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Asymptotic consensus on the average of a field
for time-varying nonlinear networks under almost

periodic connectivity
S. Manfredi* and D. Angeli�

Abstract—The paper presents new results on asymptotic con-
sensus for continuous time non-autonomous nonlinear networks
under almost-periodic interactions. We introduce such consensus
algorithms in order to estimate the average of a measured
field, despite the presence of limited agents’ interaction (herein
represented by almost periodic connectivity). To this end, a
suitable notion of integral connectivity is exploited, frozen in
state variables, and of simple verification, thanks to ergodicity
of the underlying agents’ spatial dynamics. In the considered
set up, consensus variables are different than those affecting
network’s connectivity unlike most of the existing literature on
asymptotic agreement. The application of the proposed results
is illustrated considering two representative examples in the
scenario of autonomous sampling by mobile sensor agents.

Index Terms—: autonomous agents, nonlinear networks, Con-
sensus, Multi agent systems, almost periodic function.

I. INTRODUCTION

During recent years the scientific community has devoted
considerable attention to the consensus problem (see [7], [6],
[15] [9] and references therein). The distinguishing feature of
the above approaches is to allow every agent to autonomously
converge towards a common agreement value (or trajectory
about some variables of interest) by only using local informa-
tion available at the node and/or received from neighboring
agents. In the literature, several criteria have been adopted
to assess consensus, both in discrete and continuous time
([11], [17], [18], [19], [10], [14], just to cite a few) and
under different classes of both nonlinear time-invariant and
switching/time-varying networks [25], [16], [31], [32], [28],
[30]. In particular, by adopting averaged or integrated notions
of connectivity as in the following references: [17], [25], [21].
Moreover some classes of non-autonomous linear time-varying
consensus algorithms are studied in the presence of bounded
measurement errors and vanishing weights [43]. This property
is usually guaranteed by requiring the sign definiteness of off
diagonal entries of the Jacobian matrix F (x) and absence of
negative cycles when regarding the Jacobian as the adjacency
matrix of a graph, ([33]). Recently, emerging application
paradigms such as surveillance networks, formation flight,
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clusters of satellites or automated highway systems, have
led to the need for agreement protocols within distributed
algorithms for fault detection or decision making ([36], [37]),
optimization ([38]), control and monitoring of some measures
of interest ([42], [41], [35], [39], [40]). In such scenarios, it
seems appropriate to model agents’ interactions and connec-
tivity strength as dependent on configuration variables distinct
from those involved in the asymptotic consensus protocol.
For instance, the connectivity of mobile sensor nodes may
depend on the agents’ relative position (or even orientation, in
the case of directional communications) while the agreement
value might concern the estimation of either agent features
(i.e. reliability, reputation) or aggregate measure of a field (for
instance pollutant concentrations, temperatures and so on, i.e.
the global average or variance of local node measurements).
At the same time, convergence towards the average of the field
can be enforced by designing the mobility of individual agents
so as to guarantee that the whole area of interest is spanned,
not just individually by agents, but also jointly, when regarding
their collective motion as a single point in the cartesian product
of individual configuration spaces. This is achieved, from a
technical point of view, through almost periodic and ergodic
mobility of agents, and will result in sufficient uniformity
across time and interaction strength among agents visiting
nearby or overlapping regions.

A. Paper Contribution

In the light of the above considerations the paper contribu-
tions are both of a theoretical and practical nature. Specifically:

a) we propose, in a nonlinear network set-up, new criteria
for asymptotic agreement of consensus variables distinct
from those affecting the network’s connectivity. This
generalizes existing studies on linear non-autonomous
consensus protocols ([39], [40], [43]) in two respects:
by allowing nonlinear agents interactions and, most
remarkably, by introducing a cascaded structure into the
network whereby spatial dynamics is explicitly taken
into account and affects both agents’ interaction strength
of the downstream consensus protocol and exogenous
input measurements. The agreement is guaranteed under
weak connectivity properties (just existence of a span-
ning tree for a suitable averaged graph is required) for
a large class of nonlinear time-varying non monotone
networks. This encompasses most of the agents models
normally adopted in the literature in the linear and non
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linear time varying setting. Moreover, both the dynamics
at the node (self-feedback) and the coupling can be time
varying and state dependent with the notable feature
that the strength of attraction between two agents may
vanish as the distance between their “opinion” becomes
larger. Finally, the considered type of almost periodic-
dependent interactions may effectively model the case
of autonomous agents that are characterized by partial
or limited interactions among them due to energy (i.e.
reduced number of wireless communications), physical
(reduced space to allocate agents) or cost (reduced
number of available agents) constraints;

b) in recent papers [22], [24], we introduced a condition
for asymptotic agreement (state frozen integral con-
nectivity), suitable for nonlinear time-varying monotone
and non-monotone autonomous networks. The condition
extended the notion of integral connectivity introduced
by Moreau for linear networks [20], with the additional
merit to be frozen in state variables and therefore of
simple verification. While the above state-frozen con-
nectivity conditions are formulated in [22], [23] for
monotone networks and [24] for non-monotone ones,
herein we undertake a non trivial further step of allowing
exogenous inputs and almost periodic interactions;

c) we consider two illustrative applications of the proposed
results including the above features. Specifically, we
show how in the case of asymmetric and almost pe-
riodic interactions the criteria may be used to guarantee
exponential convergence of autonomous agents state to
a common consensus equilibrium about some variable
of interest (e.g. level of network/node reliability or
reputation). Moreover, in the case of symmetric almost
periodic interactions, the result may be used to guarantee
asymptotic convergence of individual agents estimates
towards the average value of a field over the region
spanned by the agents. These find direct application to
autonomous sampling scenarios.

II. NOTATION AND PROBLEM STATEMENT

Throughout the paper all vectors are assumed to be column
vectors. To denote vectors we write x = [x1, . . . , xn]′ for
the column vector x ∈ Rn. |x| denotes the Euclidean norm
of x. 1 is the vector of all ones and ej is the j-th element
of the canonical basis of Rn, where n should normally be
clear from the context. The integer interval N = {1, 2, . . . , n}
will be identified with the set of interacting agents. We adopt
the following definition of almost periodic function ([1]):
a continuous function g : R → R is almost periodic if
∀εa > 0, ∃ l(εa) > 0 such that all intervals of length l(εa)
contain at least one τ satisfying: |g(t + τ) − g(t)| ≤ εa,
∀t ∈ R. [a]+

.
= max{0, a}, (resp. [a]−

.
= min{0, a}). Finally,

given a signal s(t), the asymptotic time average is defined as
limt→∞

∫ t
0
s(τ)dτ

t .
Consider an ensemble of agents moving in k-dimensional

Euclidean space, within a region that, for the sake of simplic-
ity, we assume to be a box B ⊂ Rk. In typical applications
k = 2 but more general scenarios can be envisioned. Each

agent has a configuration space which is a q-dimensional
torus, Sq , with q ≥ k. The inequality q ≥ k holds true
because coordinates of the agent i within the box B are part
of the configuration variable θi ∈ Sq , which characterizes
agent i. Adopting coordinates on a torus, rather than standard
Euclidean coordinates, is useful to avoid discontinuities in
the speed of agents when they hit the boundary of the box
and need to bounce backwards as balls subject to an elastic
collision in a billiard like fashion. Of course, coordinates in
the torus need to be projected down to Euclidean coordinates
when assessing relative positions of agents in the plane. This
is a well defined procedure [2] usually considered for R2 also
in sensor and mobile applications ([3]). More configuration
variables could be included in θi so as to model situations
where availability of a communication channel between agents
is not a function of reciprocal position alone, for instance if
agents communicate through directional antennas.
The evolution of θi in Sq , for each agent i, follows the equation
below:

θ̇i(t) = ωi

for some constant vector of angular speeds ωi ∈ Rq . Notice
that angular variables are regarded as making sense up to
integer multiples of 2π or, equivalently, by embedding Sq in
R2q through the map θi 7→ [cos(θi)

′, sin(θi)
′]′ (where sin and

cos are meant componentwise). Each agent i continuously
measures, by means of an onboard sensor, a field of interest
z̄ : B ⊂ R as a function of its own position. To model
this, it is convenient to stack configuration variables in
σ := (θ1, θ2, . . . , θn) ∈ Sqn := Σ and then define individual
read-out functions zi(σ) : Σ → R, just by composing z̄(·)
with the projection of σ over its i-th angular coordinate
(and a suitable map to convert it to cartesian coordinates in
Euclidean space), for instance: zi(σ) := z̄(arcsin(sin(θi))
(this is appropriate if the motion of agent i happens on the box
[−π/2, π/2]k; slightly more complicated expressions could
work if suitable translations or rescaling factors are applied).
We also define, for later use, the stack of zi(σ) functions
as z(σ) := [z1(σ), z2(σ), . . . , zn(σ)]′. Usually, in sampling
applications, mobile agents need to estimate in a distributed
way a value of interest (i.e. average of the field) under partial
or limited interactions (e.g. due to energy, cost or physical
constraints) and when the estimation variables are different
than those affecting network’s connectivity (i.e. position). In
order to achieve this goal, we design agents mobility so as to
guarantee almost periodic functions σ(t) : [0,+∞] → Sqm
and ergodicity of σ dynamics1. Thanks to such assumptions,
each agent i moves according to an almost periodic trajectory
spanning a box Bi ⊆ B which, in the considered set-up, can
be expressed as Bi = [bi, b̄i].

