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INTRODUCTORY PARAGRAPH
Intracellular bacterial pathogens can exhibit large heterogeneity in growth rate inside host cells with major consequences for the infection outcome. If and how the host responds to this heterogeneity remains poorly understood. Here, we combined a fluorescent reporter of bacterial cell division with single-cell RNA-seq analysis to study the macrophage response to different intracellular states of the model pathogen Salmonella enterica serovar Typhimurium. The transcriptomes of individual infected macrophages revealed a spectrum of functional host response states to growing and non-growing bacteria. Intriguingly, macrophages harboring non-growing Salmonella display hallmarks of the pro-inflammatory M1 polarization state and differ little from bystander cells, suggesting that non-growing bacteria evade recognition by intracellular immune receptors. By contrast, macrophages containing growing bacteria have turned into an anti-inflammatory, M2-like state, as if fast-growing intracellular Salmonella overcome host defense by reprogramming macrophage polarization. Additionally, our clustering approach reveals intermediate host functional states between these extremes. Altogether our data suggest that gene expression variability in infected host cells shapes different cellular environments, some of which may favor a growth arrest of Salmonella facilitating immune evasion and the establishment of a long-term niche; while others allow Salmonella to escape intracellular antimicrobial activity and proliferate.

MAIN TEXT
Bacterial infections arguably constitute some of the most complex inter-organismic interactions and it is increasingly recognized that both the pathogen and the invaded host cell can exhibit a large phenotypic heterogeneity during the infection process1-4. Examples of phenotypic diversity include variations of bacterial lipopolysaccharide (LPS) composition or intracellular growth status, and in host defense mechanisms; this heterogeneity can be a major determinant of disease outcome and success of antimicrobial treatment1,5. In vivo studies have shown that bacterial pathogens can exist in different sub-populations from highly proliferative to non-replicative individuals, of which a subset can ‘persist’ up to years in the host6-10. Heterogeneity in pathogen behaviour is also observed in ex vivo infection of monolayers of seemingly homogeneous cultured mammalian cells11. Whether and how individual host cells respond to the diverse states of intracellular pathogens is largely unknown. 
Global transcriptome studies of cellular mRNAs have been crucial to identify the signaling pathways whereby mammalian host cells respond to intracellular bacteria12-14. However, standard transcriptomics approaches average gene expression levels from millions of cells and so disregard phenotypic diversity between individual cells. Single-cell transcriptomics using next-generation transcript sequencing (RNA-seq) is now emerging as a powerful tool to profile cell-to-cell variability on a genome-wide scale15,16. Single-cell RNA-seq analyses of LPS-stimulated immune cells17,18 revealed an unexpected degree of bimodal expression of seemingly highly expressed immune genes on the population average17,18. This raises the possibility that a range of functional states of immune cells provides different niches for distinct sub-populations of an intracellular bacterial pathogen. 
Infections by serovars of Salmonella enterica (henceforth Salmonella) represent a high global burden with more than one hundred million cases per year19. Besides, Salmonella is a primary model organism to study the lifestyle of intracellular bacteria19. Macrophages (MΦs) are considered a favorite niche for Salmonella to divide and persist within the host organism6,20,21. Recently, a pioneering single-cell RNA-seq study revealed considerable variability in the MΦ response to infection with a single Salmonella bacterium5. Specifically, differential activation of a key virulence regulator of Salmonella, the PhoPQ two-component system, was linked to a specific gene expression program in the host. However, how MΦs respond to intracellular bacterial growth heterogeneity has remained unexplored, for a lack of experimental tools to combine replication measurements with single-cell transcriptomics2. Here, we have utilized fluorescent Salmonella strains reporting bacterial proliferation inside single host cells9-11 to address how MΦs respond to extreme variations of intracellular pathogen growth. Combining cell sorting and single-cell RNA-seq, we studied global mRNA profiles of individual MΦs harboring either growing or non-growing bacteria, in addition to those of uninfected bystander cells. Our study suggests that gene expression heterogeneity amongst infected MΦs creates diverse environments for Salmonella to either quietly persist below the radar of intracellular immune surveillance mechanisms or exploit its host for maximal proliferation.

