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A sufficient condition for the Kolmogorov 4/5 law for stationary
martingale solutions to the 3D Navier-Stokes equations

Jacob Bedrossian, Michele Coti Zelati, Samuel Punshon-Smith, and Franziska Weber

Abstract. We prove that statistically stationary martingale solutions of the 3D Navier-Stokes
equations on T

3 subjected to white-in-time (colored-in-space) forcing satisfy the Kolmogorov 4/5
law (in an averaged sense and over a suitable inertial range) using only the assumption that the
kinetic energy is o(ν−1) as ν → 0 (where ν is the inverse Reynolds number). This plays the role of
a weak anomalous dissipation. No energy balance or additional regularity is assumed (aside from
that satisfied by all martingale solutions from the energy inequality). If the force is statistically
homogeneous, then any homogeneous martingale solution satisfies the spherically averaged 4/5 law
pointwise in space. An additional hypothesis of approximate isotropy in the inertial range gives the
traditional version of the Kolmogorov law. We demonstrate a necessary condition by proving that
energy balance and an additional quantitative regularity estimate as ν → 0 imply that the 4/5 law
(or any similar scaling law) cannot hold.

1. Introduction

In this article, we consider the stochastically forced Navier-Stokes equations on T
3

{

∂tu+ u · ∇u+∇p− ν∆u = ∂tW,

div u = 0,
(NSE)

describing the motion of a viscous, incompressible fluid on a periodic domain. The forcing is
assumed to be a mean zero, white-in-time and colored-in-space Gaussian process, that can be
represented by

∂tW (t, x) =
∞
∑

k=1

σkek(x)dβk(t), (1.1)

where {βk(t)} are independent one-dimensional Brownian motions, {ek} are orthonormal eigen-
functions of the Stokes operator on T

3, and {σk} are fixed constants satisfying a coloring condition

ε :=
1

2

∞
∑

k=1

|σk|2 < ∞.

The parameter ν > 0 plays the role of the inverse Reynolds number while the quantity ε plays
the role of the mean energy input by the noise. It is important to note that we do not assume
any dependence of ν on ε, that is, the energy input is independent of Reynolds number. We are
primarily interested in a special class of solutions to (NSE), called (weak) stationary martingale
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solutions, whose existence was proved in [24], in connection with scaling laws in turbulence theory.
Martingale solutions are the, probabilistically weak, stochastic counterpart of Leray-Hopf solutions
in the deterministic setting, and stationary refers to the property that the paths u(· + τ) and u(·)
coincide in law for each τ > 0. It is worth noting here that stationary martingale solutions satisfy
the energy inequality

Eν‖∇u‖2L2
x
≤ ε. (1.2)

The theory of turbulence, put forward in the 1930s and 1940s by Taylor, Richardson, Kol-
mogorov and others (see [27] and the references therein), revolutionized classical physics and has
been widely influential in fluid mechanics, atmospheric and ocean sciences, and plasma physics.
In the sequence of papers [35–37], usually referred to as K41, Kolmogorov took essentially three
basic axioms about the fluid flow and formally derived several predictions about the statistics of
solutions. One of the axioms he assumed is not supported by experimental studies, which results
in deviations from some of the predictions of the classical theory due to what is now commonly
referred to as intermittency ; see e.g. [2, 27, 28, 34,38, 46, 47, 50] and the references therein. In
particular, real flows are observed to lack statistical self-similarity. Intermittency is also connected
to the rare events/large deviations from the average behavior. Nevertheless, the Kolmogorov 4/5
law, which we describe below, is independent of the problematic axiom and matches very well with
experiments. In fact, it is regarded as an ‘exact’ law of turbulence by the physics community.

Despite its overwhelming influence in physics and engineering, relatively little of turbulence
theory has been put on mathematically rigorous foundations. The idea that many of the basics
of turbulence theory could be refined and made mathematically rigorous by studying (NSE) in
the vanishing viscosity limit ν → 0 is an old one. Probability is the most natural framework:
turbulent experiments are not repeatable so one can only hope to build theories to predict statistics.
The statistically stationary viewpoint was taken in K41, and the idealized case of x ∈ T

3 seems
natural as the starting point. Moreover, there exists a far greater range of mathematical tools for
understanding the generic behavior of stochastic processes rather than deterministic ones, especially
in the presence of white-in-time forcing. In the context of fluid dynamics, the most striking examples
of this are the infinite-dimensional ergodicity and related results; see for example [12,29–31,39].
Normally, studying the incompressible Euler equations, when ν = 0, is more tractable than the limit
ν → 0. However, given recent results on ‘wild’ solutions to the Euler equations [6,13,15–17,32,33],
these equations might not have an intrinsic selection principle for solutions obtained as limits of
suitable martingale solutions. One might expect that an inviscid limit holds, e.g., that statistically
stationary solutions to the Navier-Stokes equations converge in the vanishing viscosity limit to
dissipative statistically stationary solutions of the Euler equations. Nonetheless, deducing the
required compactness would require us first to understand much better the ν > 0 behavior (see
[19] for discussions on what compactness is required in the deterministic setting and [26] for an
example of a shell model in which such results are attainable).

1.1. The 4/5 law. Assuming that the flow is isotropic, statistically stationary in space and
time, and satisfies a suitable anomalous dissipation assumption (discussed below), Kolmogorov

formally made the prediction that over a range of scales |h| ∈ [ℓD, ℓI ] with ℓD ≈ ε−1/4ν3/4, the
following 4/5 law holds

E

(

δhu · h

|h|

)3

∼ −4

5
ε|h|, (1.3)

where δhu(x) := u(x+h)−u(x) is the increment by the vector h ∈ R
3. The quantity appearing on

the left-hand side above is referred to as the third-order longitudinal structure function. The range
over which viscous effects will be mostly negligible, [ℓD, ℓI ], is commonly called the inertial range.
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The top scale ℓI , called the integral scale, is essentially the scale at which the external forcing acts,
while ℓD, called the dissipation scale, is the scale where the viscosity dominates the flow.

In this paper, we aim to provide a mathematically rigorous derivation of the Kolmogorov 4/5
law and the closely related 4/3 law for solutions to (NSE) with minimal hypotheses. Since the 4/5
law is independent of the precise details of intermittency, it is intuitive that we are able to prove
it using very few hypotheses, and in particular, we do not require any additional regularity other
than what follows from the energy inequality (1.2).

1.2. Weak anomalous dissipation. The fundamental axiom of hydrodynamic turbulence is
the assumption of anomalous dissipation, which is meant to describe the tendency of the nonlinearity
to accelerate the dissipation of energy so much that the Navier-Stokes equations (NSE) can balance
the external force independently of the Reynolds number. The non-vanishing of energy dissipation
νE‖∇u‖22 in the limit ν → 0 is often used as a definition, however this is not the correct definition
for stationary solutions to (NSE). To illustrate this, consider stationary solutions to the heat
equation

∂tv − ν∆v = ∂tW, (1.4)

for which Itô’s formula provides the energy balance

νE‖∇v‖2L2
x
= ε.

The energy dissipation νE‖∇v‖2L2
x
does not vanish as ν → 0, but there is nothing anomalous or

nonlinear occurring here. A priori, one only has an energy inequality (1.2) for martingale solutions
to (NSE) and it is an interesting question to wonder whether equality holds or not (see [41] and
references therein for sufficient conditions in the deterministic case). Equality or inequality in (1.2)
is a question connected to the types of potential finite-time singularities for ν > 0 and hence is a
property related mostly to rare/intermittent events. As discussed above, this suggests that the 4/5
law in the form (1.3) should hold independently of whether or not equality is achieved in (1.2)1.

Let us suggest a more useful alternative (stronger variants have been taken in the derivation of
the 4/5 law in for example [27,43]). Thanks to the exact form of the invariant measure, for the
heat equation (1.4), we have

νE‖v‖2L2
x
≈ ε.

For the Navier-Stokes equations, we have the similar upper bound νE‖u‖2L2
x
. ε from Poincaré’s

inequality and (1.2). However, we expect that kinetic energy is driven to smaller scales as ν → 0,
drastically increasing the amount of energy that is dissipated. Hence, for statistically stationary
solutions to (NSE), it is natural to take following definition of anomalous dissipation.

Definition 1.1 (Weak anomalous dissipation). We say that a sequence {u}ν>0 of stationary
martingale solutions satisfies weak anomalous dissipation if

lim
ν→0

νE‖u‖2L2
x
= 0. (WAD)

In the physics literature (see e.g. [27]), it is usually implicitly assumed that E‖u‖2L2
x
is bounded

independently of the Reynolds number, which would more closely match the idea that the en-
ergy input should be totally balanced uniformly in the Reynolds number. In [43], the assumption

ν1/2E‖u‖2L2
x
→ 0 as ν → 0 is used, which appears to be natural for deterministic forcing. However,

for solutions to (NSE), these stronger assertions are unnecessary to deduce the 4/5 law, one only

1There is, however, the classical inviscid limit version of the anomalous dissipation: that {u}ν>0 converges to
statistical solutions of Euler with non-vanishing energy flux which balances ε. A priori, this property is far stronger
than Definition 1.1.
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needs that the 3D Navier-Stokes equations dissipate significantly more energy than the heat equa-
tion. The main result of this paper is to show that only (WAD) is required to deduce the 4/5 law
in its averaged form.