Coupled to the former equations is the distributed consensus

1Ergodicity of a dynamical system on a probability space (Σ,m) is defined
as the property that the flow on Σ preserves the measure m, and moreover,
invariant sets of Σ only have measure zero or 1. A consequence of ergodicity,
which is used in the paper, is the Ergodic Theorem, the fact that asymptotic
time averages of any output function h of the system can be computed taking
averages on phase-space of Σ, [26], thus simplifying verification of condition
(5).
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protocol, as described by the following system of nonlinear
differential equations:

ẋ(t) = −x(t)

t
+
z(σ(t))

t
+ f(t, x(t), σ(t)) (1)

where x(t) ∈ Rn is the state vector, representing the current
estimate of the average held by individual agents, t ∈ [0,+∞]
denotes time and f : [0,+∞) × Rn × Σ → Rn is a t
and σ dependent vector-field describing the dynamics of the
interaction between agents. Notice that in this framework the
assumption of t ≥ 1 is made to simplify notation: it could be
replaced by t ≥ 0 by using t+ 1 at the denominator in (1).

Remark 1 Most of the formulations existing in the literature
assume (implicitly or explicitly) the property of monotonicity
[34] of the interactions represented by the vector field f . Given
a function f(t, x) : R × Rn → Rn, piecewise continuous
in t and locally Lipschitz continuous with respect to x, the
associated system of differential equations ẋ(t) = f(t, x(t)),
is called monotone if for any i ∈ {1, 2, . . . , n}, fi(t, x) is
non-decreasing with respect to xj for all j 6= i. Notice that
this condition implies monotonicity of the flow φ(t; t0, x0)
with respect to initial conditions, namely, for all t0 and all
t ≥ t0, it holds φ(t; t0, x1) ≥ φ(t; t0, x2) if x1 ≥ x2

(where ”≥” is meant componentwise), [34]. The assumption of
monotonicity is widely and implicitly assumed in the literature,
both in linear and nonlinear networks scenarios, as it appears
natural because it models coupling influence growing with
distance, thus allowing reasonable convergence speed to the
consensus equilibria. However, many networks of theoretical
and practical interest (i.e. opinion dynamics, swarm of robots,
sensor networks) might be characterized or designed so as
to implement limited or vanishing influence as the distance
among consensus variables goes to infinity. Therefore, given
the considered set-up, we remove the assumption of mono-
tonicity of the vector field f .

The main aim of algorithm (1) is to allow agents to asymp-
totically agree on an estimated value of interest ē. Specifically.

Definition We say that agents asymptotically agree to ē if
limt→∞ xi(t) = ē for all i.

Additionally, algorithm (1) may be also used to guarantee
agreement on a value ē independent of measured exogenous
inputs, thus extending the standard consensus protocols to this
set up. This autonomous case is still of practical interest when
each agent implements a consensus algorithm (15) for fault
detection or decision making purposes ([36], [37]). We denote
with F (x, σ) = [Fij(x, σ)] the Jacobian matrix, when this can
be defined and with F+

ij (x, σ) (resp. F−ij (x, σ)) the right (resp.
left) partial derivative of fi(x, σ) with respect to xj at (x, σ).
We assume: f is locally Lipschitz continuous with respect to
x uniformly in time and σ, namely for all compacts K ∈ Rn
there exists LK > 0, such that, for all xa, xb ∈ K and all t ≥ 0
and σ ∈ Σ it holds |f(t, xa, σ)− f(t, xb, σ)| ≤ LK|xa − xb|.
Moreover f is piecewise continuous in t. The assumptions on
f , imply the local existence and the uniqueness of the system’s
solution on some maximally extended open time interval. f

admits an agreement equilibrium set, that is:

E := spanR{1} ⊆ {x ∈ Rn : f(t, x, σ) = 0 ∀ t ∈ R+,∀σ ∈ Σ}.
(2)

Let x(t) denote a solution of (1). At any time instant t the
following quantities are of interest:

xmax(t) = max
k∈N
{xk(t)}; xmin(t) = min

k∈N
{xk(t)},

δk(t) = |xmax(t) − xk(t)| for all k ∈ N (or symmetrically
δ̃k(t) = |xmin(t)−xk(t)|), and the agent diameter V (x(t)) =
xmax(t) − xmin(t). Notice that being z(σ(t)) bounded, there
exists z̄ so that |z(σ(t))| ≤ z̄, for all t ≥ 1. Fixed an
arbitrary solution x(·) and an arbitrary time t we define a
time-dependent permutation pj(t) of indices j ∈ N such that
it fulfils

xp1(t)(t) ≤ xp2(t)(t) ≤ xp3(t)(t) ≤ . . . ≤ xpn(t)(t).

Notice that, if two or more entries of x take some given value,
then the permutation is not uniquely defined. Nevertheless the
permutation always exists and the value xpi(t)(t) is indepen-
dent of how it is selected. Therefore, for any solution x(t)
of (1) we can define the corresponding re-ordered solution as
[xpi(t)(t)], i ∈ N .

III. MAIN RESULTS

Next we state our connectivity assumptions which are
crucial to attain asymptotic consensus.

Assumption 1 (Sign-definite interactions) For all x ∈ Rn
and all i 6= j ∈ N2, it holds:

sign(xj − xi)[fi(t, x, σ)− fi(t, x+ (xi − xj)ej , σ)] ≥ 0.
(3)

Assumption 1 is a condition stating that influence of agent j on
i is never repelling. The above assumption alone is not enough
to guarantee agreement. A positive average interaction strength
is needed to guarantee contraction and attain consensus, at
least along a tree spanning the agents formation. Therefore
we state the following additional requirements:

Assumption 2 (State-Frozen, σ-dependent connectivity)
Given network (1), we say that state-frozen σ-dependent
connectivity holds, provided for all compact intervals K ⊆ R
there exist a root node r ∈ N , a rooted spanning tree
Tr ⊂ N × N , εK > 0 such that for all x ∈ Kn, and for all
(i, j) ∈ Tr and any σ ∈ Σ

sign(xj − xi)[fi(t, x, σ)− fi(t, x+ (xi − xj)ej , σ)] (4)
≥ Ψij(σ)εK|xi − xj |,

where each Ψij : Σ → R is a nonnegative continous, vector
valued function.

Assumption 3 (Positive average link strength) The signal σ
is almost periodic and fulfills for all (i, j) ∈ Tr:

lim
t→∞

1

t

∫ t

0

Ψij(σ(τ)) dτ > 0, (5)
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Remark 2 Notice that:

1 unlike most of existing literature, we deal with the sce-
nario where the connectivity property depends on vari-
ables σi(t) distinct from the consensus variables xi(t);

2 in the light of equation (5) this is an assumption of
asymptotic averaged link strength (on a spanning tree),
while, by condition (4), the node interaction property is
defined on frozen state variables, making its verification
straightforward.

It is somewhat convenient for the following developments to
let the function Ψij be defined for all i 6= j ∈ N2, and
assuming an inequality as (4) to hold. This can be done,
without loss of generality, by letting Ψij = 0 if (i, j) /∈ Tr.
In the following we will present some Lemmas that are
instrumental to prove asymptotic consensus.

The first Lemma shows that condition (5) actually implies
integral connectivity across uniform time intervals, namely
that there exists a sufficient large T > 0, εT > 0 so that∫ t+T
t

Ψij(σ(τ)) dτ ≥ εT for any t ≥ 1.

Lemma 1 Let Ψij : Σ → R be a nonnegative continous
vector-valued function of σ(t) = [σi(t)], with σi(t) almost
periodic function. If limt→∞

1
t

∫ t
0

Ψij(σ(τ)) dτ > 0 then there
exist T > 0 and εT > 0 so that

∫ t+T
t

Ψij(σ(τ)) dτ ≥ εT for
any t ≥ 1.

Proof: Let σ : R → Σ be component-wise an almost
periodic function. Since Ψij is a continous function of σ,
then the composition Ψij(σ(t)) is also almost periodic (see
Proposition 3.3. in [4]). In the following, for the sake of
notation, we highlight only the dependence of Ψij on t in
place of Ψij(σ(t)).

By assumption limt→∞
1
t

∫ t
0

Ψij(τ) dτ = Ψ̄ij > 0. Let T̂ >
1, be such that: ∫ T̂

0
Ψij(τ) dτ

T̂
≥ Ψ̄ij/2.