RESULTS 
Sorting and single-cell RNA-seq of MΦs infected with Salmonella
We infected primary mouse bone-marrow derived MΦs with a Salmonella strain carrying an established Fluorescence Dilution (FD) plasmid that reports bacterial growth after internalization10,11. This plasmid provides two different fluorescent markers: constitutively expressed red fluorescent protein (mCherry) that functions as a general marker for the presence of bacterial cells and conditionally expressed green fluorescent protein (GFP) whose dilution is used as a proxy for cell division. The GFP is expressed from an arabinose-inducible promoter and its synthesis is terminated by withdrawal of the inducer at the onset of infection. Consequently, while infected MΦs display increasing mCherry signal intensity as bacteria proliferate, they emit a constant GFP signal throughout infection (Fig. 1a). In contrast, MΦs containing non-growing Salmonella display constant mCherry and GFP intensities over time and MΦs containing dead bacterial cells and debris are mCherry-positive but exhibit virtually no GFP signal (data no shown). 
We verified that in our experimental set-up all bacteria expressed mCherry (Supplementary Fig. 1a,b) and considered non-fluorescent MΦs as bystanders, i.e. uninfected host cells that were nonetheless exposed to extracellular bacterial triggers such as the TLR4 ligand, LPS. Absence of Salmonella from these bystander cells was supported by a lack of a bacterial ribosomal RNA signal in qRT-PCR experiments (Supplementary Fig. 1c). Non-infected naïve MΦs from a mock-treated culture constituted the reference control. 
We used Fluorescence Activated Cell Sorting (FACS) to isolate single infected and non-infected cells 20 h after Salmonella uptake (Fig. 1b), focusing on the extremes of bacterial growth and neglecting intermediate stages. Gentamicin was used to prevent reinfection of MΦs (see Methods). At this time, the immune programs linked to recognition of pathogen-associated molecular patterns (PAMPs) are fully established18. We confirmed (Supplementary Fig. 2) that intracellular bacterial growth only starts 6 hours post internalization (hpi), when SPI-2 expression is fully established, to continue at a rate of approximately one division every 3h11. Likewise, we confirmed that the gating strategy enabled the selective isolation of MΦs with distinct intracellular bacterial loads by reanalyzing sorted cells by fluorescence microscopy (Fig. 1b). 
Sorted MΦs were subjected to RNA-seq analysis with the previously described Smart-seq2 protocol22, which is based on poly(A) capture, template switching and PCR amplification. ERCC spike-ins was added to assess technical noise (see Methods). Each single-cell cDNA library was sequenced to a depth of >1 million reads. In total, we processed 64 single cells (4x16 single-cells from each population) (Fig. 1b and Supplementary Table 1) and filtered out cells with incomplete amplification, insufficient read number or too many reads matching to the spike-in control (see Methods). This way, sequencing data from a total of 60 cells remained for further analysis (Supplementary Table 1) representing 15 naïve MΦs, 15 bystanders, 16 MΦs with non-growing bacteria and 14 MΦs with growing bacteria. For these cells, >99% of the reads passed our quality control filters (Supplementary Table 1) and the majority of them (>60%) mapped to protein-coding genes (Supplementary Fig. 3a). On average, 4,912±373 transcripts were detected in each cell (see Methods) (Supplementary Table 1). In agreement with other studies23, the dynamic range of the assay spanned over five orders of magnitude and single-molecule sensitivity was achieved with efficient detection (>90%) for transcripts with an absolute read number >10 (Supplementary Fig. 3b-c). 

Population structure of infected MΦs based on gene expression patterns
We partitioned the sorted MΦs in different populations based on their transcriptomic similarity, taking an unsupervised approach that is indifferent to the identity of the originating populations. First, we used the Pearson correlation coefficients associated with a hierarchical clustering to measure similarity amongst the expression profiles of all cells (Fig. 2a). Two major populations corresponding to naïve and challenged cells were identified, supporting previous findings that Salmonella infection causes a dramatic reorganization of the host transcriptome12. 
To further dissect the two main groups, we applied a principal component analysis (PCA) (Fig. 2b) to all 60 cells, including all genes whose expression exceeded technical noise (Supplementary Fig. 3d) (see Methods)24. This approach enabled the identification of three sub-populations referred to as groups I, II, and III: group I represents the naïve MΦs while groups II and III represented two sub-populations of challenged MΦs (Supplementary Table 2a). The 15 naïve MΦs (group I) clearly segregated from the challenged MΦs along the first PCA component (Fig. 2b) whereas the challenged cells were discriminated along the second PCA component. Group II (28 cells; Dim 2>0 (Fig. 2b)) contained all 15 bystander cells, 11 out of the 16 MΦs with non-growing bacteria and two MΦs with growing bacteria. Group III (17 cells; Dim 2<0 (Fig. 2b)) was dominated by MΦs infected with growing bacteria (12/14), but also contained MΦs with non-growing bacteria (5/16). Complementary to PCA, t-distributed stochastic neighbor embedding (t-SNE) was used to search for more complex cell population organization. However, when projected onto two-dimensions, the cells fell into three distinct clusters following the same pattern obtained for PCA (Supplementary Fig. 4a): naïve MΦs segregated from the challenged MΦs along the first dimension while along the second dimension, bystanders and MΦs with non-growing bacteria grouped together forming a distinct cluster from MΦs infected with growing bacteria and a minority of MΦs with non-growing bacteria. The existence of three clusters was further validated by k-means clustering embedded in rare cell type identification (RaceID) algorithm25 (Supplementary Fig. 4b). Further, we confirmed our clustering using alternative and complementary approach, PAGODA26, extracting the major gene sets underlying cellular heterogeneity (Supplementary Fig. 5). Genes related to “cell cycle” and “DNA replication” (GO terms) (e.g. components of the replicative DNA helicase minichromosome maintenance complex (Mcm3-7,10), replication factor cdc45, DNA polymerase alpha catalytic subunit Pola1) are highly down-regulated in challenged cells (Fig. 2c, Supplementary Fig. 5), suggesting that cell cycle does is not required for specific correction of the clustering. Furthermore, an additional PCA on all infected MΦs revealed a similar segregation of the two populations of cells containing growing and non-growing Salmonella, indicating that they have dissimilar transcriptome signatures (Supplementary Fig. 6). 
To characterize the functional state of the different subpopulations, we determined the set of genes specific to each cell group using the ‘single-cell differential expression’ (SCDE) approach27. Briefly, groups I, II and III were compared in pairwise manner and all differentially expressed genes (P<0.01) were used for further analysis (Supplementary Table 2a-c and Supplementary Fig. 7) and displayed on a heat map (Fig. 2c). Overall, 1,073 genes were differently expressed amongst the three groups; these genes formed four gene clusters termed A to D (Fig. 2c and Supplementary Table 2d). Clusters A and B (385 and 369 genes, respectively) regroup differentially expressed genes between naïve and challenged cells, whereas genes of clusters C and D (161 and 158 genes, respectively) were specifically expressed in group II or III MΦs.