Remark 1.2. Consider a passive scalar advected by an incompressible, time and ν-independent
smooth velocity v such as

∂tf + v · ∇f − ν∆f = ∂tW.

If v is weakly mixing (or, more generally, relaxation enhancing [9]), then it was proved in [4] that
(WAD) holds for f , namely

lim
ν→0

νE‖f‖2L2
x
= 0.

1.3. Main results. Denoting by

δhu(x) = u(x+ h)− u(x), h ∈ R
3,

the increment of u with respect to the vector h, we define for any ℓ ∈ R the averaged structure
functions

S0(ℓ) =
1

4π
E

∫

S2

∫

T3

|δℓn̂u|2δℓn̂u · n̂dxdS(n̂), (1.5a)

S||(ℓ) =
1

4π
E

∫

S2

∫

T3

(δℓn̂u · n̂)3dxdS(n̂). (1.5b)

Our main result reads as follows.

Theorem 1.3 (Averaged 4/3 and 4/5 laws). Let {u}ν>0 be a sequence of stationary martingale
solutions to (NSE), which satisfy (WAD), and let S0(ℓ) and S||(ℓ) be the corresponding structure
functions as defined in (1.5). Then the following holds true.

• (4/3 law) There exists ℓD = ℓD(ν) with lim
ν→0

ℓD = 0 such that

lim
ℓI→0

lim sup
ν→0

sup
ℓ∈[ℓD,ℓI ]

∣

∣

∣

∣

S0(ℓ)

ℓ
+

4

3
ε

∣

∣

∣

∣

= 0. (1.6)

• (4/5 law) There exists ℓD = ℓD(ν) with lim
ν→0

ℓD = 0 such that

lim
ℓI→0

lim sup
ν→0

sup
ℓ∈[ℓD,ℓI ]

∣

∣

∣

∣

S||(ℓ)

ℓ
+

4

5
ε

∣

∣

∣

∣

= 0. (1.7)

To the best of our knowledge, Theorem 1.3 proves the 4/5 and the 4/3 laws under signifi-
cantly weaker assumptions than those previously appearing in the literature. There is a number
of related works on the 4/5 law in the deterministic setting. The closest analogue to ours is [43],
which considers deterministic, smooth solutions with stronger anomalous dissipation hypotheses.
Another related work is that by Duchon and Robert [20], where an expression for the defect mea-
sure (measuring the defect from energy conservation) is derived for solutions of the deterministic
Navier-Stokes equations and L3

t,x-solutions of the incompressible Euler equations which arise as
strong limits of sequences of Leray-Hopf solutions of the Navier-Stokes equations. Under a strong
L3
t,x inviscid limit assumption, Eyink [22] establishes expressions for the defect measure for weak

solutions of the deterministic incompressible Euler equations that relate to local deterministic ver-
sions of the structure functions (1.5) above. In a similar framework, the recent paper [18] derives a
Lagrangian analogue of the 4/5 law. Lastly, we mention that under much stronger assumptions, ap-
proximate scaling laws for the second order structure function (e.g. when the (δℓn̂u · n̂)3 is replaced
by (δℓn̂u · n̂)2 in (1.5b)) have been derived in [8] for deterministic forces and in [23] in the stochastic
case. In either case, the second order structure function requires intermittency corrections.

Before stating further results, some remarks are in order.
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Remark 1.4. The proof chooses ℓD such that

lim
ν→0

νE‖u‖2L2
x

ℓ2D
= 0.

Note that ℓD should be interpreted only as an upper bound on the dissipative length scale.

Remark 1.5. The idea of averaging over the sphere to deal with potential anisotropy was also
discussed in [3, 40, 43], and in [48] angle-averaging is used to recover the 4/5 law in numerical
simulations.

Remark 1.6. It is an open problem to prove existence of solutions satisfying (WAD). However,
it should be noted that this property cannot hold for all solutions. Indeed, consider the case
that ∂tW = ejdβ(t), for a single mode. In this case, it is easy to check that the solution to the
stochastically forced heat equation (1.4) is also a stationary solution of (NSE). In fact, the solution

is u(t, x) = Z(t)ej(x), where Z is the Ornstein-Uhlenbeck process dZ = −ν |j|2 Zdt+dβ(t), which
can be seen not to satisfy (WAD). It is natural to conjecture that (WAD) holds whenever the
stochastic forcing satisfies some suitable Hörmander bracket condition, in a similar way as it implies
ergodicity in 2D Navier-Stokes [31].

The proof of Theorem 1.3 also yields the following a priori estimate uniformly in ν without
any assumptions on the solution, however, it is not clear what any potential implications are.
Nevertheless, ν-independent estimates on statistically stationary solutions are few and far between,
so we have chosen to include this observation.

Proposition 1.7. Let {u}ν>0 be a sequence of stationary martingale solutions to (NSE), and
let S0(ℓ) and S||(ℓ) be the corresponding structure functions. Then, for every fixed ν > 0, there
holds

−8

3
ε ≤ lim inf

ℓ→0

S0(ℓ)

ℓ
≤ lim sup

ℓ→0

S0(ℓ)

ℓ
≤ 0.

A similar statement holds also for S||.

Note that if statistically stationary solutions were smooth, we would have

lim
ℓ→0

S0(ℓ)

ℓ
= 0.

1.4. Statistical symmetries. A second axiom often assumed when studying turbulence is
that the symmetries of translation and rotation are recovered, in a statistical sense, in the inertial
range. Such recovery of symmetry has never been proved rigorously in any context to our knowl-
edge. However, if the force is statistically homogeneous (a process f defined on T

3 is statistically
homogeneous if the paths f(·) and f(·+ y) coincide in law for any y ∈ T

3) then one can check that
there exists homogeneous and stationary martingale solutions (see Remark 2.4 below). In this case,
we can dispense with the space average in Theorem 1.3.

Theorem 1.8 (Homogeneous 4/3 and 4/5 laws). Let {u}ν>0 be a sequence of homogeneous and
stationary martingale solutions to (NSE), which satisfy (WAD). Then the following holds true:

• (4/3 law) There exists ℓD = ℓD(ν) with lim
ν→0

ℓD = 0 such that

lim
ℓI→0

lim sup
ν→0

sup
ℓ∈[ℓD,ℓI ]

∣

∣

∣

∣

E
1

4πℓ

∫

S2

|δℓn̂u|2 δℓn̂u · n̂dS(n̂) + 4

3
ε

∣

∣

∣

∣

= 0.

• (4/5 law) There exists ℓD = ℓD(ν) with lim
ν→0

ℓD = 0 such that

lim
ℓI→0

lim sup
ν→0

sup
ℓ∈[ℓD,ℓI ]

∣

∣

∣

∣

E
1

4πℓ

∫

S2

|δℓn̂u|2 δℓn̂u · n̂dS(n̂) + 4

5
ε

∣

∣

∣

∣

= 0.
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Proposition 1.7 also holds in the homogeneous case, in which the structure function (1.5a) need
not be integrated in x.

It is natural to ask what kind of approximate symmetries imply the 4/5 law expected in homo-
geneous, isotropic turbulence. The following definition assumes spatial homogeneity already, but
generalizations are natural.

Definition 1.9 (Approximate (inertial range) isotropy). We say that a sequence {u}ν>0 of
homogeneous and stationary martingale solutions to (NSE) is approximately isotropic if there
exists ℓD = ℓD(ν) with lim

ν→0
ℓD(ν) = 0 such that the following holds: for every continuous function

φ : R3 × R
3 → R such that

∣

∣

∣

∣

E
1

4π

∫

S2

φ(δℓn̂u, ℓn̂)dS(n̂)

∣

∣

∣

∣

. γ(ℓ)

for some strictly monotone increasing, continuous γ : R+ → R+ with γ(0) = 0, we have

lim
ℓI→0

lim sup
ν→0

sup
ℓ∈[ℓD,ℓI ]

1

γ(ℓ)

1

4π

∫

S2

∣

∣

∣

∣

Eφ(δℓn̂u, ℓn̂)−E
1

4π

∫

S2

φ(δℓn̂′u, ℓn̂′)dS(n̂′)

∣

∣

∣

∣

dS(n̂) = 0.

This definition together with Theorem 1.3 trivially implies the following variant of the 4/5 law,
which is the classical statement often seen in physics texts.