Let T = max{2T̂ , 2l(Ψ̄ij/4)}, where l(·) is the function l as
in the definition of almost periodic function associated to Ψij .
For any t ∈ R, pick the “almost period” τ in the interval [t, t+
l(Ψ̄ij/4)] as from the definition of almost periodic function,
associated to ε = Ψ̄ij/4. Then:∫ t+T

t

Ψij(s)ds ≥
∫ τ+T̂

τ

Ψij(s) ds,

where the inequality follows from non-negativity of Ψij and
because [τ, τ + T̂ ] ⊂ [t, t+ T ]. Moreover,∫ τ+T̂

τ

Ψij(s) ds =

=

∫ τ+T̂

τ

Ψij(s− τ) + [Ψij(s)−Ψij(s− τ)] ds

≥
∫ τ+T̂

τ

(Ψij(s− τ)− Ψ̄ij/4) ds

=

∫ T̂

0

Ψij(s)ds− T̂ Ψ̄ij/4 ≥ T̂ Ψ̄ij/4 ≥ Ψ̄ij/4.

This proves the claim for T as defined above and εT :=
Ψ̄ij/4.

Remark 3 Notice that almost periodicity of signals σ(t) is
used as a sufficient condition to conclude uniform time-
averaged strength of interconnection between pair of agents
corresponding to arcs in the spanning tree Tr. All our con-
sensus results could be proved under such weaker and more
widespread assumption.

The next Lemma extends to the case of networks with exoge-
nous inputs the classical results on monotonicity of xmax and
xmin.

Lemma 2 The functions max{xmax(t), z̄} and
min{xmin(t),−z̄} are (respectively) monotonically non-
increasing and non-decreasing with respect to t.

Proof: The claim is equivalent to the set:

Mc := {x : max
i
{xi, z̄} ≤ c},

being forward invariant for all c ∈ R. Let x inMc be arbitrary.
Since Mc is convex, its tangent cone at x is simply given by
TCxMc = {w : ∀ i with : xi = c, wi ≤ 0} (see Proposition
5.5, [12]). For all i such that xi = c = max{xmax(t), z̄} =
xmax(t) and any t it holds:

− xi(t)

t
+
zi(σ(t))

t
+ fi(t, x(t), σ(t)) ≤

− xi(t)

t
+
z̄

t
+ fi(t, x(t), σ(t))

Being fi(t, xi1, σ) = 0 and taking into account condition (3)
yields:

fi(t, x, σ) = [fi(t, x, σ)− fi(t, x+ (xi − x1)e1, σ)]

+ [fi(t, x+ (xi − x1)e1, σ)

− fi(t, x+ (xi − x1)e1 + (xi − x2)e2, σ)]

+ [fi(t, x+ (xi − x1)e1 + (xi − x2)e2, σ)−
fi(t, x+ (xi − x1)e1 + (xi − x2)e2 + (xi − x3)e3, σ)]

+ . . .+ [fi(t, x+ (xi − x1)e1 + (xi − x2)e2

+ . . .+ (xi − xn−1)en−1, σ)

− fi(t, x+ (xi − x1)e1 + (xi − x2)e2

+ . . .+ (xi − xn)en, σ)] + fi(t, xi1, σ) ≤ 0

Additionally being in this case xi ≥ z̄ it results −xi
t

+
z̄

t
≤ 0

and hence: −xi
t

+
z̄

t
+ fi(t, x, σ) ≤ 0. Hence −xi(t)

t
+

z̄

t
+fi(t, x(t), σ(t)) ∈ TCxMc. The same conclusion trivially

holds for all i such that xi = c when c = max{xmax(t), z̄} =
z̄. As this holds for all x ∈ Mc forward invariance of
Mc follows by Nagumo’s Theorem - [13], and therefore
monotonicity of max{xmax(t), z̄} holds.

A symmetric argument can be used to prove monotonicity
of min{xmin(t),−z̄} by showing forward invariance of Nc =
{x : mini∈N{xi,−z̄} ≥ c}.
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When xmax(t) ≤ z̄ (and symmetrically xmin(t) ≥ −z̄),
monotonicity of such functions cannot be inferred from
Lemma 2. Indeed xmax(t) (resp. xmin(t)) may increase (de-
crease). It will be useful in the following derivations to have
an estimate of how quickly this might occur. This is stated in
the next Lemma.

Lemma 3 The following inequality holds for almost all θ ≥
t ≥ 1:

xmax(θ) ≤ t

θ
xmax(t) +

θ − t
θ

z̄. (6)

Proof: The claim follows by remarking that: ẋmax(θ) ≤
− (xmax(θ)−z̄)

θ for all θ. Hence, by a standard comparison prin-
ciple ([44]) we see: xmax(θ)− z̄ ≤ e−

∫ θ
t

1/sds(xmax(t)− z̄).
By explicit integration of the right-hand side of the previous
inequality, we get:

xmax(θ) ≤ z̄ +
t

θ
(xmax(t)− z̄) =

t

θ
xmax(t) +

θ − t
θ

z̄

Notice that the above Lemma could be extended by consider-
ing the Dini derivative in place of derivative as made in some
approaches in the literature (i.e. [29]). In what follows we
will present a key lemma which will allow us to later prove
asymptotic consensus in the considered non autonomous case.
This is a far from trivial adaptation of the main technical result
in [24] to accomodate for exogenous input signals.

Lemma 4 Let r ∈ N be the root of the spanning tree as
from Assumption 2. For all initial conditions x(1) ∈ Rn, there
exists a finite positive integer k̄ and µ > 0 (uniform in time)
and constant K̂ such that, for all t ≥ 1, the following holds
along the solutions of (1):

xmax(t+ k̄T ) ≤ xmax(t)− µ|xmax(t)− xr(t)|+
K̂

t
(7)

and:

xmin(t+ k̄T ) ≥ xmin(t) + µ|xmin(t)− xr(t)| −
K̂

t
. (8)

While the kind of robustness portrayed by this Lemma is
desirable and, to a certain extent, expected, we emphasize
that, due to nonlinearity of the considered system, superpo-
sition principles cannot be invoked in this context. Likewise,
adopting existing converse Lyapunov arguments for nominal
exponential stability in order to claim tolerance of asymptot-
ically vanishing disturbances appears to be unsuitable given
the complex nature of the considered network and the non-
compact nature of its equilibrium set. For the above reasons
we adopt a direct trajectory based proof that explicitly takes
into account the effect of exogenous disturbances. Our main
induction step is based on the technical Lemma stated below.
Let

d(q) : N → N

be the distance in the spanning tree Tr of node q from the
root r.

Lemma 5 For any node k ∈ N at distance d(k) there exists
positive constants µ(d(k)) and K(d(k)) such that:

xk(t+2d(k)T ) ≤ xmax(t)−µ(d(k))|xmax(t)−xr(t)|+
K(d(k))

t
,

(9)
and:

xk(t+2d(k)T ) ≥ xmin(t)+µ(d(k))|xmin(t)−xr(t)|+
K(d(k))

t
,

(10)
where r is the root node and T is as in Lemma 1.

The proof of Lemma 5 is deferred to the appendix for the
sake of readability. Below we show how Lemma 4 can be
derived exploiting Lemma 5.

Proof: Notice that inequality (9) is of the form needed
for Lemma 4, except for the distance dependent number of
time-steps ( 2d(k) ) needed for agent k to ‘feel’ the effect of
the pulling influence from the root. By “integrating” inequality
(9) for agent k at distance d(k) over a finite number of steps
Sk, one gets:

xk(t+2d(k)SkT ) ≤ xmax(t)−µ(d(k))|xmax(t)−xr(t)|+Sk
K(d(k))

t
.

(11)
Hence, by letting Sk = n!/d(k) we see from (11) that:

xk(t+2n!T ) ≤ xmax(t)−µ(d(k))|xmax(t)−xr(t)|+
n!

d(k)

K(d(k))

t
.

(12)
Being K(d(k)) = d(k)(Ka + K̄) and µ(n − 1) ≤ µ(d(k)),
the latter inequality proves the Lemma 4 with k̄ = 2n!, µ =
µ(n− 1) and K̂ = n!(Ka + K̄).

We are now ready to state the Main Result of the Section
stating asymptotic agreement for non autonomous nonlinear
time varying networks in the presence of almost periodic
connectivity and input signals zi.

Theorem 1 Consider the network modeled by equations (1),
if Assumptions 1 hold, then the equilibrium set is uniformly
asymptotically stable and, for any initial condition x(1), x(t)
converges to an agreement equilibrium state.

Proof: Consider the function earlier introduced:

V (x) = max
k∈N

xk −min
k∈N

xk.

This is positive definite with respect to the equilibrium set E
and radially unbounded. The network’s solutions asymptoti-
cally converge to the equilibrium set. Indeed, by the results
(42)-(43) of Lemma 4 it results:

V (x(t+ k̄T )) ≤ (1− µ)V (x(t)) +
2K̂

t
.

By a standard comparison principle, a linear difference in-
equality forced by a converging exogenous signal only admits
converging solutions. In fact:

lim
s→∞

V (x(t+ sk̄T )) ≤ 2K̂

µ
lim
s→∞

1

t+ k̄sT
= 0.
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By Lipschitz continuity of the considered equations, then:

lim
t→+∞

V (x(t)) = 0,

where the limit is taken with respect to t ∈ R. This completes
the proof of our claim.
Now we present a Corollary addressing the problem of asymp-
totic agreement on the estimate the average value of input
signals zi.

