 0.1 for the correlation
(left) and 0.3 for the shift step (right). The range of the first Gaussian variogram is 8, the
proportion of facies 1 is 0.3 and facies 2 is 0.4.
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We can see in Fig. 4.3 that both the correlation and the shift have an impact on the tangent

at the origin which provides a flexibility to match the asymmetry between facies contacts. The

asymmetrical limit behaviour αlim (Eq. 4.16) seems to have been reached with ρ = 0.8 and

α = 3 as the transition rate is close to 0 for these values. The two parameters also affect

differently the curvature of the transition probability increasing the flexibility of the method.

4.5 Case study

This section presents a case study for illustrating the method described earlier with three

facies and the truncation rule of Fig. 4.1. The geostatistical package RGeostats is used for the

simulation (Renard et al., 2015). The transiograms are studied for two facies as the relation

with the third can be automatically deduced from them.

4.5.1 The Latemar Dataset

Carbonate outcrops usually show significant vertical asymmetries in their facies distribution, in

part explained by a gradual lateral shift in environments of depositions during sea-level high-

stands, followed by non deposition during sea-level lowstands and the subsequent transgression

(Catuneanu et al., 2011). For instance, the intertidal environment tends to be on top of the

subtidal environment in shallowing-upward sequences (Sena and John, 2013). The Latemar

massif in the Dolomites of Northern Italy shows well-documented examples of asymmetrical

vertical facies sequences in a carbonate platform. As reported by Egenhoff et al. (1999), a typ-

ical asymmetrical, upward-shallowing succession is bounded by a supratidal exposure surface

at its top, which tends to cap intertidal-to-shallow- subtidal grainstones that overlie subtidal

wackestones (Fig. 4.4).
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Figure 4.4: Comparison between the vertical section of the Latemar section reported by Egen-
hoff et al. (1999) and simulations with asymmetrical pluri-Gaussian simulations. The parame-
ters for the simulation are the same as described in Fig. 4.5.
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Figure 4.5: Match between experimental transition probabilities (red) observed in Figure 4 and
the model (blue). Facies 1 is subtidal and facies 2 intertidal. The parameters used for the
model are: 0.9 for the range of the first Gaussian, 0.52 for the range of the second Gaussian,
0.13 for the shift and 0.8 for the correlation.

4.5.2 Constraining the Transition Probabilities

The transition probabilities of Fig. 4.5 were derived from the data shown in Fig. 4.4. They

can be fitted with the shifted linear model of co-regionalization manually through a trial-and-

error process, by maximum likelihood estimation or by minimizing an objective function. In a

more general context, a manual procedure is preferred as transiogram modelling is a step where

geological conceptual knowledge can be incorporated. Therefore, we choose to fit manually the

transition probabilities of Fig. 4.5.

As seen in Fig. 4.5, the model fitted by trial and error honours the tangent at the origin of the

transition probabilities. This means that the transition rates are well constrained. Moreover, a

possible hole-effect is observed in the experimental transition probabilities due to a low variance

in the facies thicknesses. This effect cannot be modelled with the current model, but a hole-

effect variogram on the Gaussian function should be able to model it (Dubrule, 2017).
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Figure 4.6: Comparison between transition probabilities model (blue) and simulated (grey) and
mean of the simulated (red) on 50 simulations of the Latemar section presented Fig. 4.4. Facies
1 is subtidal, and facies 2 intertidal.

4.5.3 Facies Asymmetrical Simulation with Pluri-Gaussian Model

We build two Gaussian random functions, and then we apply the transformations described in

Eq. 4.10 on three simulations (see Fig. 4.4). The asymmetry is still preserved in the simulations,

with supratidal facies always on top of the intertidal facies and the intertidal facies on top of

the subtidal facies. However, the limit shift αlim (Eq. 4.16) has not been reached as the

probability of having subtidal on top of supratidal is not 1, which is also observed on the data.

To go further in the simulation analysis, the experimental transiograms are computed on 50

simulated sections and compared to the model variogram (Fig. 4.6).

This Monte Carlo study shows that the simulated transition probabilities seem to match the

model well at the origin and for other distances as the mean transiogram of the simulations

matches with the transiogram model (Fig. 4.6).
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4.6 Discussion and Conclusion

This study has shown that the shifted linear model of co-regionalization seems well-suited

to model facies transitions asymmetries using PGS. For the case of modelling three facies,

the first two Gaussian variograms allow to define facies mean thicknesses, while the shift and

the correlation determine the asymmetrical patterns. Therefore, every transition rate of the

transiogram matrix can be inferred independently making the method very flexible. Moreover,

we saw analytically and numerically that the maximum rate of transitions could be reached

asymptotically, which allows to build perfect asymmetrical sequences.

More precisely, the Gaussian integral allows to fix the transition rates as with a Markov process

(Carle and Fogg, 1996). However, if the number of facies is increased, it would be more difficult

to respect the different asymmetries, and manual fitting of the different transition probabilities

would be more complex. Automatic procedures such as maximum likelihood estimations might

address that issue.

The advantage of PGS over continuous-time Markov chains is that it provides a framework in

which the resulting indicator variograms are automatically valid but also quite flexible. Beyond

just transition rates, the parametrical covariances can lead to linear or fractal behaviour of the

indicator variogram at the origin (Chiles and Delfiner, 2012; Dubrule, 2017). Other models

than the linear model of co-regionalization would allow to select different behaviours for every

facies. For instance, the multivariate Matern model would allow cross-transition probabilities

to have different smoothness parameters for every facies (Gneiting et al., 2010), and the spatial

shift could be applied to it (Li and Zhang, 2011), which would also result in facies asymmetries.

4.A Appendix

In a similar fashion as Kendall M (1994), we consider three correlated Gaussian variates being in

their respective intervals as a set of three dependent events. With the truncation rule displayed

in Fig. 4.1 and thresholds that equal 0, facies 1 at location x and facies 2 at location x + h
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correspond to one variate being negative and two positive. The indicator covariance C12(h)

quantifies the probability of the intersection of these three events. The correlation matrix

between the three Gaussian variates is the following

Σ(h) =













1 ρZ1(h) ρ
ρZ1

(|h+α|)
ρZ1

(α)

ρZ1(h) 1 ρ

ρ
ρZ1

(|h+α|)
ρZ1

(α)
ρ 1













. (4.20)

The probability can be written as a triple integral of the corresponding Gaussian density

gΣ(h)(u, v, w)

C12(h) =

∫ 0

−∞

∫ ∞

0

∫ ∞

0

gΣ(h)(u, v, w) du dv dw. (4.21)

Thanks to the Gaussian integral symmetry property, the probability of intersection of the events

is the complementary of the probability of their union (Kendall et al. 1994). Therefore, by

definition of the union, the intersection of the three events can be expressed as a sum of the

corresponding single and pair events and so the triple integral as a sum of the single integrals

that equal to 0.5 and double integrals with their respective correlation coefficient

C12(h) =
1

2

(

1−3∗0.5+
∫ 0

−∞

∫ ∞

0

gρZ1
(h)(u, v) du dv+

∫ 0

−∞

∫ ∞

0

g ρρZ1
(|h+α|)

ρZ1
(α)

du dv+

∫ ∞

0

∫ ∞

0

gρ(u, v) du dv

)

(4.22)

Sheppard (1899) gives then the solution of the double integral that allows to obtain the final

expression of the transition probability between facies 1 and 2 (equation 15):

∫ ∞

0

∫ ∞

0

gρ(u, v)du dv =
1

2
−
∫ 0

−∞

∫ ∞

0

gρ(u, v)du dv =
1

4
+

1

2π
arcsin(ρ) (4.23)



Chapter 5

Geostatistical Modelling of Cyclic and

Rhythmic Facies Architectures

5.1 Abstract

A Pluri-Gaussian method is developed for facies variables in three dimensions to model ver-

tical cyclicity, related to facies ordering, and rhythmicity. Cyclicity is generally characterized

by shallowing-upward or deepening-upward sequences and rhythmicity by the repetition of fa-

cies at constant intervals along sequences. Both of these aspects are commonly observed in

shallow-marine carbonate successions, especially in the vertical direction. A grid-free spectral

simulation approach is developed, with a separable covariance allowing a dampened hole-effect

to capture rhythmicity in the vertical direction and a different covariance in the lateral plane,

along strata, as in space-time models. In addition, facies ordering is created by using a spatial

shift between two latent Gaussian functions in the Pluri-Gaussian approach. Rapid condi-

tioning to data is performed via Gibbs sampling and kriging using the screening properties of

separable covariances. The resulting facies transiograms can show complex patterns of cyclicity

and rhythmicity. Finally, a three dimensional case study of shallow-marine carbonate deposits

at outcrop shows the applicability of the modeling method.

81
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5.2 Introduction

Spatial distributions of facies in sedimentary rocks are commonly characterized by cyclicity

and rhythmicity in the vertical direction, and a variety of lateral patterns along stratigraphy.

The resulting facies architectures control heterogeneity in hydrocarbon reservoirs and ground-

water aquifers. It is therefore important to represent them in three-dimensional geostatistical

earth models that are used as input to flow simulations and reserves quantification (Pyrcz and

Deutsch, 2014).

Cyclicity is defined as a characteristic facies ordering in vertical successions (Wilkinson et al.,

1997; Burgess, 2016). The characterization of cyclicity needs to be addressed statistically

(Wilkinson et al., 1997) in order to apprehend the variability of the resulting facies patterns

and to reproduce them in earth models. Facies cycles show preferential transitions between

successive facies, such that one facies tends to be observed on top of another facies. This

is also called asymmetry (Carle and Fogg, 1996), because the transitions between facies differ

between the upward and downward directions. For example, shallow-marine carbonate rocks at

outcrops (Strasser, 1988; Goldhammer et al., 1990) and in subsurface reservoirs (Lindsay et al.,

2006) are typically characterized by facies cycles that record upward shallowing (regression)

and that consist of subtidal facies overlain by intertidal facies then by supratidal facies. The

facies succession that records upward deepening is commonly incomplete or absent, due to non-

deposition or erosion, such that supratidal facies are directly overlain by subtidal facies, which

mark the base of a new cycle. Such sequences are illustrated in Fig. 5.1c, d.

Classical geostatistical methods such as sequential indicator simulation (Alabert, 1989) and

object-based methods (Deutsch and Tran, 2002) do not in their traditional form reproduce this

asymmetric facies ordering. Multi-Point statistics (Strebelle, 2002) should be able in theory to

reproduce cyclicity, but in practice, it is not easy to obtain a three dimensional training image

showing cyclicity. The representation of asymmetry and facies ordering is however straightfor-

ward in one dimension with Markov Chains (Carle and Fogg, 1996; Parks et al., 2000; Li, 2007;

Purkis et al., 2012) or renewal processes (Matheron, 1968), which are based on probabilities of

transition between facies, but are difficult to generalize to two or three dimensions.
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Figure 5.1: (a-d) Synthetic examples of facies sequences: (a) cyclic (two cycles), non rhythmic,
(b) cyclic (two cycles) and red facies presents rhythmicity, (c) perfect cyclicity, non rhythmic
(d) perfect cyclicity and rhythmicity

Rhythmicity is another important aspect observed in vertical facies successions. It is charac-

terized by the repetition of a facies at a constant interval along a sequence, a feature which has

commonly been used to interpret periodic processes of deposition (e.g., via analysis of Fischer

plots) (Read and Goldhammer, 1988). Note that periodic processes (i.e., repetitive processes

when looking at a time series) can either result in rhythmic sequences (when sedimentation

rates are similar from cycle to cycle) or non rhythmic sequences (if sedimentation rates change

between cycles). Because the space domain is considered here, we use the term rhythmicity

rather than periodicity. Rhythmic stacking of facies cycles has been observed in many shallow-

marine carbonate successions (Goldhammer et al., 1993; Egenhoff et al., 1999; Lindsay et al.,

2006). This aspect is also shown by the red facies in Fig. 5.1b, d, in which thicknesses between

different beds of the same facies are constant.

Rhythmicity can be quantified by geostatistical tools, such as the variogram and the transiogram

which show oscillations or dampened oscillations called hole-effects (Pyrcz and Deutsch, 2014).

By looking at the probability density function (pdf) of facies thicknesses, Ma and Jones (2001)

show that, as the coefficient of variation of this pdf decreases, the hole-effect becomes more pro-

nounced. This observation is in agreement with the above remark that rhythmicity is associated

with low thickness variability of vertically stacked facies cycles. This also explains why Markov

processes cannot create hole-effect transiogram models (Dubrule, 2017), as the corresponding

thickness pdf is exponential (coefficient of variation equal to one). On the other hand, some
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renewal processes may be able to create dampened hole-effect transiograms, because they offer

the possibility to choose a thickness pdf with a lower coefficient of variation (Matheron, 1968).

However, the transiograms derived from renewal processes are not always known analytically,

and are thus difficult to fit to the observed rhythmicity.

Truncated (Pluri-) Gaussian methods have been successfully used to create facies models (Arm-

strong et al., 2011), and they have been applied to shallow-marine carbonate reservoirs (Doligez

et al., 2011; Amour et al., 2012; Le Blévec et al., 2017b). The contacts between facies are de-

fined by the truncation rule applied to a random Gaussian function, which provides control on

facies juxtapositions. However, in its traditional form the method does not incorporate cyclic-

ity and rhythmicity. Le Blévec et al. (2017b) have extended the Pluri-Gaussian method to

the modelling of facies asymmetry in vertical successions. They produce asymmetric transition

probabilities between facies by introducing a shift in the correlation of two random Gaussian

functions as suggested by Armstrong et al. (2011). This is similar to the approaches of Langlais

et al. (2008) or Renard and Beucher (2012), but with more flexibility in the resulting facies

transiograms. However, the use of this approach to model cyclicity and rhythmicity has not yet

been investigated. Pluri-Gaussian Simulations enable the use of hole-effect models (Beucher

and Renard, 2016) and may lead to hole-effect facies transiograms that could model rhythmicity.

Although cyclicity and rhythmicity are common features of vertical facies successions, they may

have a variable expression laterally, depending on the formative depositional processes and con-

trols. Laterally extensive facies in shallow-marine carbonate strata are generally attributed to

external (allogenic) controls that operated over an entire carbonate platform or shelf, such as

relative sea-level variations (Goldhammer et al., 1990). Facies of limited lateral extent may be

attributed to the nucleation, vertical build-up and lateral shifting of tidal flat islands across a

carbonate platform or shelf (Pratt and James, 1986). This mechanism is internal to the dynam-

ics of the carbonate platform depositional system (autogenic) and may generate both vertical

and horizontal asymmetry in the stacking of facies if the tidal-flat-island deposits obey Walthers

Law (Burgess et al., 2001; Le Blévec et al., 2016). Cyclic and rhythmic facies successions can

also be overprinted by diagenetic facies after deposition; for example, hydrothermal dolomite

bodies associated with faults and igneous intrusions are observed to cut across shallow-marine
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carbonate platform deposits characterized by rhythmic facies cycles (Jacquemyn et al., 2015).

In order to model cross-sections and volumes that exhibit cyclic and rhythmic vertical facies

successions but different lateral facies patterns, it is necessary to use different vertical and

lateral covariance models. This is possible via the use of separable anisotropic models (Chiles

and Delfiner, 2012), although such models have rarely been used for facies modelling (Matheron

et al., 1988).

The aim of this paper is to extend the Pluri-Gaussian Simulations approach of Le Blévec

et al. (2017b) to model facies cyclicity and rhythmicity in the vertical direction, and a range

of appropriate lateral facies patterns using space-time (lateral-vertical) separable covariance

models. After presenting the main definitions, the three key aspects of the modelling method

and their impact on the transiograms are presented: cyclicity, rhythmicity, separability. A new

method for simulating the resulting complex facies architectures is then presented, firstly for

unconditional simulations and then for simulations conditioned to data. Finally, the method is

applied to a case study from the Triassic Latemar carbonate platform (northern Italy), which

has been widely interpreted to show cyclicity and rhythmicity.

5.3 Definitions

5.3.1 Geostatistical Quantification With Transiograms

The random function representing a facies is the indicator function I(x). If the facies i is present

at a spatial location x, Ii(x) = 1 and if not, Ii(x) = 0. In the stationary case, the probability

of having a facies at a location x is equal to the first statistical moment or proportion

pi = E[Ii(x)] = Pr{Ii(x) = 1}. (5.1)

The presence of a facies also depends on the surrounding facies, quantified by the covariance

function cij(h) for two facies i and j. With the stationary assumption, it is assumed that the
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covariance depends only on the vector h separating two locations (Chiles and Delfiner, 2012).