Corollary 1.10 (4/5 law for homogeneous, approximately isotropic turbulence). Let {u}ν>0 be
a sequence of homogeneous, approximately isotropic, and stationary martingale solutions to (NSE),
which satisfy (WAD). Then, there exists ℓD = ℓD(ν) with lim

ν→0
ℓD(ν) = 0 such that

lim
ℓI→0

lim sup
ν→0

sup
ℓ∈[ℓD,ℓI ]

∫

S2

∣

∣

∣

∣

E
1

ℓ
(δn̂ℓu · n̂)3 + 4

5
ε

∣

∣

∣

∣

dS(n̂) = 0.

1.5. Necessary conditions. Finally, we state conditions that are necessary for any scaling
laws resembling the 4/5 and 4/3 laws to hold. In [19] necessary conditions are proved for de-
terministic solutions obtained in the inviscid limit in T

3 whereas [11] discusses similar necessary
conditions for deterministic solutions obtained in the inviscid limit on bounded domains (see also
the references therein for further discussions).

Theorem 1.11. Suppose {u}ν>0 is a sequence of stationary martingale solutions to (NSE) that
satisfies the following conditions.

• Energy balance: for every ν sufficiently small, there holds

νE‖∇u‖2L2
x
= ε. (1.8)

• Regularity: there exist C > 0 and s > 1 such that

sup
ν∈(0,1)

νE‖ |∇|s u‖2L2
x
≤ C. (1.9)

Then, there holds

lim
ℓ→0

sup
ν∈(0,1)

(∣

∣

∣

∣

S||(ℓ)

ℓ

∣

∣

∣

∣

+

∣

∣

∣

∣

S0(ℓ)

ℓ

∣

∣

∣

∣

)

= 0. (1.10)

Remark 1.12. It is easy to check from the proof that the regularity condition (1.9) can be
weakened to

lim
ℓ→0

sup
|h|≤ℓ

sup
ν∈(0,1)

Eν‖∇δhu‖2L2
x
= 0.

This is essentially L2
ω,t precompactness in space of

√
ν∇u.
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If we assume that (1.9) holds for s > 5/4, then (1.8) is superfluous. Indeed, thanks to the

embedding L2
tH

s
x ∩ L∞

t L2
x →֒ L3

tW
σ,3
x for some σ > 1/3, it is possible to adapt the arguments in

[10, 21] to the case of (NSE), and obtain conservation of energy. Hence we have the following
corollary.

Corollary 1.13. Let {u}ν>0 be a sequence of stationary martingale solutions to (NSE) such
that for some c 6= 0 and some ℓD(ν) with lim

ν→0
ℓD = 0 there holds

lim
ℓI→0

lim
ν→0

sup
ℓ∈[ℓD,ℓI ]

∣

∣

∣

∣

S0(ℓ)

ℓ
+ c

∣

∣

∣

∣

= 0.

Then, for all s > 5/4,

lim inf
ν→0

Eν‖ |∇|s u‖2L2
x
= ∞.

Remark 1.14. If infν Eν‖∇u‖2L2
x
> 0, then (WAD) implies that

lim inf
ν→0

Eν‖ |∇|s u‖2L2
x
= ∞, ∀s > 1.

Indeed, by Sobolev interpolation we have for θ = 1− 1/s

E‖∇u‖2L2
x
≤ E‖u‖2θL2

x
‖ |∇|s u‖2(1−θ)

L2
x

≤
(

E‖u‖2L2
x

)θ (

E‖ |∇|s u‖2L2
x

)1−θ
.

Hence, under the assumption of energy balance (1.8), (WAD) is stronger than (1.9). Nevertheless,
we conjecture that (WAD) is both necessary and sufficient for the 4/5 law, at least if energy balance
holds.

1.6. Notations and conventions. We write f . g if there exists C > 0 such that f ≤ Cg
(and analogously f & g). We write f ≈ g if there exists C > 0 such that C−1f ≤ g ≤ Cf .
Furthermore, we use hats to denote vectors with unit length, that is, if h 6= 0 is some vector,
then ĥ = h/|h|. We will also sometimes abbreviate Lp, W s,p and Ck-spaces in the variables
(ω, t, x, ℓ) ∈ Ω× [0, T ] × T

3 × R+ in the following way:

Lp
x := Lp(T3), W s,p

x := W s,p(T3), Lq
t := Lq([0, T ]), Lr

ω := Lr(Ω), Ck
ℓ := Ck(R+),

etc., or use combinations of these, for example, Lq
tL

p
x denotes the space Lq([0, T ];Lp(T3)) and Lp

t,x

denotes Lp([0, T ] × T
3). We denote by L2

div and H1
div the completions of divergence-free smooth

functions with zero average (denoted by C∞
div) with respect to the L2 and H1-norms. For any

α ∈ R, Ḣα
x will denote the usual homogeneous Sobolev spaces. With a slight abuse of notation we

will say a vector field u(x) ∈ R
3 or a rank two tensor field A ∈ R

3×3 belongs to a space X if each
component ui and Aij belongs to X.

We will also make frequent use of component-free tensor notation. Specifically, given any two
vectors u and v we will denote u ⊗ v the rank two tensor with components (u ⊗ v)ij = uivj .
Moreover given any two rank two tensors A and B we will denote : the Frobenius product defined
by, A : B =

∑

i,j AijBij and the norm |A| =
√
A : A.

2. Preliminaries

2.1. Stationary martingale solutions. As mentioned, martingale solutions to (NSE) are
probabilistically weak analogues to the Leray-Hopf weak solutions to the deterministic Navier-
Stokes equations. By probabilistically weak we mean that instead of viewing the noise

∂tW (t, x) =
∑

k

σkek(x)dβk(t),

and its associated filtered probability space, as an input to the problem, it is actually an output,
to be solved for along with the the velocity field u. Indeed, a martingale solution consists of a
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stochastic basis (Ω, (Ft)t∈[0,T ],P, {βk}) along with a process u : Ω× [0, T ] → L2
div that satisfies the

Navier-Stokes equation in the sense of distributions. It is important to remark that, in general the
filtration (Ft)t∈[0,T ] may not be the canonical filtration generated by the Brownian motions {βk(t)}.
Moreover any two martingale solutions may have different stochastic bases. Martingale solutions
were first constructed in [5], and stationary martingale solutions were later constructed in [24].

More precisely a martingale solution to (NSE) is defined as follows:

Definition 2.1 (Martingale Solution). A martingale solution to (NSE) on [0, T ] consists of
a stochastic basis (Ω, (Ft)t∈[0,T ],P, {βk}) with a complete right-continuous filtration and an Ft-
progressively measurable stochastic process

u : [0, T ]× Ω → L2
div,

such that:

• u has sample paths in

Ct(Ḣ
α
x ) ∩ L∞

t L2
div ∩ L2

tH
1
div, for some α < 0.

• For all t ∈ [0, T ] and all ϕ ∈ C∞
div, the following identity holds P almost surely,

∫

T3

u(t) · ϕdx+ ν

∫ t

0

∫

T3

∇u(s) : ∇ϕdxds+

∫ t

0

∫

T3

[(u(s) · ∇)u(s)] · ϕdxds

=

∫

T3

u0 · ϕdx+
∑

k

∫ t

0

∫

T3

σkek · ϕdxdβk(s).

(2.1)

If there is no risk of confusion, we will simply say that u is a martingale solution without making
reference to the stochastic basis.

We also have the corresponding definition for stationary processes:

Definition 2.2 (Stationary Martingale Solution). A stationary martingale solution to (NSE)
[0,∞) consists of a stochastic basis (Ω, (Ft)t≥0,P, {βk}) with a complete right-continuous filtration
and an Ft-progressively measurable stochastic process

u : [0,∞) ×Ω → L2
div,

such that:

• For each T ≥ 0, u|[0,T ] has sample paths in

Ct(Ḣ
α
x ) ∩ L∞

t L2
div ∩ L2

tH
1
div, for some α < 0.

• the law of the path u(·+ τ) is that same as the law of u(·) for each τ ≥ 0.
• For all t ≥ 0 and all ϕ ∈ C∞

div, identity (2.1) holds P almost surely.

If there is no risk of confusion, we will simply say that u is a stationary martingale solution without
making reference to the stochastic basis.

If, in addition to either definition above, the velocity field u(t, · + h) is equal in law to u(t, ·)
for every h ∈ R

3, then we say that u is a stationary and homogeneous martingale solution.

The following existence theorem follows easily from [24].

Theorem 2.3. For each u0 ∈ L2
div and T ≥ 0 there exists a martingale solution u on [0, T ] to

(NSE) satisfying the energy inequality for t2 > t1,

1

2
E‖u(t2)‖2L2

x
− 1

2
E‖u(t1)‖2L2

x
+ νE

∫ t2

t1

‖∇u(s)‖2L2
x
ds ≤ ε(t2 − t1).
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Additionally, there exists a exists a stationary martingale solution u on [0,∞) to (NSE) satisfying
the stationary energy inequality

νE‖∇u(s)‖2L2
x
≤ ε.

Furthermore, if the force is homogeneous, then there exists stationary homogeneous martingale
solutions.