Corollary 1 Consider a network (1) as in Theorem 1. If in
addition f(t, x, σ) satisfies 1T f(t, x, σ) = 0 for all t ≥ 1,
x ∈ Rn, σ ∈ Σ then each agent state xi(t) asymptotically
agrees to the mean of the asymptotic time averages of input
signals zi.

Proof: If Assumptions 1 hold from Theorem 1 asymptotic
consensus follows. Additionally being 1T f(t, x(t), σ(t)) = 0,
from (1) it results:

n∑
i=1

ẋi(t) =

∑n
i=1 zi(σ(t))

t
−
∑n
i=1 xi(t)

t
.

Define the following quantity:

zs(t) :=

n∑
i=1

∫ t
0
zi(σ(τ))dτ

t
.

It is straightforward to verify that:

żs(t) = −
zs(t)−

∑n
i=1 zi(σ(θ(t)))

t
.

Hence, letting z̃s(t) = zs(t)−
∑n
i=1 xi(t) we can verify that

˙̃zs = − z̃s
t

which is the equation of a time-varying linear system globally
asymptotically stable at the origin. Therefore, for any initial
condition, it holds:

lim
t→+∞

zs(t)−
n∑
i=1

xi(t) = lim
t→+∞

z̃(t) = 0,

which concludes the proof of our claim.
Finally we give a Corollary assessing exponential conver-

gence to the equilibria for the autonomous systems ẋ =
f(t, x(t), σ(θ(t))) under almost periodic integral interactions.

Corollary 2 Let a network ẋ = f(t, x(t), σ(θ(t))) under
almost periodic-dependent connectivity, then the equilibrium
set is uniformly exponentially stable and, for any initial con-
dition x(1), x(t) converges to an agreement equilibrium state.
Additionally, if f(t, x(t), σ(t)) satisfies 1T f(t, x(t), σ(t)) = 0
for all t then each agent state xi(t) asymptotically agrees to
the mean of the initial state x(1).

Proof: The result trivially follows by Theorem 1 that
assures agreement equilibrium (x1 = x2 = . . . = xn),
and assumption 1T f(t, x(t), σ(t)) = 0 that guarantees flow
conservativeness,

∑n
i=1 xi(t) =

∑n
i=1 xi(1) for all t ≥ 1.

IV. APPLICATION TO SAMPLING BY MOBILE SENSORS

In this Section we consider a representative application
where each agent is an autonomous robot or sensor node mov-
ing with constant speed in a rectangular region. When an agent
reaches the boundary of the region its velocity component
orthogonal to the boundary swaps its sign and, as a result, the
agent bounces back towards the interior preserving its speed.
Each agent (say the i-th one) could be visiting a different
region [−ai, ai]× [−bi, bi], and these could be overlapped or
partially overlapped in arbitrarily complex ways. In order to
design an algorithm for uniformly weighted field’s averages
a suitable time-dependent weighting function wi(t) should be
adopted so as to take into account of how many agents are
visiting each point that agent i visits along its trajectory. In
the following description, for the sake of simplicity, we will
assume that all regions are identical and that, as a consequence,
unitary weighting functions are appropriate. This is also the
case if regions are non-overlapping (as in the second example
considered).

Notice that, by a standard embedding used in the study of
biliards, we could regard agents moving with constant speed
and bouncing elastically at the boundary as material points
rotating at constant speed inside a 2-dimensional torus.

The torus, in turn, can be embedded in R2, by identifying
points in R2 whose difference is an integer multiple of 2π
(coordinatewise). Accordingly the rotation inside the torus of
agent i can be described by a simple differential equation for
the vector θi = [θix , θiy ]:

θ̇ix = ωix (13)

θ̇iy = ωiy

with ωix , ωiy , i = 1 . . . n, uncommensurable real numbers.
Incommensurability guarantees that rotation in the torus is not
periodic and each point in the torus is approached in the limit
by the solution.

The coordinates θi defined in R2N are projected to
planar coordinates in the box [−a, a] × [−b, b] according
to [2aσ̃(θix)/π, 2bσ̃(θiy )/π] with σ̃(θ) = arcsin(sin(θ)).
Overall we let σ(θ) denote the vector [. . . σ̃(θix), σ̃(θiy ) . . .]′.

Each agent i carries out a measure of a field of interest
as a function of its position zi(σ(t)) (e.g. local temperature,
local ambient pollution concentration) by an onboard sensor
and implements algorithm (1) to estimate the spatial average
of the field (which we assume to be constant in time) both by
integrating in time his local information and by communicat-
ing the current estimated average value to its neighboors. As
an example, we assume that moving agents can communicate
information of their own consensus variable xi just with agent
at distance less than R, while the strength of interaction
vanishes for higher distances R. Therefore we may assume
function Ψij of the following form:

Ψij = Bγ,R

(√
[(σ(θix)− σ(θjx)]2 + [σ(θiy )− σ(θjy )]2

)
(14)

with Bγ,R(w) is a bump function so that Bγ,R(0) = γ and
Bγ,R(w) = 0 for |w| > R.
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In the following we will give two Corollaries by tailoring
the Main Results presented in Section III to the considered
scenario. The first one copes with the aim to estimate the
average value of a measured field z̄, while the second one has
the objective to agree on a value depending on the initial state
variables xi(1) (e.g. their mean value).

Corollary 3 Let a network (1) be composed of agents moving
in a region according to (13) with a law of interaction (14) and
sampling local measurements zi(σ(θ(t))), if f(t, x(t), σ(t))
satisfies (4) then x(t) asymptotically converges to an agree-
ment equilibrium state. If, in addition, f(t, x(t), σ(t)) fulfils
1T f(t, x(t), σ(t)) = 0 for all t then each agent asymptotically
agrees to an estimate of the average of the field z̄ over the
box [−a, a]× [−b, b].

Proof: Being ωix and ωiy incommensurable, the functions
[sin(ωixt+ θix(0)), sin(ωiy t+ θiy (0))] is almost periodic and
its image visits a dense set in [−1, 1]2. Similarly σ(θ(t))
as well as Ψ(σ(θ(t))) are almost periodic functions, (as
composition of a continuous function and an almost peri-
odic one) ([4]). Additionally, from the Ergodic Theorem [5],
condition (5) holds being: limt→∞

1
t

∫ t
0

Ψij(σ(θ(τ))) dτ =∫
Tn Ψij(θ)dθ =

∫
[0,2π]2n

Ψij(θ) dθ

(2π)2n > 0. From assumption
f(t, x(t), σ(t)) satisfies the state frozen interaction condition
(4). Therefore conditions of Assumptions 1 are satisfied and
from Theorem 1 asymptotic consensus follows. Additionally
if 1T f(t, x(t), σ(θ(t))) = 0, from Corollary 2 we have the
convergence of the estimations

∑n
i=1 xi towards the sum of

the field’s time averages. Finally, letting x̄ = limt→+∞ xi(t)
we see that:

x̄ = lim
t→+∞

∑n
i=1 xi(t)

n
= lim
t→+∞

1

n

n∑
i=1

∫ t
0
zi(σ(θ(τ)))dt

t

=
1

n

n∑
i=1

∫
[−ai,ai]×[−bi,bi] z̄(x, y)dxdy

4aibi
,

where the last equality follows from ergodicity of system (13).

Corollary 4 Consider the autonomous network ẋ =
f(t, x(t), σ(t)), composed of agents moving in a region ac-
cording to (13) and with a strength of interaction fulfilling
(14). If f(t, x(t), σ(t)) satisfies (4) then x(t) exponentially
converges to an agreement equilibrium state. If, additionally,
f(t, x(t), σ(t)) fulfills 1T f(t, x(t), σ(t)) = 0 for all t ≥ 0
then each agent asymptotically agrees to an estimate of the
mean of the initial state xi(1).

Proof: The result follows from Corollary 2 and Corollary
3.

We remark that in the considered set up, the proposed results
allow to assess consensus both in the absence and presence of
inputs z under limited agents’ interactions (due to bounded
range of action R and almost periodic connectivity). In this
respect in the following we will present two examples showing
the application of the results of Corollary 3 and Corollary 4:
a.) the autonomous and asymmetric case in the absence of

inputs, where the agents need to reach consensus on a variable
of interest and b.) the algorithm is used to estimate the average
value of a field.

