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Characterizations of Integral Input-to-State Stability
for systems with multiple invariant sets

Paolo Forni, Student Member, IEEE, David Angeli, Fellow, IEEE

Abstract—We extend the classical integral Input-to-State Sta-
bility (iISS) theory to systems evolving on complete Riemannian
manifolds and admitting multiple disjoint invariant sets, so as to
allow a much broader variety of dynamical behaviors of interest.
Building upon a recent extension of the Input-to-State (ISS)
theory for this same class of systems, we provide characterizations
of the iISS concept in terms of dissipation inequalities and
integral estimates as well as connections with the Strong iISS
notion. Finally, we discuss some examples within the domain of
mechanical systems.

Index Terms—Stability of nonlinear systems, Lyapunov meth-
ods, Manifolds

I. INTRODUCTION

IN the last 30 years, the study of stability and sensitivity
to disturbances for general nonlinear systems has largely

gained new valid tools by the introduction of the Input-to-
State Stability (ISS) paradigm [23], [24]. The definition of
ISS implies the qualitative property of small overshoot with
small disturbances and initial conditions, and thus represents a
measure of performance in the qualitative analog of “finite L2

gain” (nonlinear H∞). As a weaker but still very meaningful
notion of stability, the Integral Input-to-State Stability (iISS)
has been introduced in [22], [5]. The definition of iISS
implies the qualitative property of small overshoot when initial
conditions are small and disturbances have finite energy, and
thus represents a measure of performance in the qualitative
nonlinear analog of “finite H2 norm” for linear systems .
Applications of the iISS property address the stabilization and
disturbance attenuation of systems with bounded controls [17],
nonlinear cascades [8], large-scale systems via decentralized
output-feedback control [13], systems in block strict-feedback
form via output regulation [12], [14], and hybrid switched
systems [19].

In their classical formulation, both ISS and iISS operate
globally on systems defined in Euclidean space and having
a single equilibrium at the origin. The definition potentially
allows to characterize stability with respect to arbitrary com-
pact invariant sets, provided that these sets are simultaneously
Lyapunov stable and globally attractive. These requirements
hamper a global analysis of many dynamical behaviors of
interests, such as multistability, periodic oscillations, chaos,
just to name a few. As an attempt to overcome such limitations,
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the almost global stability property was introduced in [21],
and short afterwards, almost Input-to-State Stability [1] for
systems admitting exogenous disturbances. The key idea of
this approach is to replace Lyapunov function by suitable
density function whose explicit construction still generates
some difficulties. More recently, the need for conditions in-
volving density functions was removed in the case of systems
with exponentially unstable equilibria thanks to a careful
application of integral manifold theory [4]. The authors in
[2] have instead shown that the most natural way of still
conducting a global analysis in the ISS sense is to relax the
Lyapunov stability requirement [11] (rather than the global
attractiveness), under relatively mild additional assumptions.

Within the framework introduced in [2], we extend the
iISS notion to systems evolving on complete Riemannian
manifolds and possibly exhibiting multiple disjoint compact
invariant sets. Specifically, we introduce a notion of iISS which
is weaker than the classical one given in [22], that is the
conjunction of two properties: global attractiveness with zero
disturbances and the bounded-energy bounded-state property.
Indeed, only such weaker notion is consistent with the lack
of Lyapunov stability which is typical of multistable systems,
while still providing equivalent characterizations in terms of
Lyapunov-like and LaSalle-like dissipation inequalities.

Outline of Paper: Basic definitions and main equivalences
for iISS are presented in Section II. Section III provides
the main proofs of this paper. When characterizing ISS and
iISS in terms of Lyapunov-like inequalities, an intermediate
stability concept arises, namely the Strong iISS notion, which
is discussed in the multistable setting in Section IV. Section V
collects examples of systems, within the mechanical domain,
which fulfill the iISS or Strong iISS properties. Conclusive
remarks are discussed in Section VI.

Notation: The symbol d(x1, x2) denotes the Riemannian
distance between two points x1 and x2 of a Riemannian
manifold M , according with the Riemannian metric g. For
v ∈ TMx, denote ‖v‖g denote the norm gx(v, v)

1
2 induced by

g at x.
For a set S ⊂M define |·|S as

|x|S = inf
a∈S

d(x, a).

For a compact set A ⊂ M , ð(A) and int {A} respectively
denote the boundary and the interior of A. If w is a vector in
the Euclidean space, i.e. an input, notation |w| will indicate
the standard Euclidean norm; otherwise, if w ∈M , we define
|w| := d(w, x0) with x0 being the designated origin element
of M . For a measurable function d : R+ → Rm define its
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infinity norm over the time interval [t1, t2] with respect to the
origin and with respect to a compact set S as follows:∥∥d[t1,t2]

∥∥ = ess sup
t1≤t≤t2

|d(t)|,∥∥d[t1,t2]

∥∥
S

= ess sup
t1≤t≤t2

|d(t)|S ,

and denote ‖d‖ :=
∥∥d[0,+∞)

∥∥ and ‖d‖S :=
∥∥d[0,+∞)

∥∥
S

.
We define the saturation function as sat {x} :=
sign {x}min {1, |x|}.

II. DEFINITIONS AND MAIN RESULT

Let M be a C2, complete, connected, n-dimensional Rie-
mannian manifold without boundary and with g its associated
Riemannian metric. Let D be a closed subset of Rm containing
the origin. Consider the system:

ẋ(t) = f(x(t), d(t)), (1)

where f(x, d) : M × D → TxM is a locally Lipschitz
continuous mapping (in the sense of Definition 13), with
state x taking value in M and d(·) any locally essentially
bounded and measurable input signal taking values in D.
We denote with MD such class of input signals. We denote
by X(t, x; d) the uniquely defined solution of (1) at time t
fulfilling x(0) = x under the input d(·).

It is useful to recall here the classical definition of the
integral ISS property [22] and, in particular, to generalize it
for systems evolving on manifolds.

Definition 1: System (1) is said to be integral ISS (iISS) in
the classical sense or, in short, classical iISS with respect to
a compact set A and input d if there exist functions α ∈ K∞,
β ∈ KL, and γ ∈ K such that, for all x ∈ M and all d(·) ∈
MD, the solution X(t, x; d) is defined for all t ≥ 0 and

α (|X(t, x; d)|A) ≤ β (|x|A, t) +

∫ t

0

γ(|d(s)|) ds (2)

for all t ≥ 0.
Note that, if in inequality (2) we set d(t) ≡ 0 for all t ≥
0, we recover the inequality α (|X(t, x; d)|A) ≤ β (|x|A, t),
which has been shown to be equivalent to global asymptotic
stability with zero inputs (0-GAS) [18]. The 0-GAS property is
in turn equivalent to the conjunction of two properties: global
Lyapunov stability and global attractiveness. For this reason,
the aforementioned lack of global Lyapunov stability - typical
of multistable systems - enforces the adoption of a weaker
notion of the integral ISS property for this kind of systems,
as in the following.

The class of multistable systems of interest is defined as in
[2] by considering the unperturbed system:

ẋ(t) = f(x(t), 0). (3)

We assume that all solutions of the unperturbed system (3) are
bounded forward in time and that there exists a non-empty ω-
limit set. Consider a compact invariant set W containing all
α- and ω-limit sets of (3). Crucial in the stability analysis by
means of Lyapunov-like analytical tools would then be the
notion of decomposition for a compact invariant set and the

notion of absence of cycles in the decomposition itself, as
detailed in the Definitions 2 and 3 as follows.

Definition 2: Let Λ ⊂ M be a compact and invariant set
for (3). A decomposition of Λ is a finite, disjoint family of
compact invariant sets Λ1, . . . ,Λk such that

Λ =

k⋃
i=1

Λi.

Each Λi will then be called an atom of the decomposition.
For an invariant set Λ, its attraction and repulsion subsets are
defined as follows:

A(Λ) = {x ∈M : |X(t, x; 0)|Λ → 0 as t→ +∞} ,
R(Λ) = {x ∈M : |X(t, x; 0)|Λ → 0 as t→ −∞} .

Define a relation between Λi ⊂M and Λj ⊂M by Λi ≺ Λj
if A(Λi) ∩ R(Λj) 6= ∅ (this relation implies that there is no
solution connecting set Λj with set Λi.

Definition 3: Let Λ1, . . . ,Λk be a decomposition of Λ, then
1) An r-cycle (r ≥ 2) is an ordered r-tuple of distinct

indices i1, . . . , ir such that Λi1 ≺ · · · ≺ Λir ≺ Λi1 .
2) A 1-cycle is an index i such that [R(Λi) ∩ A(Λi)]−Λi 6=
∅.

3) A filtration ordering is a numbering of the Λi so that
Λi ≺ Λj ⇒ i ≤ j.

Throughout the paper, we will use the following assumption
onW which is crucial for the construction of a Lyapunov func-
tion for the unperturbed system (as carried out in Appendix C
in [2]):

Assumption 1 (No cycle condition): The set W admits a
finite decomposition, i.e. W =

⋃k
i=1Wi, for some non-empty

disjoint compact sets Wi, which shows no cycle between the
Wis and which satisfies a filtration ordering as detailed in
Definitions 2 and 3.
Note that Assumption 1 basically rules out the presence of
heteroclinic cycles and homoclinic orbits or, more precisely,
any such cycles would typically need to be included as atoms
of a coarser decomposition. (e.g., the theory does not apply to
non-dissipative Hamiltonian systems).

We are going to list several interesting properties for system
(1) with W satisfying Assumption 1. The conjunction of
the properties as in Definitions 4 and 5 will then provide
our weaker notion of integral ISS for multistable systems.
We remark that most of the following properties are direct
extensions of those introduced in [5], [6], and [3].