Global host responses to pathogenic stimuli
On the functional level, only challenged MΦs expressed genes known to be activated in immune cells exposed to PAMPs17,18. For example, genes in cluster A include those of master regulators of an LPS-induced immune response (Iift1, Stat2, Irf7), several chemokines (Ccl2, -3 -,4, -5 and -7), as well as Lcn2 which is linked to innate immunity to bacterial infections (Fig. 2c). The two top Gene Ontology (GO) terms for cluster A were ’Immune response‘ and ’Inflammatory response‘ (P<10-10, Fisher test) (Fig. 2c). Conversely, gene cluster B containing genes downregulated in challenged MΦs as compared to naïve cells, was enriched for metabolism-associated GO terms (‘DNA metabolism’, ‘cellular metabolic process’ P<10-16, Fisher test) (Fig. 2c). This confirms a previous report showing that professional phagocytes respond to internalized microbes by reorganizing their metabolic activities28, in addition to mounting immune responses. 

Proinflammatory profile of MΦs with non-growing bacteria matches that of bystander cells 
Both the above PCA and SCDE analyses indicated that MΦs with defined bacterial loads exhibit specific mRNA expression programs (Fig. 2b, c). To understand better these mRNA profiles, we performed gene set enrichment analysis (GSEA)29. Comparison of clusters C and D (i.e. genes specifically expressed in group II or group III MΦs; Fig. 2c) revealed an overrepresentation of the prototypical proinflammatory transcription factor NF-κB (p65 and nfkb1)30 and of several of its target genes in cluster C (Tnf, Cxcl10, Il1b) (Fig. 3a). Additionally, the mRNAs of NLRP3 (Nod-like receptor family, pyrin domain-containing 3; an NF-κB dependent gene) and TLR2 (Toll-like receptor 2; upstream of NF-κB), which are both activated by extracellular and intracellular PAMP sensing and encode proteins of inflammatory signaling cascades (reviewed in19), were enriched in cluster C (Fig. 3a and Supplementary Fig. 8a). Intriguingly, the activation of all these proinflammatory factors is classically linked to the M1 polarization program of MΦs31. These proinflammatory genes were heterogeneously expressed in group II MΦs (Fig. 3a and Supplementary Fig. 8b). We compared cluster A and C to previous work by Avraham et al. 5 who studied the host response at a much earlier time p.i. (4 hrs as compared to 20 hrs in our study) in cells containing only a single Salmonella. Nonetheless, we identified an overlap in both dataset for almost half of differentially expressed genes in our clusters A and C (257 out of 546 ≈ 47%; Supplementary Table 2e). Moreover, a GO term analysis of the overlapping genes reveals a predominance of GO terms related to immune response and pro-inflammatory response (e.g. response to LPS, interferon-gamma, TLR signaling, NF-kappaB, and NLRP3 inflammasome). (Supplementary Table 2e). 
In addition to pro-inflammatory genes, some group II MΦs expressed Spic encoding the transcription factor Spi-C (Fig. 3a). Spi-C is the key driver of the development of splenic red pulp MΦs, specialized cells in phagocytosing red blood cells32-35. Intriguingly, hemophagocytes are considered a favorable niche for Salmonella during chronic host infection36, because they can acquire a nutrient rich intracellular milieu by engulfing other cells types. Taken together, our single-cell RNA-seq analysis indicates that the majority of MΦs with restrained bacterial proliferation display a proinflammatory M1 polarization program. The profiles of these MΦs containing non-growing bacteria were indistinguishable from those of bystander cells, suggesting that intracellular non-growing bacteria do not trigger further immune signaling than extracellular PAMPs, in other words, these bacteria evade recognition by intracellular immune receptors. 