Remark 2.4. One can write the force (1.1) in the form

W (t, x) =
∑

k∈Z3

αk cos(k · x)β1
k(t) + γk sin(k · x)β2

k(t),

for independent Brownian motions βi
k and for vectors αk, γk satisfying αk · k = γk · k = 0 and

|αk|2+ |γk|2 = σ2
k. The force is homogeneous if |αk|2 = |γk|2 for all k ∈ Z

3. Existence of stationary,
homogeneous martingale solutions can be proved two ways: (A) by a Galerkin approximation, using
that each truncation will result in a stationary, homogeneous finite dimensional approximation or
(B) averaging path measures over translations as in [49]. Note that both cases require a Skorokhod
embedding argument.

A priori estimates can also be deduced for these martingale solutions. Indeed, Theorem 3.1
in [24] implies that martingale solutions satisfy the following a priori estimates,

E‖u‖rL∞

t L2
x
< ∞, E‖∇u‖2L2

t,x
< ∞, ∀r ∈ [1,∞), (2.2)

where the Lq
t norms are taken over any time interval [0, T ] for T < ∞. These two estimates

combined provide the following a priori estimate.

Proposition 2.5. Any martingale solution u satisfies

E‖u‖rLq
tL

p
x
< ∞

for each p, q ∈ [1,∞], r ∈ [1,∞) satisfying

2

q
+

3

p
≥ 3

2
, and

2

r
+

3

p
>

3

2
.

Proof. We begin by interpolation (see e.g. [1, Theorem 5.8]), for P⊗ dt almost every (ω, t) ∈
Ω× [0, T ] we have

‖u(t, ω)‖Lp
x
. ‖u(t, ω)‖θL2

x
‖∇u(t, ω)‖1−θ

L2
x
,

and θ ∈ [0, 1] satisfies

θ =
3

p
− 1

2
.

Next using Hölder’s inequality in time gives

‖u(ω)‖Lq
tL

p
x
. ‖u(ω)‖θL∞

t L2
x
‖∇u(ω)‖1−θ

L2
t,x

where
1

q
≥ 1− θ

2
=

3

4
− 3

2p
⇒ 2

q
+

3

p
≥ 3

2
.

Finally, applying Hölder’s inequality in expectation, gives

(E‖u‖rLq
tL

p
x
)
1
r . (E‖u‖sL∞

t L2
x
)
1
s (E‖∇u‖2L2

t,x
)
1
2

where
1

r
>

1− θ

2
=

3

4
− 3

2p
⇒ 2

r
+

3

p
>

3

2
,
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and s ≥ 1 is given by

1

s
=

1

r
− 1− θ

2
> 0.

�

Note that if u is statistically stationary in time, then for every T > 0 there holds the relation

E‖u‖qX = E
1

T

∫ T

0
‖u(t)‖qXdt, (2.3)

which means there is a one-to-one correspondence between q-th moments of X and Lq
tX regularity.

Hence, invoking Proposition 2.5, stationary martingale solutions satisfy

E‖u‖q
Lp
x
< ∞, for

2

q
+

3

p
>

3

2
.

Remark 2.6 (Martingale and stationary suitable weak solutions). Existence of (stationary)
martingale suitable solutions has been proved in [45]. These are solutions which satisfy an additional
local energy inequality that can be used to prove partial regularity results in the spirit of Caffarelli-
Kohn-Nirenberg [7] for the stochastic Navier-Stokes equations, see [25]. The versions of the 4/3
and 4/5 law that we prove in the following sections hold for any type of martingale solutions, and
the local energy inequality is not used in the proofs.

2.2. Regularity and a priori estimates for structure functions. We now use the previous
regularity estimates to deduce useful properties on the structure functions in (1.5).

Lemma 2.7. Let {u}ν>0 be a sequence of (not necessarily stationary) martingale solutions to
(NSE) on [0, T ]. Then for each ν > 0, the functions

ℓ 7→ 1

T

∫ T

0
S0(t, ℓ)dt, ℓ 7→ 1

T

∫ T

0
S||(t, ℓ)dt,

are continuous on (0,∞) and bounded via

sup
ℓ∈(0,1)

∣

∣

∣

∣

1

T

∫ T

0
S0(t, ℓ)dt

∣

∣

∣

∣

+ sup
ℓ∈(0,1)

∣

∣

∣

∣

1

T

∫ T

0
S||(t, ℓ)dt

∣

∣

∣

∣

. E‖u‖3L3
t,x
. (2.4)

Moreover, if u is stationary, then S0 and S|| are time-independent, and for each ν > 0 fixed, both
are continuous and

lim
ℓ→0

S0(ℓ) = lim
ℓ→0

S||(ℓ) = 0.

Proof. The proof is the same for both S0 and S||, so we just show it for S0. Proposition 2.5
implies that

E

∫ T

0

∫

T3

|δℓn̂u|3dxdt . E‖u‖3L3
t,x

< ∞.

Hence, δℓn̂u ∈ L3
ω,t,x uniformly in ℓ and n̂, and by Fubini’s theorem we may swap integrals and

deduce that S0(t, ℓ) and S||(t, ℓ) are in L1
t . From this, (2.4) follows. The continuity holds because

u ∈ L3
ω,t,x and shifts are continuous in Lp

x, i.e., for any h ∈ R
3,

lim
ℓ→0

E

∫ T

0

∫

T3

|u(t, x+ ℓh)− u(t, x)|pdxdt = 0.

For time-stationary functions, the same holds without integrating in time by (2.3). �
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Another important quantity related to statistical averages is the two point correlation matrix
for the velocity fields

Γ(t, h) := E

∫

T3

u(t, x) ⊗ u(t, x+ h) dx, (2.5)

which, written component-wise, reads

Γij(t, h) = E

∫

T3

ui(t, x)uj(t, x+ h)dx, i, j = 1, 2, 3.

The following is a regularity result that is useful later.

Lemma 2.8. For every i, j = 1, 2, 3, the two point correlation functions Γij are uniformly
bounded and continuous. Moreover the time averages

h 7→ 1

T

∫ T

0
Γij(t, h)dt

are C2(R3) for each ν > 0. If u is time-stationary, then Γij(t, h) ≡ Γij(h) ∈ C2(R3).

Proof. We have

sup
h∈T3

sup
t∈[0,T ]

∣

∣

∣

∣

E

∫

T3

ui(t, x)uj(t, x+ h)dx

∣

∣

∣

∣

≤ E‖u‖2L∞

t L2
x
,

which is bounded by (2.2). The continuity follows because u ∈ Lq
ωL∞

t L2
x for any q ∈ [1,∞) by (2.2)

and shifts of Lp
x functions are continuous. To see that the time averages are twice continuously

differentiable, we assume for the moment that Γij is smooth (e.g. by convolving it with a mollifier)
and differentiate, giving

∣

∣

∣

∣

1

T

∫ T

0
∇2

hΓij(t, h)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

1

T

∫ T

0
E

∫

T3

ui(t, x)∇2
hu

j(t, x+ h)dxdt

∣

∣

∣

∣

=

∣

∣

∣

∣

1

T

∫ T

0
E

∫

T3

ui(t, x)∇2
xu

j(t, x+ h)dxdt

∣

∣

∣

∣

=

∣

∣

∣

∣

1

T

∫ T

0
E

∫

T3

∇xu
i(t, x)∇xu

j(t, x+ h)dxdt

∣

∣

∣

∣

(2.6)

≤ 1

T
E‖∇u‖2L2

t,x
.

By approximation, this holds for any function that satisfies E‖∇u‖2
L2
t,x

< ∞ which is the case

by (2.2). The continuity of

h 7→ 1

T

∫ T

0
∇2

hΓij(t, h)dt

follows from the continuity of shifts of ∇xu in L2
ω,t,x and the third line (2.6). Similarly, one shows

boundedness and continuity of ∇hΓij. For time-stationary functions, the same results hold without
averaging in time. �

3. The Kármán-Howarth-Monin relation

The goal of this section is to derive the Kármán-Howarth-Monin (KHM) relation for martingale
solutions to (NSE). Generally speaking, it is a relation between the two point correlation matrix
for the velocity fields

Γ(t, h) = E

∫

T3

u(t, x)⊗ u(t, x+ h) dx,
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and for each k, the third order structure matrix

Dk(t, h) = E

∫

T3

(δhu(t, x)⊗ δhu(t, x)) δhu
k(t, x) dx.