Definition 4 (UBEBS): System (1) is said to have the
uniform bounded-energy bounded-state (UBEBS) property if,
for some α, γ, σ ∈ K∞ and some positive constant cu, the
following estimate holds for all t ≥ 0, all x ∈ M and all
d(·) ∈MD:

α(|X(t, x; d)|W) ≤ γ(|x|W) +

∫ t

0

σ(|d(s)|)ds+ cu. (4)

Definition 5 (zero-GATT): System (1) is said to have the
zero-global attraction (zero-GATT) property with respect to a
compact invariant set W , if every trajectory X(t, x; 0) of the
unperturbed system (3) satisfies

lim
t→+∞

|X(t, x; 0)|W = 0. (5)
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Definition 6: System (1) is said to be iISS in the multistable
sense with respect to the set W and the input d(·) if and only
if it satisfies Assumption 1 and the UBEBS and zero-GATT
properties.

Definition 7 (BEWCS): System (1) is said to satisfy the
Bounded Energy Weakly Converging State (BEWCS) property
if there exists a function σ̃ ∈ K∞ such that the following holds
for all x ∈M , and all d(·) ∈MD:∫ +∞

0

σ̃ (|d(s)|) ds < +∞ ⇒ lim inf
t→+∞

|X(t, x; d)|W = 0.

(6)
Definition 8 (BESCS): System (1) is said to satisfy the

Bounded Energy Strongly Converging State (BESCS) property
if there exists a function σ̃ ∈ K∞ such that the following holds
for all x ∈M , and all d(·) ∈MD:∫ +∞

0

σ̃ (|d(s)|) ds < +∞ ⇒ lim
t→+∞

|X(t, x; d)|W = 0.

(7)
Definition 9 (iISS-Lyapunov function): A C1 function V :

M → R is called an iISS-Lyapunov function for system (1)
if there exist functions α1, α2, γ ∈ K∞, and c ≥ 0, and a
continuous positive definite function α3 such that, for all x ∈
M ,

α1(|x|W) ≤ V (x) ≤ α2(|x|W + c), (8)

and the following dissipation inequality hold for all (x, d) ∈
M ×D:

DV (x)f(x, d) ≤ −α3(|x|W) + γ(|d|). (9)

Remark 1: Note that, in contrast to the classical definition
of iISS-Lyapunov function as given in [5], function V (x)
in (8) is bounded from above by an increasing function of
|x|W which is not necessarily class K (as c may be positive).
Setting c = 0 would in fact imply 0-GAS of the set W (by
standard arguments as in [18]), which cannot be the case for
decompositions with multiple connected components (lack of
Lyapunov stability).

Definition 10 (Smooth dissipativity): System (1) is said to
be smoothly dissipative if there exists a C1 function V : M →
R, functions α1, α2, σ ∈ K∞, a continuous positive-definite
function α4, and a continuous output map h : M → Rq with
h(x) = 0 whenever |x|W = 0, such that (8) holds and the
following dissipation inequality holds for all (x, d) ∈M ×D:

DV (x)f(x, d) ≤ −α4(|h(x)|) + σ(|d|). (10)

Definition 11 (Weak zero-detectability): System (1) with out-
put h(x) is said to be weakly zero-detectable if h(X(t, x; 0)) ≡
0 for all t implies |X(t, x; 0)|W → 0 as t→ +∞.

In our main result we will also compare the previous defini-
tions with the following apparently weaker stability estimate
which mixes integral and sup norms and is satisfied if, for
some α, β, γ, σ ∈ K∞ and some positive constant cm, we
have for all t ≥ 0, all x ∈M and all d(·) ∈MD:

α(|X(t, x; d)|W) ≤ β(|x|W)

+

∫ t

0

σ(|d(s)|)ds+ γ
(∥∥d[0,t]

∥∥)+ cm. (11)

zero-GATT
+ UBEBS

C∞ iISS-LF smoothly dissipative
+ weakly zero-detectable

zero-GATT
+ BEWCS

BESCS

zero-GATT
+ estimate (11)

forward completeness
+ estimate (13)

Lemmas 4, 5

Lemma 8

Lemma 6

Lemma 11
Lemma 10

Lemma 7

Lemma 9

C1 iISS-LF

with DV (W) = 0

Lemma 1

Fig. 1. Road-map of the proof of Theorem 1. Dash-dotted lines refers to
those proofs directly sketched below the statement of the Theorem.

Moreover, in the context of operators with finite H∞ norm, it
is useful to introduce the following notion of mixed integral
norm, inspired by [6]. We say that system (1) satisfies an Lp-
to-Lq norm with p 6= q if, for some σ ∈ K∞, we have for all
t ≥ 0, all x ∈M and all d(·) ∈MD:(∫ t

0

(|X(s, x; d)|W)q ds

)1/q

≤

≤
(
|x|pW +

∫ t

0

σ(|u(s)|)p ds+ c

)1/p

. (12)

Estimate (12) for p 6= q is actually equivalent to the following:∫ t

0

α(|X(t, x; d)|W) ≤ χ
(
|x|W +

∫ t

0

σ(|d(s)|)ds+ χ0

)
,

(13)
for some α, χ, σ ∈ K∞ and a constant χ0 > 0.

Theorem 1: Consider a nonlinear system as in (1) and let
W be a compact invariant set containing all α and ω limit sets
of (3) as in Assumption 1. Then the following properties are
equivalent:

1) zero-GATT and UBEBS;
2) existence of a smooth iISS-Lyapunov function V such

that DV (x) = 0 for all x ∈ W;
3) existence of a C1 iISS-Lyapunov function V ;
4) existence of an output function that makes the system

smoothly dissipative and weakly zero-detectable;
5) zero-GATT and BEWCS;
6) BESCS;
7) zero-GATT and mixed estimate (11);
8) forward completeness and integral estimate (13).

Proof: Implication 2 ⇒ 3 is trivial. Implication 3 ⇒ 4
holds true as it can be seen by setting h(x) := α3(|x|W)
and α4 equal to the identity function. Moreover, weak zero-
detectability is obtained by noticing that h(x) = 0 implies
x ∈ W by positive-definiteness of α3. We are now going to
show that 4 ⇒ 1. The UBEBS property directly follows by
applying the same arguments given in Lemma 1 for inequality
(9) to inequality (10). The zero-detectability condition allows
us to invoke the LaSalle’s invariance principle to inequality
(10) with d ≡ 0 for all t therefore yielding the zero-GATT
property. In order to show that 6 ⇒ 5, note that zero-GATT
follows from BESCS by setting d(t) ≡ 0 for all t ≥ 0,
whereas BESCS⇒ BEWCS trivially follows by the definitions
of lim sup, lim inf , and |·|W ≥ 0. Regarding implication 1
⇒ 7, note that mixed estimate (11) simply follows from the
UBEBS property by adding the sup norm γ(

∥∥d[0,t]

∥∥) for an
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arbitrary γ ∈ K∞ function. A diagram for the proof of all
other implications is given in Figure 1.

Remark 2: Integral ISS in the classical sense (Definition 1)
clearly implies integral ISS in the multistable sense (Definition
6) while the reverse is not true in general, i.e. whenever W
admits a decomposition with multiple atoms. However, if W
consists of a single connected component, integral ISS in the
multistable sense is actually equivalent to integral ISS in the
classical sense. The latter statement is proven by observing
that, if there is only one atom W , then the set D in (17) and
W are equivalent, thus Lemma 5 proves classical iISS of W .

Remark 3: One may wonder whether the definition of
integral Input-to-State Stability is not appropriate or even
misleading in the multistability context due to the fundamental
lack of Lyapunov stability in autonomous systems with glob-
ally attractive multiple invariant sets. However, as explained
in Remark 2, our definition still implies stability in case of
W being not decomposed in more than one connected com-
ponent. The latter property then justifies the adoption of term
integral Input-to-State Stability which naturally generalizes -
and retains continuity with - the standard ISS framework.

III. MAIN PROOFS

In this Section, we provide all remaining proofs for Theorem
1, as sketched in Figure 1. In all subsequent Lemmas, we let
Assumption 1 be satisfied for system (1).

Lemma 1 (iISS-Lyapunov ⇒ UBEBS): If system (1) admits
an iISS-Lyapunov function then it satisfies the zero-GATT and
UBEBS properties.

Proof: The zero-GATT property follows by standard
Lyapunov arguments by considering d(t) = 0 for all t ≥ 0,
integrating (9) along solutions of the unperturbed system. The
UBEBS property follows considering that:

DV (x)f(x, d) ≤ −α3(|x|W) + γ(|d|) ≤ γ(|d|), (14)

for all (x, d) ∈ M × D. Now pick any trajectory X(t, x; d)
corresponding to an input d(·) and initial state x. By integra-
tion of (14) along solutions of system (1) it follows that:

V (X(t, x; d))− V (x) ≤
∫ t

0

γ(|d(s)|)ds. (15)

It then follows from (8) that:

α1(|X(t, x; d)|W) ≤ α2(|x|W + c) +

∫ t

0

γ(|d(s)|)ds

≤ α2(2|x|W) + α2(2c) +

∫ t

0

γ(|d(s)|)ds,

which concludes our proof.
Instrumental, in the proofs of the following Lemmas, will

be the definition of a certain set D which, under zero-GATT of
W , represents a global (Lyapunov stable) attractor for system

(3). Consider a monotonically increasing sequence of compact
subsets1 M1 ⊂M2 ⊂ · · · ⊂M with the property that:

M =

+∞⋃
n=1

int {Mn} . (16)

Denote by X(t, S) the attainable set of (3) at time t from
initial conditions in S. Consider the set:

D =

+∞⋃
n=1

⋂
t≥0

X(t,Mn) . (17)

It is shown in Lemma 3 in [2] that the set D is positively
invariant, compact, globally asymptotically stable for (3), and
satisfies W ⊆ D, therefore it is also true that:

|x|D ≤ |x|W ≤ |x|D + c , (18)

for some non-negative constant c.
The following two Lemmas are obtained by adapting the

arguments in Lemma IV.10 and Proposition II.5 of [5] to the
case of systems evolving on manifolds and having multiple
invariant sets.