MΦs with growing Salmonella exhibit M2 expression markers 
Next, to understand how MΦs respond to growing bacteria, we inspected gene cluster D that is highly specific to group III MΦs (Fig. 2c). This cluster was characterized by genes for cell surface Fc gamma receptors (e.g. Fcgr2b (CD32)), IL‑4 receptor-α (Il4ra), Arginase 1 (Arg1) and Macrophage mannose receptor 1 (Mrc1 also known as CD206) (Fig. 2c and 3b-c), all of which are hallmark genes for M2-type MΦs37-39. 
L-arginine catabolism via Arg1 is critical for the survival of intracellular bacteria as it counteracts the production of the highly toxic nitric oxides40. Likewise MRC1 plays a role in the sensing of intracellular bacteria41. Thus, to test whether Arg1 and Mrc1 expressing MΦs (Fig.2c and Supplementary Fig. 9) indeed constitute a distinct functional subgroup, we computed a ‘cluster score’ that represents the expression of all genes in a cluster in one number (Fig. 2c, Methods). This calculation confirmed that cells differing in the expression of prototypical Arg1 and Mrc1 expression also exhibited a reduced activity of ‘inflammatory and immune response’ (cluster A) and an increased ‘M2-like status’ (cluster D) (Fig. 3d). Based on these observations, group III may indeed be further divided into two distinct sub-populations: group IIIa is a mixed MΦ population containing both non-growing and growing Salmonella, and group IIIb MΦs contains only growing Salmonella (Fig. 3c-d and Supplementary Fig. 9). 
We then analyzed the expression levels of other immune genes expressed along with M2 markers in cells from group IIIb (i.e. in cells with growing Salmonella) and observed high expression levels of an antimicrobial calprotectin (S100a8)42 (Fig. 3c) and Spp1 (Secreted Phosphoprotein 1; a.k.a. Osteopontin or Eta-1) (Supplementary Fig. 9). Both the calprotectin and SPP1 proteins play major roles in the host protection against intracellular bacteria43. In addition, among the genes specific to this group of cells (gene cluster D) were Inhibitor of DNA-binding (ID) genes (Id1, Id2) (Supplementary Fig. 6). Finally, the chemokine gene Ccl8 and several poorly characterized genes like Timp1, CD244, Nxpe5, Gpr35, Ltb4r1, CD164 were co-expressed along with M2 marker genes (Supplementary Fig. 9). Our observations indicate that M2 polarization of MΦs happens as a result of infection, as such M2 markers are absent from naïve MΦs and correlates with bacterial proliferation. When we compared the specific host response for MΦs with growing bacteria (cluster D) to the results of Avraham et al. 5 we find only 8% overlap (13 out of 158 genes; Supplementary Table 2e). Most importantly, all M2 polarization markers (e.g. Arg1, Il4ra, Mrc1) were silent in those early infection data5, which we interpret as further support of our prediction that Salmonella growth drives M2 polarization.

Similarities between MΦs infected with differentially growing Salmonella 
The remaining ten MΦs of group IIIa were composed of cells containing growing and others harboring non-growing Salmonella (each five cells) (Fig. 3c and Supplementary Fig. 9). Further inspection indicated that this minority of MΦs containing non-growing bacteria escaped a proinflammatory fate and rather exhibited the M2-like transcriptional signature associated with a more hospitable environment for bacteria as that seen for cells from group IIIb. However, the gene expression analysis showed a global decrease of ‘M2-like score’ compared to group IIIa MΦs (Fig. 3d) with the previously discussed M2 marker genes Arg1 and Mrc1 being heterogeneously expressed (Fig. 3c and Supplementary Fig. 9). We interpret these cells to represent intermediate of the two above-described M1 and M2 states.

Independent validation of the transcriptomic differences 
We sought to independently validate the differential expression of marker genes of the intracellular proliferation phenotype of Salmonella. To this end, a second replicate experiment of infection, cell sorting and single-cell RNA-seq was performed. After quality filtering (as above) this experiment comprised a total of 81 cells: 18 naïve MΦs, 23 bystanders, 20 MΦs containing non-growing bacteria, and 20 MΦs containing growing bacteria (Fig. 4a and Supplementary Fig. 10). Unsupervised PCA confirmed the initial pattern such that challenged cells segregated into two groups; one group comprising mostly bystanders and MΦs containing non-growing bacteria and the other one composed predominantly of MΦs with growing bacteria (Supplementary Fig. 10). 
We classified the cells according to their level of Il4ra expression and confirmed that Il4ra, identified above to be highly expressed in MΦs infected with growing bacteria (Fig. 4a), can be used as a discrimination marker for the groups of proinflammatory and M2-like MΦs. Cells that exhibited the highest levels of Ilr4a mRNA also showed a high expression of M2 marker genes (Fcgr, Arg1 and S100a8). Conversely, proinflammatory genes (Tnf, Cxcl10, Il1b, Spic) were again predominantly expressed in MΦs containing non-growing bacteria and bystander cells, thereby confirming our former observations (Fig. 4a). 
Seeking to validate our single-cell RNA-seq results on the protein level, we used a panel of antibodies targeting ILB and CD86 as M1 markers and IL4RA (CD124) and ARG1 as M2 markers. Flow cytometry analysis confirmed that, in agreement with the transcriptomics data, the IL1B, IL4RA and ARG1 proteins were differentially expressed in MΦs with non-growing or growing bacteria, whereas CD86 remained unchanged (Fig. 4b). Moreover, tracking levels of IL4RA over time showed that this M2 marker accumulated as bacterial growth occurred (Supplementary Fig. 11). In addition, this apparent polarization of MΦs was dependent on bacterial growth rather than bacterial numbers: MΦs containing multiple non-growing bacteria did not display the polarization of MΦs containing growing bacteria (Supplementary Fig. 12). 