Proposition 3.1 (KHM relation). Let u be a martingale solution to (NSE) on [0, T ]. Let
η(h) = (ηij(h))

3
ij=1 be a smooth, compactly supported, isotropic, rank 2 test function of the form

η(h) = φ(|h|)I + ϕ(|h|)ĥ ⊗ ĥ, ĥ =
h

|h| , (3.1)

where φ(ℓ) and ϕ(ℓ) are smooth and compactly supported on (0,∞). Then the following equality
holds

∫

R3

η(h) : Γ(T, h) dh−
∫

R3

η(h) : Γ(0, h) dh = −1

2

3
∑

k=1

∫ T

0

∫

R3

∂kη(h) : D
k(t, h) dhdt

+ 2ν

∫ T

0

∫

R3

∆η(h) : Γ(t, h) dhdt+ 2T

∫

R3

η(h) : a(h)dh,

(3.2)

where a(h) is related to the two point covariance function associated with the noise by

a(h) =
1

2

∫

T3

C(x, x+ h)dx, C(x, y) =
∑

k

σ2
kek(x)⊗ ek(y). (3.3)

Remark 3.2. By Cauchy-Schwarz inequality and the assumption ε < ∞, C(x, x+ h) is in L1
x

uniformly in h; in particular |a(h)| . ε and by continuity of shifts in L1, a(h) is a continuous
function of h. Note that tr a(0) = ε.

Remark 3.3. Note that homogeneity of W in space is equivalent to the existence of some
continuous Q such that C(x, y) = Q(x− y) for all x, y ∈ T

3.

A version of the above relation (under the assumption of isotropy for the solutions) was first
derived by Kármán and Howarth [14], and later put into more general form by Monin [42]. Note
that we do not require any more regularity than that possessed by all martingale solutions (see
Proposition 2.5) and (3.2) holds for a general isotropic tensor η. We will derive both the 4/3 and
the 4/5 law using this generalized version of the KHM-relation.

In the proof of Proposition 3.1, we will use the following lemma that relates fluxes in the
evolution of the two point correlation matrix Γ(t, h) to the third order structure matrices Dk(t, h).
This plays a fundamental role in the K41 theory.

Lemma 3.4. Let u ∈ L3(T3) be a divergence-free vector field, and let Thu(x) = u(x+ h) denote
its shift by h ∈ R

3, then the following identity holds in the sense of distributions

3
∑

k=1

∂hk

∫

T3

[

(u⊗ Thu)u
k + (Thu⊗ u)uk − (Thu⊗ u)Thu

k − (u⊗ Thu)Thu
k
]

dx

=

3
∑

k=1

∂hk

∫

T3

(δhu⊗ δhu)δhu
k dx.
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Proof. The proof is mostly algebraic and is most easily seen by working backwards. Expanding
the differences we find,
∫

(δhu⊗ δhu)δhu
k dx =

∫

(Thu⊗ Thu)Thu
k dx−

∫

(u⊗ Thu)Thu
k dx−

∫

(Thu⊗ Thu)u
k dx

−
∫

(Thu⊗ u)Thu
k dx+

∫

(u⊗ Thu)u
k dx+

∫

(u⊗ u)Thu
k dx

+

∫

(Thu⊗ u)uk dx−
∫

(u⊗ u)uk dx.

Using the fact that
∫

(Thu⊗ Thu)Thu
k dx =

∫

(u⊗ u)uk dx,

and the divergence free property of u,

3
∑

k=1

∂hk

∫

(Thu⊗ Thu)u
k dx =

3
∑

k=1

∂hk

∫

(u⊗ u)Thu
k dx =

∫

(u⊗ u)Th(div u
k) dx = 0,

we obtain
3
∑

k=1

∂hk

∫

(δhu⊗ δhu)δhu
k dx = −

3
∑

k=1

∂hk

∫

(u⊗ Thu)Thu
k dx− ∂hk

∫

(Thu⊗ u)Thu
k dx

+
3
∑

k=1

∂hk

∫

(u⊗ Thu)u
k dx+ ∂hk

∫

(Thu⊗ u)uk dx

=
3
∑

k=1

∂hk

∫

[

(u⊗ Thu)u
k + (Thu⊗ u)uk − (Thu⊗ u)Thu

k − (u⊗ Thu)Thu
k
]

dx

completing the proof. �

We are now ready to prove the proposition.

Proof of Proposition 3.1. Let γ(x) be a standard bump (smooth, radially symmetric, pos-
itive, supported in the ball with unit integral), and for each κ > 0 define γκ(x) = κ−3γ(κ−1x). For
any function f(x) on T

3 we denote the spatially mollified function by

fκ = (f)κ := γκ ⋆ f.

The mollified stochastic equation for uκ = γκ ⋆ u becomes for each x ∈ T
3

duκ(t, x) + divx(u⊗ u)κ(t, x)dt+∇pκ(t, x)dt− ν∆uκ(t, x)dt = dWκ(t, x), (3.4)

where the equation is to be interpreted as a finite dimensional SDE for each x ∈ T
3 and κ > 0. Let

h ∈ T
3, then the evolution of uκ(t, x)⊗ uκ(t, x+ h) satisfies the stochastic product rule

d(uκ(t, x)⊗ uκ(t, x+ h)) = duκ(t, x) ⊗ uκ(t, x+ h) + uκ(t, x)⊗ duκ(t, x+ h)

+ d[uκ(·, x), uκ(·, x+ h)](t)
(3.5)

where [uκ(·, x), uκ(·, x+ h)](t) is the cross variation of uκ(·, x) and uκ(·, x+ h) and is given by
[

uκ(·, x), uκ(·, x+ h)
]

(t) =
[

Wκ(·, x),Wκ(·, x+ h)
]

(t)

=
∑

k,m

σkσm

(

ekκ(x)⊗ emκ (x+ h)
)

[

βk, βm
]

(t)

= t Cκ(x, x+ h),
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with

Cκ(x, x+ h) =

∞
∑

j=1

σ2
j e

j
κ(x)⊗ ejκ(x+ h).

Upon integrating equation (3.5) in x, using equation (3.4) and integrating by parts, we readily
obtain the following matrix valued SDE for each h ∈ R

3

d

(
∫

T3

uκ ⊗ Thuκ dx

)

=

3
∑

k=1

(

∂hk

∫

T3

[

(uku)κ ⊗ Thuκ − uκ ⊗ (Thu
k Thu)κ)

]

dx

)

dt

+ 2ν

(

∆h

∫

T3

uκ ⊗ Thuκ dx

)

dt+

(

∇h

∫

T3

(pκ Thuκ) dx−∇⊤
h

∫

T3

(uκ Thpκ) dx

)

dt

+

(
∫

T3

Cκ(x, x+ h)dx

)

dt+
∞
∑

j=1

(
∫

T3

σj
[

ejκ ⊗ Thuκ + uκ ⊗ The
j
κ

]

)

dβj,

where we used ∇⊤
h to denote the transpose of ∇h, that is, (∇⊤

h v)ij = (∇hv)ji = ∂hj
vi for a vector

v = (v1, v2, v3)⊤. Integrating in time, taking expectation and pairing against the isotropic test
function η (defined by equation (3.1)) in the h variable and integrating by parts gives

∫

R3

η(h) : Γκ(T, h) dh −
∫

R3

η(x) : Γκ(0, h) dh = −1

2

∫ T

0

∫

R3

∂kη(h) : D
κ,k(t, h) dhdt

+ 2ν

∫ T

0

∫

R3

∆η(h) : Γκ(t, h) dhdt+

∫ T

0

∫

R3

η(h) : P κ(t, h)dhdt

+ 2T

∫

R3

η(h) : aκ(h)dh,

(3.6)

where we have defined the “regularized” quantities

Γκ(t, h) := E

∫

T3

uκ(t, x) ⊗ uκ(t, x+ h)dx,

Dκ,k(t, h) := 2E

∫

T3

[

(uku)κ(t, x)⊗ uκ(t, x+ h)− uκ(t, x) ⊗ (uku)κ(t, x+ h))
]

dx,

aκ(h) :=
1

2

∫

T3

Cκ(x, x+ h)dx,

and

P κ(t, h) := E

(

∇h

∫

T3

pκ(t, x)uκ(t, x+ h)dx−∇⊤
h

∫

T3

uκ(t, x)pκ(t, x+ h)dx

)

.

Ultimately, the goal is to pass κ → 0 in (3.6) to obtain equation (3.2). However, before sending
κ → 0, we must deal with the pressure term P κ. We will see that since uκ is divergence free and
we are pairing with an isotropic test function η, the contribution from the pressure, P κ, vanishes

∫

R3

η(h) : P κ(t, h)dh = 0. (3.7)

To show this, we observe that, by symmetry of η and integration by parts in h, and using the
identity,

divh η(h) = divh

(

φ(|h|)I + ϕ(|h|)ĥ ⊗ ĥ
)

= Φ(|h|)ĥ, Φ(ℓ) = φ′(ℓ) + ϕ′(ℓ) + 2ℓ−1ϕ(ℓ),
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we have
∫

R3

η(h) : P κ(t, h)dh

= −E

∫∫

divh η(h) · pκ(t, x) (uκ(t, x+ h)− uκ(t, x− h)) dxdh

= −E

∫∫

Φ(|h|) pκ(t, x) (uκ(t, x+ h)− uκ(t, x− h)) · ĥ dxdh

= −E

∫

pκ(t, x)

(

∫

R+

Φ(ℓ)

[

∫

|h|=ℓ
(uκ(t, x+ h)− uκ(t, x− h)) · ĥ dS(h)

]

dℓ

)

dx.