Lemma 2: Let system (1) be zero-GATT. Then, there exist a
smooth function U : M → R, K∞ functions υ1, υ2, υ, δ, and
a positive constant c such that:

υ1(|x|W) ≤ U(x) ≤ υ2(|x|W + c) (19)
DU(x)f(x, d) ≤ −υ(|x|W) + δ(|x|W)δ(|d|), (20)

for all x ∈ M and d ∈ D. Moreover, DU(x) = 0 for all
x ∈ W .

Proof: Due to the zero-GATT property, the arguments
presented in [2, Section III C] can be adapted for the case of
d ≡ 0, so as to infer the existence of a smooth function U :
M → R≥0, K∞ functions υ1, υ2, υ, and a positive constant c
such that:

υ1(|x|W) ≤ U(x) ≤ υ2(|x|W + c)

DU(x)f(x, 0) ≤ −υ(|x|W).

In [2, Section III C], function U(x) is obtained as the sum
of two functions: U1(x) with the property DU1(x) = 0 if
x ∈ D (the same as in Theorem 4); U2(x) with the property
DU2(x) = 0 if x ∈ W . Since (18) holds, we obtain DU(x) =
0 if x ∈ W .

Consider now the following function:

γ̃(r, s) := max
|x|W≤r,|d|≤s

|DU(x)| |f(x, d)− f(x, 0)| . (21)

Note that the correspondence C(r, s) =
{x ∈M,d ∈ D | |x|W ≤ r, |d| ≤ s} is compact-valued
and upper and lower hemicontinuous. Moreover function
(x, d) → |DU(x)| |f(x, d)− f(x, 0)| is continuous by
smoothness of U and continuity of f . Therefore, γ̃ is
continuous by the maximum theorem and nondecreasing with
respect to each argument. Moreover, we can easily see that
γ̃ vanishes for s = 0 (trivial) and r = 0 (since DU(x) = 0

1Existence of a monotonically increasing sequence of compact subsets of
M as in (16) follows from completeness of the manifold [10] and from the
fact that a locally compact and connected metric space M is second countable
[15].
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at x ∈ W). Hence, it can be majorized by a function
γ(r, s) := γ̃(r, s) + r + s separately of class K∞ in each
argument. Corollary IV.5 in [5] shows that, for a function
γ(t, s) separately of class K∞ in each argument, there exist
some functions δ ∈ K∞ such that γ(t, s) ≤ δ(t)δ(s). Then,
it follows from (20) that:

DU(x)f(x, d) = DU(x) [(f(x, d)− f(x, 0)) + f(x, 0)]

≤ |DU(x)| |f(x, d)− f(x, 0)| − υ(|x|W)

≤ −υ(|x|W) + δ(|x|W)δ(|d|) . (22)

Lemma 3: Let system (1) be zero-GATT. Then, there exist
a smooth function U : M → R, K functions υ1, υ2, a K
function δ, a continuous positive-definite function $, and a
positive constant c such that:

υ1(|x|W) ≤ U(x) ≤ υ2(|x|W + c) (23)
DU(x)f(x, d) ≤ −$(|x|W) + δ(|d|), (24)

for all x ∈ M and d ∈ D. Moreover, DU(x) = 0 for all
x ∈ W .

Proof: Due to Assumption 1 and the zero-GATT property,
Lemma 2 holds for some smooth function Ũ(x), and K∞
functions υ̃1, υ̃2, υ̃, δ and positive constant c̃ such that:

υ̃1(|x|W) ≤ Ũ(x) ≤ υ̃2(|x|W + c̃)

for all x ∈M , and

DŨ(x)f(x, d) ≤ −υ̃(|x|W) + δ(|x|W)δ(|d|) (25)

for all x ∈M and d ∈ D. Define π(·) of class K as follows:

π(r) =

∫ r

0

ds

1 + χ(s)
(26)

with χ a suitable continuous, positive, and increasing function
to be defined later. Composing π with Ũ and taking derivatives
yields, by virtue of (25):

D[(π ◦ Ũ)(x)]f(x, d) =
DŨ(x)f(x, d)

1 + χ(Ũ(x))

≤ − υ̃(|x|W)

1 + χ(Ũ(x))
+
δ(|x|W)δ(|d|)
1 + χ(Ũ(x))

(27)

which can be rewritten as (24) by selecting:

U := π ◦ Ũ ,
χ(·) := δ(υ̃−1

1 (·)),

$(·) :=
υ̃(|x|W)

1 + δ(υ̃−1
1 (υ̃2(·+ c)))

.

Note that, by the chain rule,

∂U(x)

∂x
=
∂π(s)

∂s

∣∣∣∣
s=Ũ(x)

· ∂Ũ(x)

∂x
= 0 (28)

for all x ∈ W .
We bring to the attention of the reader that if function

U in Lemma 3 were proper, i.e. ν1 ∈ K∞, then it would
qualify as an iISS-Lyapunov function. Unfortunately, this is
not necessarily the case, therefore U needs to be used in

addition to a proper function W as described in the proof
of Lemma 4.

From this point onwards, let the system (1) have the zero-
GATT and UBEBS properties. Therefore, let constant c > 0
and functions υ1, υ2, δ ∈ K, $ continuous positive-definite,
and U non-negative be given as in Lemma 3 and let constant
cu > 0 and functions α, σ, γ ∈ K∞ be given as in Definition
4.

Lemma 4: Assume that system (1) has the zero-GATT
property. Assume furthermore that system (1) is iISS in the
classical sense with respect to the set D and input d(·). Then,
there exists a smooth iISS-Lyapunov function as in Definition
9 and such that DV (x) = 0 for all x ∈ W .

Proof: By virtue of Theorem 6, classical iISS with respect
to D and input d(·) implies the existence of a function W , and
functions ᾱ1, ᾱ2, σ̄ ∈ K∞ and a continuous positive-definite
function ᾱ3 such that:

ᾱ1(|x|D) ≤W (x) ≤ ᾱ2(|x|D) (29)
DW (x)f(x, d) ≤ −ᾱ3(|x|D) + σ̄(|d|) . (30)

By combining (29)-(30) with inequalities (23)-(24) in Lemma
3 and by taking into account the bounds (18), we have that:

υ1(|x|W) + ᾱ1(|x|D) ≤ U(x) +W (x)

≤ υ2(|x|W + c) + ᾱ2(|x|W)

(31)
D [U(x) +W (x)] f(x, d) ≤ −$(|x|W)− ᾱ3(|x|D)

+σ̄(|d|) + δ(|d|) . (32)

By introducing the K∞ function

α1(s) =

{
υ1(s) if s ≤ c
υ1(c) + ᾱ1(s− c) if s > c

,

inequalities (31)-(32) read as inequalities (8)-(9) with α2 =
υ2 + ᾱ2, α3 = $, V = U +W , and γ = σ̄ + δ.

Lemma 5: Assume that system (1) has the zero-GATT and
UBEBS properties. Then system (1) is iISS in the classical
sense with respect to the set D.

Proof: Lemma 3 in [2] proves that zero-GATT with re-
spect toW implies zero-GAS with respect to D. Furthermore,
system (1) is UBEBS with respect to the set D. In fact, the
UBEBS property with respect to the set W can be combined
with bounds (18), so as to obtain the following:

α(|X(t, x; d)|D) ≤ α(|X(t, x; d)|W)

≤ γ(|x|W) +

∫ t

0

σ(|d(s)|)ds+ cu

≤ γ(|x|D + c) +

∫ t

0

σ(|d(s)|)ds+ cu

≤ γ(2|x|D) +

∫ t

0

σ(|d(s)|)ds+ (γ(2c) + cu) ,

which implies the UBEBS property with respect to the set D.
By virtue of Theorem 5, it is concluded that system (1) is iISS
in the classical sense with respect to the set D and input d(·).