This paper uses the non-centered indicator covariance

cij(h) = Pr{Ii(x) = 1, Ij(x+ h) = 1}, (5.2)

from which can be derived the transiogram tij(h), which is the probability to transition from

facies i to facies j along a certain vector h

tij(h) = Pr{Ij(x+ h) = 1|Ii(x) = 1} = cij(h)

pi
. (5.3)

This transiogram can be asymmetrical, which means that it is different in opposite directions

tij(h) 6= tij(−h), (5.4)

and can thus quantify asymmetrical facies successions (Carle and Fogg, 1996; Le Blévec et al.,

2017b). If the transiogram is symmetric, it means there is no polarity in the facies succession

and the transitions between facies are equivalent in opposite directions. The transiograms

between different facies can be gathered in a transiogram matrix that the simulation method

aims to reproduce. For instance, a transition matrix between three facies (1, 2, 3) is

t(h) =













t11(h) t12(h) t13(h)

t21(h) t22(h) t23(h)

t31(h) t32(h) t33(h)













. (5.5)

The terms on the diagonal are the auto-transiograms and those off-diagonal are the cross-

transiograms. With stationary proportions, the tangent at the origin of the auto-transiograms

Tii (which is negative) is related to the mean length of the facies i along this direction (Carle

and Fogg, 1996). The tangent at the origin (at right) of the cross-transiogram is called the

transition rate

Tij = t′ij(0). (5.6)
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Transition rates are of interest when studying asymmetry because they are related to juxta-

position between different facies along the studied direction h. According to Carle and Fogg

(1996) (under the stationary assumption) if a facies j tends to follow a facies i in the direction

h, rather than preceding it, then

Tij pi > pj Tji. (5.7)

Transition rates are also related to embedded transition probabilities rij (given the presence of

a facies i, the probability that it precedes j in the direction h)

rij = −
Tij

Tii

, (5.8)

which can also be gathered in a transition matrix

R =













0 r12 r13

r21 0 r23

r31 r32 0













. (5.9)

The diagonal equals zero because embedded Markov chains only record the transitions between

different facies. The following important properties of the embedded matrix are used in this

paper (Carle and Fogg, 1997)
∑

j

rij = 1, (5.10a)

∑

i

rij pi = pj. (5.10b)

In the next section, it is shown how a geostatistical simulation method, the Truncated Gaussian

Simulation, relates to these quantities.

5.3.2 Truncated Gaussian Simulations

Truncated Gaussian (TGS) and Pluri-Gaussian (PGS) Simulations (Armstrong et al., 2011)

consist of simulating one or several standardized Gaussian random functions that are then

truncated into a facies field. Any pair (Z(x), Z(x + h)) of a Gaussian random function Z(x)
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is a bi-Gaussian random vector, with Z(x) and Z(x+ h) correlated to each other according to

the non-centered covariance function

ρ(h) = E[Z(x) Z(x+ h)]. (5.11)

The truncation rule determines which facies is present at location x from the value of the

random variables Z(x). For instance, the truncation rule with the case of only two facies 1 and

2 and one Gaussian function (TGS) controls the indicator functions

I1(x) = 1 and I2(x) = 0 if Z(x) < q, (5.12a)

I1(x) = 0 and I2(x) = 1 if Z(x) ≥ q, (5.12b)

where q is the threshold of the truncation rule. It is possible to mathematically relate every

moment of the facies field to those of the Gaussian function. According to Eq. (5.12a) the

proportion of facies one (first order moment) is

p1 =

∫ q

−∞
g(x) dx, (5.13)

with g(x) the standardized Gaussian pdf. The cross-transiogram (second order moment) be-

tween facies one and two is

t12(h) =
1

p1

∫ q

−∞

∫ ∞

q

gρ(h)(x, y) dx dy, (5.14)

where gρ(h) is the standardized bi-Gaussian probability density with correlation matrix defined

by the covariance ρ(h). For q = 0 the two facies have same proportion 1/2 and the analyti-

cal solution of this bi-Gaussian integral (Lantuéjoul, 2002; Le Blévec et al., 2017b) gives the

following auto-transiogram for the two facies

t11(h) = t22(h) =
1

2
+

1

π
arcsin[ρ(h)], (5.15)
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Table 5.1: Notations for the truncated Gaussian model

pi Facies i proportion
cij(h) Non centered covariance between facies i and j
tij(h) Transiogram from facies i to facies j
Tij Transition rate from facies i to facies j
rij Embedded transition rate from facies i to facies j
ρ(h) Covariance of the latent standardized Gaussian function Z(x)
q1, q2 Thresholds of the Gaussian function Z1(x) and Z2(x)
gρ(h) Standardized bi-Gaussian density with correlation ρ(h)

and the cross-transiograms

t12(h) = t21(h) =
1

2
− 1

π
arcsin[ρ(h)]. (5.16)

For different thresholds, the transiograms can be derived by numerical integration (Genz, 1992)

or expansions into Hermite polynomials (Chiles and Delfiner, 2012).

More than one Gaussian function can also be used. This is the Pluri-Gaussian Simulation (PGS)

approach, which provides more flexibility thanks to a larger number of possible truncation rules.

In this paper, two Gaussian functions are used, with two thresholds defining three facies (1, 2, 3)

(Fig. 5.2)

I1(x) = 1, I2(x) = 0, I3(x) = 0 if Z1(x) < q1, (5.17a)

I1(x) = 0, I2(x) = 1, I3(x) = 0 if Z1(x) ≥ q1, Z2(x) < q2, (5.17b)

I1(x) = 0, I2(x) = 0, I3(x) = 1 if Z1(x) ≥ q1, Z2(x) ≥ q2. (5.17c)

As for TGS, the corresponding indicator statistical moments can be derived by numerical

integration (Genz, 1992). Therefore, the facies transiograms can be derived from the param-

eters of the Truncated Gaussian model which are summarized in Table 5.1. A more detailed

discussion on the link between the Pluri-Gaussian parameters and the transiograms is given in

Le Blévec et al. (2017b). This link is used in this paper to match different transiograms and a

key objective is to use a covariance ρ(h) such that the transiograms tij(h) show rhythmicities

and asymmetries.
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Figure 5.2: Truncation rule used for the cyclical Pluri-Gaussian Simulation. q1 and q2 are the
thresholds of the Gaussian functions Z1(x) and Z2(x)

5.3.3 Understanding Cyclicity and Rhythmicity With Transiograms

Wilkinson et al. (1997) define cyclicity as an apparent ordering between facies. Therefore,

this definition directly relates to the transition rates (Eq. (5.6)) or the embedded transitions

(Eq. (5.8)) that define the juxtapositions between facies. For instance, the perfect cyclic se-

quences of Fig. 5.1c, d, have the upward embedded transition matrix

R =













0 1 0

0 0 1

1 0 0













. (5.18)

In other words, every facies transitions into only one other facies upwards (rij = 1). However,

in practice such perfect facies successions are rare and the embedded transition probabilities

generally do not equal one or zero but have intermediate values. For instance the sequences

of Fig. 5.1a, b, show two identical cycles while the other facies transitions are different. A

sequence is called acyclic if facies have equal probability of transitioning with the other facies,

which would give for three facies the embedded transition matrix

R =













0 0.5 0.5

0.5 0 0.5

0.5 0.5 0













. (5.19)



5.3. Definitions 91

One can quantify cyclicity with the probability Pc to observe a given cycle above a given facies,

which can be written as the probability of observing the sequence 2−3−1 above an occurrence

of facies one (under the Markov assumption)

Pc = r12 r23 r31. (5.20)

We see that the notion of cyclicity is related to asymmetry by using the closing relations of

embedded transition matrices (Eqs. 5.10a and 5.10b)

Pc = r12 (1− r21)
p1 − r21 p2

p3
. (5.21)

The probability Pc increases as r12 increases and r21 decreases. Therefore, for a sequence with

three facies, asymmetry between two facies results in cyclicity. The cyclicity studied here

(Fig. 5.1c, d) is such that each facies appear only once per cycle. This is incompatible with

symmetric cycles, which are not considered here.

Rhythmicity is defined by the repetition of a facies at constant intervals. This is usually

observed on experimental transiograms that show dampened hole-effects (Journel and Froide-

vaux, 1982; Johnson and Dreiss, 1989; Ma et al., 2009). Rhythmicity cannot be quantified

by embedded transition rates as they are independent of facies thicknesses. Rhythmicity can

first be understood when studying two facies. If those facies have constant thicknesses, the

auto-transiogram varies with a constant wavelength that is equal to the sum of the two facies

thicknesses (Jones and Ma, 2001). This is similar with more facies as we can still regard this

as the succession of two facies, the one of interest and its complement. This is interesting to

consider in combination with cyclicity because the resulting sequences show a constant cycle

thickness (Fig. 5.1d). Thicknesses along sequences are not usually constant but can show low

variability which results in non-perfect rhythmicity and dampened hole-effects. The method

developed here models cyclic and rhythmic sequences, quantified by transiograms.
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5.4 The Cyclical Pluri-Gaussian Approach

In this section, the classical Pluri-Gaussian Simulation is extended to render cyclicity (or asym-

metry) (Sect. 5.4.1), rhythmicity (Sect. 5.4.2) and separable anisotropy (Sect. 5.4.3). The first

two sections (Sect. 5.4.1, Sect. 5.4.2) present results in one dimension and the last section

(Sect. 5.4.3) extends them to three dimensions.

5.4.1 Modelling Asymmetrical Facies Juxtapositions in Vertical Suc-

cessions

A method to simulate asymmetrical facies successions is summarized here (see Le Blévec et al.

(2017b) for a detailed treatment). For simplicity two standardized Gaussian random functions

with a Cartesian truncation rule are used (Fig. 5.2) as in Eq. (5.17). The correlation between

the Gaussian functions Z1(x) and Z2(x) is based on the linear model of co-regionalization

(Wackernagel, 2003) with a shift α between the Gaussian random functions as proposed by

Armstrong et al. (2011)















Z1(x) = Y1(x),

Z2(x) =
ρ

ρ1(α)
Y1(x+ α) +

√

1− ρ2

ρ1(α)2
Y2(x),

(5.22)

with Y1(x) and Y2(x) uncorrelated standardized Gaussian random functions, ρ1(h) and ρ2(h)

respectively their covariances and ρ the correlation coefficient between Z1(x) and Z2(x).

The proportions of the different facies define the thresholds of the truncation rule as in Eq. (5.13),

which are also impacted by the correlation coefficient ρ. The resulting transiograms between

facies can be computed by Gaussian integral on the facies domain defined by the truncation

rule as in Eq. (5.14). Le Blévec et al. (2017b) demonstrate analytically and numerically that

these transiograms are asymmetric as in Eqs. (5.4) and (5.7). A sensitivity study is also carried

out on the parameters α and ρ showing that the asymmetry can be controlled by varying these

two parameters (Le Blévec et al., 2017b). Here, the covariance models ρ1(h) and ρ2(h) used for



5.4. The Cyclical Pluri-Gaussian Approach 93

Figure 5.3: One realization (e) with corresponding transiogram matrix model (a-d) and Gaus-
sian functions Z1(x) and Z2(x) (f), parameters: ρ = −0.8, r1 = r2 = 0.1, α = 0.05, p1 = p2 = p3

the Gaussian functions Y1(x) and Y2(x) are Gaussian

ρ1(h) = exp(−h2

r21
), (5.23a)

ρ2(h) = exp(−h2

r22
), (5.23b)

with parameters r1 and r2 the scale factors of the models. This gives in total four parameters

for the method: α, ρ, r1 and r2.

An example of a vertical sequence generated with this method and the corresponding facies

transiograms is shown in Fig. 5.3. The simulation method of the latent Gaussian functions

is given in Sect. 5.5 and the transiograms are computed numerically (Genz, 1992) based on

Eq. (5.14). For clarity, only four transiograms instead of nine are shown for the three facies

(Fig. 5.3a-d), because the transiograms of the third facies can be directly derived from the

transiograms of the other facies. However, in practice, one can work with all the transiograms.
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It is clear in the realization shown in Fig. 5.3 that the facies are statistically organized in

shallowing-upward cycles as highlighted by the low tangent at the origin of the cross tran-

siogram from intertidal (orange) facies to subtidal (red) facies upwards (Fig. 5.3c). Indeed, this

transition is absent along the vertical section while the opposite transition (from subtidal facies

to intertidal facies) occurs 6 times. However, the succession is not perfectly cyclic (Fig. 5.3e)

because of a low but non-null probability of the subtidal (red) facies to transition upwards

directly to the supratidal (white) facies. A high variation of facies thicknesses is also noted,

resulting in a non-rhythmic sequence.

5.4.2 Modelling Rhythmicity in Vertical Successions

Using covariance functions with hole-effects for the latent Gaussian function is expected to

produce hole-effect facies transiograms. This is verified in this section in which a new indicator

transiogram model representing facies rhythmicity is obtained. In one dimension, the cosine

function is a valid covariance model (Chiles and Delfiner, 2012) and produces by truncation

vertical sequences with a constant cycle thickness. As this is rarely observed, a model in which

the oscillations attenuate with distance, called dampened hole-effect (Pyrcz and Deutsch, 2014)

gives more flexibility in reproducing cycle thicknesses. Ma and Jones (2001) define the Gaussian

cosine covariance as the product of two valid one-dimensional covariance functions

ρ(h) = exp(−h2

r2
) cos(b h). (5.24)

This covariance gives dampened oscillations controlled by the two parameters r and b. If the

scale factor r tends to infinity, the model is the cosine function. According to Eq. (5.15) the

resulting hole-effect transiogram model is

t11(h) =
1

2
+

1

π
arcsin[exp(−h2

r2
) cos(b h)]. (5.25)

As seen in Fig. 5.4, this transiogram model has the same wavelength as the latent covari-

ance model (Eq. (5.24)) and the attenuation of the oscillations is also similar. Therefore, this
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Figure 5.4: Hole-effect on the latent Gaussian field (yellow, Eq. (5.24)) and the resulting hole-
effect on the facies transition probability (blue, Eq. (5.25)), with r1 = 0.3 and b1 = 20

transiogram model seems a good candidate to model rhythmicity because of its flexibility.

It is important to remember that Eq. (5.25) is valid only if the threshold is zero, that is the two

facies have equal proportions. When this is not the case, the model t11(h) can be numerically

computed (Genz, 1992). Figure 5.5 gives the simulation of a vertical sequence with three facies

(Fig. 5.5e) and corresponding hole-effect transiograms (Fig. 5.5a-d). The covariances of the two

Gaussian random functions have the form of Eq. (5.24) with respective parameters r1, b1 and

r2, b2.

Figure 5.5 clearly shows the effect of rhythmicity on the transiograms and the corresponding

realization. The facies cycles are repeated in the vertical succession (Fig. 5.5e) with a rhyth-

micity controlled by the latent Gaussian functions (Fig. 5.5f). Asymmetry in facies stacking

is also added to create a cyclical vertical succession. After developing covariance models in

one dimension, it is necessary to expand these models into two and three dimensions while

incorporating anisotropy.

5.4.3 Modelling Facies Distributions in Two and Three Dimensions

With Separable Anisotropy

In sedimentary deposits, a strong anisotropy is always observed between the vertical direction

and the one parallel to stratigraphy. A simple way to represent such anisotropy is to use a
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Figure 5.5: One realization (e) with transiogram matrix model (a-d) and latent Gaussian
functions (f) with parameters: ρ = −0.82, r1 = r2 = 0.6, b1 = 15, b2 = 30, α = 0.04,
p1 = p2 = p3

separable covariance (Chiles and Delfiner, 2012). A separable covariance model can be built

from the product of a covariance in the vertical direction ρv(hz) and a lateral covariance along

stratigraphy ρl(hx, hy)

ρ(hx, hy, hz) = ρl(hx, hy) ρv(hz). (5.26)

As hole-effect usually occurs only in the vertical direction, it is possible to use a dampened

hole-effect model for ρv(hz) (Eq. (5.24)) but not for ρl(hx, hy)

ρ(hx, hy, hz) = exp[−h2
x

r2x
− h2

y

r2y
] exp[−h2

z

r2z
] cos[b hz]. (5.27)

Along stratigraphy, a standard geometrical anisotropy (which is also separable in this case of a

Gaussian covariance) is here used (Chiles and Delfiner, 2012). In an earth modelling software,

the lateral direction is usually controlled by the stratigraphic grid. According to Eq. (5.15),

the corresponding transiogram model of two facies, after thresholding a single Gaussian at cut
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Figure 5.6: Covariance map of the latent Gaussian function (left, Eq. (5.27)) and resulting
facies transiogram (right, Eq. (5.28)) in two dimensions with rz = 0.5, rx = 1 and b = 20

off 0 is therefore

t11(hx, hy, hz) =
1

2
+

1

π
arcsin

[

exp[−h2
x

r2x
− h2

y

r2y
] exp[−h2

z

r2z
] cos[b hz]

]

. (5.28)

Equation (5.28) shows that even though the covariance of the latent Gaussian function is

separable, the resulting transiogram is not separable. Figure 5.6 displays maps (hy constant)

of the latent Gaussian function covariance and the resulting transiogram which both show a

dampened hole-effect in the vertical direction and the absence of a hole-effect along stratigraphy.

In intermediate directions, the dampened hole-effect is present but attenuated. Once again, the

behavior of the auto-transiogram in two or three dimensions is very similar to the covariance

of the latent variable. This suggests that there is about as much flexibility in the transiogram

model as in the covariance model.

These transiogram models are valid for two facies in equal proportions but for a more general

case, different examples in three dimensions are shown in cross sections with their corresponding

transiograms in the vertical direction (Figs. 5.7 and 5.8). The transiograms have been computed

by numerical integration (Genz, 1992) (Eq. (5.14)). The parameters for the two Gaussian

functions are respectively r1x , r1y , r1z and r2x , r2y , r2z , and vertical hole-effect parameters b1,
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Figure 5.7: Vertical transiogram matrix model (a-d) and three corresponding realizations (e).
ρ = −0.8, r1z = 0.6, r1x = r1y = 0.4, b1 = 15, b2 = 30, r2z = 0.6, r2x = r2y = 0.4, α = 0.04,
p1 = p2 = p3

b2.

Figure 5.7 shows the combination of asymmetry, rhythmicity and anisotropy in facies distribu-

tions in both the realizations and the transiograms. The facies are ordered according to the

cycle: subtidal, intertidal and supratidal facies upwards (Fig. 5.7e). The vertical thickness of

these cycles is almost constant, confirming the rhythmicity. The different realizations can be

interpreted as facies bodies that pinch out laterally or split into different cycles and inter-finger.