CONCLUSION
Our results show that individual MΦs carrying growing or non-growing Salmonella have divergent gene activation programs as summarized in Fig. 4c. The majority of MΦs with non-growing bacteria resemble M1 polarization and are very similar to bystander cells. This suggests that non-growing bacteria might be in a stealth mode in which they do not trigger additional immune recognition by intracellular receptors. We do caution, however, that a potentially saturating activation by LPS sensing may mask a differential transcriptional response for bystanders and non-growing bacteria at early time-points. More importantly, we observe that high bacterial loads correlate with a M2-like anti-inflammatory expression program. Generally, such a correlation with M2 polarization is unexpected for the common response of MΦs to bacterial and viral infections is the upregulation of genes involved in M1 polarization44. However, our observation is consistent with previous reports showing preferential replication of Salmonella in certain types of isolated MΦs, i.e. hemophagocytic36 or IL-4-stimulated MΦs20, as well as Salmonella’s presence in anti-inflammatory MΦs in the spleen and mesenteric lymph nodes in a murine model of chronic infection20,45. This notwithstanding, our growth-rate correlated results pose the exciting question whether the observed heterogeneity in MΦ polarization is the cause or consequence of fast/slow Salmonella growth. Given that we see little if any M1/M2 polarization in naive MΦs (Figs. 2b and 4a), it is tempting to speculate that the intracellular Salmonella drive those MΦs unable to clear the infection away from the hostile M1 to the more permissive M2 polarization state. Such reprogramming of infected MΦs would constitute a more dramatic manipulation than a previously known interference of Salmonella with M1 polarization through bacterial inhibition of the relocalization of NADPH oxydase to the MΦ phagosome46. 
	Of other host states, we observe that some M1 activated MΦs with non-growing bacteria (and few cells with growing bacteria) seem to differentiate into red pulp MΦs. Since hemophagocytes constitute a rich source of nutrients supporting chronic infection36, such an acquisition of novel phenotypic properties by proinflammatory MΦs might also support the persistence of non-growing bacteria. In addition, Salmonella has been shown to reside in red pulp MΦs outside any visible lesion, making the pathogen ‘invisible’ to immune surveillance47. 
Altogether, our present results support the emerging idea that bacteria use host genome plasticity to subvert infected cells. Salmonella was recently shown to transform follicle-associated intestinal epithelial cell into M cells48. Similarly, Mycobacterium leprae reprograms non-immune Schwann cells into progenitor/stem-like cells for them to serve as a vehicle for bacterial dissemination49. However, although many bacteria use MΦs for replication, links to MΦ polarization have so far been indirect, for lack of a suitable model to track bacterial growth4. The Salmonella model used here promises to reveal bacterial molecules and host mechanisms whereby intracellular bacteria modulate MΦ polarization for their own benefit. While current single-cell RNA-seq methods are restricted to profiling eukaryotic genes15, technical improvement of the so-called Dual RNA-seq technique which profiles gene expression in host and bacteria simultaneously50,51 may soon permit to correlate the discrete activities of bacterial virulence factors with host cell heterogeneity and reprogramming.


FIGURE LEGENDS
Figure 1: Experimental strategy to sort single MΦs with different bacterial content.
a, Schematic representation of the workflow. MΦs are infected with the intracellular pathogen Salmonella Typhimurium strain SL1344 harboring a dual-color reporter that comprises a constitutively (mCherry - red) and an arabinose-inducible fluorescent protein (GFP - green). 20 h after uptake, a heterogeneous population of host cells is detectable consisting of MΦs with growing bacteria (left), MΦs with non-growing bacteria (middle) and uninfected bystanders (right). Fluorescence-activated cell sorting (FACS) coupled to single-cell RNA-seq are used to sort and analyze these different subpopulations. b, Representative flow cytometry scatter plots of non-infected (mock) and challenged MΦs. Gate 1 captures naïve MΦs and bystanders, gate 2 infected MΦs with a single bacterium, and gate 3 MΦs infected with bacteria that have proliferated. Differential bacterial contents were confirmed using fluorescence microscopy (images on the right; Hoechst (blue), GFP (green), mCherry (red)). The white arrowhead indicates a non- growing Salmonella cell (yellow). Scale bar: 10 µm

Figure 2: Single-cell RNA-seq profiling reveals specific transcriptional signatures associated with MΦs containing non-growing or growing Salmonella. 
a, Gene expression correlation between individual cells from distinct sorting fractions. The heat map displays Pearson’s r values clustered on the y axis by eucledian method (dendogram). This matrix revealed the existence of two major groups of cells corresponding to naïve and challenged cells. Colors indicate cellular identities as inferred from the original FACS gates. b, Principal component analysis (PCA) allowed for a refinement of the group of challenged cells into group II and III (group I: naïve MΦs). Each dot represents a single cell. Colors indicate cellular identities as inferred from the original FACS gates. c, Transcriptional profiles specific to individual cell groups. 1,073 genes were differentially expressed as identified by SCDE (P < 0.01 (Supplementary Fig. 7)) between the three cell groups identified in b, were grouped in individual gene clusters (A-D) and plotted as a heatmap. Cluster A and B are derived by comparing naïve cells versus challenged cells, labelled respectively cell-groups I and, II plus III on the PCA map; Cluster C and D are derived by comparing cell-groups II and III identified on the PCA map (Supplementary Fig. 7 and Supplementary Table 2b-d).

Figure 3: Different bacterial loads correlate with divergent MΦ polarization transcription programs. 
a, MΦs containing non-growing bacteria and bystanders cells show characteristics of a proinflammatory immune response. Left: Gene set enrichment analysis (GSEA) reveals a significant enrichment of Rela and Nfkb1 in cells from group II (i.e. MΦs with non- growing bacteria and bystander cells) compared to group III cells (mostly MΦs with growing bacteria). The scheme in the middle outlines the proinflammatory response towards extracellular and intracellular Salmonella sensing by the host (adapted from 19). Right: Single-cell expression levels (NRC: normalized read counts) for selected host genes (Tnf, Cxcl10, Spic, Il1b) were plotted onto the PCA map shown in Fig. 2b. This representation highlights the elevated expression levels of these genes in cells from group II (MΦs with non- growing bacteria and bystander cells), but also indicates the high extent of variability between individual members of the group. b-c, MΦs with growing bacteria show a spectrum of M2-like activation program. Single-cell gene expression data for Il4ra, Fcgr2b (b) and Arg1, S100a8 (c) are plotted onto the PCA map. Expression of Arg1 and S100a8 (panel B) was specific to a subpopulation within group III, thus allowing for the refinement of these cells into groups IIIa (low Arg1, S100a8) and IIIb (high Arg1, S100a8). d, Expression scores of genes from clusters A (‘immune and inflammatory response’) and D (‘M2-like’) as identified in Fig. 2C are plotted for the different subgroups of challenged cells. NRC: normalized read counts. 
 