Lemma 6: If system (1) satisfies the zero-GATT and UBEBS
property then it also satisfies the BEWCS property.
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Proof: (UBEBS⇒ BEWCS) It has been shown in Lemma
2 that, under Assumption 1, the zero-GATT property yields
the existence of a smooth function V : M → R, functions
ν1, ν2, ν, δ ∈ K∞, and a positive constant c > 0 such that
inequalities (19)-(20) follow. Consider the functions α, γ, σ
and the constant cu > 0 as in the UBEBS estimate (4). Let
σ̃ ∈ K∞ be defined as σ̃(s) := max {σ(s), δ(s)}. Consider a
signal d(·) which satisfies the left-hand side of the implication
(6). It then immediately follows that:∫ +∞

0

σ (|d(s)|) ds = Cσ,d < +∞ ,∫ +∞

0

δ (|d(s)|) ds = Cδ,d < +∞, (33)

for some positive constants Cσ,d and Cδ,d. Moreover, bound-
edness of trajectories for all t ≥ 0 follows from the UBEBS
property:

|X(t)|W ≤ α−1

(
γ(|x|W) +

∫ t

0

σ(|d(s)|)ds+ cu

)
≤ Cx,d < +∞ (34)

with Cx,d := α−1 (γ(|x|W) + Cσ,d + cu) and where we have
used the short-hand notation X(t) := X(t, x; d). Due to
boundedness of trajectories (34), estimate (20) can be rewritten
as:

DV (x)f(x, d) ≤ −ν(|x|W) + δ(Cx,d)δ(|d|), (35)

thus the function V (x) qualifies as an ISS Lyapunov function.
We now assume by contradiction that:

lim inf
t→+∞

|X(t, x; d)|W = ε > 0, (36)

for some positive constant ε, which implies the existence of
time T > 0 such that

|X(t)|W ≥
ε

2
, (37)

for all t ≥ T . Estimate (35) can be integrated over the time
interval [T, t] to obtain:

V (X(t))− V (X(T )) ≤

−
∫ t

T

ν (|X(s)|W) ds+ δ (Cx,d)

∫ t

T

δ (|d(s)|) ds
(38)

Due to inequality (37) and to ν being a K∞ function, it is
easy to see that:∫ +∞

T

ν (|X(s)|W) ds ≥
∫ +∞

T

ν
( ε

2

)
ds = +∞. (39)

The terms in estimate (38) can be rearranged in such a way
to obtain:∫ t

T

ν (|X(s)|W) ds ≤ V (X(T )) + δ (Cx,d)

∫ t

T

δ (|d|) ds

≤ ν2((|X(T )|W) + c+ δ (Cx,d)

∫ t

T

δ (|d|) ds. (40)

The joint contribution of (33), (34), and (39) to estimate (40)
yields the contradiction:

+∞ ≤ ν2(Cx,d) + c+ δ(Cx,d)Cδ,d < +∞.

Lemma 7: Let Assumption 1 hold. If system (1) satisfies the
BEWCS property then it admits an iISS Lyapunov function.

Proof: The zero-GATT property of the setW ensures that
the set D as defined in (17) is positively invariant, compact,
and globally asymptotically stable for (3). Moreover, by taking
the lim inf on both sides of inequality (18), it follows:

lim inf
t→+∞

|X(t)|D ≤ lim inf
t→+∞

|X(t)|W = 0, (41)

By virtue of Theorem 7, the BEWCS property wrt the set D
as in (41) together with zero-GAS of D ensures classical iISS
of (1) wrt to D. In virtue of Lemma 4, we can then conclude
the existence of an iISS-Lyapunov function as in Definition 9.

Lemma 8: If system (1) satisfies the zero-GATT and UBEBS
property then it also satisfies the BESCS property.

Proof: Due to zero-GATT, we consider a smooth function
V : M → R, functions ν1, ν2, ν, δ ∈ K∞, and a positive
constant c > 0 such that inequalities (19)-(20) hold. Due to
UBEBS, we consider functions α, γ, σ and the constant cu > 0
as in (4). Consider the following function:

ρ̃(r, s) := max
|x|W≤r,|d|≤s

|f(x, d)− f(x, 0)|.

Notice that ρ̃(r, s) is continuous, nondecreasing with respect
to each argument and vanishes for s = 0. Hence, it can be
majorized by a function ρ(r + 1, s) separately of class K∞.
By [5, Corollary IV.5] (and the same proof applies to norm
induced by the metric g), there exists ρx, ρd ∈ K∞ such that:

‖f(x, d)‖g ≤ ‖f(x, d)− f(x, 0)‖g + ‖f(x, 0)‖g
≤ ρx(|x|W + 1)ρd(|d|) + ‖f(x, 0)‖g.

Let σ̃ ∈ K∞ be defined as σ̃(s) := max {σ(s), δ(s), ρd(s)},
Pick any initial condition x ∈M and any input signal d(·) ∈
MD such that: ∫ +∞

0

σ̃ (|d(s)|) ds < +∞. (42)

We have proven in Lemma 6 that boundedness of trajectories
holds for all t ≥ 0, namely

|X(t, x; d)|W ∈ Xx,d := {x ∈M | |x|W ≤ Cx,d} . (43)

Thus estimate (20) can be rewritten as (39) and integrated over
the time [T, t] as in estimate (40). As a result, we obtain that:
• V is bounded from above along trajectories, and is

bounded from below by zero as in (19);
• V cannot “increase too much”, namely for all ε > 0 there

exists Tε such that, for all t > Tε:

V (X(t)) ≤ V (Tε) + ε (44)

• the following integral is finite:∫ +∞

0

ν (|X(s, x; d)|W) ds < +∞. (45)

Moreover, we have proven in Lemma 6 that the BEWCS prop-
erty holds, and therefore, for all ε > 0, there exists a diverging
sequence of times

{
tn,ε
}
n∈N such that |X(tn,ε, x; d)|W ≤ ε.
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We recall that the following holds true over the time interval
[t0, t]:

d (X(t), X(t0)) ≤
∫ t

t0

‖f (x(s), d(s))‖g ds. (46)

Let F̄0 and ρ̄x be defined as follows:

F̄0 := max
x∈Xx,d

‖f (x, 0)‖g (47)

ρ̄x := max
x∈Xx,d

ρx(|x|W + 1). (48)

Estimate (46) can be rewritten using definitions (47) and (48)
as:

d (X(t), X(t0)) ≤ F̄0(t− t0) + ρ̄x

∫ t

t0

ρd(|d(s)|) ds; (49)

for all [t0, t].
We assume by contradiction that

lim supt→+∞ |X(t, x; d)|W 6= 0, namely that there exists
ε̄ > 0 and a diverging sequence of times {t̄n,ε̄}n∈N such that:

|X(t̄n,ε̄, x; d)|W > ε̄. (50)

By the BEWCS property, we can select ε := ε̄/2 so as to
obtain the sequence

{
tn,ε̄/2

}
n∈N

such that:

|X(tn,ε̄/2, x; d)|W ≤ ε̄/2. (51)

We can therefore select a subsequence of
{

tn,ε̄/2
}
n∈N

, say
{tm}m∈N, such that, for all m ∈ N, at least one element of
{t̄n,ε̄}n∈N belongs to the interval [tm, tm+1]. In other words,
we select the tms in such a way to obtain at least one “spike”
of |X(t, x; d)|W in the interval [tm, tm+1]. We then make the
following definitions for all m ∈ N. Let tm,B denote the first
occurrence of t̄n,ε̄ in the interval [tm, tm+1], namely the time
at which the first “spike” occurs in the interval [tm, tm+1]. Let
tm,A ∈ [tm, tm,B ] denote the last time that the state X(t, x; d)
leaves the set P := {x ∈M | |x|W ≤ ε̄/2}, and thus we have

|X(t, x; d)|W ≥ ε̄/2. (52)

for all t ∈ [tm,A, tm,B ]. The sequences in consideration are
depicted in Figure 2.

Claim 1: limm→+∞ (tm,B − tm,A) = 0.
Proof: Since tm,B − tm,A ≥ 0 by definition, it is enough

to prove that lim supm→+∞ (tm,B − tm,A) = 0. By contradic-
tion, there exists a constant π > 0 and a diverging monotone
subsequence {m̃n}n∈N ⊆ N such that tm̃n,B− tm̃n,A > π. By
embedding (52), we can then write:∫ +∞

0

ν (|X(s, x; d)|W) ds

≥
+∞∑
n=1

∫ tm̃n,B

tm̃n,A

ν (|X(s, x; d)|W) ds

≥
+∞∑
n=1

∫ tm̃n,B

tm̃n,A

ν(
ε̄

2
) ds

≥
+∞∑
n=1

∫ tm̃n,A+π

tm̃n,A

ν(
ε̄

2
) ds = +∞

(53)

|X(t, x; d)|W

ε̄/2

ε̄

ttm ≡

tm,A

tm,B ≡
tn,ε̄/2 t̄n,ε̄

tm+1 ≡
tn+1,ε̄/2

tn+2,ε̄/2 tn+3,ε̄/2

tn+4,ε̄/2

tm+1,B ≡
t̄n+1,ε̄

tm+2,B ≡ t̄n+2,ε̄

Fig. 2. “Spikes” in |X(t, x; d)|W . Points at {t̄n,ε̄}n∈N and
{

tn,ε̄/2

}
n∈N

are depicted in blue and red, respectively. The tm subsequence is highlighted
on the t-axis.

which represents a contradiction with (45).
Define xm,A = X(tm,A, x; d) and xm,B = X(tm,B , x; d). By
definition, we have, for all m ∈ N:

|xm,A|W = ε̄/2 and |xm,B |W ≥ ε̄. (54)

Inequality (49) can then be rewritten as:

d (xm,B , xm,A) ≤ F̄0(tm,B− tm,A) + ρ̄x

∫ tm,B

tm,A

ρd(|d(s)|) ds.
(55)

By virtue of Claim 1 and finiteness of the integral (42), it
follows that

lim
m→+∞

d (xm,B , xm,A) = 0, (56)

which implies

lim
m→+∞

|xm,A|W = lim
m→+∞

|xm,B |W ,

thus representing a contradiction with (54).

Lemma 9: The zero-GATT property and mixed estimate (11)
imply the existence of an iISS-Lyapunov function.

Proof: We have already mentioned that the set D as
defined in (17) is globally asymptotically stable for sytsem
(3). Due to bounds (18), mixed estimate (11) can be rewritten
in terms of the distance to the set D, as follows:

α(|X(t, x; d)|D) ≤ β(2|x|D)

+

∫ t

0

σ(|d(s)|)ds+ γ
(∥∥d[0,t]

∥∥)+ c̄m, (57)

with c̄m := cm + β(2c).
Claim 2: Estimate (57) actually holds with c̄m = 0.