Changes in the different parameters can create more complex transiogram models. By using

a hole-effect covariance on the second Gaussian function but not on the first, only the orange

facies auto-transiogram shows the combined effect of the Gaussian covariance and the hole-effect

covariance (Fig. 5.8d). This results in more complex geometries for the orange and white facies

that show two combined behaviors. They show thin beds corresponding to the high frequency

rhythmicity and thicker beds (Fig. 5.8e) corresponding to a lower frequency. The red facies has

a different transiogram from the other facies (Fig. 5.8a), and appears to truncate both of them.

Bodies of the red facies can be interpreted either to be erosional or to be diagenetic in origin,
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Figure 5.8: Vertical transiogram matrix model (a-d) and three corresponding realizations (e).
ρ = −0.6, r1z = 0.2, r1x = r1y = 0.4, b1 = 0, b2 = 30, r2z = 0.6, r2x = r2y = 0.4, α = 0.1,
p1 = p2 = p3

having formed after deposition. In order to have a better understanding of the geometries

generated by this transiogram model (Fig. 5.8), a three dimensional simulation with the same

transiograms is also presented in Fig. 5.9. The orange and white facies clearly show vertical

rhythmicity with low lateral variability in thickness, consistent with a depositional architecture,

while the red (diagenetic) facies truncates them.

Until now Gaussian covariances have been used. However, a more general model could be used

in order to control the behavior of the transiogram at the origin. For instance, using the stable

covariance model (Chiles and Delfiner, 2012) with a geometrical anisotropy along stratigraphy

and separable anisotropy in the vertical direction would give transiograms of the form (for one

latent Gaussian function with a threshold at zero)

t11(hx, hy, hz) =
1

2
+

1

π
arcsin

[

exp

[

−
(
√

h2
x

r2x
+

h2
y

r2y

)β]

exp[−
(hz

rz

)γ
] cos[b hz]

]

. (5.29)

The smoothness of facies boundaries decreases with the coefficients β and γ (0 < (β, γ) ≤ 2).
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Figure 5.9: Three dimensional simulation with the cyclical PGS obtained with the parameters
shown in Fig. 5.8. The void represents the red facies in Fig. 5.8

5.5 Conditional Simulation of the Cyclical Pluri-Gaussian

Model

A simple method is here presented to simulate the latent Gaussian functions with covariance

presented in Sect. 5.4 and to condition them to the facies observed along the wells.

5.5.1 Unconditional Simulation

The continuous spectral approach developed by Shinozuka (1971) is convenient to build sim-

ulations based on separable covariances. The Fourier transform of the covariance model is

normalized and used as a probability density function (pdf) to sample frequency vectors νk
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generating the three dimensional Gaussian function

Z(x) =

√

2

N

N
∑

k=1

cos(< νk, x > +Φk), (5.30)

with Φk random phases sampled from a uniform pdf between 0 and 2π and <> the scalar

product. The resulting function is Gaussian when N tends to infinity (central limit theorem).

Based on the knowledge of x, the individual value of Z(x) at each location x can be simulated,

which enables the algorithm to be coded in parallel and to be grid-free.

The spectral approach is well suited for a separable covariance as the multi-dimensional Fourier

transform of a separable covariance is the product of the Fourier transforms. The three dimen-

sional Fourier transform of a separable covariance model ρ(hx, hy, hz) (Eq. (5.26)) is

Fρ(hx,hy ,hz)(νz, νx, νy) = Fρv(hz)(νz) Fρl(hx,hy)(νx, νy), (5.31)

which means the frequencies νz in the vertical direction are sampled independently from νx and

νy according to the Fourier transform of their respective covariance models.

In order to simulate the covariance model of Eq. (5.27), the Fourier transforms of the covariance

in the vertical direction and the lateral plane must be known (Eq. (5.31)). For the lateral plane,

as a Gaussian covariance with geometrical anisotropy is also separable, the two directions hx

and hy are also sampled independently

Fρl(hx,hy)(νx, νy) = Fρl(hx)(νx) Fρl(hy)(νy). (5.32)

The Fourier transform of a Gaussian covariance is a Gaussian pdf (Chiles and Delfiner, 2012).

The Fourier transforms in the lateral direction hx and hy are respectivelyN (0,
√
2

rx
) andN (0,

√
2

ry
).

In the vertical direction, the Fourier transform of the Gaussian cosine covariance model (Eq. (5.24))

is a bi-modal Gaussian pdf N (b,
√
2

rz
) ∪N (−b,

√
2

rz
) (by modulation of the cosine function)

Fρv(hz)(νz) =
1

2 rz
√
π

[

exp(−1

4

(b+ νz)
2

r2z
) + exp(−1

4

(b− νz)
2

r2z
)

]

. (5.33)
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Figure 5.10: Variograms (grey) computed from ten realizations with model (black) and param-
eters: rx=0.15, rz=0.05, b = 100, N = 100. The simulated grid has 200 ∗ 200 cells of size
(0.005, 0.005)

Algorithm 1 describes how to simulate a facies field with such a covariance model. Figure 5.10

shows experimental variograms (1 − ρ(h)) of 10 realizations of the simulation of a separable

Gaussian cosine covariance in two dimensions (Eq. (5.27)). As expected the covariances of

the realizations are centered around the covariance model and represent the hole-effect only

in the vertical direction. Some fluctuations of the experimental variograms on the realizations

are observed (Fig. 5.10) which are explained in detail by Lantuéjoul (1994) or Emery and

Lantuéjoul (2006).

Algorithm 1 Separable Gaussian cosine simulation in three dimensions

1: φ←− Generate N samples in U(0, 2π)
2: νz ←− Generate N samples in N (b,

√
2/rz)

3: νx ←− Generate N samples in N (0,
√
2/rx)

4: νy ←− Generate N samples in N (0,
√
2/ry)

5: i ←− Generate N samples in (−1, 1) to be multiplied with νz to sample from N (b,
√
2

rz
) ∪

N (−b,
√
2

rz
)

6: For every location (x, y, z): apply Eq. (5.30)
7: Truncate according to truncation diagram

The spectral approach can also be used to simulate a stable separable covariance model (Eq. (5.29)).

The Fourier transform of a stable covariance is a stable spectral pdf with stability and scale

parameters α and r, skewness and location 0 (Chiles and Delfiner, 2012). Therefore, to simu-

late this covariance, one can use Algorithm 1 by replacing the Gaussian distributions with the

stable distributions. These simulations are unconditional, and they must now be conditioned

to facies data observed at specific locations in the simulated volume.



5.5. Conditional Simulation of the Cyclical Pluri-Gaussian Model 103

5.5.2 Conditioning the Gaussian Simulation to Facies Data

Some methods already exist for conditioning Pluri-Gaussian Simulations to hard data (Emery

and Lantuéjoul, 2006; Chiles and Delfiner, 2012). This section summarizes the main steps

and proposes improvements in the case of separable covariances. The truncation rule defines

intervals of the Gaussian function corresponding to each facies. At data locations xi, the

observed facies constrain the Gaussian random functions with the following inequalities

Z1(xi) < q1 if I1(xi) = 1, (5.34a)

Z1(xi) ≥ q1, Z2(xi) < q2 if I2(xi) = 1, (5.34b)

Z1(xi) ≥ q1, Z2(xi) ≥ q2 if I3(xi) = 1, (5.34c)

according to the truncation diagram (Fig. 5.2). The conditional simulation is usually performed

in three steps (Chiles and Delfiner, 2012), (i) unconditional simulation, (ii) Gibbs sampling at

data locations and (iii) conditioning by kriging of the mismatch at data locations. Here, the

conditioning is broken down in more steps for optimization purposes:

1. Unconditional uncorrelated simulations Y u
1 (x) and Y u

2 (x) are performed over the domain

as in Sect. 5.5.1.

2. Joint local conditional simulation of Z1(xi) and Z2(xi) is carried out only at data locations

xi using Gibbs sampling such that Eq. (5.34) is respected (Freulon and de Fouquet, 1993).

3. Back-transform of correlated Z1(xi) and Z2(xi) into uncorrelated Y1(xi) and Y2(xi) at

data location according to Eq. (5.22).

4. Two separate simple kriging R1(x) and R2(x) based on the mismatch at data locations

R1(xi) = Y1(xi)− Y u
1 (xi), (5.35a)

R2(xi) = Y2(xi)− Y u
2 (xi), (5.35b)
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are performed (Chiles and Delfiner, 2012)

R1(x) =
∑

i

λ1
i (x) R1(xi), (5.36a)

R2(x) =
∑

i

λ2
i (x) R2(xi), (5.36b)

with λ1
i (x) and λ2

i (x) the kriging weights (Chiles and Delfiner, 2012). The conditional

uncorrelated Gaussian random functions Y1 and Y2 at every location x are finally obtained

by

Y1(x) = Y u
1 (x) +R1(x), (5.37a)

Y2(x) = Y u
2 (x) +R2(x). (5.37b)

5. Transform conditioned Y1 and Y2 into conditioned and correlated Z1 and Z2 according to

Eq. (5.22).

The Gibbs sampling at data locations is not described here. Any algorithm can be chosen

(Emery et al., 2014) and applied with the desired covariance model to simulate the values of

Z(xi) at the data locations. Because Zu
1 and Zu

2 are co-simulated, the covariance matrix used

for the Gibbs sampling is made of the cross-covariances between Zu
1 and Zu

2 , given in more

details in Le Blévec et al. (2017b). As this covariance matrix can be singular, it is advised

to perform a Gibbs sampling that does not involve its inversion (Dubrule, 1983; Emery et al.,

2014).

The kriging of the difference (Eqs. (5.36a) and (5.36b)) can be optimized when using a sep-

arable covariance such as the model of Eq. (5.26) and if the wells are strictly vertical. This

is important because kriging over the whole domain is computationally expensive, and can

make simulation prohibitively slow. The simple kriging is optimized thanks to the well known

screening properties of separable covariances (Matheron et al., 1988; Chiles and Delfiner, 2012).

Performing kriging in the uncorrelated space of the Yi allows firstly a reduction of the size of

the covariance matrix to invert (and the stability of the inversion) for finding the weights λ1
i

and λ2
i . Secondly, it ensures that the covariance is separable (and thus its screening property)
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Figure 5.11: The screening effect for simple kriging applied on two wells W1 and W2 to estimate
three locations on three different horizontal planes with one extended well (red)

which is not the case for the covariance of Z2.

With a separable covariance model such as that of Eq. (5.26), the weights λi(x) associated with

data located on different lateral planes from that of the estimated location x are equal to zero

(Chiles and Delfiner, 2012). This means that the estimation at a given location only depends

on the data at the same horizontal level, and the number of kriging weights therefore equals

the number of wells intersecting this horizontal level, as shown in Fig. 5.11. Assuming all wells

are vertical and have the same length, the number of weights for every kriged point is therefore

simply the number of wells. If this is not the case, for instance because some vertical wells do

not penetrate a particular level, it is convenient to artificially extend them by an unconditional

simulation with Gibbs sampling at step (ii) (Fig. 5.11), so that the geometrical configuration

of the data points remains the same at all levels. Therefore, the weights are the same for every

horizontal plane and the dual form of two-dimensional kriging may be used, in which the data

covariance matrix is inverted only once (Dubrule, 1983; Chiles and Delfiner, 2012). This enables

rapid and efficient kriging. An example of conditional simulation with this method is given in

the following section.

5.6 Case study: the Latemar Carbonate Platform, North-

ern Italy

The Triassic Latemar carbonate platform is superbly exposed in northern Italy and has been

chosen as a case study as it provides well-documented examples of facies cyclicity with rhythmic-
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ity and asymmetry in shallow-marine peritidal strata (Goldhammer et al., 1990). Rhythmicity

has been quantified along a vertical sequence through the entire platform succession using spec-

tral analysis, in order to understand the potential expression of orbital forcing (Milankovitch

cycles) on platform growth (Hinnov and Goldhammer, 1991; Preto et al., 2001). However, few

studies describe sequences in different parts of the platform with the aim of performing facies

modelling. Here, the dataset of Peterhänsel and Egenhoff (2008) (Upper Cyclic Facies strati-

graphic interval) is used to evaluate and model asymmetrical (upward-shallowing) facies cycles

and facies rhythmicity near the topographically high platform margin (Cimon Latemar) and in

deeper lagoonal deposits of the platform interior (Cimon Forcellone). Peterhänsel and Egenhoff

(2008) describe five microfacies based on thin sections: peloidal packstone to wackestone (fa-

cies one), algae peloidal packstone (facies two), fenestral packstone to wackestone (facies three),

packstone to grainstone (facies four), diagenetically overprinted grainstone to packstone (facies

five). To illustrate our geostatistical method, these microfacies are re-grouped into three main

environments of deposition: subtidal (facies one), intertidal (facies two and three), supratidal

storm deposits (facies four and five). The next paragraph provides a quantitative analysis of

the variations of these three facies.

5.6.1 Qualitative and Quantitative Study of the Case-study Dataset

As illustrated by Fig. 5.12, the eight vertical logs show a high number of facies transitions.

The asymmetry is clear as the subtidal facies (red) tends to be on top of the supratidal (white)

facies. However, complete upward-shallowing facies cycles, containing subtidal, intertidal and

supratidal deposits, occur only 24 times, while there are 56 incomplete cycles in the eight logs,

which means that the sequences have some cyclic features. The subtidal facies appears to show

regular spacing between beds within some wells (Fig. 5.12, in logs N8 and N16), which would

suggest a rhythmicity of this facies. This is not the case for the intertidal and supratidal facies,

which show very different spacings between the beds (Fig. 5.12).

All this information can be verified in the experimental transiograms computed on the logs

(Fig. 13, grey points). A dampened hole-effect is observable on the auto-transiogram of the
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Figure 5.12: Logs through the Upper Cyclic Facies interval of the Latemar carbonate platform
(Peterhänsel and Egenhoff, 2008) subtidal (red), intertidal (yellow) and supratidal (white)
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Figure 5.13: (a-d) Experimental transiograms (grey points), model (black line) and realization
(black diamonds) after simulation with parameters in Table 5.2

subtidal deposits (Fig. 5.13a). The tangent at the origin of the cross-transiogram of intertidal

deposits overlain by subtidal deposits (Fig. 5.13) is low, showing that this transition is rare.

More precisely, T12 = 2.06 and T21 = 0.19 which means according to Eq. (5.7) that the intertidal

facies is four times more likely to overlie the subtidal facies than to underlie it.

5.6.2 Inference of the Co-regionalization Model

As seen in Fig. 5.13a, the subtidal deposit auto-transiogram shows a dampened hole-effect. In

order to model this hole-effect properly, it is easier to derive it from only one covariance rather

than a combination of two covariances. Therefore, the truncation rule of Fig. 5.2 where the

subtidal facies is defined by only one Gaussian function, is chosen. The use of more complex

truncation rules is discussed in Sect. 5.7.1.

The parameters of the Pluri-Gaussian model are determined using the procedure described in

Le Blévec et al. (2017b). Only the auto- and cross-transiograms of two of the three facies
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are necessary to determine the parameters of the model, as the transiograms for the third

facies are derived from those of the two other facies. A trial and error procedure is here

chosen for determining the parameters, as this gives the possibility to incorporate conceptual

knowledge. For instance, as it is known that rhythmicity and asymmetry occur, it is important

to incorporate these features during the model construction, which would be difficult with an

automatic fitting procedure.

The covariance of the first Gaussian function ρ1(h) is used to describe the transiogram of the

subtidal facies. The Gaussian cosine model (Eq. (5.24)) gives an appropriate fit although the

oscillations observed on the logs seem less pronounced (Fig. 5.13a). This fit could be improved

by using a more complex covariance model, as discussed in Sect. 5.7.2. Then, the correlation

coefficient ρ and the shift α can be chosen to fit the transition rates between the subtidal and

intertidal facies. Here the asymmetry (Eq. (5.7)) is clear, because the probability of intertidal

facies overlying subtidal facies is four times higher that of the opposite. Therefore, the shift

α is equal to the size of one vertical cell and the correlation coefficient ρ is rather high (-0.6)

which allows the model to match these transition rates. The shift is strictly vertical because

no information on a possible lateral asymmetry is available (this topic is further discussed

in Sect. 5.7.3). Finally the covariance of the second Gaussian functions ρ2(h) determines the

transiogram of intertidal facies. A rhythmic covariance is not necessary here, as the transiogram

does not show a clear hole-effect. There is not enough information to determine the lateral

scale factors of the covariance directly from the data. Therefore, they are derived from visual

comparison of the realizations with the outcrop facies panel interpreted between the vertical

logs by Peterhänsel and Egenhoff (2008) and are chosen to be isotropic (in the lateral plane).

Finally, the thresholds q1 and q2 of the Gaussian functions are determined according to the

proportions of the facies and the correlation coefficient ρ between the two Gaussian random

functions (Armstrong et al., 2011). The parameters are summarized in Table 5.2.

Vertically, a Gaussian cosine covariance is chosen but laterally an exponential covariance (Chiles

and Delfiner, 2012) is preferred. A Gaussian or cubic covariance in the lateral direction may

lead to a singular kriging system for the conditioning step as the lateral scale factor is large

(Sect. 5.5.2). A stable covariance with a power close to two could also be chosen to obtain a
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Table 5.2: Parameters of the Pluri-Gaussian Simulation for the Latemar platform

(q1, q2) (−0.65, 0.41) Thresholds for the two Gaussian functions
ρ −0.6 Correlation between Gaussian functions
α 0.1m Vertical shift between Gaussian functions
(r1x , r1y , r1z) (500m, 500m, 0.8m) Scale factors of the first Gaussian covariance
(r2x , r2y , r2z) (500m, 500m, 0.4m) Scale factors of the second Gaussian covariance
(b1, b2) (5m−1, 0m−1) Vertical frequencies of the two covariances

smoother model than that obtained with the exponential.