A. Consensus on a variable of interest: asymmetric case

This example is representative of the autonomous sampling
scenario where each agent has a different function and hard-
ware (e.g. sampling or storing different kind of measures,
different radius of action). Nevertheless each agent imple-
ments a consensus algorithm (15) (once the vanishing term
[zi(t) − xi(t)]/t is dropped) for fault detection or decision
making purposes ([36], [37]). In this asymmetric scenario it is
therefore required agreement on a variable x different from σ,
which instead affects the connectivity. To give an example,
let us consider the following nonlinear non-monotone and
autonomous network composed of 3 agents:

ẋi =

3∑
j=1

Ψij(σ(t))
(xj − xi)

1 + (xj − xi)2
(15)

i = {1, 2, 3}, with σ(θ(t)) defined above. Ψij(σ(t)) is defined
according to (14) with γ = 5 for all i and with different radius
of action for each agent, namely: R1 = 1, R2 = 5, R3 = 10:
this implies asymmetric interactions. Verification of condition
(4) in Assumption 2 for any i, and j yields:

sign(xj − xi)Ψij
(xj − xi)

1 + (xj − xi)2
≥ ΨijεK|xj − xi|,

provided εK := 1. The agents move in a region (a = 100,
b = 200) as shown in Fig. 1 while connecting to agents in the
own range of action. From Corollary 4 consensus is assessed
as shown by the dynamic of agents’ state variable in Fig. 2.
Taking into account the level of coverage of the region by the
motion of each agent (Fig. 1), notice that as agent (marked in
the Figures by red colour) with larger radius (R = 10) more
frequently can observe other agents, it acts as a ”bridge agent”
to facilitate consensus between the agents (marked by green
colour) with minimum range (R = 1) and agent (marked by
green colour) with medium range (R = 5) of action.

B. Estimation of the average value of a field: symmetric case

Now we consider the scenario of mobile agents with limited
range of action (i.e. robots) carrying out a measure as a
function of its position zi(σ(θ(t))) (e.g. local temperature,
local ambient pollution concentration) by an onboard sensor
and implementing algorithm (1) to estimate the spatial average
of the field. Let us consider a network composed of 3 agents:

ẋi = −xi(t)
t

+
zi(σ(θ(t)))

t
+

3∑
j=1

Ψij(σ(t))
(xj − xi)

1 + (xj − xi)2

(16)

i = 1..3, with σ(θ(t)) and Ψij(σ(t)) defined in (14) with
γ = 5 and R = 45 for all i The agents move on a rectangular
field in Fig. 3(a) with a = 300, b = 200. Each agent measures
variable zi depending on the node positions (θix , θiy ) and
assuming the value represented by the colour in Fig. 3(a).
From the observation carried out in the previous Section,
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fi(t, x(t), σ(t)) satisfies (4) in Assumption 1 for any i, and j.
Additionally, having all mobile sensors the same distance of
action R, Ψij are symmetric. This condition along with the
form of fi(t, x(t), σ(t)) in (16) implies 1T f(t, x(t), σ(t)) = 0.
Therefore from Corollary 3 the asymptotic convergence of xi
to the mean value of the field is assessed.

In order to highlight the minimal sensors set up and agents’
interaction needs to guarantee the convergence result and
therefore the desired monitoring functionality, we consider
each agent moving in just one subregion (i.e. blue, green,
or red) of the monitoring field as depicted in Fig. 3(b) with
R = 45 (i.e. one agent of a subregion may connect at
most with agent of the adjacent subregion). The initial state
condition is x(1) = [138 220 336]

′
. Notice that although

both the limited agents’ interactions, communication range
and low number of agents, the swarm asymptotically may
coverage all the area (Fig. 3(b)) and each agent can estimate
the average measure of the region (i.e. 50) as shown in Fig.
4(a). The example shows as the proposed conditions may find
application to autonomous sampling of large areas by using
a low number of mobile agents, reduced energy consumption
(due to reduced wireless communications) and cost (reduced
number of agents). Nevertheless, the algorithm may be tuned
in a different way (e.i. increasing the range of action R or
the interaction gain γ) or increasing the number of agents
if a higher responsiveness in getting the average value is
a requirement. For instance, in Fig. 4(b) is shown as the
convergence rate is increased than the case of Fig. 4(a) when
the range of action, strength of interaction and number of
agents per subregion are increased (i.e. R = 55, γ = 10 and
four agents).
By large, each agent may implement both of the kind of algo-
rithm presented in Subsections IV-A-IV-B to simultaneously
assess both monitoring and decision making/fault detection
functions.

Remark 4 From the above verifications it appears that the
introduced condition is fulfilled (assumed the existence of a
node to be taken as the root of the graph of interactions).
It is worth pointing out that the assumption verification is
performed with ”frozen” state variables, greatly simplifying
the a priori verification of the conditions. Indeed, it allows
to avoid the circular argument by which solutions depend on
the connectivity and the latter is in turn influenced by state
evolutions: this type of circular argument normally makes
up for conditions that can hardly be tested in the case of
time-varying nonlinear agent dynamics without explicit apriori
knowledge of solutions. Therefore the proposed results may be
used to formulate (resp. test) a (resp. given) nonlinear, time
varying monotone algorithm to assess consensus under limited
agents’ interactions.

V. CONCLUSIONS

In this paper we introduced condition to guarantee asymp-
totic consensus of a class of non-monotone, non-autonomous
networks in the presence of inputs and almost periodic in-
teractions. The state agreement is assessed for state variables

different than those affecting the network connectivity and the
measured inputs. This is representative of many monitoring
and surveillance scenarios where the connectivity of mobile
sensor nodes depends on the relative position while the agree-
ment value concerns either different estimation variables (i.e.
reliability, reputation) or sampled measures (i.e. temperature,
chemical concentrations). The agreement is guaranteed under
weak connectivity properties (just existence of a spanning tree
for a suitable averaged graph is required). The adopted notion
of integral connectivity has the additional merit to be very easy
to test due to almost periodic and ergodic agents dynamics. As
as additional feature, the monotonicity property of the vector-
field is not required, unlike most of existing literature on the
subject. The proposed framework is of practical interest when
consensus is required between autonomous agents character-
ized by partial or limited interactions, herein represented by
the almost periodic function-dependent connectivity. A direct
application to practical scenarios of interest like autonomous
sampling is highlighted by two representative examples. The
first models mobile agents interested in achieving consensus
on a variable different from the one affecting connectivity for
decision making or fault detection purposes. The simulation
results validate the effectiveness of the result in the case of
asymmetric interactions. The second example is representative
of agents taking homogeneous measures and moving in a
region with the consensus algorithm used to estimate the
average value of the field measured. The simulation results
validate the effectiveness of the result in the case of symmetric
interactions and also in the presence of cost (use of reduced
number of agents), energy consumption (reduced number of
wireless communications) or region accessibility constraints.
The possibility of considering more general dynamics at the
nodes and or higher order filters in processing the measured
data was not addressed in the present manuscript and is a
promising direction for future research.
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APPENDIX A
PROOF OF LEMMA 5

We prove the Lemma for xmax(t), a similar argument holds
for xmin(t). Assume x(1) belongs to Kn for some compact
interval K and denote by ε the product εT · εK where T and
the corresponding εT are as in Lemma 1 and εK is as from
Assumption 1. We prove the result by induction.
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1) STEP 1: Let us deal first with any node
q ∈ D1 := {q ∈ N : d(q) = 1}.

We consider different cases:
Case a) xr(τ) ≤ xq(τ), for all τ ∈ [t, t+ 2T ].
Define q̄(τ) ∈ {1, . . . , n} so as to fulfil pq̄(τ)(τ) = q. In
the following expressions, the time dependence of q̄ will be
omitted for the sake of simplicity of notation. Then, for all
τ ∈ [t, t+ 2T ] the following holds:

xq(τ)− xq(t) =

∫ τ

t

fq(θ, x(θ), σ(θ)) dθ

+

∫ τ

t

zq(σ(θ))− xq(θ)
θ

dθ =

∫ τ

t

(
[fq(θ, x(θ), σ(θ))

− fq(θ, x(θ) + (xq(θ)− xpq̄−1(θ)(θ))epq̄−1(θ), σ(θ))]

+ [fq(θ, x(θ) + (xq(θ)− xpq̄−1(θ)(θ))epq̄−1(θ), σ(θ))

− fq(θ, x(θ) + (xq(θ)− xpq̄−1(θ)(θ))epq̄−1(θ)

+ (xq(θ)− xpq̄−2(θ)(θ))epq̄−2(θ), σ(θ))]

+ [fq(θ, x(θ) + (xq(θ)− xpq̄−1(θ)(θ))epq̄−1(θ)

+ (xq(θ)− xpq̄−2(θ)(θ))epq̄−2(θ), σ(θ))

− fq(θ, x(θ) + (xq(θ)− xpq̄−1(θ)(θ))epq̄−1(θ)

+ (xq(θ)− xpq̄−2(θ)(θ))epq̄−2(θ)

+ (xq(θ)− xpq̄−3(θ)(θ))epq̄−3(θ), σ(θ))] + . . .+

+ [fq(θ, x(θ) + (xq(θ)− xpq̄−1(θ)(θ))epq̄−1(θ) + . . .