Proof: As shown in [5, Lemma IV.10], global asymptotic
stability of D implies the existence of a smooth function U :
M → R and of K∞ functions ν1, ν2, ν, δ such that:

ν1(|x|D) ≤ U(x) ≤ ν2(|x|D) (58)
DU(x)f(x, d) ≤ −ν(|x|D) + δ(|x|D)δ(|d|). (59)
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By integrating inequality (59) over the time interval [0, t]
and combining it with (57) we obtain the following kind of
estimate:

U(X(t, x; d))− U(x) ≤
∫ t

0

[
δ(|d(s)|) · (δ ◦ α−1)

(
β(2|x|D)

+ γ(‖d‖) +

∫ s

0

σ(|d(s′)|) ds′ + c̄m

)
ds

]
≤

≤
[∫ t

0

δ(|d(s)|) ds
]
·

·
[
β̃(|x|D) + γ̃A(‖d‖) + γ̃B

(∫ t

0

σ(|d(s)|) ds
)

+ c̃m

]
, (60)

with β̃(r) := (δ ◦α−1)(4β(2r)), γ̃A(r) := (δ ◦α−1)(4γ(r)),
γ̃B(r) := (δ ◦ α−1)(4r), and c̃m := (δ ◦ α−1)(4c̄m), for all
r ≥ 0. Define κ(r) := max {δ(r), κ(r)} and υ(r) := r2 +
γ̃B(r) + c̃mr for all r ≥ 0. By recalling that AB ≤ A2 +B2

for all non-negative constants A,B, estimate (60) reads as:

U(X(t, x; d))− U(x) ≤ β̃(|x|D)2

+ υ

(∫ t

0

κ(|d(s)|) ds
)

+ γ̃A(‖d‖)2 +

(∫ t

0

κ(|d(s)|) ds
)2

.

(61)

Set α(r) := ν1(r), β̂(r) := ν2(r) + β̃(r)2, γ̂(r) := γ̃A(r)2,
and χ̂(r) := χ(r) + r2 for all r ≥ 0. Then, estimate (61) is
rewritten as:

α̂(|X(t, x; d)|D) ≤ β̂(|x|D)

+ χ̂

(∫ t

0

σ(|d(s)|)ds
)

+ γ̂ (‖d‖) . (62)

By evaluating both sides of inequality (62) with function
χ̂( 1

3 ·), we conclude that indeed an estimate of type (57) holds
with c̄m = 0.
Since such an estimate exists with respect to the zero-GAS set
D, we can invoke the results in [6, Theorem 1] to conclude that
system (1) is iISS in the classical sense with respect to D. By
hypothesis, (1) satisfies the zero-GATT property with respect
to W . By virtue of Lemma 4, we conclude the existence of
an iISS Lyapunov function as in Definition 9.

Lemma 10: If there exists an iISS-Lyapunov function V ,
then system (1) satisfies estimate (13).

Proof: The existence of an iISS function V implies that
inequalities (8) and (9) hold. The UBEBS property (4) is
also implied by (9) as in Lemma 1 and can be equivalently
formulated as:

|X(t, x; d)|W ≤ κ1(|x|W) + κ2

(∫ t

0

γ (|d(s)| ds)
)

+ κ3,

(63)
for κ1(·) := (α−1

1 ◦ 3α2)(2·), κ2(·) := α−1
1 (3·), and

κ3 := (α−1
1 ◦ 3α2)(2c). We can then integrate the dissipation

inequality (9) over the time interval [0, t] and combine it with

(63) so as to obtain:

V (X(t, x; d))− V (x) ≤
∫ t

0

γ(|d(s)|) ds−

−
(∫ t

0

α31(|X(s, x; d)|W) ds

)
·

· α32

(
κ1(|x|W) + κ2

(∫ t

0

γ(|d(s)|) ds
)

+ κ3

)
,

(64)

where we have made use of [5, Lemma IV.1] for the definition
of α31 ∈ K∞ and α32 ∈ L such that α3 ≥ α31(r)α32(r) for
all r ≥ 0. We introduce the following definitions:

η(r) :=
1

α32(r)
− 1

α32(0)

χ1(r) := max {(η ◦ 3κ1)(r) , α2(r)}
χ2(r) := max {(η ◦ 3κ2)(r) , r}
χ3 := η(3κ3)

q :=
1

α32(0)
+ χ3 , c̄ := α2(2c). (65)

It follows from (64) and definitions (65) that:∫ t

0

α31(|X(t, x; d)|W) ≤

≤
[

1

α32(0)
+ η

(
κ1(|x|W) + κ2

(∫ t

0

γ(|d(s)|) ds
)

+ κ3

)]
·

·
[
V (x) +

∫ t

0

γ(|d(s)| ds)
]
. (66)

The right-hand side of (66) is majorized by[
q + χ1(|x|W) + χ2

(∫ t

0

γ(|d(s)|) ds
)]
·

·
[
χ1(|x|W) + c̄+ χ2

(∫ t

0

γ(|d(s)| ds)
)]

≤ qc̄+ (q + c̄)χ1(|x|W) + (q + c̄)χ2

(∫ t

0

γ(|d(s)| ds)
)

+

(
χ1(|x|W) + χ2

(∫ t

0

γ(|d(s)| ds)
))2

,

Set χ̄1(r) := (q + c̄)χ1(r) + χ1(r)2 and χ̄2(r) := (q +
c̄)χ2(r) + χ2(r)2 for all r ≥ 0. We obtain:∫ t

0

α31(|X(t, x; d)|W) ≤ qc̄+ χ̄1(|x|W) + χ̄2

(∫ t

0

γ(|d(s)| ds)
)
,

which indeed represents an estimate of type (13) by
setting α := α31, σ := γ, χ0 = 1, and χ(r) :=
3 max {qc̄r, χ̃1(r), χ̃2(r)}.

Lemma 11: If system (1) is forward complete and satisfies
an estimate of type (13), then it satisfies the zero-GATT and
UBEBS properties.

Proof: Step 1: UBEBS. Assume estimate (13) holds with
α, χ, σ ∈ K∞ and χ0 > 0. Forward completeness of (1) (see
[7, Corollary 2.3]) translates into estimate:

|X(t, x; d)| ≤ κ1(t) + κ2(|x|) + κ3

(∫ t

0

γ(|d(s)|) ds
)

+ κ4,

(67)
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with κ1, κ2, κ3, γ ∈ K∞ and κ4 > 0. By embedding bounds

|x| ≤ ν3(|x|W) + g3

|x|W ≤ ν4(|x|) + g4,

estimate (67) reads as:

|X(t, x; d)|W ≤ κ̃1(t)+ κ̃2(|x|)+ κ̃3

(∫ t

0

γ(|d(s)|) ds
)

+ κ̃4,

(68)
with κ̃1 := ν4 ◦ 4κ1, κ̃2 := ν4 ◦ 4κ2 ◦ 2ν3, κ̃3 := ν4 ◦ 4κ3, and
κ̃4 := ν4(4κ4)+ν4(4κ2(2g3))+g4. Without loss of generality,
we can take κ̃2 such that κ̃2(r) ≥ r for all r ≥ 0. Set σ̃ :=
max {γ, σ}. We also define, for each r ≥ 0:

m(r) := sup {|X(t, x; d)|W : t ≥ 0, |x|W ≤ r, d ∈ Er} .
(69)

with Er :=
{
d(·) ∈MD :

∫ +∞
0

σ̃(|d(s)|) ds ≤ r
}

. Note that
m is a nondecreasing function. The main technical step is in
showing the following

Claim 3: For each r ≥ 0,

m(r) ≤ κ̃1

(
χ(2r + χ0)

α(r)

)
+ κ̃2(r) + κ̃3(r) + κ̃4 =: M(r).

Proof: Note that M(r) ≥ r for all r ≥ 0 due to our
choice of κ̃2. Pick any r > 0, then pick any state x and input
d(·) such that |x|W ≤ r and d ∈ Er. We need to show that,
for all t ≥ 0, |X(t, x; d)|W ≤ M(r). By contradiction, select
T > 0 so that |X(T, x; d)|W > M(r). Let

τ := sup {t ≤ T : |X(t, x; d)|W ≤ r} .

Clearly, |X(t, x; d)|W ≥ r for all t ∈ [τ, T ]. It follows from
(13) that:

α(r)(T − τ) ≤
∫ T

0

α(|X(t, x; d)|W) ds ≤ χ(2r + χ0).

(70)

Consider now x̃ := X(τ, x; d), d̃(·) = d(·−τ), and T̃ := T−τ .
We then have:

|X(T, x; d)|W = |X(T̃ , x̃; d̃|W
≤ κ̃1(T̃ ) + κ̃2(r) + κ̃3(r) + κ̃4 = M(r),

which represents a contradiction.
We can now pick any state x and input d(·), and let

r := max

{
|x|W ,

∫ +∞

0

σ̃(|d(s)|) ds
}
.

By definition of m,

|X(t, x; d)|W ≤ m(r) ≤ β(r + cu), (71)

for all t ≥ 0, where β is any K∞ function and cubebs is any
constant such that m(r) ≤ β(r + cu) for all r ≥ 0. With
αu = β−1 we conclude the UBEBS estimate

αu(|X(t, x; d)|W) ≤ |x|W +

∫ t

0

σ̃(|d(s)|) ds+ cu (72)

as wanted.