By the divergence theorem, we conclude that
∫

|h|=ℓ
(uκ(x+ h)− uκ(x− h)) · ĥ dS(h) =

∫

|h|≤ℓ
2 div uκ(x+ h)dh = 0,

and therefore (3.7) holds for all suitably regular isotropic tensors η(h).
Now we aim to pass to the limit as κ → 0. It is a simple consequence of the form of the noise

that the convergence Cκ(x, x + h) → C(x, x + h) holds locally uniformly in both x and h and
therefore aκ(h) → a(h) locally uniformly. Additionally, using the standard properties of mollifiers
on L2 vector fields, we have that P⊗ dt almost everywhere in Ω× [0, T ]

uκ → u in L2
x.

The moment bound supt∈[0,T ]E‖uκ(t)‖pL2
x
< ∞ for any p > 2 implies that for each t, the sequence

(uκ(t))κ>0 is uniformly integrable in L2(Ω × T
3). Therefore, by the Vitali convergence Theorem,

for each (t, h) ∈ [0, T ]× R
3,

Γκ(t, h) → Γ(t, h). (3.8)

Furthermore the uniform bound

Γκ(t, h) ≤ E‖u‖2L∞
t L2

x
< ∞,

and the bounded convergence theorem imply

Γκ → Γ in L1
loc([0, T ]× R

3). (3.9)

Both the pointwise convergence (3.8) and L1 convergence (3.9) are enough to pass to the limit in
all terms of equation (3.6) that involve Γκ.

It remains to pass to the limit in the term involving Dκ,k. Using the properties of mollifiers
and the fact that u ∈ L3(Ω× [0, T ]×T

3), we conclude that for P⊗ dt⊗ dh almost every (ω, t, h) ∈
Ω× [0, T ]× R

3, both

(uk u)κ(ω, t, ·) ⊗ Thuκ(ω, t, ·) → (u⊗ Thu)(ω, t, ·)uk(ω, t, ·),
and

uκ(ω, t, ·)⊗ Th(u
k u)κ(ω, t, ·) → (u⊗ Thu)(ω, t, ·)Thu

k(ω, t, ·), (3.10)

converge in L1(T3). Additionally, the fact that u ∈ Lq(Ω × [0, T ] × T
3) for each 2 ≤ q < 10/3,

implies that for each h 6= 0, the sequences ((uk u)κ ⊗ Thu)κ>0 and (uκ ⊗ Th(u
k u)κ(ω, t, ·))κ>0 are

also uniformly integrable in L1(Ω × [0, T ] × T
3). Combining this with the pointwise convergence

(3.10), the Vitali convergence Theorem implies that for each h the following convergence holds in
L1([0, T ])

Dκ,k(·, h) → 2E

∫

T3

[

(u(·, x) ⊗ Thu(·, x))uk(·, x)− (u(·, x) ⊗ Thu(·, x))Thu
k(·, x)

]

dx.
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Using the symmetry of η and the identity from Lemma 3.4 we find that the limit can be written in
terms of the third order structure function

2

∫

R3

(

∂hk
η(h) : E

∫

T3

[

(u(t, x)⊗ Thu(t, x))u
k(t, x)− (u(t, x) ⊗ Thu(t, x))Thu

k(t, x)
]

dx

)

dh

=

∫

R3

∂hk
η(h) : Dk(t, h)dh.

Finally, using the uniform bound
∣

∣

∣
∂hk

η(h) : Dκ,k(t, h)
∣

∣

∣
≤ E‖u‖3L3

t,x
< ∞,

it follows from the bounded convergence theorem that

∂hk
η : Dκ,k → ∂hk

η : Dk in L1([0, T ]× R
3)

and therefore we may pass the limit of the final term in equation (3.6). �

Naturally the same proof, with some small modifications, can be applied to the case of stationary
martingale solutions to (NSE), in which case the KHM relation takes a simpler form.

Corollary 3.5. Let u be a stationary weak martingale solution to (NSE). Let η(h) =
(ηij(h))

3
ij=1 be a smooth, compactly supported, isotropic, rank two test function of the form

η(h) = φ(|h|)I + ϕ(|h|)ĥ ⊗ ĥ, ĥ =
h

|h| , (3.11)

where φ(ℓ) and ϕ(ℓ) are smooth and compactly supported on (0,∞). Then the following equality
holds,

1

2

3
∑

k=1

∫

R3

∂hk
η(h) : Dk(h) dh = 2ν

∫

R3

∆η(h) : Γ(h) dh+ 2

∫

R3

η(h) : a(h) dh. (3.12)

4. Proof of the 4/3 law

In this section we first prove the (spherically averaged) 4/3 law as stated in (1.6), and then,
using similar ideas, we prove Proposition 1.7.

4.1. Proof of (1.6). From (2.5) and (3.3), we define the spherical averages

Γ̄(ℓ) =
1

4π

∫

S2

I : Γ(ℓn̂)dS(n̂), ā(ℓ) =
1

4π

∫

S2

tr a(ℓn̂)dS(n̂). (4.1)

Notice that Γ does not depend on time since we are considering stationary solutions. From Corol-
lary 3.5 applied with only the test function φ in (3.11) and Lemma 2.8, we deduce that

∫

R+

ℓ2φ(ℓ)

(

νΓ̄′′ + ν
2

ℓ
Γ̄′ + ā(ℓ)

)

dℓ =
1

4

∫

R+

S0(ℓ)ℓ
2φ′(ℓ)dℓ.

Integration by parts gives

1

4

∫

R+

S0(ℓ)ℓ
2φ′(ℓ)dℓ = − lim

ℓ→0

1

4
S0(ℓ)ℓ

2φ(ℓ)− 1

4

∫

R+

(

S′
0(ℓ) +

2

ℓ
S0(ℓ)

)

ℓ2φ(ℓ)dℓ

= −1

4

∫

R+

(

S′
0(ℓ) +

2

ℓ
S0(ℓ)

)

ℓ2φ(ℓ)dℓ,

where the boundary term vanishes due to Lemma 2.7. Hence, the following ODE holds in the sense
of distribution

−ℓ2

4

(

S′
0 +

2

ℓ
S0

)

= ℓ2
(

νΓ̄′′ + ν
2

ℓ
Γ̄′ + ā

)

.
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Note that this implies S0 is differentiable for all ℓ ∈ (0, 1/2). We may re-write this as

∂ℓ

(

ℓ3
S0

ℓ

)

= −ℓ2
(

4νΓ̄′′ + 4ν
2

ℓ
Γ̄′ + 4ā

)

.

Recall from Lemma 2.8 that Γ ∈ C2
ℓ for each fixed ν > 0, and hence the right-hand side is not

singular. Therefore, integration yields:

S0(ℓ)

ℓ
= − 1

ℓ3

∫ ℓ

0
τ2
(

4νΓ̄′′(τ) + 4ν
2

τ
Γ̄′(τ) + 4ā(τ)

)

dτ. (4.2)

Firstly, since

4

ℓ3

∫ ℓ

0
τ2ā(ℓ)dτ =

4

3
ā(0) +

4

ℓ3

∫ ℓ

0
τ2 (ā(τ)− ā(0)) dτ,

we use the continuity of ā and infer that

lim
ℓI→0

sup
ℓ∈(0,ℓI)

4

ℓ3

∫ ℓ

0
τ2 (ā(τ)− ā(0)) dτ = 0.

Moreover, a further integration by parts gives

1

ℓ3

∫ ℓ

0

[

τ2Γ̄′′(τ) + 2τ Γ̄′(τ)
]

dτ =
Γ̄′(ℓ)

ℓ
.

Recalling that

∇h tr Γ(h) = E

∫

T3

u(t, x)∇hu(t, x+ h)dx = −E

∫

T3

u(t, x+ h)∇xu(t, x)dx

we obtain
∣

∣Γ̄′(ℓ)
∣

∣ . ℓE‖∇u‖2L2
x
.

Hence, recalling also that ā(0) = ε, (4.2) becomes

S0(ℓ)

ℓ
= −4νΓ̄′(ℓ)

ℓ
− 4

3
ε+ oℓ→0(1) (4.3)

where the oℓ→0(1) vanishes as ℓ → 0 uniformly with respect to ν. Next, using (1.2),

∣

∣

∣

ν

ℓ
Γ̄′(ℓ)

∣

∣

∣
.

ν

ℓ

(

E‖∇u‖2L2
x

)1/2 (

E‖u‖2L2
x

)1/2
.

(εν)1/2

ℓ

(

E‖u‖2L2
x

)1/2
.