Figure 4: Bacterial growth triggers a different MΦs polarization pattern. 
a, 18 naïve and 65 challenged cells (x bystanders, y MΦs with non- growing and z MΦs with growing Salmonella) were isolated and sequenced, and are ranked by increasing Il4ra expression (log-transformed, Row Z-score). The original FACS gate of each cell is given at the top (color code at the bottom). Again three groups of challenged cells could be distinguished (namely Il4ra-, Il4ra+ and Il4ra++). The heat map displays the expression of genes associated with MΦs containing growing and non- growing bacteria. b, MΦs were infected with Salmonella for 20h prior to being recovered, labeled and analysed by Flow Cytometry (n >30,000 cells). Cells were gated depending on the growth status of the bacteria as indicated in panel a, and levels of detection of IL1B, ARG1, IL4RA (CD124) and CD86 were measured and compared in the different MΦ populations. c, Working model depicting the correlation between different MΦ activation programs and differentially growing Salmonella. Two distinct functional populations were found: a proinflammatory activation state dominated in MΦs with non- growing Salmonella and bystander cells, whereas an anti-inflammatory (M2-like) state prevailed in MΦs with growing bacteria.

METHODS
In vitro infection protocol and single-cell sorting: Bone marrow derived MΦs were obtained by isolation and differentiation of the marrow of the hind-leg bones of 8-12 week old C57/BL6 wild-type mice (Janvier labs). Briefly, a bone marrow suspension in X-Vivo 15 medium (Lonza), supplemented with 10 % fetal bovine serum (FBS superior, Biochrom) and 10 % L929 conditioned DMEM medium (herein called ‘differentiation medium’) was seeded into 6-well plates at a density of 106 leukocyte cells in 2 ml per well. Cells were incubated at 37 °C in a CO2-incubator with humidified atmosphere up to 7 days. At day 3 the cultures were supplemented with 0.3 volumes of fresh differentiation medium. At day 7, cells were harvested and seeded into 6 well tissue culture plates at a density of 106 cells per well in a fresh 2 mL differentiation medium. 
S. Typhimurium SL1344 strain harboring the pFCcGi plasmid 52 was used for Fluorescence Dilution (FD) 10. The strain was cultured for 16 h at 37°C in a minimum medium MgMES supplemented with 0.2% arabinose and 50 µg/mL ampicillin. Before infection, 180 µL of bacteria culture were opsonized 20 min at RT by supplementing 20 µL of mouse serum and 80 µL of differentiation medium. 
MΦs (see above) were infected with Salmonella at a multiplicity of infection of 50. Plates were centrifuged for 5 min at 110 g to favor contact between bacteria and MΦs. After 30 min, cells were washed two times with RT PBS. The medium was replaced with the differentiation medium (see above) supplemented with a 100 μg/ml gentamicin for 1 h to eliminate extracellular bacteria. Gentamicin concentration was reduced to 20 μg/ml for the remainder of the infection. At 20 h post-uptake, cells were resuspended in 1 mL ice cold PBS by scrapping from each well and single-cell suspension was prepared by passing cells through a 30 µm pre-separation filter (Miltenyi Biotec). 
Single cells were immediately sorted using a FACSaria III (BD Biosciences) (device: 96-well plate; precision: single-cell; nozzle: 100 μm). Forward-scatter area (FCS-A) versus side-scatter area (SSC-A) was used to gate out damaged cells, dead cells were stained with 1 µL of saturated propidium iodide and dead PI+ cells were gated out. 
Single cells were sorted into different wells from 48 well plate (Brand) filled with 3 µL of a hypotonic lysis buffer (2.7 µL of 0.2% Triton X-100 (Sigma) in RNAse-free water (Life Technologies) and 0.3 µL of SUPERase In (Life Technologies)). Single sorted cells were immediately chilled in a -20°C prepared isofreeze rack and processed for single-cell RNAseq or stored at -80°C. 

Single-cell RNAseq and tagmentation protocol: Single-cell libraries were prepared as reported in Smartseq2 protocol 22,53 with some technical adaptation: 1µL of ERCC spike-Mix 1 (Life Technologies) diluted at 1:106 in RNAse-free water was added after cell sorting to the lysis buffer; template-switching oligo (TSO) was modified to add isomeric nucleotide at the 5’end to minimize background cDNA synthesis as previously described 54 (5’-(iso-dC)(iso-dG)(iso-dC)AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3’, Eurogentec); after first strand synthesis primer-dimers were removed using 11 µL of Ampure XP beads (Beckman Coulter). After the cDNA amplification, libraries were quantified using Qubit Hs Assay (Life Technologies) and quality of libraries were checked using Bioanalyser (Agilent). Using the modified protocol described in ref. 55, 1 ng of cDNA was subjected to tagmentation-based protocol (Nextera XT, Illumina) using ¼ of the recommended volumes, 10 min for tagmentation at 55°C and 1 min extension time during PCR. After PCR and cDNA purification, cDNA was purified and resuspended in 15 µL of elution buffer (EB) (Qiagen). Finally, libraries were pooled (16 libraries for Miseq; 96 libraries for Nextseq) and sequencing was performed in paired-end mode for 2 x 75 cycles using Illumina's MiSeq or NextSeq.