5.6.3 Simulation Results

The cell sizes of the grid are 0.1 meters vertically and 10 meters laterally in both North and

East directions, which gives approximately 800,000 cells. The simulation takes approximately

one minute to run with a standard Intel processor i7, but it could be much faster by perform-

ing the unconditional simulation with the spectral method in parallel, which is the longest

computational step. The conditioning by kriging every surface independently, as described in

Sect. 5.5.2, is almost instantaneous. One realization of the field is shown in Fig. 5.14.

The visual aspect of the simulation is granular due to the exponential covariance model used

in the lateral plane. Visually, the subtidal (red) facies tends to lie on top of the supratidal

(white) facies and rhythmicity is confirmed by the regular thickness between two subtidal (red)

facies bodies. The transiograms of the wells and the transiograms computed on one realization

are compared in Fig. 5.13. The sills derived from simulation (black diamonds in Fig. 5.13) are

accurate, which means that the facies proportions match those in the wells. The tangent at the

origin of the auto-transiograms is appropriately fitted, which means the average thicknesses of

different facies bodies honours the well data. The tangent at the origin of the cross-transiograms

matches the transition rates of the wells (T12 = 2.1 and T21 = 0.19) which means the asymmetry

and cyclicity are respected. The hole-effect in the realization transiogram is less pronounced

than the one used for the theoretical model, but is closer to the one observed at the wells (grey

circles in Fig. 5.13). This might be due to the conditioning of the realization to the wells, where
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Figure 5.14: One realization of the Latemar facies field from Peterhänsel and Egenhoff (2008)
data (Fig. 5.12), and two cross-sections obtained with the parameters summarized in Table 5.2

the experimental transiograms show less pronounced oscillations (black lines in Fig. 5.13).

5.7 Discussion

In order to illustrate the method, standard parameters have been chosen so far for both the

synthetic examples and the case study. However, some parameters such as the truncation rule,

the covariance model, or the shift can be changed to adjust to different geological environments.

5.7.1 The Truncation Rule

Choosing the Truncation Rule

The same truncation rule has been applied through the paper (Fig. 5.2) with the subtidal facies

defined by the first Gaussian function and the two others by both Gaussian functions. This
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has implications for the geometries of individual facies bodies and for facies relationships. The

facies defined by the first Gaussian function erodes the two other facies (e.g., Fig. 5.8e), which

means that bodies of these facies can have very different geometries from those of the other

facies. This behavior can be reduced by increasing the correlation ρ between the two Gaussian

functions Z1(x) and Z2(x).

The truncation rule affects not only the facies transiograms but also higher order statistical

moments, which can have an impact on connectivity (Beucher and Renard, 2016). However,

these moments are not known analytically and so are difficult to use for defining the truncation

rule. It is recommended that the earth modeller tries different truncation rules and inspects

the visual aspect of simulations so that it matches with his or her conceptual knowledge.

Adapting the Truncation Rule for More Facies

In this paper, only three facies have been used to illustrate the method. Two methods for

generalizing the truncation rule to more facies are found in the literature: either the truncation

is made more complex (Galli et al., 2006) or the number of Gaussian functions is increased

(Maleki et al., 2016). The first method is probably too limited to represent a large number of

transition rates between facies, while the second one should be able to model all transition rates

(but the number of parameters would be very high). The choice between the two methods should

depend on the case study and further work on this topic is required. It should also be noted

that some methods that create automatic truncation rules have been developed (Deutsch and

Deutsch, 2014; Astrakova et al., 2015). It would be interesting to generalize these methods by

incorporating the shift between the Gaussian functions in order to match asymmetric transition

probabilities.

5.7.2 Elaborating More Complex Hole-effect Models

The vertical hole-effect model used in this paper is made of two parameters rz and b (Eq. (5.24))

which provides some flexibility to match observed rhythmicity. However, the case study shows
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that the observed transiograms can be even more complex (Fig. 5.13) and two parameters might

not be sufficient to represent them. The covariance model could be modified to incorporate

more than one structure (Chiles and Delfiner, 2012). For instance a Gaussian covariance or a

cosine covariance can be added to the Gaussian cosine model (Eq. (5.24)).

5.7.3 Walther’s Law

The method developed in this paper models cyclicity only in the vertical direction, which is

consistent with observations of most outcrop and subsurface data. However Walther’s Law

suggests that the transitions between facies should be equivalent laterally and vertically if no

erosion is present (Middleton, 1973). This means that the facies ordering could be similar

and the transition rates proportional as in Markov Chains methods (Doveton, 1994; Purkis

et al., 2012). Thus asymmetry could also be observed laterally. Since the shift is actually a

three-dimensional vector, it is possible to model such patterns with the presented method by

defining a non-vertical vectorial shift between the Gaussian functions (Eq. (5.22)), such that

the asymmetry is also lateral (Le Blévec et al., 2016).

This choice will depend on the depositional environments, processes, controls, and scale to be

modelled. These aspects are typically interpreted with reference to an underlying conceptual

model, such as those for allocyclically and autocyclically generated facies cycles in peritidal car-

bonate strata (Pratt and James, 1986; Goldhammer et al., 1990). The facies architectures to

be modelled are also scale dependent. Environments of deposition generally have large lateral

extents (1 - 10 km), such that few lateral transitions between them are observed at reservoir

(1 - 10 km) and inter-well (<1 km) scales (Sena and John, 2013), which limits the expres-

sion of lateral ordering of depositional environments. At smaller scales, the lateral transitions

between lithofacies within depositional environments (or facies associations) may be different

from the vertical transitions (Hönig and John, 2015) because of erosion or lateral changes in

palaeotopography. The resulting lithofacies distributions may be highly variable, potentially

reflecting a facies migration that is well-ordered and obeys Walther’s Law as one end member

(Obermaier et al., 2015) or more complex and less ordered facies mosaics as the opposite end
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member (Wilkinson et al., 1997). The choice of appropriate conceptual model at the scale of

depositional environments (facies association) or lithofacies must be made by the earth modeler

in collaboration with the geologist, and then used to govern the selection of parameters of the

model.

5.8 Conclusion

While cyclicity and rhythmicity are commonly observed in facies architectures, few existing

geostatistical algorithms can model both patterns in an efficient manner. By addressing this

issue, the method developed here is useful for modelling carbonate or shallow-marine clastic

reservoirs that contain such cyclical facies successions. Broadly speaking, cyclicity and rhyth-

micity are quantified by facies transiograms that are computed from data (e.g., vertical facies

successions) and fitted with an advanced truncated Pluri-Gaussian model for performing three

dimensional simulations.

The model used for the latent Gaussian functions is the linear model of co-regionalization with

a spatial shift, which creates the asymmetric cycles. The covariance of the Gaussian functions

presents a dampened hole-effect, which captures the rhythmicity. As this hole-effect is generally

observed only in the vertical direction, a separable covariance model, which is the product of

a lateral and a vertical covariance is used so that no rhythmicity is modelled laterally along

the stratigraphy. The space-time separable covariance is simulated readily by the continuous

spectral method. The numerical properties of separable covariance allows rapid and efficient

conditioning to data via kriging of every horizontal surface independently. The procedure has

been applied successfully to model a carbonate platform environment that shows cyclicity and

rhythmicity in facies architecture.



Chapter 6

Geostatistical Earth Modelling of

Cyclic Depositional Facies and

Diagenesis

6.1 Abstract

In siliciclastic and carbonate reservoirs, depositional facies are often described as being or-

ganized in cyclic successions that are overprinted by diagenesis. Most reservoir modelling

workflows are not able to reproduce stochastically such patterns. Herein, a novel geostatistical

method is developed to model depositional facies architectures that are rhythmic and cyclic,

together with superimposed diagenetic facies.

The method uses truncated Pluri-Gaussian random functions constrained by transiograms.

Cyclicity is defined as an asymmetric ordering between facies, and its direction is given by a

three-dimensional vector, called shift. This method is illustrated on two case studies. Outcrop

data of the Triassic Latemar carbonate platform, northern Italy, are used to model shallowing-

upward facies cycles in the vertical direction. A satellite image of the modern Bermuda platform

interior is used to model facies cycles in the windward-to-leeward lateral direction.

115
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As depositional facies architectures are modelled using two Gaussian random functions, a third

Gaussian random function is added to model diagenesis. Thereby, depositional and diagenetic

facies can exhibit spatial asymmetric relations. The method is applied in two regions of the

Latemar carbonate platform that experience two different types of diagenetic transformation:

syn-depositional dolomite formation, and post-depositional fracture-related diagenesis. The

method can also incorporate proportion curves to model non-stationary facies proportions. This

is illustrated in Cretaceous shallow-marine sandstones and mudstones, Book Cliffs, Utah, for

which cyclic facies and diagenetic patterns are constrained by embedded transition probabilities.

6.2 Introduction

In reservoir modelling applications, an important step is the representation of three-dimensional

facies architecture and the quantification of associated uncertainty. The Earth modelling com-

munity routinely uses geostatistical methods to reach this goal (Koltermann and Gorelick, 1996;

Alabert and Modot, 1992; Pyrcz and Deutsch, 2014). However, the commonly-used geostatis-

tical approaches have some significant limitations. For instance, geostatistical models often

show the same facies successions in the upward as in the downward direction, which does not

allow the representation of classic geological features such as facies cyclicity or certain types of

syn-depositional diagenesis.

modelling Cyclicity and Rhythmicity

Depositional facies in vertical successions exhibit extensive cyclicity and rhythmicity (Strasser,

1988; Goldhammer et al., 1990; Wilkinson et al., 1997; Lindsay et al., 2006; Burgess, 2016).

These features are defined respectively as facies ordering (Gingerich, 1969; Hattori, 1976) and

repetition of facies at intervals of constant thickness (De Boer and Wonders, 1984; House,

1985). Their origin is attributed to various controls, including relative sea level oscillations

(e.g., Grotzinger, 1986b), local tectonic activity (e.g., Cisne, 1986) and autogenic mechanisms.

These different origins may lead to cycles and rhythms of differing lateral extent and stacking
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patterns, which should be reproduced by the modelling method. For example, facies cycles

are commonly interpreted at reservoir scale with reference to sequence stratigraphic models,

implying that they are laterally extensive (e.g., Goldhammer et al., 1990), although over such

distances, some facies cycles are documented to pinch out (e.g., Egenhoff et al., 1999). In order

to represent these diverse facies cycles and rhythms, reservoir-wide deterministic correlations

may not be appropriate.

Diverse facies distributions are modelled by geostatistical methods, but their current imple-

mentation cannot generate facies cycles and rhythms simultaneously. For example, cyclicity

quantification is possible with Markov Chain analysis (Gingerich, 1969; Hattori, 1976), but

the method is originally limited to one dimension. It was later improved by Carle and Fogg

(1996) who model cyclic three dimensional Earth models thanks to asymmetric transiograms.

However, the method does not incorporate rhythmicity, because the transiogram models are

not flexible enough to incorporate the characteristic periodic oscillations (Jones and Ma, 2001;

Dubrule, 2017), called hole-effects. Facies cyclicity and rhythmicity could theoretically be mod-

elled by Multi-Point Statistics (Strebelle, 2002), but it is challenging to include those patterns

in the required three dimensional training image.

A geostatistical method has been developed recently to model simultaneously facies cyclicity

and rhythmicity (Le Blévec et al., 2018), thus improving the realism of facies Earth models.

The method is based on Pluri-Gaussian Simulations (Armstrong et al., 2011), constrained by

facies transiograms. The facies asymmetric ordering (or cyclicity) is defined by two Gaussian

random functions spatially shifted from each other, and rhythmicity of the facies succession is

modelled by defining new hole-effect covariance models (Le Blévec et al., 2018).

So far, this method has only been used to model cyclicity in the vertical direction, although

cyclicity can also be observed in lateral directions. Stratigraphic forward models can produce

asymmetry between facies in lateral directions (Burgess et al., 2001), and such lateral facies

asymmetry is also explicit within Walther’s Law (e.g., Middleton, 1973). This could possibly be

modelled with the shifted Pluri-Gaussian method (Le Blévec et al., 2018) by defining a spatial

shift with a lateral component.
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Modelling Diagenesis

Reservoir quality is not only affected by depositional facies cyclicity. Rock properties of carbon-

ate (e.g., Bartok et al., 1981; Moore, 2001) and siliciclastic (e.g., Taylor et al., 2010) deposits

are also influenced by diagenesis. Diagenetic processes give rise to depositional and diagenetic

facies with a variety of geometrical relationships, which should be captured by the modelling

method. Early diagenesis tends to closely follow the texture and stratal configuration of de-

positional facies (e.g., Ginsburg, 1957; Egenhoff et al., 1999; Peterhänsel and Egenhoff, 2008;

Rameil, 2008) while late diagenesis either follow depositional features, or other structures such

as faults, fractures, and karsts, thus resulting in diagenetic bodies and trends that cut across de-

positional facies geometries (e.g., Sharp et al., 2010; Vandeginste et al., 2013; Jacquemyn et al.,

2014; Beckert et al., 2015). It is therefore highly desirable that reservoir modelling methods

are flexible enough to embrace these different possibilities.

In many geostatistical studies, diagenesis is modelled as porosity or permeability variations

(Wang et al., 1998; Pontiggia et al., 2010). This is a useful approach, but it cannot be applied

to the representation of distinct diagenetic geobodies or of different diagenetic phases within a

depositional facies. Therefore, some authors model diagenesis as a facies random field that is

superimposed on the depositional facies field (Renard et al., 2008; Doligez et al., 2011; Barbier

et al., 2012; Carrera et al., 2018). These authors use a version of truncated Pluri-Gaussian

Simulations (Bi-PGS) developed by Renard et al. (2008), which models two facies fields with

different Gaussian random functions. The depositional and diagenetic facies fields can be either

independent of or correlated to each other, which allows to model depositional and diagenetic

facies geometries that are either discordant or conformable. However, this method does not

generate distributions of diagenetic facies that are asymmetric such as occurring preferentially

towards the top or the base of depositional facies bodies.

The algorithm of Renard et al. (2008) to model diagenesis is thus extended here by includ-

ing a shift between depositional and diagenetic facies fields, which allows diagenetic facies to

overprint depositional facies preferentially at their top or at their base. These relationships

are constrained by cross-transiograms between the two facies fields, and the method is also
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combined with the advancements of Le Blévec et al. (2018), so that diagenesis is modelled in

the context of depositional facies cyclicity and rhythmicity.

Aims

Therefore, this paper presents a new geostatistical facies modelling method that is able to

represent facies cyclicity and rhythmicity, together with diagenetic facies bodies, which have

either conformable or non-conformable geometries. The structure of the paper is outlined be-

low. First, we illustrate the concepts of cyclicity and rhythmicity and show that these concepts

are captured by transiograms. Modelling of cycles and rhythms is then illustrated using: (1)

synthetic facies successions; (2) facies successions from the outcropping Triassic Latemar car-

bonate platform of Northern Italy; and (3) lateral facies relationships on the interior of the

modern Bermuda carbonate platform. Then, diagenesis is modelled by adding another Gaus-

sian random function to the method. Three examples are modelled to illustrate the flexibility of

the method: (1) syn-depositional diagenesis below hardgrounds in facies cycles of the Latemar

carbonate platform; (2) early diagenetic development of concretions in shallow-marine, silici-

clastic facies cycles in the Cretaceous Blackhawk Formation, Book Cliffs outcrops (Utah), in

which the facies proportions are non-stationary; and (3) post-depositional diagenesis caused

by localised movement of hydrothermal fluids through faults and fractures in the Latemar

carbonate platform.

6.3 Quantifying Cyclicity and Rhythmicity with Tran-

siograms

6.3.1 Defining Cyclicity and Rhythmicity

Although facies cyclicity and rhythmicity are commonly interpreted in sedimentary sequences,

these concepts have different meanings to different authors. Formal, quantitative definitions of
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Figure 6.1: Four synthetic facies successions: (a) non rhythmic with two cycles; (b) rhythmic
(blue facies) with two cycles; (c) cyclic and non rhythmic; and (d) cyclic and rhythmic. Modified
from Le Blévec et al. (2018).

cyclicity and rhythmicity are needed for facies modelling, as a facies succession can be more or

less ordered or exhibit more or less variability in facies thickness. Cyclicity is defined as facies

ordering in a given direction (Gingerich, 1969; Hattori, 1976; Le Blévec et al., 2018), usually

vertically (Fig. 6.1). The ordering considered here is asymmetric, which means that it differs

going upwards from going downwards. For instance, in vertical shallow-marine carbonate and

siliciclastic successions, facies cycles tend to be shallowing-upward (Strasser, 1988; Goldhammer

et al., 1990; Lindsay et al., 2006), which is equivalent to deepening-downward.

Another commonly observed feature is that the same facies tends to appear repeatedly at inter-

vals of constant thickness (e.g., Goldhammer et al., 1993; Lindsay et al., 2006), which defines

rhythmicity (De Boer and Wonders, 1984; House, 1985; Le Blévec et al., 2018). If cyclicity and

rhythmicity are both present, it implies that the facies cycles have low variability in thickness.

For instance, the vertical succession in Figure 6.1d is cyclic and rhythmic because the facies are

fully ordered and have constant thickness intervals between them. The succession illustrated in

Figure 6.1a has non-ordered transitions between facies and also contains two facies cycles. The

succession in Figure 6.1b also contains two facies cycles, and the blue facies is rhythmic, because

intervals between occurrences of this facies have similar thickness. Figure 6.1c shows a cyclic
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and non-rhythmic facies succession, and the succession in Figure 6.1d is cyclic and rhythmic,

because the facies are fully ordered and the blue facies is separated by intervals of constant

thickness. For three-dimensional Earth models to be geologically realistic, facies cyclicity and

rhythmicity must be properly modelled.