Therefore, by the weak anomalous dissipation condition (WAD), we can choose ℓD(ν) → 0 such

that
(

νE‖u‖2
)1/2

= o(ℓD). Hence, for all ℓI < 1/2, there holds

lim
ν→0

sup
ℓ∈(ℓD ,ℓI)

∣

∣

∣

ν

ℓ
Γ̄′(ℓ)

∣

∣

∣
= 0. (4.4)

The result stated in (1.6) follows after applying (4.4) and (4.3). The proof is concluded.

4.2. Proof of Proposition 1.7. The above proof is easily adapted to prove Proposition 1.7.
Consider the general case in which u does not obey anomalous dissipation. Recall from (4.2) that

S0(ℓ)

ℓ
= −ν

1

ℓ3

∫ ℓ

0
τ24

(

Γ̄′′ +
2

ℓ
Γ̄′

)

dτ − 4

ℓ3

∫ ℓ

0
τ2ā(τ)dτ. (4.5)

Furthermore, from the definition of Γ̄ in (4.1), we have that

Γ̄′′(ℓ) +
2

ℓ
Γ̄′(ℓ) = − 1

4π

∫

S2

∫

T3

E∇u(x) : ∇u(x+ ℓn̂)dxdS(n̂).



18 J. BEDROSSIAN, M. COTI ZELATI, S. PUNSHON-SMITH, AND F. WEBER

For each fixed ν, the energy inequality (1.2) implies

ν

∣

∣

∣

∣

Γ̄′′ +
2

ℓ
Γ̄′

∣

∣

∣

∣

≤ νE‖∇u‖2L2
x
≤ ā(0).

Therefore, from (4.5),

−8

3
ā(0) − 4

ℓ3

∫ ℓ

0
τ2 (ā(τ)− ā(0)) dτ ≤ S0(ℓ)

ℓ
≤ − 4

ℓ3

∫ ℓ

0
τ2 (ā(τ)− ā(0)) dτ.

Proposition 1.7 then follows.

5. Proof of the 4/5 law

We conclude here the proof of our main Theorem 1.3, by showing the validity of (1.7). Our
starting point will be the stationary form of the KHM relation (3.12) where we take the isotropic
test function η to be of the form

η(h) = ϕ(|h|)ĥ ⊗ ĥ, ĥ =
h

|h| ,

i.e., we take φ(|h|) = 0 in the general form (3.1). This gives the following balance relation

3
∑

k=1

∫

R3

∂hk
(ϕ(|h|)ĥ ⊗ ĥ) :

(

1

2
Dk(h) + 2ν∂hk

Γ(h)

)

dh = 2

∫

R3

ϕ(|h|) ĥ ⊗ ĥ : a(h)dh. (5.1)

Using the following elementary identity

∂hk
(ϕ(|h|)ĥ ⊗ ĥ) =

(

ϕ′(|h|) − 2|h|−1ϕ(|h|)
)

ĥ⊗ ĥ ĥk + |h|−1ϕ(|h|)
(

ek ⊗ ĥ+ ĥ⊗ ek
)

we may write

1

2

3
∑

k=1

∫

R3

∂hk
(ϕ(|h|)ĥ ⊗ ĥ) : Dk(h) dh =

1

2
E

∫∫

T3×R3

(

ϕ′(|h|)− 2|h|−1ϕ(|h|)
)

(δhu · ĥ)3dxdh

+E

∫∫

T3×R3

|h|−1ϕ(|h|)|δhu|2(δhu · ĥ)dxdh

= 2π

∫

R+

(

ℓ2ϕ′(ℓ)− 2ℓϕ(ℓ)
)

S||(ℓ) dℓ+ 4π

∫

R+

ℓϕ(ℓ)S0(ℓ) dℓ

(5.2)
and after an integration by parts, write

3
∑

k=1

∫

R3

∂hk
(ϕ(|h|)ĥ ⊗ ĥ) : 2ν∂hk

Γ(h) dh

= 2νE

∫∫

T3×R3

(

ϕ′(|h|) − 2|h|−1ϕ(|h|)
)

(ĥ · u)Th(ĥ⊗ ĥ : ∇u)dxdh

+ 4νE

∫∫

T3×R3

|h|−1ϕ(|h|)
(

(ĥ · u)Th(div u)− (div u)(ĥ · Thu)
)

dxdh

= 8πν

∫

R+

(ℓ2ϕ′(ℓ)− 2ℓϕ(ℓ))H(ℓ)dℓ.

(5.3)

where we have defined H(ℓ) by

H(ℓ) =
1

4π
E

∫

S2

(
∫

T3

(n̂ · u)(n̂⊗ n̂ : Tn̂ℓ∇u) dx

)

dS(n̂). (5.4)
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Denoting

ã(ℓ) =
1

4π

∫

S2

n̂⊗ n̂ : a(ℓn̂)dS(n̂),

we obtain

2

∫

ϕ(|h|)ĥ ⊗ ĥ : a(h)dh = 8π

∫

R+

ℓ2ϕ(ℓ)ã(ℓ)dℓ.

Using the fact that ℓ2ϕ′(ℓ) − 2ℓϕ(ℓ) = ℓ4
(

ℓ−2ϕ(ℓ)
)′

and collecting the identities (5.2),(5.3), and
(5.4) we can write the balance relation (5.1) as the following distributional ODE

∂ℓ
[

ℓ4(S||(ℓ) + 4νH(ℓ))
]

− 2ℓ3S0(ℓ) + 4ℓ4ã(ℓ) = 0 in D′(0,∞).

Integrating both sides of this equation gives

ℓ4(S||(ℓ) + 4νH(ℓ)) = lim
ℓ→0+

(

ℓ4(S||(ℓ) + 4νH(ℓ))
)

+ 2

∫ ℓ

0
τ3S0(τ)dτ − 4

∫ ℓ

0
τ4ã(τ)dτ. (5.5)

The boundary term vanishes thanks to Lemma 2.7 and the fact that νH(ℓ) is bounded by the
energy dissipation

sup
ℓ∈R+

νH(ℓ) ≤
(

νE‖u‖2L2
x

)1/2 (

νE‖∇u‖2L2
x

)1/2
≤ νE‖∇u‖2L2 .

Dividing both sides of (5.5) by ℓ5 gives

S||(ℓ)

ℓ
= −4ν

H(ℓ)

ℓ
+ 2ℓ−5

∫ ℓ

0
τ3S0(τ)dτ − 4ℓ−5

∫ ℓ

0
τ4ã(τ)dτ. (5.6)

Under the assumption of weak anomalous dissipation

ν1/2
(

E‖u‖2L2
x

)1/2
= o(ℓD),

we observe that

lim
ℓI→0

lim
ν→0

sup
ℓ∈[ℓD,ℓI ]

|H(ℓ)|
ℓ

≤ lim
ν→0

ℓ−1
D

(

νE‖u‖2L2

)1/2 (
νE‖∇u‖2L2

)1/2
= 0. (5.7)

Moreover, since a(h) is uniformly continuous in h independently of ν and
∫

S2
n̂ ⊗ n̂ dS(n̂) = 4

3πI,
we have that

ã(ℓ)− 1

3
tr a(0) =

1

4π

∫

S2

n̂⊗ n̂ : (a(ℓn̂)− a(0))dS(n̂) = oℓ→0(1),

and therefore,

4ℓ−5

∫ ℓ

0
τ4ã(τ)dτ =

4

15
tr a(0) + 4ℓ−5

∫ ℓ

0
τ4
(

ã(τ)− 1

3
tr a(0)

)

dτ =
4

15
ε+ oℓ→0(1) (5.8)

where the oℓ→0(1) vanishes as ℓ → 0 uniformly with respect to ν and tr a(0) = ε. Then using the
4/3 law,

lim
ℓI→0

lim
ν→0

sup
ℓ∈[ℓD,ℓI ]

2ℓ−5

∫ ℓ

0
τ3S0(τ)dτ =

2

5

(

−4

3
ε

)

= − 8

15
ε, (5.9)

and combining, the 4/5 law follows by substituting the limits (5.7), (5.8) and (5.9) into equation
(5.6).

6. Necessary conditions for third order scaling laws

In this section we prove Theorem 1.11. As for the sufficient condition results of Theorem 1.3,
it is natural to use the result on S0 to deduce the result on S||.
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6.1. Proof of (1.10) for S0. From (4.3),

S0(ℓ)

ℓ
= −4νΓ̄′(ℓ)

ℓ
− 4

3
ε+ oℓ→0(1), (6.1)

where the oℓ→0(1) vanishes as ℓ → 0 uniformly with respect to ν. Then,

Γ̄′(ℓ) =
∑

i,j

1

4π
E

∫

S2

∫

T3

ui(x)∂xju
i(x+ ℓn̂)n̂jdxdS(n̂)

= −
∑

i,j

1

4π
E

∫

S2

∫

T3

∂xju
i(x)ui(x+ ℓn̂)n̂jdxdS(n̂).