+ (xq(θ)− xp2(θ)(θ))ep2(θ), σ(θ))

− fq(θ, x(θ) + (xq(θ)− xpq̄−1(θ)(θ))epq̄−1(θ)

+ . . .+ (xq(θ)− xp1(θ)(θ))ep1(θ), σ(θ))]

+ fq(θ, x(θ) + (xq(θ)− xpq̄−1(θ)(θ))epq̄−1(θ)

+ . . .+ (xq(θ)− xp1(θ)(θ))ep1(θ), σ(θ))

)
dθ

+

∫ τ

t

zq(σ(θ))− xq(θ)
θ

dθ

The application of Assumption 1 to each of the terms
in the first integrand of the previous expression (except for
the last one) leads to:

xq(τ)− xq(t) ≤

−
∫ τ

t

∑
j:xj(θ)<xq(θ)

Ψqj(θ)εK|xq(θ)− xj(θ)|dθ

+

∫ τ

t

fq(θ, x(θ) + (xq(θ)− xpq̄−1(θ)(θ))epq̄−1(θ)

+ . . .+ (xq(θ)− xp1(θ)(θ))ep1(θ), σ(θ)) dθ

+

∫ τ

t

zq(σ(θ))− xq(θ)
θ

dθ

The former calculations are instrumental for the subsequent
exploitation of uniform Lipschitz continuity of f as detailed
below:

xq(τ)− xq(t) ≤

−
∫ τ

t

∑
j:xj(θ)<xq(θ)

Ψqj(θ)εK|xq(θ)− xj(θ)|dθ

+

∫ τ

t

(
[fq(θ, x(θ) + (xq(θ)− xpq̄−1)epq̄−1+

. . .+ (xq(θ)− xp1(θ)(θ))ep1(θ))− fq(θ, xq(θ)1, σ(θ))]

+ fq(θ, xq(θ)1, σ(θ))

)
dθ +

∫ τ

t

zq(σ(θ))− xq(θ)
θ

dθ.

Being fq(θ, xq(θ)1, σ(θ)) = 0, it results:

xq(τ)− xq(t) ≤

−
∫ τ

t

∑
j:xj(θ)<xq(θ)

Ψqj(θ)εK|xq(θ)− xj(θ)|dθ

− L
∫ τ

t

∑
j:xj(θ)≥xq(θ)

[xq(θ)− xj(θ)] dθ

+

∫ τ

t

zq(σ(θ))− xq(θ)
θ

dθ (17)

with L denoting the (time-independent) Lipschitz constant of
fq . Moreover let a constant V̄ (later defined), Lemma 3 yields
for θ ∈ [t, τ ]:

xj(θ) ≤ xmax(θ) ≤ t

θ
[xmax(t) + V̄ ]− t

θ
V̄ +

θ − t
θ

z̄

≤ xmax(t) + V̄ − t

θ
V̄ +

θ − t
θ

z̄

= xmax(t) +
θ − t
θ

(z̄ + V̄ )

≤ xmax(t) +
2T

t
(z̄ + V̄ ) = xmax(t) +

K̄

t
, (18)

where K̄ .
= 2T (z̄+ V̄ ). Therefore, combining the inequalities

in (18) and (17), we have:

xq(τ)− xq(t) ≤

≤ −
∫ τ

t

∑
j:xj(θ)<xq(θ)

Ψqj(θ)εK|xq(θ)− xj(θ)|dθ

− L
∫ τ

t

∑
j:xj(θ)≥xq(θ)

[xq(θ)− (xmax(t) +
K̄

t
)] dθ

+

∫ τ

t

zq(σ(θ))− xq(θ)
θ

dθ

≤ −
∫ τ

t

∑
j:xj(θ)<xq(θ)

Ψqj(θ)εK|xq(θ)− xj(θ)|dθ

− (n− 1)L

∫ τ

t

[xq(θ)− (xmax(t) +
K̄

t
)] dθ

+

∫ τ

t

zq(σ(θ))− xq(θ)
θ

dθ.

In particular, further manipulating the previous inequality to
highlight the influence of the root node r yields for all τ ∈
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[t+ T, t+ 2T ]:

xq(τ)− (xmax(t) +
K̄

t
) ≤ xq(τ)− xmax(t)

≤ xq(τ)− xq(t)

≤ −
∫ τ

t

Ψqr(θ) εK|xq(θ)− xr(θ)|dθ

− (n− 1)L

∫ τ

t

[xq(θ)− (xmax(t) +
K̄

t
)] dθ

+

∫ τ

t

zq(σ(θ))− xq(θ)
θ

dθ. (19)

By the triangular inequality it holds:

− |xq(θ)− xr(θ)| ≤ −|xmax(t) +
K̄

t
− xr(θ)| (20)

+ |xmax(t) +
K̄

t
− xq(θ)|,

moreover, by Lipschitz continuity of f , convergence of xr(θ)
towards xmax(t) + K̄

t is at most exponential in time and
therefore we may infer:∣∣∣∣xmax(t) +

K̄

t
− xr(θ)

∣∣∣∣
≥ e−(L+1/t)(θ−t)

∣∣∣∣xmax(t) +
K̄

t
− xr(t)

∣∣∣∣
≥ e−(L+1)(θ−t)

∣∣∣∣xmax(t)− xr(t)
∣∣∣∣ (21)

So, it holds:

−|xmax(t) +
K̄

t
− xr(θ)| ≤ −e−(L+1)(θ−t)|xmax(t)− xr(t)|.

(22)
Combining the above inequalities (22) and (20), we may
restate the bound expressed in (19) as detailed below:

xq(τ)− (xmax(t) +
K̄

t
) ≤

−
∫ τ

t

Ψqr(θ)εKe
−(L+1)(θ−t)|xmax(t)− xr(t)|dθ

−
∫ τ

t

Ψqr(θ)εK[xq(θ)− (xmax(t) +
K̄

t
)] dθ

− (n− 1)L

∫ τ

t

[xq(θ)− (xmax(t) +
K̄

t
)] dθ

+

∫ τ

t

zq(σ(θ))− xq(θ)
θ

dθ

Notice that Ψij are uniformly bounded functions. In the
following, without loss of generality, we will assume Ψij ≤ 1.
Additionally, taking into account the result of Lemma 1 (i.e.
there exists a sufficient large T > 0, εT > 0 so that∫ t+T
t

Ψij(σ(τ)) dτ ≥ εT for any t), it results:

xq(τ)− [xmax(t) +
K̄

t
] ≤

− εKe−2(L+1)T |xmax(t)− xr(t)|
∫ τ

t

Ψqr(θ) dθ

− (εK + (n− 1)L)

∫ τ

t

[xq(θ)− (xmax(t) +
K̄

t
)] dθ

+

∫ τ

t

zq(σ(θ))− xq(θ)
θ

dθ

≤ −εe−2(L+1)T |xmax(t)− xr(t)|

− (εK − (n− 1)L)

∫ τ

t

[xq(θ)− (xmax(t) +
K̄

t
)] dθ

+

∫ τ

t

zq(σ(θ))− xq(θ)
θ

dθ (23)

with ε = εKεT .
By defining ∆(τ) =

∫ τ
t

[xq(θ) − (xmax(t) + K̄
t )] dθ, we can

recast for all τ ∈ [t+ T, t+ 2T ] equation (23) as:

d

dτ
∆(τ) ≤ −εe−2(L+1)T |xmax(t)− xr(t)| (24)

− ((n− 1)L+ εK)∆(τ) +

∫ τ

t

zq(σ(θ))− xq(θ)
θ

dθ

Defined the constant V̄ as V̄ .
= max{xmin(1), z̄}, it results

xq(θ) ≥ −V̄ . Indeed from Lemma 2 we may infer: xq(θ) ≥
xmin(θ) ≥ min{xmin(θ),−z̄} ≥ min{xmin(1),−z̄} ≥
−max{xmin(1), z̄} = −V̄ . This implies:∫ τ

t

zq(σ(θ))− xq(θ)
θ

dθ ≤ (τ − t) z̄ + V̄

t

≤ 2T
z̄ + V̄

t
=
K̄

t

Hence:
d

dτ
∆(τ) ≤ −εe−2(L+1)T |xmax(t)− xr(t)|

− ((n− 1)L+ εK)∆(τ) +
K̄

t

Since ∆(t+T ) ≤ 0, by a standard comparison principle ([44])
we see that:

∆(τ) ≤ −µ∆(τ)|xmax(t)− xr(t)|+ (25)
K̄

t

∫ τ

t+T

e−((n−1)L+εK)(θ−T−t) dθ,

with µ∆(τ) = e−2(L+1)T ε[1−e−((n−1)L+εK)(τ−T−t)]
((n−1)L+εK) , which

holds for all τ ∈ [t+T, t+2T ]. For τ = t+2T equation (25)
yields:

∆(t+ 2T ) ≤ −µ∆|xmax(t)− xr(t)| (26)

+
K̄

t

[1− e−((n−1)L+εK)T ]

((n− 1)L+ εK)
,

with µ∆ = µ∆(t + 2T ). From the mean value theorem it
results: ∃t∗ ∈ [t, t+ 2T ] :

xq(t
∗)− [xmax(t) +

K̄

t
] =

∆(t+ 2T )

2T
. (27)

By Lipschitz continuity of f , convergence of xq towards
xmax(t) + K̄

t is at most exponential in time and therefore we
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may infer:∣∣∣∣xmax(t) +
K̄

t
− xq(t+ 2T )

∣∣∣∣
≥ e−(L+1)(t+2T−t∗)

∣∣∣∣xmax(t) +
K̄

t
− xq(t∗)

∣∣∣∣
≥ e−2(L+1)T )

∣∣∣∣xmax(t) +
K̄

t
− xq(t∗)

∣∣∣∣.
So, it holds:

xq(t+ 2T )− [xmax(t) +
K̄

t
] (28)

≤ [xq(t
∗)− (xmax(t) +

K̄

t
)]e−2(L+1)T

From (27) and (28) it results:

xq(t+ 2T )− [xmax(t) +
K̄

t
] ≤ ∆(t+ 2T )

2T
e−2(L+1)T .