Single cell RNA-Seq read mapping and expression quantification: After demultiplexing, an initial quality assessment was performed using FastQC (v 0.11.3). Illumina adapters and SMARTSeq2 PCR primer (5'-AAGCAGTGGTATCAACGCAGAGT-3') were removed using cutadapt (v1.3)56. Reads below a phred score of 20 were trimmed using the program fastq_quality_trimmer from the FASTX toolkit (v 0.0.13). After quality trimming and adapter clipping unmatched paired end reads were removed using inhouse scripts. 
Trimmed reads were mapped to the mouse genome reference sequence (GRCm38.p3) and 92 ERCC spike-ins sequences. Alignment was performed using Bowtie2 (v 2.2.4)57 and Tophat (v 2.0.13)58 with default settings. The incorrectly annotated transcript ENSMUSG0000092329 was removed from the mouse annotation file. Read counts of each gene were determined using the HTSeq program59. FPKM values were calculated using Cufflinks (v 2.2.1)60 using the no-effective-length-correction and compatible-hits-norm options.

Quality control and cell normalization: Single cells with total number of trimmed reads lower than 400,000, an Actb gene expression lower than 1,000 (in FPKM), and/or percentage of reads dedicated to ERCC larger than 70% were discarded. Then, we have applied a filtering step to remove genes not expressed or expressed in less than 2 cells. Finally, a size factor for each cell was estimated based on technical variations of the ERCC spike-ins, and later used to normalize all the endogenous genes61. 

Variable gene analysis and principal component analysis: To infer the genes that were variable above the technical noise, a linear regression model was applied to fit the relationship between the squared coefficient of variation (CV2) with the mean expression of ERCC spike-ins as previously introduced24. All single-cells that passed filter were subjected to a principal component analysis (PCA) (FactomineR R package62) using the variable genes. The first four principle component scores of each cell in each gene cluster were retrieved with ‘$ind$coord’ option. 

Single cell differential expression and pathway overdispersion analysis: To identify differential expression signature between group of cells identified by PCA, a Bayesian method for single-cell differential expression (SCDE) was used27. A Z score calculated by SCDE was further transformed to an empirical P-value (cut-off P<0.01) to determine the significant genes (Supplementary Fig. 7). The gene ontologies with coordinated variability among subpopulations were detected by PAGODA algorithm26, which was implemented in SCDE package (Supplementary Fig. 5).

Gene ontology analysis: The gene ontology of a specific gene list was analyzed using topGO package in R Bioconductor. Briefly the gene ontology terms of each gene was retrieved using annFun function, and then the ontology of each gene was classified into three categories: molecular function, biological process and cellular component. Enrichment analysis was performed to evaluate the significance of the terms compared to all the mouse genes using Fisher t-test. The calculated P-values were further corrected by the Benjamini-Hochberg method. The subgraph of significant GO terms was visualized using showSigofNodes function.

Correlation plots, heatmaps and cluster score: Cell-cell Pearson correlation were performed with the ‘cor’ function in R, and further plotted using pheatmap R package with clustering methods setting to ‘average’. The normalized expression of each gene was transformed into log value (log(expression+1)), and row scaled before generating heatmap using heatmap.2 function in gplots R package. In order to summarize the expression of each gene cluster into a numeric single value for each single cell, a ‘cluster score’ was calculated as the mean expression for every gene present in the cluster. The cluster score was visualized using boxplot and stripchart R function, the jitter method was used to separate cells.

Gene set enrichment analysis: To identify enriched pathway or transcription factors associated to a set of gene list like a gene cluster, GseaPreranked function in program Gene set enrichment analysis (GSEA) 29 was then used to calculate an enrichment score for each gene set sorted based on log fold change with the following parameters (“-collapse false -mode Max_probe -norm meandiv -nperm 1000 -scoring_scheme weighted -include_only_symbols true -make_sets true -rnd_seed timestamp -set_max 500 -set_min 15”). The curated pathways and transcription factor target genes annotation were retrieved from GSKB in Bioconductor experiment package (v 3.2).

Rare cell type identification (RaceID): The larger number of clusters were inferred by gap statistic, and further a k-means clustering was applied to the similarity matrix of these clusters by RaceID25. The outlier cell within each cluster was identified by the method ‘findoutliers’ with default values. 

Macrophage polarization detection: Bone marrow derived MΦs were recovered at different times prior or after infection as described above and fixed in 500 µl of 3% PFA for 15 min. Cells were then washed once in 500 ul cold PBS. For IL1B, and ARG1 labelling, cells were permeabilised in 0.1% saponin for 30 min. Labelling was carried out in 150 µl PBS supplemented with 10% horse serum (and 0.1% saponin when appropriate) and the conjugated antibodies (BD Biosciences) for 45 min at room temperature. Cells were washed once in PBS before being analysed on a Fortessa Flow cytometer (BD Biosciences). The antibody panel consisted of: IL4RA (CD124)-BV421, CD86-PE/Cy7, IL1B-PE, ARG1-APC.  