6.3.2 The Transiogram: a Tool to Capture Cyclicity and Rhythmic-

ity

Standard geostatistical simulation approaches quantify geologic patterns by computing exper-

imental variograms, modelling them mathematically and then ensuring that the variogram

models are reproduced in the final simulation (Pyrcz and Deutsch, 2014). However, Carle and

Fogg (1996) show that variograms are not able to quantify asymmetric cycles, and promote the

use of the transiogram instead.

The transiogram gives the probability tAB(h) of finding a facies B at a vector h from a given

facies A (Carle and Fogg, 1996; Le Blévec et al., 2018). If the two facies A and B are iden-

tical, the transiogram is referred to as an auto-transiogram, otherwise it is referred to as a

cross-transiogram. Auto-transiograms and cross-transiograms are calculated experimentally

and gathered in a transiogram matrix (Fig. 6.2). As with variograms, the direction h is usually

vertical, but it can also have a lateral component if calculated along other directions. For

sedimentary facies, transiograms are commonly different in opposite directions (e.g., upward

and downward) (Carle and Fogg, 1996).

Transiograms have specific properties, which are described in detail by Carle and Fogg (1996).

One property is that at long distances h, tAB(h) tends towards the proportion of facies B. For

example, Figure 6.2b-e shows that the transiograms tend towards the value of 0.5, which is the

proportion of facies 1, and 0.25, which is the proportion of facies 2. Also, the tangent at the

origin t′AA(0) of the auto-transiogram tAA(h) defines the mean length of facies A, denoted as

LA (Carle and Fogg, 1996), as shown in Figure 6.2b, e (L1 and L2).

Figure 6.2c, and 2d also show that cyclicity is captured by the behavior at the origin of the
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Figure 6.2: Cyclic and rhythmic facies succession (a) with associated transiogram matrix be-
tween facies 1 and 2 (b-e). Lc is the mean thickness of a facies cycle, and L1 and L2 are the
mean thicknesses of facies 1 and 2. Proportion of facies 1 is 0.5 and proportion of facies 2 is
0.25.
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cross-transiograms (Le Blévec et al., 2018). t′12(0) is high while t′21(0) is low, which means that

facies 2 tends to overlie facies 1, while facies 1 does not tend to overlie facies 2. Consequently

facies 3 overlies facies 2, creating facies cycles with facies 1 at the base, facies 2 in the center

and facies 3 at the top. This cyclicity is observed in the corresponding succession (Fig. 6.2a),

which shows that facies 1 almost always transitions upward to facies 2 (except on one occasion

when it transitions directly to facies 3), and facies 2 transitions upward to facies 3.

Rhythmicity is characterized by the oscillations of the transiograms or variograms (Jones and

Ma, 2001; Le Blévec et al., 2018), as shown in Figure 6.2. The average distance separating two

repetitions of a facies is given by the first maximum of the corresponding auto-transiogram, as

this is associated with the highest probability of finding the same facies (Fig. 6.2b, e, Lc = 0.4

m). It also corresponds to the first minimum of the cross-transiograms (Fig. 6.2c, d), which

is associated with the lowest probability of finding two different facies. In this case, because

there is also cyclicity, this length Lc corresponds to the average thickness of the facies cycle

and is approximately the sum of the mean thicknesses of all facies present in a cycle. This

also explains why the auto-transiogram of facies 2 shows the same rhythmicity (Fig. 6.2e) as

the auto-transiogram of facies 1 (Fig. 6.2b). Rhythmicity can be visually verified by examining

the corresponding succession (Fig. 6.2a), which shows that facies cycles indeed exhibit low

thickness variations (thickness of approximately 0.4 m). Therefore, transiograms appear to be

better suited than variograms to the quantification of cyclicity and rhythmicity.

6.4 Modelling Cyclicity and Rhythmicity with Shifted

Pluri-Gaussian Simulations

6.4.1 Principle of Truncated Gaussian Simulations

The truncated Gaussian approach for facies modelling was first developed by Matheron et al.

(1988) and is explained in detail by Armstrong et al. (2011). It has two steps: (1) first, the

simulation of a continuous Gaussian random function, and then (2) the truncation of this
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Figure 6.3: Facies succession (b) modelled with Truncated Gaussian Simulations according to
the truncation rule (a) and parameters r1 = 0.1 m , b1 = 0 m−1, (p1, p2, p3) = (0.4, 0.4, 0.2)
(Eq. 6.A.4a).

continuous function into facies with the help of a truncation rule.

A Gaussian random function defines at every location (x, y, z) (usually in a grid) a Gaussian

random variable. The Gaussian random function is controlled by its covariance model (Chiles

and Delfiner, 2012). In this paper, as explained in the Appendix, Gaussian cosine covariances

(with frequency parameter b) are used with scale factor noted rz (Eq. 6.A.4a) in the vertical

direction. In lateral directions Gaussian covariances are used, with scale factors noted rx and

ry for each principal direction (Eq. 6.A.4a). Scale factors control the average length scale of the

Gaussian random functions in the corresponding direction and b their periodicity (Le Blévec

et al., 2018). Figure 6.3b (red curve) shows an example of a realization of a Gaussian random

function Z1 along a vertical succession (i.e., on a one-dimensional grid).
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The truncation rule defines the number of facies, their proportions, and their contacts. For

instance, Figure 6.3a shows a truncation rule with three facies, with a small area for facies 3

defined by the threshold q2. This results in a smaller proportion of facies 3 in the corresponding

vertical succession (Fig. 6.3b). As shown by Figure 6.3b, when Z1 is higher than q1, facies 2 is

allocated, and when it reaches q2, facies 3 is defined.

By using only one Gaussian random function, modelling is limited because each facies can only

transition into one or, at most two other facies. For instance, in Figure 6.3 facies 1 and 3 can

only transition into facies 2, while facies 2 can transition into both facies 1 and 2 upward or

downward. Therefore, cyclicity cannot be modelled because there is no asymmetry associated

to the simulation. Armstrong et al. (2011) extend the method to Pluri-Gaussian Simulations,

and it was then modified by Le Blévec et al. (2018) to model cyclicity.

6.4.2 The Shifted Pluri-Gaussian Simulations Approach

Here we summarize the modelling method developed in Le Blévec et al. (2018). The method

is based on Pluri-Gaussian Simulations (PGS) (Armstrong et al., 2011), which generalizes

Truncated Gaussian Simulations by using several Gaussian random functions instead of just

one. An example is given in Figure 6.4b, which shows a Pluri-Gaussian Simulation using two

Gaussian random functions Z1 and Z2. The variations of each Gaussian random function are

controlled by their respective covariance model (Eqs. 6.A.4a and 6.A.4b). The truncation rule

applied to them is two dimensional (Fig. 6.4a) and defines in this example three facies separated

by two thresholds q1 and q2, with all three facies in contact with each other. For instance, the

defined facies is yellow if q1 is smaller than Z1 and q2 is smaller than Z2. The corresponding

facies succession (Fig. 6.4b) shows no specific cyclicity, because all facies can transition into

each other randomly.

In order to model cyclicity, Le Blévec et al. (2018) introduced a spatial shift α between the two

Gaussian random functions. More specifically, the Gaussian random functions are correlated

(or anti-correlated) to each other by a correlation coefficient β, then shifted by a vector noted

α (Eq. 6.A.3), which gives the direction of the cyclicity. This is illustrated in Figure 6.4c, in
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Figure 6.4: Comparison between conventional Pluri-Gaussian Simulation (PGS) (b) and shifted
PGS (c) with the same truncation rule (a). For (b), the parameters are r1 = r2 = 0.6 m, b1 = 15
m−1, b2 = 30 m−1 (Eqs. 6.A.4a, 6.A.4b), and facies proportions (p1, p2, p3) = (0.5, 0.25, 0.25) and
for (c), the same parameters are applied together with the shift α12 = 0.04 m and correlation
coefficient β12 = −0.7 (Eq. 6.A.3).

which the Gaussian random functions are anti-correlated (β < 0), with a small shift α oriented

upward. This results, after truncation, into a highly cyclic facies succession (Fig. 6.4c). The

upward cycle from facies 1 to facies 2 then to facies 3 is repeated almost everywhere because

Z2 tends to cross its threshold q2 (from facies 2 to facies 3) just after Z1 crosses its threshold

q1 (from facies 1 to facies 2), as if the truncation rule (Fig. 6.4a) had an anti-clockwise motion

in the upward direction. The cyclicity of the succession shown in Figure 6.4c is confirmed by

its corresponding transiograms (Fig. 6.2) as explained previously.
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6.4.3 Modelling Vertical Facies Cyclicity and Rhythmicity in the

Latemar Carbonate Platform

Dataset

The Triassic Latemar carbonate platform (northern Italy) is renowned for its cyclicity (Gold-

hammer et al., 1990; Hinnov and Goldhammer, 1991) and is thus well suited for analysis to the

new method described above. Using the original data of Peterhänsel and Egenhoff (2008), part

of the Upper Cyclic Facies interval has previously been modelled by Le Blévec et al. (2018)

with a simplified, three-fold classification of depositional facies that is modified from Egenhoff

et al. (1999). Here, the same interval is modelled in the Cimon Latemar outcrop with the full

four-fold classification of depositional facies of Egenhoff et al. (1999): subtidal (e1), intertidal

(e2), supratidal (e3) and subaerial exposure facies (e4). Diagenetic overprinting is at first not

considered in the model described here, but models of the Latemar platform presented later

include diagenetic facies. Although depositional facies are here denominated as environments

of deposition, their interpretation is directly based on application of the Dunham classification

to observations in thin sections (Egenhoff et al., 1999). Therefore, it is possible that they tran-

sition laterally with each other several times at the same stratigraphic level, in a mosaic-like

fashion, as shown by the interpreted cross section of Peterhänsel and Egenhoff (2008). The

measured sections of Peterhänsel and Egenhoff (2008) are presented in Figure 6.5.

As discussed by Egenhoff et al. (1999) and Peterhänsel and Egenhoff (2008), the facies tend to be

organized in shallowing-upward facies cycles that comprise, from base to top, facies 1, facies 2,

facies 3, facies 4. This interpreted organization is supported by logs in Figure 6.5. For example,

the subtidal facies e1 tends to overlie the subaerial exposure facies e4, which defines the base of

a cycle, and is generally overlain by intertidal facies e2. However, many cycles are incomplete

and lack one or more facies (Fig. 6.5). There is also a high number of alternations between

intertidal facies e2 and subaerial exposure facies e4 (e.g., in log N17, Fig. 6.5). Therefore, the

cyclicity of the facies succession is not perfect and this imperfect pattern should be reproduced

statistically in the model. It is also noteworthy that subtidal facies e1 and supratidal facies e3
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Figure 6.5: Measured sections through part of the Upper Cyclic Facies interval in the Cimon
Latemar outcrop, Latemar platform. Figure modified from Peterhänsel and Egenhoff (2008).

are never in contact (Fig. 6.5).

Model

The first step is to define an appropriate truncation rule based on the observed contacts between

facies and their cyclicity. As the typical cycle is e1 → e2 → e3 → e4, these facies should

be arranged clockwise (or counter-clockwise) in the truncation rule. Moreover, as observed

(Fig. 6.5), subtidal facies should not be in contact with supratidal facies. Figure 6.6 shows a

truncation rule satisfying these constraints. The thresholds q1, q2 and q3 are computed according

to the proportions of the different facies (an example of how to compute the thresholds from

the proportions is given in the Appendix, using Eqs. 6.A.7, 6.A.8 and 6.A.9).

The next step is to find the parameters of the model (β12, α12, r1, r2, b1, b2) from the experimen-

tal transiograms computed from the logs. The results are shown in Figure 6.7 (grey points).

The parameters of the method are found so that they generate theoretical transiograms that

provide a good match to the experimental transiograms. The computation of a theoretical

transiogram from the parameters of the method is explained in the Appendix (Eqs. 6.A.10,

6.A.11 and 6.A.12). A trial-and-error test is performed on the parameters, and the ones which

give the best fit between experimental and theoretical transiograms are chosen.
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Figure 6.6: Truncation rule used for modelling depositional facies in the Latemar platform
dataset (Fig. 6.5).

Figure 6.7: Experimental transiograms (grey points) in the upward vertical direction of de-
positional facies computed from the measured sections shown in Figure 6.5, theoretical tran-
siograms fitted to these points (black line), and transiograms computed in three realizations
of the depositional facies Earth model (thin grey lines). The parameters used for the theoret-
ical transiograms are r1 = (800, 800, 0.3) m, r2 = (800, 800, 1.2) m, b1 = 0 m−1, b2 = 5 m−1,
β12 = 0.67, α12 = 0.1 m (Eqs. 6.A.4a, 6.A.4b).
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It is important to note that transiograms are inter-dependent and cannot be fitted individually.

For instance, the first maximum of the auto-transiograms and first minimum of the cross-

transiograms are related to the cycle thickness, as explained earlier (Fig. 6.2). Thus, one

parameter such as the shift α12 controls the behavior of several theoretical transiograms (see

Le Blévec et al., 2017b, for details). Because of these relationships between transiograms, it is

usually not possible to obtain a perfect fit between experimental and theoretical transiograms,

and a compromise should be made based on which feature (or combination of features) is

considered by the user to be more important.

The theoretical transiograms after fitting are shown in Figure 6.7 (black curves). The tangents

at the origin of the different auto-transiograms and cross-transiograms are matched, which

means that the different facies thicknesses and the contacts between them are well constrained.

Therefore, the fit between experimental and theoretical transiograms is satisfactory. Subtidal

facies e1 and supratidal facies e3 are not in contact because te1e3(h) and te3e1(h) both have a

tangent at the origin with a very low value, which comes from the truncation rule (Fig. 6.6).

The only significant mismatch is for the transiogram te4e1(h), for which the tangent at the origin

of the theoretical transiogram is not high enough (Fig. 6.7). This means that in the model,

facies e1 has less tendency to overlie facies e4 than in the dataset.

Some rhythmic facies patterns are also captured, such as the one observed in the transiogram

te1e1(h) (Fig. 6.7).

The scale factors in the lateral direction rx and ry are chosen by visual comparison of the

resulting facies models with the outcrop cross section of Peterhänsel and Egenhoff (2008). The

higher their values, the larger the extent of the facies. As the facies are quite laterally extensive,

the scale factors are of the order of the size of the final Earth model of depositional facies.

Simulation

The Earth model for depositional facies is now built using the above fitted parameters. The

Gaussian random functions are simulated in the grid described below, and then truncated into
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facies. The simulations are also conditioned to the measured sections so that the facies observed

in the measured sections are reproduced in the model realizations. The algorithms to perform

these steps are explained in Le Blévec et al. (2018).

The number of grid cells in each direction (East, North, Z) is (100, 10, 182), and the grid di-

mensions are (1000 m, 250 m, 9.1 m)∼(0.62 mi, 820 ft, 29 ft). Hence the size of each cell is (10

m, 25 m, 5 cm)∼(33 ft, 82 ft, 16 ft). The number of cells is a compromise between the desired

computational speed of the simulation and the level of details at which the heterogeneities are

represented. Here, a high resolution is chosen in the vertical direction, because most of the

transitions between facies are vertical. The simulation is fast and several equiprobable realiza-

tions are obtained in a two or three minutes with a standard desktop PC. Two realizations are

shown in Figure 6.8, together with the original measured sections of Peterhänsel and Egenhoff

(2008), reproduced in both realizations.

Incomplete facies cyclicity, as observed in the measured sections (Fig. 6.5) is visible in the

realizations (Fig. 6.8). For instance, subaerial exposure facies e4 are not only overlain by

subtidal facies e1 at the base of each cycle, but also by intertidal facies e2 or supratidal facies

e3. Subtidal facies e1 and supratidal facies e3 are not in contact, as defined by the truncation rule

(Fig. 6.6). Laterally, facies transition randomly into each other because no lateral transition

constraint is given. This aspect of the Earth model realizations can be improved by using

conceptual knowledge of the platform-interior facies architecture, leading to Earth models that

exhibit lateral facies cyclicity or non-stationarity, as illustrated below.

For model validation, the transiograms are computed in three realizations of the simulation

and shown in Figure 6.7 (thin grey curves). Most transiograms of the realizations are a good

fit to the experimental and theoretical transiograms, which shows that the Earth models are

geologically realistic. Some mismatches also appear, for instance in te2e2(h), for which it seems

that the realizations have a higher plateau than the model. However, these statistical variations

are not systematic and are common with stochastic simulations (Chiles and Delfiner, 2012).
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Figure 6.8: Two realizations of an Earth model for depositional facies in the Cimon region of the
Latemar carbonate platform conditioned by four measured sections (Fig. 6.5) with modelling
parameters explained in Figures 6.7.
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Figure 6.9: Three dimensional unconditional realization from a satellite image of Bermuda
carbonate platform interior. (a) satellite image (with latitudinal and longitudinal position)
showing three types of facies based on visual interpretation: blue represents the lagoon, light
green the backreef, and dark green the reef; (b) truncation rule; and (c) 3D Earth model of facies
distributions. The parameters of the simulation are r1 = r2 = (20, 100, 0.4) m, α12 = (0.1, 5)
m, (p1, p2, p3) = (0.15, 0.15, 0.7) (Eqs. 6.A.4a, 6.A.4b).