Observe by periodicity that

E
1

4π

∫

S2

∫

T3

∂xju
i(x)ui(x)n̂jdxdS(n̂) = 0,

and hence

Γ̄′(ℓ) = −
∑

i,j

ℓ

4π
E

∫

S2

∫

T3

∂xju
i(x)

(

ui(x+ ℓn̂)− ui(x)

ℓ

)

n̂jdxdS(n̂).

By condition (1.9) and (1.2)

Γ̄′(ℓ) = −
∑

i,j

ℓ

4π
E

∫

S2

∫

T3

∂xju
i(x)∂xk

ui(x)n̂kn̂jdxdS(n̂) +
ℓ

ν
oℓ→0(1),

where crucially, as above, the oℓ→0(1) vanishes as ℓ → 0 uniformly with respect to ν. Since
(denoting the Kronecker δ as δkj)

1

4π

∫

S2

n̂kn̂jdS(n̂) =
1

3
δkj,

we have

Γ̄′(ℓ) = − ℓ

3
E‖∇u‖2L2

x
+

ℓ

ν
oℓ→0(1).

In turn, by (6.1), there holds

S0(ℓ)

ℓ
=

4

3
Eν‖∇u‖2L2

x
− 4

3
ε+ oℓ→0(1),

and the desired result for S0 follows by the energy balance assumption (1.8).

6.2. Proof of (1.10) for S||. By estimate (1.10) for S0,

2ℓ−5

∫ ℓ

0
τ3S0(τ)dτ = oℓ→0(1)

where oℓ→0(1) vanishes as ℓ → 0 uniformly with respect to ν. Hence, from (5.6) and (5.8) we have

S||(ℓ)

ℓ
= −4ν

H(ℓ)

ℓ
− 4

15
ε+ oℓ→0(1). (6.2)

Hence, we consider

H(ℓ) =
∑

i,j,k

1

4π
E

∫

S2

∫

T3

n̂in̂jn̂kui(x)∂xk
uj(x+ ℓn̂)dxdS(n̂)

= −
∑

i,j,k

1

4π
E

∫

S2

∫

T3

n̂in̂jn̂k∂xk
ui(x)uj(x+ ℓn̂)dxdS(n̂).
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Observe that for all i, j, k ∈ {1, 2, 3}
1

4π

∫

S2

n̂in̂jn̂kdS(n̂) = 0,

and hence

H(ℓ) = −
∑

i,j,k

1

4π
E

∫

S2

∫

T3

n̂in̂jn̂k∂xk
ui(x)

(

uj(x+ ℓn̂)− uj(x)
)

dxdS(n̂).

By (1.9) and (1.2), we have

H(ℓ) = −
∑

i,j,k,q

ℓ

4π
E

∫

S2

∫

T3

n̂in̂jn̂kn̂q ∂xk
ui(x)∂xqu

j(x)dxdS(n̂) +
ℓ

ν
oℓ→0(1),

where oℓ→0(1) vanishes as ℓ → 0 uniformly with respect to ν. Then, we use the following identity
for i, j, k, q ∈ {1, 2, 3} and the Kronecker δ,

1

4π

∫

S2

n̂in̂jn̂kn̂qdS(n̂) =
1

15
(δijδkq + δikδjq + δiqδjk) ,

so that

∑

i,j,k,q

(

1

4π

∫

S2

n̂in̂jn̂kn̂qdS(n̂)

)(
∫

T3

∂xk
ui(x)∂xqu

j(x)dx

)

=
1

15

∫

T3

|∇u|2dx+
2

15

∫

T3

(div u)2dx.

Therefore, since u is divergence free,

ν
H(ℓ)

ℓ
= − ν

15
E‖∇u‖2L2

x
+ oℓ→0(1).

Hence, by (6.2) we obtain

S||(ℓ)

ℓ
=

4

15
νE‖∇u‖2L2

x
− 4

15
ε+ oℓ→0(1),

Therefore, energy balance (1.8) implies the result.

7. Conclusions and further directions

In the last section, we would like to suggest several potential directions in which to expand the
study of (NSE) in order to make closer contact with physicists and with experimental observations.
Even the basic assertion (WAD) seems rather difficult to prove, but there are also a number of ques-
tions one can ask assuming (WAD) and statistical symmetry assumptions. Further, fairly reliable
data is available on structure functions of order p ≤ 10 [50]; deducing further results assuming the
experimental data on these quantities is approximately accurate may also be a reasonable direction.
We expect decaying turbulence problems, that is, deterministic Navier-Stokes with random initial
data, to be significantly harder. Moreover, the initial data measures could add significant biases to
the statistics of the answers if not chosen in a natural way (if there exists a natural way at all). The
following is a list of open important problems related specifically to stationary martingale solutions
to (NSE).

1. Anomalous dissipation. By far, the most important question is the existence of suitable
stationary martingale solutions that satisfy (WAD) (at least). It is important to further answer
(affirmatively or negatively) whether or not such solutions are unique (in law).
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2. Quantitative regularity estimates. One can quantify estimates on the dissipation length
scale and the inertial range regularity via the growth rate of various norms as ν → 0. In the physics
literature, quantities equivalent to the regularity E‖u&ℓ−1

I
‖p
B

ζp/p
p,∞

for scaling exponents ζp < p and

p positive integers are traditionally considered2. The statistical self-similarity assumed in K41
formally predicts that such norms are uniformly bounded as ν → 0 for ζp = p/3 for all p ≥ 2,
however, experimental observations suggest that ζ2 > 2/3 and ζp < p/3 for p > 3. Due to the
difficulty of measuring higher moments, reliable data seems only available for moments p ≤ 10 (see
e.g. [2,27,50] ). Other reasonable norms could be, for example, E‖eλ(ν)|∇|〈∇〉σu‖p

Lp
x
(or the Gevrey

analogues) where limν→0 λ(ν) = 0 provides an estimate of the dissipation length-scale and σ an
estimate of the inertial range regularity. See for example the works of [25,44] which investigate
what estimates follow from parabolic regularity and the energy inequality. To our knowledge,
no estimates have been made on {u}ν>0 aside from those which follow from parabolic regularity
combined with the energy inequality.

3. Stochastic well-posedness at finite Reynolds numbers. Experimental measurements
of the 6-th order structure function [50] combined with e.g. [25] provides experimental evidence

that statistically stationary solutions to (NSE) could be almost-surely C0,α
t C∞

x for all ν > 0
(provided the force is smooth in space); note this also implies the energy balance, condition (1.8).
In particular, this would suggest that the Navier-Stokes equations are indeed the correct equations
with which to model turbulent fluids. Ergodicity, mixing, uniqueness and other similar properties of
such solutions are also very important; see [29–31] and the references therein for the corresponding
work on 2D Navier-Stokes.

4. Convex integration. It is extremely important to determine whether or not the h-principle

holds in the same regularity classes that {u}ν>0 could be uniformly bounded, e.g. in L3
tB

1/3
3,∞ (the

regularity class matched by the 4/5 law). Furthermore, it is important to determine if ‘wild’
solutions can be obtained via the inviscid limits of stationary solutions to (NSE).

5. Statistical symmetry. It is important to understand under what conditions one can prove
statements such as the approximate isotropy in Definition 1.9. Experimental evidence strongly
suggests that the flows are not statistically scale invariant in the inertial range in any sense; however,
one would want to determine under what conditions Parisi-Frisch multi-fractality [27,28] and/or
Kolmogorov’s refined similarity hypotheses [38, 47] can be verified in a mathematically rigorous
framework. See [8] for work in this direction.

6. Intermittency estimates. The flatness parameters

Fp(N) =
E‖uN‖2p

L2p

(E‖uN‖2
L2)p

have been classically proposed as a measure of intermittency in both random and deterministic
fields [8,27]. Getting estimates on the growth of flatness parameters as N → ∞ and ν → 0 will
be important. Recall that statistically self-similar fields, Gaussian fields, and white noise all have
bounded flatness parameters.

7. Inviscid limit. An important question is to determine whether or not we have the inviscid
limit uν → u0 where u0 is a statistically stationary weak solution of the stochastically forced Euler
equations displaying a nonlinear energy flux balancing the input ε (see [11,19] and the references
therein for nearly sharp conditions in the deterministic case).

2Here u&ℓI denotes the Littlewood-Paley projection to frequencies & ℓ−1
I , uN denotes the Littlewood-Paley

projection to frequencies N/2 . · . 2N , and Bs
q,∞ = supN∈2N ‖ |∇|s uN‖Lq

x
denotes the inhomogeneous Besov space).

It is classical that for s ∈ (0, 1) we have suph∈B(0,1) |h|
−s ‖δhu‖Lq

x
+ ‖u‖Lq

x
≈ ‖u‖Bs

q,∞
.
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8. Colored-in-time noise. Eventually generalizing any results to cover at least colored-in-
time random noise would be desirable (e.g. replacing dβk with an Ornstein-Uhlenbeck process).
See e.g. [39] for results in this direction regarding ergodicity and mixing.
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