Step 2: zero-GATT. Set d(t) ≡ 0 for all t ≥ 0. Then estimate
(13) reads as∫ t

0

α(|X(s, x; 0)|W) ds ≤ χ (|x|W + χ0) . (73)

We claim that estimate (73) implies weak convergence of the
trajectories to W , namely lim inft→+∞ |X(t, x; 0)|W = 0.
Indeed, by contradiction there exists some positive constant
ε > 0 and a time T > 0 such that |X(t, x; 0)|W ≥ ε for all
t ≥ T . It then follows that:∫ ∞

0

α(|X(s, x; 0)|W) ds ≥
∫ ∞
T

α(ε) ds = +∞,

which represents a contradiction with (73). Furthermore, we
claim that estimate (73) implies strong convergence of the
trajectories to W , namely lim supt→+∞ |X(t, x; 0)|W = 0.
Indeed, the proof of the claim follows by contradiction
along the lines of the proof of Lemma 8 by simply setting
d(·) ≡ 0 and by noting that the UBEBS property (72) implies
boundedness of trajectories, namely |X(t, x; 0)|W ∈ Xx with
Xx := {y ∈M : αu(|y|W) ≤ |x|W + cu}, and hence we can
set F̄0 := maxy∈Xx |f(y, 0)|.

IV. LINK WITH STRONG IISS

In order to characterize robustness properties which can be
considered halfway between ISS and iISS, an intermediate
property was introduced in [9] and denoted as Strong iISS. The
definition in [9] is directly extended to systems with multiple
invariant sets as in the following

Definition 12 (Strong iISS): System (1) is said to be Strongly
iISS if it has the properties:
• zero-GATT and UBEBS;
• asymptotic gain (AG) with respect to small inputs,

namely there is a function η ∈ K and a positive constant
R such that:

‖d‖ ≤ R ⇒ lim sup
t→+∞

|X(t, x; d)|W ≤ κ(‖d‖) , (74)

for all x ∈M and all d(·) ∈MD.
The following Theorems 2 and 3 represent sufficient con-

ditions for verifying the Strong iISS property and are adapted
from [9].

Theorem 2: Assume that there exists a proper C1 function
V : M → R, functions α1, α2 ∈ K∞, α ∈ K, a continuous
positive-definite function γ, and a positive constant c such that
(8) holds together with the following dissipation in equality:

DV (x)f(x, d) ≤ −α(|x|W) + γ(|d|) , (75)

for all (x, d) ∈M ×D. Then the system (1) is Strongly iISS.
Proof: Zero-GATT and UBEBS properties are estabil-

ished by dissipation inequality (75) as shown in Theorem 1.
We are now going to prove the AG property with respect to
small inputs. Pick R such that γ(R) ≤ 1

4α(+∞). By definition
of R, α is invertible in [0, 2γ(R)]. Then, the following
implication holds true:

|x|W ≥ α−1(2γ(|d|))⇒ V̇ ≤ −α(|x|W)

2
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for all d ≤ R. Assume that R ≥ ‖d‖. Define r := ‖d‖, µ :=
α−1(2γ(r)), η := α2(µ+c), and the set Ωη := {x|V (x) ≤ η}.
For a point x not in of Ωη or at the boundary ðΩη , it holds
that:

V (x) ≥ α2(µ+ c) ⇒ |x|W ≥ µ

⇒ V̇ ≤ −α(|x|W)

2
≤ −α(µ)

2
.(76)

Integration of (76) along a trajectory X(t, x; d) yields:

V (X(t, x; d)) < V (x)− α(µ)

2
t

therefore the solution enters the set Ωη in a finite time T
and never leaves it again. For a point z ∈ Ωη we can write
α1(|z|W) ≤ V (z) ≤ η, thus leading to the estimate

|X(t, z; d)|W ≤ κ(‖d‖) .
for all t ≥ T , with κ(s) := α−1

(
α2

(
α−1(2γ(s))

))
.

Theorem 3: Assume that there exists a proper C1 function
V : M → R, functions α1, α2, η ∈ K∞, κ ∈ K, a continuous
positive-definite function ρ, and a positive constant c such that
(8) holds together with the following dissipation in equality:

DV (x)f(x, d) ≤ −ρ(|x|W) + η (max {0; |d| − κ(|x|W)}) ,
(77)

for all (x, d) ∈M ×D. Then the system (1) is Strongly iISS.
Proof: Notice that (77) can be equivalently written in the

following decomposed form:

V̇ ≤ −ρ(|x|W) + η(|d|) (78)
|d| ≤ κ(|x|)⇒ V̇ ≤ ρ(|x|W) . (79)

Inequality (78) yields the UBEBS and zero-GATT properties.
For the AG property wrt small inputs, pick R such that R <
κ(∞). Then, for all |d| ≤ R, it holds that:

|x|W ≥ κ−1(|d|)⇒ V̇ ≤ ρ(|x|W).

Following the trace provided in the proof of Theorem 2, we
conclude that (1) enjoys the AG property wrt small inputs.

V. EXAMPLES

A. Pendulum with vanishing friction

Consider the following set of differential equations, describ-
ing the motion of a 1-link actuated pendulum:

θ̇ = ω

ω̇ = −a sin(θ)− bω

1 + ω2
+ d , (80)

where the state x := (θ, ω)> lies on the cylinder M := S×R
and the disturbance is denoted by d(t). The unperturbed
system admits two equlibria [0, 0] and [π, 0], the latter being a
saddle-point. The compact invariant set W = {[0, 0], [π, 0]}
satisfies Assumption 1 because of the following. Consider
the mechanical energy of the pendulum, that is E(x) =
ω2/2 − a cos(θ) + a. For the case d ≡ 0 the dissipation
inequality Ė = −bω2/

(
ω2 + 1

)
≤ 0 holds, which, together

with the fact that there is no trajectory on the line ω = 0
connecting the equilibria, implies Assumption 1. Notice that

|x|W =

√
ω2 + min {|θ|, |θ − π|}2 and ε|x|2W ≤ E(x) for

some sufficiently small ε > 0.
Consider the following Lyapunov function:

V (x) = ln (E(x) + 1) , (81)

which is well-defined since E(x) ≥ 0. It then follows that:

α1(|x|W) ≤ V (x) , (82)

with α1(s) := ln
(
εs2 + 1

)
being a K∞ function. Taking

derivatives of V along the solutions of (80) yields:

V̇ (x) =
Ė(x)

E(x) + 1

=
ω
(
− bω

1+ω2 − a sin θ + d
)

+ a sin θ ω

E(x) + 1

= − b ω2

(ω2 + 1) (E(x) + 1)︸ ︷︷ ︸
h(x)

+
ω

E(x) + 1︸ ︷︷ ︸
≤1

d

≤ −α4(|h(x)|) + |d| , (83)

with α4 being the identity function and h(x) being the output
function as defined in (83). The largest invariant set with
h(x) ≡ 0 is W , thus weak zero-detectability holds. Inequality
(83) shows smooth dissipativity. Therefore, by means of Theo-
rem 1, system (80) has the zero-GATT and UBEBS properties
and possesses a smooth iISS-Lyapunov function.

We now prove that system (80) is not Strong iISS. Specif-
ically we will prove that there is no input threshold R (as in
Definition 12) below which the system fulfills the asymptotic
gain (AG) property. To this end, it is enough to show that for an
arbitrarily bounded input d(·) there exists an initial condition
x ∈ M such that the norm of the state grows indefinitely,
namely lim supt→+∞ |X(t, x; d)|W = +∞. Consider the
input:

d :=
bω

1 + ω2
+ h sat {ω} ≤ b+ h, (84)

with h > 0. We are now going to find the initial condition ω(0)
and the constant h such that |d(t)| has an arbitrary upper bound
for all t ≥ 0 and lim supt→+∞ |X(t, x)|W = +∞. Observe
that, with input (84), the energy E(t) can never decrease
because

Ė(t) = hω sat {ω} ≥ 0. (85)

Assume that the energy at time t = 0 is large enough, i.e.
E(0)� 2a.

Claim 4: limt→+∞E(t) = +∞.
Proof: Since Ė(t) ≥ 0 for all t ≥ 0, we can assume

by contradiction that limt→+∞E(t) = Ē < +∞. By virtue
of Barbalat’s lemma, it holds that limt→+∞ Ė(t) = 0. From
(85), it follows that limt→+∞ ω(t) = 0. Then, for all ε > 0
arbitrarily small, there exists Tε > 0 such that |ω(t)| ≤ ε,
for all t ≥ Tε. It thus follows that E(t) = 0.5ω(t)2 + a −
a cos(θ(t)) ≤ 0.5ε2 + 2a for all t ≥ Tε, which represents a
contradiction with assumption E(0)� 2a and Ė ≥ 0.
Since E(θ, ω) := 0.5ω2 +a−a cos(θ) ≤ 0.5ω2 +2a, Claim 4
implies limt→+∞ ω(t) = +∞, and thus limt→+∞ |X(t)|W =
+∞. We have just proved that input (84) yields no AG
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property. We are now going to prove that input (84) can be
made arbitrarily small and still limt→+∞ |X(t)|W = +∞.
Indeed, pick d̄ > 0 arbitrarily small. Select ω̄ > 0 and
h̄ > 0 so that bω

1+ω2 + h̄ sat {ω} ≤ d̄. By choosing the
initial conditions so that E(0) � 2a, we have shown that
limt→+∞ ω(t) = +∞, and therefore there exists T̄ > 0 such
that ω(t) ≥ ω̄ for all t ≥ T̄ . If we now consider (θ(T̄ ), ω(T̄ ))
as the new initial conditions and h := h̄ in (84), then we
would still have limt→+∞ |X(T̄ + t)|W = +∞ together with∥∥d(T̄ + ·)

∥∥ ≤ d̄.