6.4.4 Extension to Lateral Cyclicity

Lateral facies cyclicity can be observed in modern environments or generated by forward strati-

graphic modelling (Burgess et al., 2001). Tidal-flat and reef islands deposits in modern shallow-

water carbonate environments can exhibit lateral directionality, induced by currents in the water

column, which results in lateral and vertical facies cyclicity (e.g., Burgess et al., 2001). The

method developed here models such vertical and lateral facies cyclicity by adding a lateral com-

ponent to the shift α between the Gaussian random functions. This procedure is demonstrated

using a satellite image of reef islands in the interior of the modern Bermuda platform, which

was first described by Verrill (1907) (Fig. 6.9a). The reef island deposits show a lateral facies

asymmetry, with a typical facies cycle comprising reef, backreef, and lagoonal facies (after Jor-

dan Jr, 1973). Although there are no data describing the vertical facies succession, we assume

that Walther’s law (Middleton, 1973) is followed, such that the lateral facies transitions are

equivalent to the vertical facies transitions. This equivalence is modeled by incorporating the

lateral component into the shift vector.
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One unconditional (no vertical sections are matched) realization of an Earth model for facies

distribution is shown in Figure 6.9c, along with the model truncation rule (Fig. 6.9b). The

three modelled facies are in contact, and lateral facies cyclicity similar to that observed in the

satellite image is generated. The vertical cyclicity is such that reef facies overlie backreef facies

(Fig. 6.9c). The combination of lateral and vertical facies cyclicity results in an overall eastward

progradation of reef islands. Therefore, the shift controls the movement over time of the facies

belts and bodies. For instance, if the shift was oriented to the west, then this would be the

direction of progradation. If the shift was purely vertical, there would only be aggradation.

Due to the lateral component of the shift, Walther’s Law is respected in the model.

6.5 Modelling Diagenesis with Shifted Pluri-Gaussian

Simulations

Siliciclastic and, particularly, carbonate reservoirs are widely documented to undergo extensive

diagenetic modification during deposition and subsequent burial, which modifies their petro-

physical properties (Moore, 2001). Therefore, it is important to provide a flexible modelling

method for diagenetic overprinting of depositional facies that can mimic patterns resulting from

multiple diagenetic events, in order to capture the impact on hydrocarbon recovery. Diagenesis

can follow the original depositional fabric in some cases, but can also be templated by faults

and fractures and thus cross-cut depositional facies. A novel method able to model these two

end members, based on the Shifted Pluri-Gaussian Simulations is presented. By adding a third

Gaussian function that controls diagenetic facies, the method co-simulates a depositional facies

field and a diagenetic facies field. The shifts between the three Gaussian random functions

allows the user to model asymmetric relations between diagenetic and depositional facies.
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Table 6.1: Proportions of diagenetic facies overprinted on depositional facies in the Latemar
carbonate platform, taken from measured sections (Fig. 6.10).

Dolomitic crust Partial dolomite
Subtidal 0 0
Intertidal 0 0.10
Supratidal 0 0.02
Exposure 0.32 0

6.5.1 Modelling Syn-Depositional Diagenesis: Revisiting the Latemar

Carbonate Platform

Syn-Depositional Diagenesis in the Latemar Platform

Previously we modelled the depositional facies of the Latemar carbonate platform using the

measured sections of Peterhänsel and Egenhoff (2008) as input data. However, the studies of

Egenhoff et al. (1999) and Peterhänsel and Egenhoff (2008) also show that diagenesis affect

these facies. Tepee structures, dolomitization and caliche crusts suggest an early diagenetic

overprinting.

The measured sections of Peterhänsel and Egenhoff (2008) are again chosen as data for the

model. These sections show two diagenetic facies: completely dolomitized crusts and partial

dolomitization, which overprint different depositional facies (Fig. 6.10). The dolomitic crust

diagenetic facies only occurs in conjunction with subaerial exposure depositional facies, while

the partially dolomitized diagenetic facies occurs in conjunction with intertidal and (marginally)

supratidal depositional facies. This observation from vertical measured sections is supported by

the interpreted lateral correlations of Peterhänsel and Egenhoff (2008), in which the dolomitic

crust diagenetic facies transitions laterally only into subaerial exposure depositional facies.

Table 6.1 shows the proportions of each diagenetic facies within each depositional facies.

Model

In the Earth model realizations shown in Figure 6.8, depositional facies were modelled using

two Gaussian random functions. If diagenetic facies were included in the corresponding two di-
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Figure 6.10: Depositional facies and diagenetic facies in the measured sections through part
of the Upper Cyclic Facies in Cimon Latemar outcrop, Latemar carbonate platform (Fig. 6.5).
Measured sections are adapted from Peterhänsel and Egenhoff (2008).

mensional truncation rule (Fig. 6.6), they would necessarily have geometrical properties similar

to those of depositional facies. Adding a third Gaussian random function as a third dimen-

sion in the truncation rule gives a greater flexibility to represent diagenetic facies geometries

and their relations with depositional facies. Moreover, diagenesis can then be modelled as a

superimposed facies field that overprints the depositional facies as explained in Renard et al.

(2008).

A three dimensional truncation rule for the Latemar platform is thus defined in Figure 6.11.

The truncation rule for the depositional facies is the same as that shown in Figure 6.6. The third

Gaussian random function defines two diagenetic facies: dolomitic crust d1 (which overprints

subaerial exposure depositional facies e4) and partial dolomite d2 (which overprints intertidal

and supratidal depositional facies e2 and e3). Depositional facies e1 is not affected by diagenesis.

The thresholds q controlling the proportions of diagenetic facies within depositional facies are

computed from Table 6.1, as explained in the Appendix (Eq. 6.A.7). For example, diagenetic

facies d2 is more abundant in depositional facies e2 than in depositional facies e3, and so its

area is larger in the truncation rule (Fig. 6.11).

Once the truncation rule is chosen, the experimental transiograms of diagenetic facies are

fitted with the parameters of the method, as described previously. Cross-transiograms between
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Figure 6.11: Three dimensional truncation rule used for modelling the depositional facies and
diagenetic facies in the Latemar platform dataset (Fig. 6.10, Table 6.1).

depositional and diagenetic facies are fitted first, because they are controlled by a smaller

number of parameters: α13, β13, α23 and β23 (Eq. 6.A.3). These parameters define the relations

of the first two Gaussian random functions Z1 and Z2 with the third Gaussian random function

Z3 and thus control relations between depositional facies and diagenetic facies. These cross-

transiograms have different properties from usual cross-transiograms because they relate to two

superimposed facies fields, for which facies can both be present at the same location. Therefore,

their value at a distance h = 0 is not 0 but the probability of finding the two facies types at the

same location (Table 6.1). The fit between theoretical transiograms (black curves, Eq. 6.A.11)

and experimental transiograms (grey points) of depositional facies and diagenetic facies is shown

in Figure 6.12.

For most transiograms, the experimental curve at the first distance step is commonly higher

than the theoretical curve (Fig. 6.12). This is due to the small number of data points, because

there are few occurrences of diagenetic facies in the measured sections (Fig. 6.10), thus causing

the transiograms to be statistically unreliable. However, it is worth noting that the theoretical

transiograms generally show reasonable behaviors at the origin. For instance, the tangent at the

origin of transiogram td1e1(h) has a high value (Fig. 6.12), which shows that subtidal depositional

facies tends to overlie dolomitic crust diagenetic facies, as observed in the measured sections

(Fig. 6.10). This spatial relationship supports the facies cyclicity of the model, because the
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Figure 6.12: Experimental vertical cross-transiograms between depositional facies and dia-
genetic facies (grey points) from measured sections shown in Figure 6.10, theoretical cross-
transiograms fitted to these points (black lines), and cross-transiograms computed in three
realizations of a resulting Earth model (thin grey lines). The parameters defining the theoreti-
cal transiograms are the same as those for Figure 6.7, with in addition β13 = −0.8, β23 = −0.5,
α13 = −0.1 m, α23 = 0.1 m (Eq. 6.A.3).

dolomitic crust diagenetic facies is present in the subaerial exposure depositional facies, which

are themselves overlain by subtidal depositional facies. Similarly the high value of the tangent

at the origin of transiogram td2e4(h) shows that subaerial exposure depositional facies tends to

occur above partial dolomite diagenetic facies, which is also observed in the measured sections

(Fig. 6.10). The transiograms thus confirm that the method is able to capture asymmetry

between depositional and diagenetic facies, so that diagenetic facies are ordered with respect

to the depositional facies.

As stated above, the cross-transiograms between depositional facies and diagenetic facies are

not equal to zero for a zero distance. For instance transiogram td1e4(h) starts at a value close

to 1 (Fig. 6.12) because the dolomitic crust diagenetic facies d1 is only present in the subaerial

exposure diagenetic facies e4. The cross-transiogram then decreases abruptly, which suggests

that units of the subaerial exposure diagenetic facies are thin, which is consistent with the

measured sections (Fig. 6.10). Finally, rhythmicity, although not very pronounced, is captured

in transiograms td2e1(h) and td2e2(h) (Fig. 6.12). This suggests that partial dolomite diagenetic

facies d2 is separated from subtidal depositional facies e1 by a nearly constant thickness of 0.3

m and that partial dolomite diagenetic facies d2 is separated from intertidal depositional facies
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e2 by a nearly constant thickness of 1 m (i.e., the first maxima of transiograms td2e1(h) and

td2e2(h); Figure 6.12).

The auto- and cross-transiograms of the diagenetic facies themselves are now fitted using the

same procedure. The parameters controlling these transiograms are the parameters of the third

covariance r3 and b3 (Eq. 6.A.5), and all the other parameters mentioned above, which are left

unchanged. They control the spatial properties of Z3 and thus the geometries of diagenetic

facies. Figure 6.13 shows the fit between experimental and theoretical transiograms. The

method is able to capture the asymmetry of cross-transiograms between the two diagenetic

facies as td2d1(h) and td1d2(h), showing that the dolomitic crust diagenetic facies d1 tends to

overlie the partial dolomite diagenetic facies d2, and the modelled transiograms are able to

match exactly this behavior at the origin (Fig. 6.13). Theoretical auto-transiograms td1d1(h)

and td2d2(h) also exhibit the correct behavior at the origin, which confirms that the mean

thicknesses of these diagenetic facies are well constrained (Fig. 6.13).

This section has shown the value of the method for capturing complex transiograms between

depositional facies and diagenetic facies. Shifts α13 and α23 play an important role, which em-

phasizes the value of incorporating asymmetry in the modelling of syn-depositional diagenetic

patterns.

Simulation

The simulation is performed as for previously described models (e.g., Figure 6.8), with the added

third Gaussian random function. Two realizations of the Earth model showing diagenetic facies

superimposed on depositional facies are shown in Figure 6.14. Both realizations honor the data

along the measured sections (e.g., long measured section N22; Figure 6.14), but differ away

from them (e.g., in the volume above measured section N22; Figure 6.14).

To verify that the resulting simulations honor the data statistics, transiograms are computed

on three realizations (thin grey curves in Figure 6.12 and Figure 6.13). The simulated tran-

siograms match the experimental transiograms quite well, even better than the theoretical
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Figure 6.13: Experimental transiograms between diagenetic facies (grey points), theoretical
transiograms fitted to these points (black lines), and transiograms computed in three realiza-
tions of a resulting Earth model (thin grey lines). The parameters defining the theoretical
transiograms are the same as those for Figure 6.7 and 6.12, with in addition r3 = (800, 800, 0.3)
m and b3 = 0 m−1 (Eq. 6.A.4c).



6.5. Modelling Diagenesis with Shifted Pluri-Gaussian Simulations 141

Figure 6.14: Two realisations of an Earth model for depositional facies and diagenetic facies in
the Cimon Latemar region of the Latemar carbonate platform, conditioned by four measured
sections with modelling parameters noted in Figure 6.7, 6.12 and 6.13.
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transiograms. For instance, transiograms td2e2(h) for the realizations reproduce the complex

hole-effect observed in the data (Fig. 6.12). Similarly, transiogram td2d2(h) of the realizations

follows the experimental transiogram more closely than the theoretical transiogram (Fig. 6.13).

This could be due to the conditioning of the simulation, which provides significant constraints

on the Earth models.

6.5.2 Modelling Syn-Depositional Diagenesis in Non-Stationary Shallow-

Marine Deposits, Book Cliffs, Utah

The Upper Cretaceous Spring Canyon Member of the Blackhawk Formation, which is exposed

in the Book Cliffs (Utah), consists of shallow-marine, wave-dominated shoreface sandstones that

contain overprinting diagenetic features such as carbonate-cemented concretions and leached

zones (whitecaps) (VanWagoner et al., 1990; Kamola and Huntoon, 1995; Hampson and Storms,

2003; Taylor et al., 2004). Due to their large lateral extent, the deposits display non-stationary

facies proportions from proximal to distal. Herein we model the outcrop dataset to show the

flexibility of the method and highlight the use of embedded transition probabilities in a non-

stationary context.

Dataset

The nine measured sections reported by Taylor et al. (2004) are used here, and the facies classifi-

cation is simplified into three depositional facies: distal lower shoreface heteroliths and offshore

mudstones (E1), proximal lower shoreface sandstones (E2) and foreshore and upper shoreface

sandstones (E3). There are also two diagenetic facies: carbonate cement D1 and leached sand-

stones (”whitecaps”) D2, in which carbonate material has been removed via syn-depositional

diagenesis. Table 6.2 shows the proportion of each diagenetic facies within the different depo-

sitional facies, based on measured sections with this facies classification (Fig. 6.15).

No cyclicity is observed between depositional facies. Facies proportions in each measured section

(represented by pie charts in Figure 6.15) show that from west (proximal) to east (distal), the
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Table 6.2: Proportions of diagenetic facies overprinted on depositional facies in the Spring
Canyon Member of the Blackhawk Formation, taken from measured sections (Fig. 6.15).

Carbonate concretion White caps
Distal mudstones 0 0
Shoreface sandstones 0.21 0.03
Foreshore sandstones 0.59 0.4

Figure 6.15: Measured sections through the Spring Canyon Member, Blackhawk Formation in
outcrops of the Book Cliffs, as reported by Taylor et al. (2004), with simplified classification of
depositional facies and diagenetic facies, corresponding facies vertical proportion curves, and
pie charts of facies proportions in each measured section.
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proportion of depositional facies E3 decreases while that of depositional facies E1 increases.

Vertical facies proportion curves show that depositional facies E3 is only present at the top of

the Spring Canyon Member in the area sampled by the measured sections. Diagenetic facies are

also non-stationary because their distribution is controlled by the distribution of depositional

facies (Table 6.2).

Modelling Non-Stationary Facies Proportions

As described above, facies proportions vary systematically over the dataset to be modelled

(Fig. 6.15). Therefore, the final Earth model should account for these variations. This is

achieved by estimating the proportions of each facies in each cell of the Earth model. (Arm-

strong et al., 2011; D’Or et al., 2017). First, the proportions of each facies are computed at

each horizontal level from all the measured sections to give vertical facies proportion curves

(Fig. 6.15). The vertical proportion curves are then smoothed with a moving average algorithm

to remove random variations, as described in White et al. (2003). Then, the proportions of

each facies are computed at each vertical measured section (pie charts of Figure 6.15). Finally,

at each grid cell intersecting a measured section, the proportion of each facies is calculated

by averaging the proportion given by the vertical proportion curve with the proportion of the

facies at the measured section.

A procedure to interpolate these facies proportions between measured sections is then required.

Here this is achieved by lateral simple kriging interpolation (Chiles and Delfiner, 2012) using

a Gaussian covariance with a large scale factor and a mean chosen as the global proportion

of each facies. Once the proportions of each facies have been calculated for every cell of the

model, they are transformed into thresholds for the Gaussian random functions according to

the same procedure used for the models presented earlier (Appendix, Eq. 6.A.8).
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The Model

The truncation rule can be inferred from the observation of facies contacts in the measured

sections (Fig. 6.15). Because of the facies distribution’s non-stationarity, the truncation rule is

different in every cell and depends on the cell’s facies proportion. Therefore, a general trunca-

tion rule is first defined in Figure 6.16, which is then adapted to the local facies proportions in

the different cells of the Earth model (Fig. 6.16). The foreshore and upper shoreface sandstone

depositional facies (E3) and distal lower shoreface heteroliths and offshore mudstone deposi-

tional facies (E1) are not in contact, because of a limited presence of foreshore and upper

shoreface sandstones (which occur only five times in the measured sections) and non station-

arity (Fig. 6.15). However, there is no reason why these facies should not be in contact away

from the measured sections, and the global truncation rule is thus defined to allow this contact

relationship (Fig. 6.16). The carbonate cement diagenetic facies (D1) and leached sandstone

diagenetic facies (D2) are respectively present in the proximal lower shoreface sandstone de-

positional facies (E2) and both the proximal lower shoreface sandstone depositional facies and

the foreshore and upper shoreface sandstone depositional facies (E2, E3) (Fig. 6.16).

Transiograms are not fitted here because their behavior is strongly influenced by non station-

arity, especially at long distances (Armstrong et al., 2011). However, embedded transition

probabilities (Krumbein and Dacey, 1969) are not much affected by non stationarity because

they just measure facies juxtapositions. They can be deduced from the parameters of the

model by taking the derivative at the origin of the transiograms (Eq. 6.A.13). Thus, they are

compared to the experimental embedded transitions computed from the measured sections in

order to infer the parameters α12 and β12. The experimental (red) and model (blue) embedded

matrix for the three depositional facies after fitting is

Rlogs/model =



















E1 E2 E3

0 1.0/0.63 0.0/0.36

0.72/0.79 0 0.28/0.23

0.0/0.15 1.0/0.85 0



















. (6.1)
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Figure 6.16: Global truncation rule and two examples of local truncation rules for modelling
the Spring Canyon Member, Blackhawk Formation in outcrops of the Book Cliffs. The facies
E are depositional facies and D are diagenetic facies.