(29)

Finally, in order to derive an estimate of how decreasing is
xq(t) which is uniform in time we combine (26) and (29) to
obtain:

xq(t+ 2T )− [xmax(t) +
K̄

t
] ≤ −µaδr(t) +

Ka

t
, (30)

with

Ka = K̄
e−2(L+1)T [1− e−((n−1)L+εK)T ]

2((n− 1)L+ εK)T
,

µa = e−4(L+1)T ε[1− e−((n−1)L+εK)T ]

2((n− 1)L+ εK)T
,

and δr(t) = |xmax(t)− xr(t)|.

Case b): xr(τ) ≥ xq(τ) for all τ ∈ [t, t+ 2T ]
In this case considering that δq(t) ≥ δr(t) and exploiting
Lipschitz continuity of f , we may infer again:

xq(t+ 2T )− [xmax(t) +
K̄

t
] ≤ −e−2(L+1)T |xmax(t)− xq(t)|

= −µbδq(t) ≤ −µbδr(t),

with µb = e−2(L+1)T .

Case c): ∃τ̄ ∈ (0, 2T ] such that xq(t+ τ̄) = xr(t+ τ̄).
By Lipschitz continuity of f , convergence of xr and xq
towards the value xmax(t) + K̄

t is at most exponential. This,
along with assumption xq(t+ τ̄) = xr(t+ τ̄), yields:

|K̄
t

+ xmax(t)− xq(t+ 2T )| ≥

e−(L+1)(2T−τ̄)|K̄
t

+ xmax(t)− xq(t+ τ̄)|

= e−(L+1)(2T−τ̄)|K̄
t

+ xmax(t)− xr(t+ τ̄)|

≥ e−2(L+1)T |K̄
t

+ xmax(t)− xr(t)|

≥ e−2(L+1)T |xmax(t)− xr(t)|,

and therefore xq(t + 2T ) − [xmax(t) + K̄
t ] ≤ −µcδr(t) with

µc = e−2(L+1)T .
Therefore, in any of cases a, b and c it results:

xq(t+ 2T )− [xmax(t) +
K̄

t
] ≤ −µ1δr(t) +

K1

t
(31)

or in other terms:

|K̄
t

+ xmax(t)− xq(t+ 2T )| ≥ µ1δr(t)−
K1

t
(32)

with µ1 = min{µa, µb, µc}, K1 = Ka.

2) STEP 2: Next we deal with nodes k ∈ N with d(k) = 2.
Let q be such that d(q) = 1 and (q, k) ∈ Tr. We consider
different cases.
Case a): xk(t+ τ) ≥ xq(t+ τ), for all τ ∈ [2T, 4T ]
For node k, let k̄(τ) be such that pk̄(τ)(τ) = k. In the
following we omit the time dependence of k̄ for the sake
of simplicity of notation. Then, the following holds for all
τ ∈ [t+ 2T, t+ 4T ]:

xk(τ)− xk(t+ 2T ) =

∫ τ

t+2T

fk(θ, x(θ), σ(θ)) dθ

+

∫ τ

t+2T

zk(σ(θ))− xk(θ)

θ
dθ

=

∫ τ

t+2T

(
[fk(θ, x(θ), σ(θ))

− fk(θ, x(θ) + (xk(θ)− xpk̄−1(θ)(θ))epk̄−1(θ), σ(θ))]

+ [fk(θ, x(θ) + (xk(θ)− xpk̄−1(θ)(θ))epk̄−1(θ), σ(θ))

− fk(θ, x(θ) + (xk(θ)− xpk̄−1(θ)(θ))epk̄−1(θ)

+ (xk(θ)− xpk̄−2(θ)(θ))epk̄−2(θ), σ(θ))]

+ [fk(θ, x(θ) + (xk(θ)− xpk̄−1(θ)(θ))epk̄−1(θ)

+ (xk(θ)− xpk̄−2(θ)(θ))epk̄−2(θ), σ(θ))

− fk(θ, x(θ) + (xk(θ)− xpk̄−1(θ)(θ))epk̄−1(θ)

+ (xk(θ)− xpk̄−2(θ)(θ))epk̄−2(θ)

+ (xk(θ)− xpk̄−3(θ)(θ))epk̄−3(θ)), σ(θ))]

+ . . .+ [fk(θ, x(θ) + (xk(θ)− xpk̄−1(θ)(θ))epk̄−1(θ)+

+ . . .+ (xk(θ)− xp2(θ)(θ))ep2(θ), σ(θ))

− fk(θ, x(θ) + (xk(θ)− xpk̄−1(θ)(θ))epk̄−1(θ)+

. . .+ (xk(θ)− xp1(θ)(θ))ep1(θ), σ(θ))]

+ fk(θ, x(θ) + (xk(θ)− xpk̄−1(θ)(θ))epk̄−1(θ)+

. . .+ (xk(θ)− xp1(θ)(θ))ep1(θ), σ(θ))

)
dθ

+

∫ τ

t+2T

zk(σ(θ))− xk(θ)

θ
dθ

≤ −
∫ τ

t+2T

∑
j:xj(θ)<xk(θ)

Ψkj(θ)εK|xk(θ)− xj(θ)|dθ

+

∫ τ

t+2T

fk(θ, x(θ) + (xk(θ)− xpk̄−1(θ)(θ))epk̄−1(θ)

+ . . .+ (xk(θ)− xp1(θ)(θ))ep1(θ), σ(θ)) dθ

+

∫ τ

t+2T

zk(σ(θ))− xk(θ)

θ
dθ
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≤ −
∫ τ

t+2T

∑
j:xj(θ)<xk(θ)

Ψkj(θ)εK|xk(θ)− xj(θ)|dθ+∫ τ

t+2T

(
[fk(θ, x(θ) + (xk − xpk̄−1(θ)(θ))epk̄−1(θ)+

. . .+ (xk(θ)− xp1(θ)(θ))ep1(θ))− fk(θ, xk(θ)1, σ(θ))]

+ fk(θ, xk(θ)1, σ(θ))

)
dθ

+

∫ τ

t+2T

zk(σ(θ))− xk(θ)

θ
dθ.

Being fk(θ, xk(θ)1, σ(θ)) = 0, it results:

xk(τ)− xk(t+ 2T ) (33)

≤ −
∫ τ

t+2T

∑
j:xj(θ)<xk(θ)

Ψkj(θ)εK|xk(θ)− xj(θ)|dθ

− L
∫ τ

t+2T

∑
j:xj(θ)≥xk(θ)

[xk(θ)− xj(θ)] dθ (34)

+

∫ τ

t+2T

zk(σ(θ))− xk(θ)

θ
dθ

By Lemma 3 for all θ ∈ [t + 2T, τ ] and taken any j ∈ N it
results:

xj(θ) ≤ xmax(θ) ≤ xmax(t) +
2K̄

t
, (35)

then we have:

xk(τ)− xk(t+ 2T ) ≤ (36)

−
∫ τ

t+2T

∑
j:xj(θ)<xk(θ)

Ψkj(θ)εK|xk(θ)− xj(θ)|dθ

− L
∫ τ

t+2T

∑
j:xj(θ)≥xk(θ)

[xk(θ)− (xmax(t) +
2K̄

t
)] dθ

+

∫ τ

t+2T

zk(σ(θ))− xk(θ)

θ
dθ

≤ −
∫ τ

t+2T

∑
j:xj(θ)<xk(θ)

Ψkj(θ)εK|xk(θ)− xj(θ)|dθ

− (n− 1)L

∫ τ

t+2T

[xk(θ)− (xmax(t) +
2K̄

t
)] dθ

+

∫ τ

t+2T

zk(σ(θ))− xk(θ)

θ
dθ

where again L denotes the (time-independent) Lipschitz con-
stant of fk. In particular, from observation (35), we have:

xk(t+ 2T ) ≤ xmax(t) +
K̄

t
≤ xmax(t) +

2K̄

t
,

and resuming the series of inequalities in (33), we see that for
all τ ∈ [t+ 3T, t+ 4T ] it holds:

xk(τ)− [xmax(t) +
2K̄

t
] ≤ xk(τ)− xk(t+ 2T ) (37)

≤ −
∫ τ

t+2T

∑
j:xj(θ)<xk(θ)

Ψkj(θ)εK|xk(θ)− xj(θ)|dθ

− (n− 1)L

∫ τ

t+2T

[xk(θ)− [xmax(t) +
2K̄

t
] dθ (38)

+

∫ τ

t+2T

zk(σ(θ))− xk(θ)

θ
dθ

≤ −
∫ τ

t+2T

Ψkq(θ)εK|xk(θ)− xq(θ)|dθ

− (n− 1)L

∫ τ

t+2T

[xk(θ)− [xmax(t) +
2K̄

t
] dθ

+

∫ τ

t+2T

zk(σ(θ))− xk(θ)

θ
dθ.