B. Duffing system with vanishing friction

For the Duffing system

ẋ1 = x2

ẋ2 = − bx2

1 + x2
2

+ x1 − x3
1 + d , (86)

the set W is composed by three equilibria, namely W =
{(0, 0), (−1, 0), (0, 1)}, among which the origin is a sad-
dle point whereas the remaining two equilibria are lo-
cally asymptotically stable. Following the same arguments
as given for the pendulum case, Assumption 1 holds
true. The set-point distance is then defined as |x|W =√

min {|x1|, |x1 − 1|, |x1 + 1|}2 + x2
2. The mechanical en-

ergy of the Duffing system

E(x) =
1

2
x2

2 −
1

2
x2

1 +
1

4
x4

1 +
1

4

satisfies the relation 1
2 |x|2W ≤ E(x). Consider the Lyapunov

function V (x) = ln (E(x) + 1), which satisfies the relation
α1(|x|W) ≤ V (x) with α1(s) := ln

(
1
2s

2 + 1
)
. Taking

derivatives of V along the solutions of (86) yields:

V̇ (x) = − b x2
2

(x2
2 + 1) (E(x) + 1)︸ ︷︷ ︸

h(x)

+
x2

E(x) + 1︸ ︷︷ ︸
≤1

d

≤ −α4(|h(x)|) + |d| , (87)

with α4 being the identity function and h(x) as defined in (87).
The largest invariant set with h(x) ≡ 0 is W , thus weak zero-
detectability holds. Inequality (87) shows smooth dissipativity.
Therefore, by means of Theorem 1, system (86) fulfills the
zero-GATT and UBEBS properties and possesses a smooth
iISS-Lyapunov function.

We now prove that system (86) is not ISS (in the sense of
[2]), as previously shown for the pendulum example. Consider
d = bx2

1+x2
2

+ hsat {x2} ≤ b + h, with h > 0. The closed-loop
system reads as:

ẋ1 = x2 (88)
ẋ2 = x1 − x3

1 + h sat {x2} . (89)

The rate of change of the energy E(x) is given as:

Ė(x) = x2 sat {x2} ≥ 0 (90)

for all t ≥ 0. Consider an initial condition x ∈ R2. For
the sake of readability, we will make use of the notation
X(t) = X(t, x; d) and Xi(t) = Xi(t, x; d) with i = 1, 2.

To the end of showing that lim supt→+∞ |X(t)|W = +∞, we
assume by contradiction that this limit superior is bounded by a
finite value. Hence, we assume that lim supt→+∞E(X(t)) =
Ē < +∞. Due to monotonicity in (90), it actually holds
that limt→+∞E(X(t)) = Ē < +∞. By applying Barbalat’s
lemma twice, it follows that:

lim
t→+∞

Ė(X(t)) = 0

=⇒ lim
t→+∞

X2(t) = 0

lim
t→+∞

Ẋ2(t) = 0 . (91)

Pick any ε > 0. The limits in (91) imply the existence of a
Mε such that for all t > Mε it holds:

|X2(t)| < ε, |Ẋ2(t)| < ε, (92)

and thus 1
2 |X2(t)|2 < 1

2ε
2 for all t > Mε. Using the previous

relation and the fact that the energy E(·) can never decrease
along the trajectories, it follows:

E(X(t))− 1

2
ε2 <

1

4
X1(t)4 +

1

4
− 1

2
X1(t)2, (93)

for all t > Mε. As a further consequence of equations (89)
and (92), it holds for all t > Mε that

|−X1(t)3 +X1(t)| < 2ε. (94)

It is possible to show that, by selecting proper initial condi-
tions yielding large values of E(X(0)), there always exists
ε > 0 sufficiently small such that inequality (93) contradicts
inequality (94). It can be concluded that system (86) does
not have the AG property and thus it is not ISS (in the
sense of [2]). Unfortunately, we could not show that input
d = bx2

1+x2
2

+ h sat {x2} ≤ b+ h can be made arbitrarily small,
and thus we could not prove nor disprove Strong iISS of the
Duffing system (88)-(89).

C. Tracking velocity fields in robotic manipulators

Consider the general equations of motion for a robotic
manipulator:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + d (95)

with q, q̇, q̈ the joint angles, velocities and accelerations, M(q)
the inertia matrix, C(q, q̇) the Coriolis matrix, G(q) the
potential vector field, τ the vector of all available control
torques, and d disturbances occurring in the joint dynamics.
Suppose that it is desired for the robotic manipulator to track
a reference velocity field with desired reference dynamics:

q̇ = fd(q) . (96)

Let Wq denote the set of all invariant solutions of (96). Let
W denote the following set:

W =

{(
q
q̇

)
∈ S2 × R2 | q ∈ Wq , q̇ = fd(q)

}
. (97)

Suppose that for the desired reference dynamics (96) an iISS-
Lyapunov function µ(qd) exists, namely there exists K∞
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functions µ1, µ2, a continuous positive-definite function µ3

and a positive constant cq such that the following holds:

µ1(|qd|Wq ) ≤ µ(qd) ≤ µ2(|qd|Wq + cq)

Dµ(qd)fd(qd) ≤ −µ3(|qd|Wq ) .

Let F (q, q̇) := q̇ − fd(q). Consider the control law:

τ = −KF (q, q̇)−Dµ(q)+M(q) (Dfd(q)q̇)+C(q, q̇)fd(q) ,
(98)

with a positive-definite gain matrix K. We want to prove that
the closed-loop system obtained by applying the control law
(98) to the plant (95), namely

M(q)Ḟ (q, q̇, q̈) +C(q, q̇)F (q, q̇) +KF (q, q̇) +Dµ(q) = d ,
(99)

has the UBEBS and zero-GATT properties with respect to the
invariant set W and the disturbance d. To this end, let V (q, q̇)
be the following Lyapunov function:

V (q, q̇) = µ(q) +
1

2
F (q, q̇)>M(q)F (q, q̇). (100)

Let the state x be defined as x := (q>, q̇>)>. The distance
from the invariant set W is then given by:

|x|W :=
√
|q|2Wq

+ |F (q, q̇)|2 . (101)

Due to M(q) being the inertia matrix of a mechanical system,
we can conclude that there exists functions α1, α2 ∈ K∞ and
a positive constant c such that:

α1(|x|W) ≤ µ1(|qd|Wq
) + ε|F |2 ≤ V (q, q̇)

≤ µ2(|qd|Wq
+ cq) + ε|F |2 ≤ α2(|x|W + c) .

Taking derivatives of V along the solutions of (99) yields:

V̇ (q, q̇) = Dµ(q)q̇ − F (q, q̇)>KF (q, q̇) + F (q, q̇)>d

≤ −µ3(|qd|Wq
)− c1|F |2 + c2|d|2 , (102)

for sufficiently small positive constant c1 and sufficiently large
positive constant c2. By setting α3(|x|W) = µ3(|q|Wq ) +
c1|F |2, we can conclude that V (q, q̇) is an iISS-Lyapunov
function for system (99), therefore system (99) has the UBEBS
and zero-GATT properties. Note that, in case of µ3 ∈ K∞
(respectively µ3 ∈ K − K∞), system (99) would be ISS
(respectively Strongly iISS, as in Theorem 2).

As an example of a robotic manipulator tracking a velocity
vector field, we consider the following desired reference
dynamics for a 2-link manipulator (see Figure 3 for its phase
plot):

fd(qd) =

(
qd1

qd2

)
S(qd) +

(
qd2

−qd1

)
, (103)

with S(qd) := 1 − q2
d1 − q2

d2. In the example, the set
of all invariant solutions for (96) is Wq = {(0, 0),Γq}
with the origin (0, 0) being an unstable equilibrium and
Γq =

{
qd ∈ S2 | |qd| = 1

}
being an asymptotically stable

limit cycle. Let µ(qd) be defined as µ(qd) := 1
4S(qd)

2. By
defining

|qd|Wq
:= min {|qd|, |1− |qd||} , (104)

Fig. 3. Phase plot of the reference dynamics (103).

it holds that µ1(|qd|Wq
) ≤ µ(qd) with µ1(r) := 1

2r
2. Taking

derivatives of µ(qd) along the solutions of (103) yields:

Dµ(qd)fd(qd) = −S(qd)
2|qd|2 =: −µ3(|qd|Wq

) . (105)

By applying all previous considerations, we conclude that the
2-link manipulator with control law (98) has the UBEBS and
zero-GATT properties with respect to disturbance d and the
invariant setW as defined in (97). Specifically in this example,
since µ3 is not only positive-definite but also a K∞ function
of the distance |·|Wq

, not only iISS but also ISS in the sense
of [2] actually holds.

VI. CONCLUSION

The central idea of this paper is to extend the iISS notion
to the case of systems evolving on Riemannian manifolds
and having multiple disjoint compact invariant sets, within the
framework introduced in [2]. By means of Lyapunov/LaSalle-
like dissipation inequalities and estimates of the integral type,
the iISS property can be inferred for a broad class of nonlinear
systems exhibiting many dynamical behaviors of interest, such
as multistability, periodic orbits, chaos, just to name a few.
We have also shown extension of the Strong iISS notion to
the case of systems having multiple disjoing compact invariant
sets. Applicability of the proposed framework is demonstrated
on several examples of mechanical systems, which have also
shown how the type of stability in the presence of inputs is
altered by the friction models and, therefore, by the dissipation
rates. Further investigations along the lines of this paper
might address the stability of nonlinear cascades and feedback
interconnections of iISS systems with multiple invariant sets.

APPENDIX

CLASSICAL IISS FOR SYSTEMS ON MANIFOLDS

In this appendix, we show how some results on the classical
integral ISS property can be proven for systems evolving on
manifolds. It turns out that most proofs cannot be adapted
to the manifold case in a straightforward fashion, unless few
assumptions and facts are established beforehand, as in the
following.
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Let M denote a n-dimensional connected C2 Riemannian
manifold without boundary. Let A be a compact subset of M .
Consider system (1) with vector field f .

Fact 1: Manifold M is assumed to be complete. By
virtue of the Hopf-Rinow theorem, geodesical completeness
and completeness as a metric space are equivalent. Further-
more, completeness implies compactness of all closed and
bounded subsets of M (see [10]). Then, any set of the form
{x ∈M : |x|A ≤ r, r ≥ 0} is compact 2.