The matrix shows that foreshore and upper shoreface sandstones (E3) and distal lower shoreface

heteroliths and offshore mudstones (E1) are not in contact in the measured sections because

their embedded probability is zero, while in the model they can be in contact (r31=0.15, r13 =

0.36) according to the truncation rule (Fig. 6.16). The embedded transitions from proximal

lower shoreface sandstones (E2) to the other depositional facies are similar in the model and in

the measured sections.

In order to constrain the vertical component of the scale factors r1 and r2, the thicknesses of

the depositional facies are computed in the measured sections and matched with the theoretical

thicknesses, which are obtained from the derivative at the origin of the auto-transiograms (Carle

and Fogg, 1996). The resulting theoretical thicknesses for the three depositional facies E1, E2,

and E3 are respectively 1.3 m, 0.8 m, and 0.5 m, while the experimental thicknesses computed

from the measured sections are 1.4 m, 0.8 m, and 0.6 m, which is a good match.

Embedded transition probabilities between the diagenetic facies are not shown because they

are simply not in contact with each other. The vertical scale factor r3 is chosen to be similar
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to r1 and r2 because diagenetic facies have a similar thickness to depositional facies. Lateral

components of the scale factors r1, r2 and r3 are chosen by visual comparison of the resulting

Earth model realizations and the correlation panel between measured sections of Taylor et al.

(2004). The depositional facies have a large lateral extent, of the same order as the west-to-east

lateral extent of the Earth model.

Simulation

The number of cells in the grid in each direction is 100 (west-to-east), 20 (north-to-south), 566

(height) and the dimensions of the grid are 20 km (∼12.4 mi) (west-to-east), 5 km (∼3.1 mi)

(north-to-south), 56 m (∼184 ft) (height). The simulations are conditioned to the measured

sections with the procedure outlined in Le Blévec et al. (2018).

Two realizations of the resulting Earth model are shown in Figure 6.17. It is clear that the

realizations are non-stationary as, for instance, the proportion of foreshore and upper shoreface

sandstone depositional facies (E3) decreases towards the west. Leached sandstone diagenetic

facies (D2) also exhibit a decreasing proportion towards the west, because they are constrained

by the presence of foreshore and upper shoreface sandstone depositional facies (E3) (Table 6.2).

As a post-validation step, embedded transition probabilities are computed in three resulting

realizations and averaged, to give the embedded matrix of transition probabilities

Rsimu =



















E1 E2 E3

0 0.75 0.25

0.79 0 0.21

0.06 0.94 0



















. (6.2)

This matrix matches the embedded matrix computed from the measured sections (Eq. 6.1),

although foreshore and upper shoreface sandstone depositional facies (E3) and distal lower

shoreface heteroliths and offshore mudstone depositional facies (E1) are in contact, as discussed

above.
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Figure 6.17: Two realizations of an Earth model for depositional facies and diagenetic facies in
the Spring Canyon Member, Blackhawk Formation, conditioned by nine measured sections with
modelling parameters r1 = (0.6, 3000, 3000) m, r2 = (0.7, 3000, 3000) m, r3 = (1, 1500, 1500)
m, b1 = b2 = 0 m−1, α12 = α13 = α23 = 0 m, β12 = β13 = β23 = 0 (Eqs. 6.A.3, 6.A.4a, 6.A.4b,
6.A.4c).
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6.5.3 Towards Modelling Post-depositional Hydrothermal Diagene-

sis

Post-depositional hydrothermal diagenesis is commonly observed at outcrop (Jacquemyn et al.,

2014; Vandeginste et al., 2013; Beckert et al., 2015) and interpreted in the subsurface (Davies

and Smith Jr, 2006; Smith Jr, 2006). Hydrothermal diagenesis produces diagenetic bodies that

are discordant with strata and instead follow faults, fractures and other structures. Depositional

facies may differ in their permeability, such that hydrothermal fluids can also flow laterally away

from faults and fractures along relatively permeable facies belts and bodies, thus creating so-

called ”Christmas tree” geometries (Beckert et al., 2015). For example, outcrops of the Latemar

carbonate platform in Valsorda valley exhibit such fracture-related hydrothermal diagenesis,

which generate dolomite that is distributed along and nearby to fractures (Fig. 6.18, after

Jacquemyn et al. (2014)).

This type of dolomitization can be represented in our method thanks to the third Gaussian ran-

dom function covariance ρ3(h), which can have a different anisotropy from that of the two other

Gaussian random functions covariances (Eq. 6.A.4c). An unconditional realization of such a

model is shown in Figure 6.19. The third Gaussian random function is modelled independently

from the two other Gaussian random functions (β13 = β23 = 0), so that the geometries of dia-

genetic dolomite bodies cut across depositional facies geometries. The truncation rule controls

the extent of dolomite within each depositional facies (Fig. 6.19). Depositional facies E3 con-

tains more dolomite than depositional facies E2, because the volume of dolomitized facies DE3

in the truncation rule is larger that of dolomitized facies DE2 . On the contrary, depositional

facies E1 is not affected by diagenesis.

The Earth model realization (Fig. 6.19) shows that depositional facies tend to be organized

in shallowing-upward asymmetric cycles and diagenetic dolomite bodies cut across them. The

dolomite diagenetic facies (DE2 and DE3) is more abundant in depositional facies E3 than in

depositional facies E2, and is not present at all in depositional facies E1, as constrained by the

truncation rule.
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Figure 6.18: Uninterpreted (a) and (c); and interpreted (b) and (d) photographs of post-
depositional hydrothermal dolomite associated with fractures in the Valsorda valley outcrops of
the Latemar carbonate platform. Hydrothermal dolomite confined to the fracture area is shown
in red, and hydrothermal dolomite expanding in the host rock is shown in yellow. Modified
from Jacquemyn et al. (2014).
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Figure 6.19: (a) Truncation rule and (b) resulting unconditional realization of Earth model
of depositional facies (cf. Figure 6.8) overprinted by post-depositional hydrothermal dolomite
diagenetic facies. The parameters used for the simulation are r1 = r2 = (60, 60, 0.2) m, r3 =
(5, 5, 5) m, b1 = b2 = b3 = 0 m−1, β12 = 0.99, α12 = 0.1 m, β13 = 0.8, β23 = 0, α13 = α23 = 0 m
(Eqs. 6.A.3, 6.A.4a, 6.A.4b, 6.A.4c).

6.6 Conclusion and Recommendations

The new method proposed in this paper models depositional and diagenetic facies fields with

cyclic and rhythmic patterns. The method is based on a novel Pluri-Gaussian approach, using

three dimensional truncation rules and Gaussian random functions shifted from each other.

Qualitative information and concepts are used to construct the truncation rule, and the other

parameters of the method are defined by fitting the experimental auto- and cross- transiograms.

The resulting models show that a combination of lateral and vertical facies cyclicity can be used

to generate aggradational and progradational facies geometries.

In addition, we model depositional facies overprinted by cross-cutting or conformable diagenesis.

This is possible because the three Gaussian random functions are spatially shifted from each

other, and depositional and diagenetic facies are ordered according to the cross-transiograms.

The method has also shown its capability to model non-stationary facies proportions, which

is a predominant feature in datasets that contain pronounced proximal-to-distal or axial-to-

marginal facies trends. In such cases, it is not appropriate to use transiograms to constrain the
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parameters of the method. Instead, it is suggested to use embedded transition probabilities,

because non stationarity does not significantly impact facies juxtapositions.

The method significantly improves the capability of geostatistical Earth models to represent

geologically realistic facies architectures, and thus can lead to more realistic geostatistical reser-

voir models and more accurate hydrocarbon production forecasts.

6.A Appendix: Shifted Pluri-Gaussian Model

The model developed in this paper is an extension of that developed by Le Blévec et al. (2018).

Three Gaussian random functions Z1, Z2, Z3 are correlated and shifted relative to each other and

truncated into facies according to a truncation rule (e.g., Figure 6.11). The first two Gaussian

random functions control depositional facies while the third Gaussian random function controls

diagenetic facies. A shifted version of the linear model of co-regionalization (Wackernagel, 2003)

is used






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
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


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
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Z1(x) = Y1(x),

Z2(x) = β12 Y1(x+ α12) +
√

1− β2
12 Y2(x),

Z3(x) = β13 Y1(x+ α13) + β23 Y2(x+ α23) +
√

1− β2
13 − β2

23 Y3(x),

(6.A.3)

where −1 < βij < 1 are the correlations coefficients between Yi(x+αij) and Zj(x), αij being the

shifts, and Y1, Y2, Y3 are uncorrelated Gaussian random functions with respective covariances

in three dimensions

ρ1(hx, hy, hz) = exp
(

− h2
x
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cos(b3 hz), (6.A.4c)
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with ri = (rix, riy, riz) the scale factors in three dimensions and bi the frequencies of the cosine

functions. Therefore, the auto-covariances of the three Gaussian random functions Z1, Z2, Z3

are respectively


















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









ρZ1(h) = ρ1(h),

ρZ2(h) = β2
12 ρ1(h) + (1− β2

12) ρ2(h),

ρZ3(h) = β2
13 ρ1(h) + β2

23 ρ2(h) + (1− β2
13 − β2

23) ρ3(h),

(6.A.5)

and the cross-covariances between them
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















ρZ1Z2(h) = β12 ρ1(h+ α12),

ρZ1Z3(h) = β13 ρ1(h+ α13),

ρZ2Z3(h) = β12 β13 ρ1(h+ α13 − α12) + β23

√

1− β2
12 ρ2(h+ α23).

(6.A.6)

These covariances are used to derive the thresholds of the Gaussian random functions from the

proportions of the different facies. For instance, let us determine the threshold qd1 of the third

Gaussian random function Z1 that controls the proportion of the facies d1 (Fig. 6.11)

pd1 = Pr[Z1(x) > q1, Z2(x) < q3, Z3(x) > qd1], (6.A.7)

which can be re-written by integration of the multi-variate Gaussian density GΣ(u, v, w)

pd1 =

∫ ∞

q1

∫ q2

−∞

∫ ∞

qd1

GΣ(u, v, w) du dv dw, (6.A.8)

with Σ the covariance matrix

Σ =













1 ρZ1Z2(0) ρZ1Z3(0)

ρZ1Z2(0) 1 ρZ2Z3(0)

ρZ1Z3(0) ρZ2Z3(0) 1













. (6.A.9)



154 Chapter 6. Geostatistical Earth Modelling of Cyclic Depositional Facies and Diagenesis

Equation 6.A.8 is then solved numerically with the algorithm of Genz (1992). The same method-

ology is applied to compute theoretical transiograms (Fig. 6.7). For instance, let us examine

the transiogram between facies e1 and e2 (Fig. 6.11)

te1e2(h) =
Pr[Z1(x) < q1, Z2(x) < q2, Z1(x+ h) < q1, Z2(x+ h) > q2]

pe1
, (6.A.10)

which can be re-written by integration of Gaussian multi-variate density

te1e2(h) =
1

pe1

∫ q1

−∞

∫ q2

−∞

∫ q1

−∞

∫ ∞

q2

GΣ(h)(u, v, w, y) du dv dw dy, (6.A.11)

with Σ(h) the Gaussian covariance matrix

Σ(h) =



















1 ρZ1Z2(0) ρZ1(h) ρZ1Z2(h)

ρZ1Z2(0) 1 ρZ2Z1(h) ρZ2(h)

ρZ1(h) ρZ2Z1(h) 1 ρZ1Z2(0)

ρZ1Z2(h) ρZ2(h) ρZ1Z2(0) 1



















. (6.A.12)

Equation 6.A.11 is then solved numerically with the algorithm of Genz (1992) and the same

methodology is applied for the other transiograms. The embedded transition probabilities are

computed from the transiograms as follows

rij = −
t′ij(0)

t′ii(0)
. (6.A.13)



Chapter 7

Discussion and Recommendations

7.1 Quantification of Cyclicity and Rhythmicity

In this thesis, the notions of facies cyclicity and facies rhythmicity have been defined and quan-

tified. This was performed with a two-point statistical tool derived from Markov Chains, the

transiogram (Carle and Fogg, 1996). Markov Chain analysis has already been used in geology

to quantify facies cyclicity (e.g., Gingerich, 1969; Hattori, 1976). These authors use transi-

tion probability matrices to validate that the transitions between facies are non-random, which

allows them to determine facies cycles in their case studies. More recently, a method also

based on transition probabilities was developed by Burgess (2016) to quantify facies ordering

and trends in facies thicknesses. In his study, the vertical successions do not show significant

facies ordering, which suggests that although facies cyclicity and rhythmicity are often inter-

preted by geologists, they might not always be legitimate. Thus, Burgess (2016) encourages

authors to quantify facies ordering in datasets before interpreting facies cyclicity. The presence

of cyclicity depends obviously on the facies classification used. In this thesis, it was shown that

vertical facies successions in the Latemar carbonate platform are partially cyclic when facies

were grouped into facies associations representing environments of deposition. In contrast to

the two approaches described above, the aim of the method developed here is not to check

whether facies cyclicity is present, but to quantify the juxtapositions between facies and re-

155
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produce them in Earth models. This is achieved by reproducing the tangents at the origin of

the transiograms with Shifted Pluri-Gaussian Simulations, which are equivalent to transition

probabilities between facies.

A major limitation of Markov Chains and two-point statistics is not discussed in the geological

literature. These tools cannot quantify probabilities of obtaining symmetrical facies cycles of

the type A-B-C-B-A or other complex cycles. In such a cycle, the facies A and B appear twice

in the opposite vertical order, which would give equal transition probabilities between them

in the upward and downward direction, as if they were not ordered. However, in that case,

it simply means that the ordering is more sophisticated and cannot be quantified by Markov

Chains or two-point statistics. This issue could be tackled by using second order Markov Chains

(e.g., Shamshad et al., 2005), which quantify the probability of two successive transitions. In

this case, they would be able to quantify the probability of transitions A-B-C and C-B-A and

thus the probability of the full symmetrical cycle. Similarly, instead of two-point statistical

tools such as the transiogram, higher-order statistics would be able to quantify such cycles.

Multi-Point Statistics should be able to reproduce such cycles, but obtaining the appropriate

three-dimensional training image seems difficult. Therefore, more work should be carried out

in geology and geostatistics to quantify more complex orderings between facies and reproduce

them in Earth models.

In geology, rhythmicity is a notion that has been quantified principally with spectral analysis

in order to understand the origin of facies repetitions in the stratigraphic record (e.g., De Boer

and Wonders, 1984; House, 1985; Herbert and Fischer, 1986). Here, the origin of rhythmicity

is not considered but its characteristics in relation to the probability density function (pdf)

of facies cycle thicknesses are investigated. Rhythmicity is quantified by pseudo-oscillations of

transiograms or variograms, called hole-effects. The first step towards understanding the impact

of facies cycle thicknesses on hole-effects was conducted by Jones and Ma (2001) experimentally.

They noted that as the coefficient of variation for the facies thickness pdf decreases, the hole-

effect is more pronounced. In my thesis, the link between hole-effects and facies thickness

is formally established by using renewal processes theory (Matheron, 1968) (Appendix A).

This confirms mathematically the relation observed experimentally by Jones and Ma (2001)
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in the specific case of facies thickness with Gamma pdf. Further work should be carried out

by using this relation (Appendix A) with a range of different pdfs in order to improve the

understanding of hole-effects. Hole-effects have also been observed at the pore scale from CT

scan images of rock samples (Mosser et al., 2018), which shows that they are an important

aspect of geostatistics that perhaps did not receive enough attention.

The quantification of cyclicity and rhythmicity with transiograms that has been developed

here can be used as a stand-alone tool to constrain other geostatistical techniques than Pluri-

Gaussian Simulations. For instance, in the literature review (Chapter 2), I have shown that

authors sometimes use Multi-Point Statistics with training images that do not represent the

asymmetry between facies observed in a conceptual model. Computing transiograms on the

training image and comparing them to those of the conceptual model or the studied data would

help to ensure the consistency of the training image. Similarly, with object-based methods,

computing two-point statistics of facies realisations would help to check that they honour the

input data. If not, it might be because the parameters of the object-based method are ill-

chosen, or that there are specific relationships between facies that the object-based method is

not able to reproduce. Therefore, two-point statistical tools can be used to check the consistency

of geostatistical realisations. In light of the work documented here on facies cyclicity and

rhythmicity, it would be interesting to check that other geostatistical methods are able to

create facies Earth models with cyclicity and rhythmicity by investigating the resulting two-

point statistics.

7.2 Modelling Spatial Patterns of Depositional and Di-

agenetic Facies in Carbonate Reservoirs

In the literature review of this thesis (Chapter 2), it was seen that many geostatistical meth-

ods were originally designed to model siliciclastic shallow-marine reservoirs. Therefore, this

research originally aimed at creating new algorithms for modelling shallow-marine carbonate

reservoirs. One of the challenging aspect of carbonates is that facies geometries at inter-well
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scale are poorly defined. This is an issue for object-based methods (Deutsch and Tran, 2002) or

Multi-Point Statistics (Strebelle, 2002), which require respectively facies geometries and three

dimensional training images. Moreover, Sequential Indicator Simulation (Alabert, 1989) models

facies independently, which does not allow to account for spatial relationships between facies.

On the other hand, Pluri-Gaussian Simulations (PGS) (Armstrong et al., 2011) reproduce facies

contacts thanks to the truncation rule and do not require exact facies geometries. Similarly,

Markov Chain transiograms (Carle and Fogg, 1996) are able to statistically reproduce the facies

transition rates inferred from input data. The method proposed in this thesis combines these

two approaches, and thus has great potential for modelling carbonate reservoirs.