By the triangular inequality we may infer:

− |xk(θ)− xq(θ)| ≤ −|xmax(t) +
K̄

t
− xq(θ)|

+ |xmax(t) +
K̄

t
− xk(θ)| ≤

≤ −|xmax(t) +
K̄

t
− xq(θ)|+ |xmax(t) +

2K̄

t
− xk(θ)|.

Moreover, by Lipschitz continuity of f , we may infer:
|xmax(t) + K̄

t −xq(θ)| ≥ e
−(L+1/t)(θ−(t+2T ))|xmax(t) + K̄

t −
xq(t + 2T )| ≥ e−(L+1)(2T )|xmax(t) + K̄

t − xq(t + 2T )|.
Therefore, substituting the previous inequalities in (37), we
have:

xk(τ)− [xmax(t) +
2K̄

t
] ≤

−
∫ τ

t+2T

Ψkq(θ)εKe
−2(L+1)T |xmax(t) +

K̄

t

− xq(t+ 2T )|dθ −
∫ τ

t+2T

Ψkq(θ)εK[xk(θ)− [xmax(t)

+
2K̄

t
] dθ − (n− 1)L

∫ τ

t+2T

[xk(θ)− [xmax(t)

+
2K̄

t
] dθ +

∫ τ

t+2T

zk(σ(θ))− xk(θ)

θ
dθ.

≤ −εKe−2LT |xmax(t) +
K̄

t
− xq(t+ 2T )|

∫ τ

t+2T

Ψkq(θ)dθ

− εK
∫ τ

t+2T

[xk(θ)− [xmax(t) +
2K̄

t
] dθ

− (n− 1)L

∫ τ

t+2T

[xk(θ)− [xmax(t) +
2K̄

t
] dθ

+

∫ τ

t+2T

zk(σ(θ))− xk(θ)

θ
dθ

≤ −εe−2LT |xmax(t) +
K̄

t
− xq(t+ 2T )|

− εK
∫ τ

t+2T

[xk(θ)− [xmax(t) +
2K̄

t
] dθ

− (n− 1)L

∫ τ

t+2T

[xk(θ)− [xmax(t) +
2K̄

t
] dθ

+

∫ τ

t+2T

zk(σ(θ))− xk(θ)

θ
dθ.
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By defining ∆(τ) =
∫ τ
t+2T

[xk(θ) − (xmax(t) + 2K̄
t )] dθ we

can recast the above equation as:

d

dτ
∆(τ) ≤ −((n− 1)L+ εx)∆(τ) (39)

− εe−2LT |xmax(t) +
K̄

t
− xq(t+ 2T )|

+

∫ τ

t+2T

zk(σ(θ))− xk(θ)

θ
dθ,

which holds for all τ ∈ [t+3T, t+4T ]. Since ∆(t+3T ) ≤ 0,
from the standard comparison principle and exploiting for (39)
the same derivations given at Step 1 for (24), finally we get:

∆(t+ 4T ) ≤ −µ∆|xmax(t) +
K̄

t
− xq(t+ 2T )|+ (40)

K̄

t

[1− e−((n−1)L+εK)T ]

((n− 1)L+ εK)
,

with µ∆ = ε
((n−1)L+εK)e

−2(L+1)T [1− e−((n−1)(L+1)+εK)T ].
By applying the mean value theorem and exploiting Lipschitz
continuity as at Step 1, it results:

xk(t+ 4T )− [xmax(t) +
2K̄

t
] ≤ ∆(t+ 4T )

2T
e−2(L+1)T

≤ −µa|xmax(t) +
K̄

t
− xq(t+ 2T )|

+
K̄

t

[1− e−((n−1)L+εK)T ]

((n− 1)L+ εK)

or in other terms:

xk(t+ 4T )− [xmax(t) +
2K̄

t
] ≤ −µa|xmax(t) +

K̄

t

− xq(t+ 2T )|+ Ka

t
,

with

Ka = K̄
e−2(L+1)T [1− e−((n−1)L+εK)T ]

2((n− 1)L+ εK)T
,

µa = e−4(L+1)T ε[1− e−((n−1)L+εK)T ]

2((n− 1)L+ εK)T
.

Case b): xq(t+ τ) ≥ xk(t+ τ) τ ∈ [2T, 4T ]

In this case, we may infer by Lipschitz continuity of f that:

|2K̄
t

+ xmax(t)− xk(t+ 4T )| ≥

e−2(L+1)T |2K̄
t

+ xmax(t)− xk(t+ 2T )| ≥

e−2(L+1)T |K̄
t

+ xmax(t)− xk(t+ 2T )| ≥

e−2(L+1)T |K̄
t

+ xmax(t)− xq(t+ 2T )|

and therefore: xk(t+ 4T )− [xmax(t) + 2K̄
t ] ≤

− µb[ K̄t + xmax(t)− xq(t+ 2T )] with µb = e−2(L+1)T .

Case c): xq(t+ τ̄) = xk(t+ τ̄) for some τ̄ ∈ (2T, 4T ].

By Lipschitz continuity of f , it results:

|2K̄
t

+ xmax(t)− xk(t+ 4T )| ≥

e−(L+1)(4T−τ̄)|2K̄
t

+ xmax(t)− xk(t+ τ̄)|

= e−(L+1)(4T−τ̄)|2K̄
t

+ xmax(t)− xq(t+ τ̄)|

≥ e−2(L+1)T |2K̄
t
t+ xmax(t)− xq(t+ 2T )|

≥ e−2(L+1)T |K̄
t

+ xmax(t)− xq(t+ 2T )|

and therefore: xk(t+ 4T )− [xmax(t) + 2K̄
t ] ≤

− µc[ K̄t + xmax(t)− xq(t+ 2T )] with µc = e−2(L+1)T .
Therefore, in any of cases a, b and c it results:

xk(t+ 4T )− [xmax(t) +
2K̄

t
] ≤ (41)

− µ2[
K̄

t
+ xmax(t)− xq(t+ 2T )] +

K2

t

with µ2 = min{µa, µb, µc}, K2 = Ka. Consequently, in order
to derive an estimate of how decreasing is xk(t) which is
uniform in time by combining (41) and (32) we obtain:

xk(t+ 4T )− [xmax(t) +
2K̄

t
]

≤ −µ1µ2|xmax(t)− xr(t)|+ µ2
K1

t
+
K2

t

≤ −µ1µ2|xmax(t)− xr(t)|+
K1

t
+
K2

t
.

3) STEP d(k)+1: A similar procedure can be used to
construct an estimate of the convergence rate for an arbitrary
node at distance d(k) based on the estimate for nodes at
distance d(k)−1. By induction, for any node k at distance d(k)
from the root, and being µi ∈ (0, 1) for all i, the following
inequality holds:

xk(t+ 2d(k)T )− [xmax(t) + d(k) K̄t ]

≤ −
(∏d(k)

i=1 µi

)
|xmax(t)− xr(t)|+ 1

t

∑d(k)
i=1 Ki

= −µ(d(k))|xmax(t)− xr(t)|+ 1
t

∑d(k)
i=1 Ki,

and hence:

xk(t+ 2d(k)T )− xmax(t) (42)

≤ −µ(d(k))|xmax(t)− xr(t)|+
1

t
K(d(k)),

with µ(d(k)) =
∏d(k)
i=1 µi and K(d(k)) =

∑d(k)
i=1 Ki + d(k)K̄

being positive constants for any fixed d(k). As by construction
Ki = Ka for all i, it results: K(d(k)) = d(k)(Ka + K̄).

Similar arguments yield to the following inequality:

xk(t+ 2d(k)T )− xmin(t)
≥ µ(d(k)) |xmin(t)− xr(t)| − 1

tK(d(k)).
(43)

This concludes the proof.
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Fig. 1. Mobile sensors trajectory after 4000 simulation steps. Each sensor has different range of action: R1 = 1 (blue), R2 = 5 (green), R3 = 10 (red)
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Fig. 2. Asymptotic convergence to the consensus state: agent with R1 = 1 (blue line), agent with R2 = 5 (green), agent with R3 = 10 (red line)
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Fig. 3. Scenario of network composed of 3 mobile sensors: (a) measure field; (b) mobile sensors trajectory after 800 simulation steps. Each sensor just
operates in one subreagion (blue, green or red) of the field

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

50

100

×10
4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

(a) (b)

Fig. 4. Asymptotic convergence to the consensus state: dynamic state evolution: (a) R = 45, γ = 5, one agent per subregion; (b) R = 55, γ = 10, four
agents per subregion;