Fact 2: Vector field f is assumed to be a locally Lipschitz
mapping in the sense of Definition 13.

Fact 3: Gronwall lemma applies to systems evolving on
manifolds as estabilished in Corollary 1.

All proofs of subsequent Theorems 4, 5, and 6 necessarily
make implicit use of Facts 1, 2, and 3.

Theorem 4: Assume that system (3) is zero-GAS with
respect to A, i.e. there exists a class-KL function β such that

|X(t, x; 0)|A ≤ β (|x|D, t) .

Then there exists a smooth function V : M → R≥0 and class-
K∞ functions α1, α2, α such that the following inequalities
hold for all x ∈M :

α1(|x|A) ≤ V (x) ≤ α2(|x|A) (106)
DV (x)f(x, 0) ≤ −α(|x|A). (107)

Proof: Proof follows along the lines of Section 6 in [18].

Theorem 5: Assume that system (1) satisfies the UBEBS
property in the classical sense with respect to set A and input
d(·), i.e. there exist class-K∞ functions α, γ, σ such that the
following inequality:

α(|X(t, x; d)|A) ≤ γ(|x|W) +

∫ t

0

σ(|d(s)|)ds+ cu,

holds for all x ∈M and d(·). Assume furthermore that system
(3) is zero-GAS with respect to A. Then it is integral ISS in
the classical sense with respect to set A and input d(·).

Proof: Proof follows along the lines of Section 2.1 in [6].

Theorem 6: Assume that system (1) is integral ISS in the
classical sense with respect to the compact set A and input
d(·), i.e. inequality (2) holds for some class-K∞ function α,
some class-KL function β, and some class-K function γ. Then
there exists a smooth function V : M → R≥0, class-K∞

2Lack of geodesical completeness for a manifold M may generate subsets
which are bounded and closed (in the manifold topology, i.e. the topology
induced by its maximal atlas) but not complete (in the metric space topology,
i.e. the topology induced by the Riemannian metric. Consider the manifold
M = R2 with Riemannian metric g = 2dx⊗dy/(x2+y2). It can verified that
the curve γ(t) := (1/(1− t), 0) is a geodesic of M which is not complete.
Therefore any bounded and closed subset containing the origin cannot be
contained in any geodesic ball, and thus is not compact.

However, in the context of dynamical systems, completeness is obtained
without loss of generality. In fact, the state-space is normally defined as a
manifold and the Riemannian metric structure is a posteriori assigned in order
to induce a notion of distance. In this respect then, if the manifold M is
embedded in RN for some N ≥ n, then it can be made into a geodesically
complete one just by taking the Riemannian metric induced by the Euclidean
norm of the ambient space.

functions α1, α2, δ, and a positive definite function $ such
that inequality (106) holds together with inequality

DV (x)f(x, d) ≤ −$(|x|A) + δ(|d|), (108)

for all x ∈M and all d ∈ D.
Proof: Proof follows along the lines of Section IV in [5].

Theorem 7: Assume that system (1) satisfies the BEWCS
property in the classical sense with respect to set A and
input d(·), i.e. there exists a class-K∞ function such that the
following holds for all x ∈M , and all d(·) ∈MD:∫ +∞

0

σ (|d(s)|) ds < +∞ ⇒ lim inf
t→+∞

|X(t, x; d)|A = 0.

Assume furthermore that system (3) is globally Lyapunov
stable with respect to A. Then it is integral ISS in the classical
sense with respect to set A and input d(·).

Proof: Proof follows along the lines of Theorem 4.8 in
[3].

GRONWALL ESTIMATE FOR SYSTEMS ON MANIFOLDS

Notation: Let M denote a n-dimensional connected C2

Riemannian manifold without boundary. Let ∇ : TxM ×
TxM → TxM denote the Levi-Civita connection on M and
expx : TxM →M the exponential map at x ∈M . Denote by
Tγ,t1,t2 the parallel transport along a smooth curve γ : R→M
from the frame at γ(t1) to the frame at γ(t2). Let L(TxM)
denote the vector space of linear endomorphisms on a tangent
space TxM . Let ‖v‖g denote the norm g(v, v)

1
2 under the

action of the Riemannian metric g. As before, d(p, q) denotes
the Riemannian distance between two points p, q ∈M .

Definition 13: A vector field f on M is called locally
Lipschitz continuous if, for all compact sets K ⊂ M , there
exists a constant CK such that, for all x ∈ K, there exists a
neighborhood U ⊂ TxM of 0 such that expx : TxM →M is
bijective on U and, for all v ∈ U , it holds:∥∥Texpx(tv),1,0f(expx(v)) − f(x)

∥∥
gx
≤ CK‖v‖gx . (109)

The constant CK is said to be the Lipschitz constant of f in
CK.
This definition of Lipschitz continuity is equivalent to Lips-
chitz continuity in local coordinates, therefore we can conclude
that the set of points Ω(f) where f is not differentiable, has
zero measure. For points x ∈ M \ Ω(f) and v ∈ TxM the
covariant derivative ∇vf(x) can be defined by

lim
h→0

Tγ,h,0(f(γ(t)))− f(x)

h

for a smooth curve γ : R → M with γ(0) = x, γ′(0) = v.
We would like to extend this definition to arbitrary points x ∈
M , therefore we introduce a set-valued generalization of the
covariant derivative for nonsmooth vector fields:

Definition 14: Let f be a Lipschitz continuous vector field
on M . The generalized covariant derivative of f at x ∈M is

∇f(x) = Conv
{
A ∈ L(TxM) : ∃(xk) ⊂M \ Ω(f),

xk → x,A = lim
k→∞

∇X(xk)
}
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where Conv denotes the convex hull of a subset of L(TxM).
For a Lipschitz continuous vector field f , formula (109) can
be replaced by Av ≤ CKv whenever A ∈ ∇f(x).

The following Lemmas provide a local Gronwall estimate
for dynamical systems evolving on Riemannian manifolds.

Lemma 12 (Gronwall estimate for system (3)): Let c0 :
[a, b] → M, τ 7→ c0(τ) be a C2 curve in a Riemannian
manifold (M, g). Let f ∈ Vec(M) be a locally Lipschitz
continuous vector field on M and set c(t, τ) := ϕft (c0(τ))
where ϕft is the flow of f . Choose T such that ϕf is defined
on [0, T ] × c0([a, b]). Then, denoting by l(t) the length of
τ 7→ c(t, τ), we have

l(t) ≤ l(0)eCU t ∀t ∈ [0, T ]

where CU is the Lipschitz constant in U :=
{c(t, τ) ∈M : t ∈ [0, T ], τ ∈ [a, b]} according to Definition
13.

Proof: The proof follows along the lines of Proposition
1.1 in [16] with only minor modifications. Let τ 7→ c(0, τ) be
parameterized by arc length, τ ∈ [0, l(0)]. Since ϕft is a local
diffeomorphism g(∂τ c, ∂τ c) > 0 on [0, T ]× [a, b].

From the theory of ODEs it follows that t → c(t, τ) is
differentiable and has a Lipschitz continuous first derivative.
By hypothesis and ϕt being a diffeomorphism, it holds that
τ 7→ c(t, τ) is Lipschitz continuous as well. Therefore, we
can apply Theorem 9 in [20] in order to show that ∂t∂τ c =
∂τ∂tc almost everywhere. Since the Levi-Civita connection ∇
is torsion free, we then have ∇∂t∂τ c = ∇∂τ∂tc. Then:

l(s)− l(0) =

∫ s

0

∂tl(t) dt =

∫ s

0

∂t

∫ l(0)

0

‖∂τ c(t, τ)‖g dτ dt

=

∫ s

0

∫ l(0)

0

∂t g (∂τ c(t, τ), ∂τ c(t, τ))

2‖∂τ c(t, τ)‖g

=

∫ s

0

∫ l(0)

0

g (∇∂t∂τ c(t, τ), ∂τ c(t, τ))

‖∂τ c(t, τ)‖g

=

∫ s

0

∫ l(0)

0

g (∇∂τ∂tc(t, τ), ∂τ c(t, τ))

‖∂τ c(t, τ)‖g

≤
∫ s

0

∫ l(0)

0

‖∇∂τ∂tc(t, τ)‖g dτ dt

=

∫ s

0

∫ l(0)

0

∥∥∇∂τ c(t,τ)f
∥∥
g
dτ dt

≤ CU
∫ s

0

∫ l(0)

0

‖∂τ c(t, τ)‖g dτ dt

= CU

∫ s

0

l(t) dt.

The Claim follows by applying Gronwall’s inequality.
Corollary 1: Let (M, g) be a connected C2 Riemannian

manifold, f ∈ Vec(M) be a locally Lipschitz continuous
vector field on M , and let p0, q0 ∈ M . Let p(t) = ϕft (p0),
q(t) = ϕft (q0). Consider c(t, ·) : [a, b] → M, τ 7→
c(t, τ) a family of geodesic curves parameterized by t ∈
[0, T ] whose arc length l(t) :=

∫ b
a
‖∂τ c(t, τ)‖g dτ equals

d(p(t), q(t)). Suppose that CU is the Lipschitz constant in

U := {c(t, τ) ∈M : t ∈ [0, T ], τ ∈ [a, b]} according to Def-
inition 13. Then:

d(p(t), q(t)) ≤ d(p0, q0) eCU t ∀t ∈ [0, T ] (110)

Furthermore, if p(t), q(t) evolve in a bounded set U ⊂M for
all t ≥ 0, there exists a constant CU such that (110) holds
with T = +∞.
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