In geostatistical modelling, it is important to make the most of the available data, for instance

by quantification of measured sections that constitute input data. This can be performed

with two-point statistical tools such as the variogram or the transiogram. As shown in this

thesis, the transiogram is more relevant than the variogram, because of its capacity to quantify

cyclicity, which is often reported in carbonate successions (e.g., Lindsay et al., 2006; Kenter

et al., 2006). In the literature review (Chapter 2), most case studies of geostatistical modelling

in carbonate reservoirs did not show the fit between experimental and model transiograms.

In the absence of such fitting, facies geometrical properties such as facies proportions, mean

thicknesses, rhythmicity and cyclicity may not be reproduced in the simulated Earth model.

For this reason, the research presented here always presents the fit between experimental and

modelled transiograms, which is reasonable in most case studies. As discussed above, if another

modelling method is used, it is still recommended to check whether the Earth model realizations

fit the experimental transiograms.

The modelling approach developed here, the Shifted PGS, is able to jointly model facies cyclicity

and rhythmicity, which has not been accomplished with other geostatistical methods. Multi-

Point Statistics could possibly model these concepts, but obtaining a three-dimensional training

image displaying cyclicity and rhythmicity appears to be too complex. Therefore, Shifted PGS

is probably the most appropriate method to model carbonate reservoirs that contain metre-

scale cycles (e.g., Kenter et al., 2006; Lindsay et al., 2006). Of course, the approach is also valid

for shallow-marine siliciclastic reservoirs if they contain facies cyclicity or rhythmicity. Shifted
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PGS could also be improved in order to improve the fit between all the transition rates and

higher-order statistics. As mentioned above, constraining high-order statistics might help in

modelling more complex patterns than the cycles considered in this thesis. This could be done

by using non parametric truncation rules (Deutsch and Deutsch, 2014) or high dimensional

truncation rules (Maleki et al., 2016) and developing automatic procedures such as the one of

Desassis et al. (2015).

In order to introduce more geological realism in carbonate Earth models, stratigraphic for-

ward models (e.g., Burgess et al., 2001; Warrlich et al., 2008) seem a potentially fruitful tool.

Such methods are interesting because they produce facies contacts and geometries that honour

geological concepts such as sequence stratigraphy. However, these methods have also great

limitations: the corresponding facies Earth models cannot fit hard input data such as vertical

facies successions (i.e., in measured sections and wells), and the method cannot generate mul-

tiple realisations such as those that can be generated with geostatistics. Moreover, the models

obtained do not have the resolution required for modelling at reservoir scale. This limits the

applicability of forward stratigraphic models for modelling reservoirs. However they could be

used in combination with other geostatistical methods. For instance, two-point statistics could

be computed on a forward stratigraphic Earth model and then used to constrain a geostatis-

tical simulation with Pluri-Gaussian Simulations. The contacts between facies in the forward

stratigraphic Earth model could also help to define the truncation rule for the Pluri-Gaussian

Simulations. Alternatively, a hierarchical or nested approach could be taken to reservoir mod-

elling, in which a forward stratigraphic method could be used to model facies associations, and

facies could then be modelled within these facies associations with a geostatistical method.

The work carried out here on pdfs of facies thicknesses has given interesting results for carbonate

strata. Burgess (2008) has shown that around thirty percent of carbonate facies thickness

distributions could be modelled by the exponential pdf. This means that in most cases, it might

be more appropriate to use other pdfs. As the exponential pdf is related to the exponential

variogram (Matheron, 1968), Earth modellers should also use other variogram models. For

instance, as mentioned above, new transiogram models with hole-effects were derived from

Gamma pdfs (Appendix A), creating facies rhythmicity. The Gamma pdf has not been used
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previously to characterize facies successions, and this result suggests that it could be appropriate

for carbonate facies successions. For further understanding of this relation, geologists and

Earth modellers would need to compute thickness pdfs and experimental variograms in vertical

facies successions. This approach would help in defining new variogram models for modelling

carbonate reservoirs.

This research also focused on another important feature of carbonate reservoirs, diagenesis.

Diagenetic facies geometries in three dimensions are often poorly constrained, but the relation-

ships between depositional and diagenetic facies are often known, which makes Pluri-Gaussian

Simulations a valid tool to model them. The method of Renard et al. (2008) provides a good

basis to model diagenesis because of its flexibility. However, most case studies using the method

do not show the details of the fit between experimental and model transiograms (Chapter 2).

Here, I have studied in detail cross-transiograms between depositional and diagenetic facies,

which ensures that their spatial relationships are modelled. Earth modellers are encouraged to

compute these cross-transiograms between diagenetic and depositional facies in vertical succes-

sions in carbonate strata because they can highlight some specific relationships and ordering

between depositional and diagenetic facies. The method developed here, the shifted bi-PGS, is

able to reproduce such ordering between depositional and diagenetic facies, by using a spatial

shift between depositional and diagenetic facies fields. This has proved to be effective to model

syn-depositional diagenesis by fitting the experimental transiograms in the Latemar carbonate

platform dataset.

Overall, carbonate successions presenting facies rhythmicity, cyclicity, or diagenesis are prop-

erly modelled by the method developed in this thesis, the Shifted PGS. This is also true for

siliciclastic successions exhibiting similar properties. Although the method has been tested here

on the modelling of outcrops, it should also obviously be used to model hydrocarbon reservoirs.

Outcrops provide vertical facies successions and so do reservoir wells. The main difference is

that for outcrops, the lateral extent of facies is available through cross-sections and is used to

infer the parameters of the method. For reservoirs, such information might not be available

directly but can potentially be retrieved from analogues.
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7.3 Markov Chains Transiograms or Shifted Pluri-Gaussian

Simulations?

For all the reasons mentioned above, shifted PGS appears to be a very promising method

for modelling hydrocarbon reservoirs. However, I have shown in several examples that the

method was not always able to reproduce exactly the experimental facies transiograms. This is

true for the transiogram oscillations, but also their tangent at the origin, characterizing among

other aspects facies cyclicity. This means that shifted PGS are not always able to capture facies

cyclicity, especially when a high number of facies are present. This is directly due to the number

of facies transiograms or transition rates, which is higher than the number of parameters. As

mentioned above, this could theoretically be tackled by using more complex truncation rules

(Deutsch and Deutsch, 2014).

Concerning transiogram-based methods derived from Markov Chains (Carle and Fogg, 1996),

the transition rates are the main parameters. They can all be fitted so that the method

exactly reproduces facies mean lengths, contacts, and thus cyclicity. This is true even when

a high number of facies are present. This is a great advantage of transiogram-based methods

derived from Markov Chains, especially if vertical facies successions are the main data type

constraining the reservoir, and Earth modellers can simply reproduce observed facies transition

rates. However, as already discussed, Markov Chain transiograms are limited at incorporating

other geological notions such as non Waltherian Earth models, rhythmicity or diagenesis.

Thanks to the research developed here, PGS are now also able to model cyclicity using the

spatial shift. PGS have also the possibility to use complex covariances, which results in com-

plex transiograms. For instance, I have used here stable covariances, which can create facies

models with fractal behaviour (Chiles and Delfiner, 2012). Covariances can also be summed

together to create more complex models and match complex hole-effects (Mosser et al., 2018).

Moreover, I have shown that using shifts with lateral components could create progradational

or retrogradational facies geometries, and honour Walther’s law, as with transiograms derived

from Markov Chains. However, while Markov Chain transiograms necessarily honour Walther’s
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law, Pluri-Gaussian Simulations have more flexibility and can model different transition proba-

bilities between facies laterally and vertically. Shifted PGS can also be made non-stationary by

using an adaptive truncation rule, while Markov Chains transiograms do not easily incorporate

this feature.

In terms of algorithm performance, Markov Chain transiograms can be simulated with different

methods. Carle and Fogg (1996) use a co-SIS, which requires the inversion of a covariance matrix

and is not efficient. On the other hand, PGS are simulated here using a fast spectral grid-free

method (Shinozuka, 1971). Usually, conditioning PGS can be complex because it is composed

of two steps, Gibbs sampling and kriging (Freulon and de Fouquet, 1993), but here, these steps

are optimized with the screening properties of separable covariances.

Another advantage of the approach presented here is its capability to model several super-

imposed facies fields. This allows PGS to represent diagenesis with much flexibility because

diagenetic facies can be independent from depositional facies. Although this could in theory

be possible with Markov Chains transiograms, it has not yet been demonstrated.

Overall, I would conclude that shifted PGS can incorporate much more geological conceptual

knowledge of the reservoir and can also reproduce the facies transiograms, as shown in this

thesis. However, if the number of facies is very high and the conceptual model of the reservoir

is poorly defined, it might be best to use Markov Chain transiograms and fit the facies tran-

sition rates. Earth modellers can also group facies together or use a nested approach, by first

simulating facies associations with shifted PGS and then simulating facies within each facies

association. If facies cut across facies associations boundaries, shifted bi-PGS could also be

used to model in parallel facies and facies associations, in the same way that shifted bi-PGS

model in parallel depositional and diagenetic facies.



Chapter 8

Conclusion

The geostatistical research presented in this thesis broadens the spectrum of geological con-

cepts that can be incorporated in facies Earth models. The methods developed here are well

suited for modelling carbonate reservoirs, but can also be applied to siliciclastic shallow-marine

reservoirs. First, it is noted that previous geostatistical methods do not model facies cyclicity

and rhythmicity although these notions are extensively observed and interpreted by geologists.

In fact, these notions are not even part of the vocabulary of geostatisticians. In order to fill

this gap, I first propose a quantification of facies cyclicity and facies rhythmicity based on a

two-point statistical tool, the transiogram. Then, in order to reproduce these patterns in facies

Earth models, I develop a new geostatistical method based on Pluri-Gaussian Simulations. The

method is then extended to model diagenesis.

Facies cyclicity is defined as a facies ordering and facies rhythmicity as a repetition of facies

at stratigraphic intervals of more or less constant thickness. For the quantification of these

patterns, facies transiograms are used. If a vertical facies succession is cyclic, the tangents at

the origin of the transiograms are different in an upward direction from a downward direction,

which is also called asymmetry. Rhythmicity is controlled by oscillations of transiograms, called

hole-effects. This is confirmed by the derivation of new hole-effect transiogram models from

vertical facies successions thickness probability density functions (pdfs) with low coefficients of

variation.
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Cyclicity is then modelled by developing a novel Pluri-Gaussian Simulation method that uses

a spatial shift between the Gaussian random functions. The spatial shift combined with the

linear model of co-regionalization gives much flexibility in the resulting facies transiograms.

The experimental transiograms of vertical facies successions can thus be fitted appropriately

by the method. The shift can also be defined with a lateral component, which creates lateral

cyclicity and progradational or retrogradational facies architectures that honour Walther’s law.

Rhythmicity is modelled with the method by building new separable covariance models with

vertical hole-effects. The hole-effect covariance is a product of a Gaussian covariance and a

cosine function, which gives much flexibility in fitting hole-effects of experimental transiograms.

Because rhythmicity is not commonly observed laterally, the three dimensional covariance is

usually not periodic in lateral directions. Gaussian random functions with such covariances are

simulated with a spectral method and the conditioning to facies data is optimized thanks to

the screening properties of the separable covariance model.

Diagenesis is modelled by adding a third dimension to the truncation rule of the PGS. This novel

approach allows the incorporation of another facies classification for diagenetic facies, which

can be independent from depositional facies. The third Gaussian random function can also

be correlated to the two others, which is convenient for modelling syn-depositional diagenesis,

or kept independent from them, which is more appropriate for modelling post-depositional,

fracture-related diagenesis. Moreover, shifts are also used with the third Gaussian random

function, which allows the Earth modeller to create an ordering between depositional and

diagenetic facies. This also gives more flexibility for fitting the experimental cross-transiograms

between depositional and diagenetic facies.

The geostatistical developments are applied to a variety of case studies. The main one is based

on outcrop data from the Latemar carbonate platform (Italy), in the Upper Cyclic Facies in-

terval, which features cyclicity and rhythmicity represented in the experimental transiograms

computed in vertical facies successions at Cimon Forcellone and Cimon Latemar. These are

accurately fitted by the proposed method, which is then used to build corresponding Earth

models. This outcrop dataset also displays syn-depositional and post-depositional diagenesis,

which are also modelled. The siliciclastic Upper Cretaceous Spring Canyon Member of the
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Blackhawk Formation, which is exposed in the Book Cliffs (Utah) is also modelled with the

method. It contains a proximal-to-distal facies trend resulting in non-stationary facies pro-

portions. In this case, data quantification is performed with embedded transition rates which

are less influenced by non-stationarity while the latter is modelled with an adaptive truncation

rule. The method is thus well suited to be incorporated in workflows for predicting resource

recovery of shallow-marine subsurface reservoirs.
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Le Blévec T, Dubrule O, John CM, Hampson GJ (in review) Earth modelling of cyclic deposi-

tional facies and diagenesis facies architectures. AAPG Bulletin

Li B, Zhang H (2011) An approach to modeling asymmetric multivariate spatial covariance

structures. Journal of Multivariate Analysis 102(10):1445–1453

Li W (2007) Markov Chain random fields for estimation of categorical variables. Mathematical

Geology 39(3):321–335

Lindsay RF, Cantrell DL, Hughes GW, Keith TH, Mueller III HW, Russell SD (2006) Ghawar

Arab-D reservoir: widespread porosity in shoaling-upward carbonate cycles, Saudi Arabia.

AAPG Special Volumes

Ma YZ, Jones TA (2001) Teacher’s aide: Modeling hole-effect variograms of lithology-indicator

variables. Mathematical Geology 33(5):631–648

Ma YZ, Seto A, Gomez E (2009) Depositional facies analysis and modeling of the Judy Creek

reef complex of the Upper Devonian Swan Hills, Alberta, Canada. AAPG bulletin 93(9):1235–

1256

Maharaja A (2008) Tigenerator: object-based training image generator. Computers & Geo-

sciences 34(12):1753–1761



BIBLIOGRAPHY 175
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Appendix A

Understanding Hole-Effects, Link

Between Indicator Covariance and

Thickness pdf

In this appendix, I relate facies thickness probability density functions (pdfs) with correspond-

ing indicator covariances. The aim is to understand how thickness pdfs’ produce indicator

covariances with hole-effects. The relation is developed using the theory of renewal processes

(Matheron, 1968), in the particular case of two facies alternating with each other along a di-

rection, with independent thickness pdfs. Under this assumption, Matheron (1968) derives the

following expression

χ(λ) =
p (1− p)

λ
− 1

m0 +m1

(1− Φ0(λ))(1− Φ1(λ))

λ2(1− Φ0(λ)Φ1(λ))
. (A.1)

χ(λ) is the Laplace transform of the indicator covariance model, p is the proportion of the first

facies, (1− p) is the proportion of the second facies, m0 and m1 are respectively the two facies

mean thicknesses, and Φ0(λ) and Φ1(λ) the Laplace transform of their thickness pdfs. In this

appendix, I consider facies with the same thickness pdf Φ(λ) (Laplace transform), and thus
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same mean length m, and proportions p = 1− p = 1/2, giving

χ(λ) =
1

4 λ
− 1

2m

(1− Φ(λ))2

λ2(1− Φ(λ)2)
. (A.2)

Applying the inverse Laplace transform to this expression gives a covariance model correspond-

ing to the chosen thickness pdf. As shown by Matheron (1968), if an exponential pdf with

mean a is used for the thickness pdf, this formula results in an exponential covariance c(h) for

the facies

c(h) =
1

4
exp

(

− 2h

a

)

(A.3)

This is the classic exponential covariance model that can be derived from Markov Chains (Carle

and Fogg, 1996) and is used widely with SIS. An exponential distribution is also a Gamma

distribution

gk(x) =
1

Γ(k) ak
xk−1 e−

x
a (A.4)

of order k = 1 and coefficient of variation 1/
√
k = 1. Thus, exponential covariances are

associated with thickness pdfs which have a coefficient of variation equal to 1. Matheron

(1968) shows that if the order of the Gamma distribution is 2 for the thickness pdf, the inverse

Laplace transform of Eq. (A.2) results in the covariance model

c(h) =
1

4
exp

(

− h

a

)

cos
(h

a

)

, (A.5)

which is pseudo-periodic. However, as the corresponding oscillations attenuate strongly, it is not

called hole-effect. It still suggests that by decreasing the coefficient of variation (k = 1/
√
2),

pseudo-periodicity arises. In order to confirm this conjecture, I apply the inverse Laplace

transform to Eq. (A.2) with Gamma distributions of increasing order (and thus decreasing

coefficient of variation). For a Gamma distribution of order 3, I obtain the covariance model

c(h) =
1

36

(

exp
(

− 2h

a

)

+ 8 exp
(

− 2h

a

)

cos
(

√
3h

2a

)

)

, (A.6)
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Figure A.1: Facies thickness pdf (left) and corresponding covariances (right) using Eq. (A.2).
Each curve corresponds to a different covariance model, red is Eq. (A.3), orange is Eq. (A.5),
blue is Eq. (A.6), and green is Eq. (A.7).

and for a Gamma distribution of order 4, I obtain the covariance

c(h) =
1

8
e−

h
a cos

( h√
2a

)

(

2 cosh
( h√

2a

)

+
√
2 sinh

( h√
2a

)

)

. (A.7)

Figure A.1 shows that these covariances have a more pronounced hole-effect. Moreover, Fig. A.1

highlights that as the coefficient of variation decreases (the pdf are more skewed), the cor-

responding covariance hole-effect increases. This helps understand the hole-effect: a lower

variability of facies thicknesses creates oscillations of the covariances.

The functions of Eq. A.6 and Eq. A.7 are new one dimensional indicator covariance models.

They show that hole-effects result from a reduction in coefficient of variations of facies thick-

nesses. The hole-effect thus characterizes facies rhythmicity: repetition of facies at interval of

thicknesses with low variations.