ADDITIONAL INFORMATION
SUPPLEMENTARY FIGURE LEGENDS
Supplementary Figure 1 | Characterization of bacterial input for infection and of bystander cells. a, Representative histogram of GFP (left) and mCherry (right) measured by flow cytometry intensities of the S. Typhimurium SL1344 WT (up) and SL1344 pFCcGi (down). Total number of bacteria analyzed n= 100,000. b, Percentage of Salmonella expressing GFP and mCherry in WT, GFP+ and pFCcGi strains. Error bars (S.D.) are calculated on tree independent biological replicates. c, qRT-PCR data of one bacterial and one mammalian house-keeping genes applied to a bacterial culture (500 µL, OD2), naïve MΦs (10,000 cells), bystanders (10,000 cells) and infected MΦs(10,000 cells) (n=2). 

Supplementary Figure 2 | Intracellular bacterial growth over the course of the infection. Representative time-course of flow cytometry scatter plots of non-infected (mock) and challenged MΦs. Gate 1 captures naïve MΦs and bystanders, gate 2 infected MΦs with a single bacterium, and gate 3 MΦs infected with bacteria that have proliferated.

Supplementary Figure 3 | Technical assessment of single-cell RNA-seq. a, Mapped reads classification by their classes over all the cells that pass the initial filter (n=60). b-c, Assessment of the dynamic range and the sensitivity of the single cell RNA-seq protocol. Average normalized read counts (b) and average detection rate (that is, the probability to have a read count value above 0) (c) for the 92 ERCC RNA spike-in as a function of the number of RNA the across all the single-cells that pass the initial quality control (n=60 cells, Supplementary Table 1). d, Identification of ‘biological’ variable genes using a spike-ins to model the technical noise. Coefficient of variation (CV2) is plotted against the read counts for all the naïve and challenged cells. In blue, average values for ERCC spike-ins (blue square) are fitted to a parametrized model using24 method (solid blue curve). Variable genes (red circles) among all genes (black circles) are represented by red and black circles respectively. Since bone-marrow MΦs are fully differentiated, we validated that cell-cycle dependent genes (green dots) are not variable. 

Supplementary Figure 4| Single-cell clustering. a, t-SNE analysis of cells. Each cell is represented as a dot and colors indicate cellular identities as inferred from the original FACS gates. b, Gap statistic of k-means clustering using RaceID algorithm. The first local maximum (equal 3, indicated with an arrow) provides a good estimate for the number of clusters that achieves optimal separation of the data into clusters. The data points and error bars means the average and standard deviation of gap statistic among 50 bootstrap samples. 

Supplementary Figure 5| PAGODA analysis applied to naïve and challenged cells. The dendrogram shows the overall clustering of the cells. Every cell is related to the flow cytometry sorting gate (and its correlated bacterial growth status) and is associated to its corresponding cell group as defined in Fig. 2b. The Cell PC score heatmap below reflects the top 4 aspects of heterogeneity (P<0,05) detected by PAGODA and every aspects is associated to GO terms noted as row labels. Finally, every heterogeneity aspect is associated underlying gene sets. 

Supplementary Figure 6| Principal component analysis (PCA) applied to MΦs with non-growing and growing bacteria. PCA of all variable genes among MΦs with growing and non-growing bacteria (as inferred from the original FACS gates (Fig. 1b)) is performed. In this analysis, bystanders and naïve cells are not taken into account. The contribution of each cells (point) to the first two dimensions is plotted with color referring to initial cellular identity. 

Supplementary Figure 7 | Single-cell differential gene expression (SCDE) approach defines gene clusters specific for PCA-isolated cell groups. Cell groups I, II and III isolated from PCA analysis (Fig. 2b) were compared in pairwise manner using SCDE method 27 using all genes that pass quality control (QC) (see Methods). All genes with P<0.01 (‘thershold’) have been selected for downstream analysis and represented in a Heatmap Fig. 2c. a, Cluster A and B are derived by comparing naïve cells versus challenged cells, labelled respectively cell-groups I and, II plus III on the PCA map (Fig. 2b). b, Cluster C and D are derived by comparing cell-groups II and III identified on the PCA map (Fig. 2b).

Supplementary Figure 8 | Bimodal/sporadic proinflammatory gene expression in group II. a, On the PCA map on dimensions (Dim) 1 and 2 of all naïve and challenged cells (Fig. 2b), single-cell gene expression of Tlr2 and Nlrp3 are color-coded showing preference expression on the group II. b, Violon plot showing the expression of Tnf, Nlrp3, and Cxcl10.

Supplementary Figure 9 | Gene expression pattern in M2-like cells. On the PCA map on dimensions (Dim) 1 and 2 of all naïve and challenged cells (Fig. 2b), single-cell gene expression of Mrc1, Ccl8, Spp1, Id1, Timp1 and Gpr35 are color-coded showing preference expression of group II. 

Supplementary Figure 10 | Independent confirmation of population segregation. A replicate experiment of infection, cell sorting and single-cell RNA-seq was performed. PCA all cells that passed technical filter (18 naïve MΦs, 23 bystanders, 20 MΦs containing non-growing bacteria, and 20 MΦs containing growing bacteria) is plotted on the first two dimensions. 

Supplementary Figure 11 | Kinetics of levels of IL4RA (CD124) during infection. MΦs were left uninfected or infected with Salmonella for 20h. Cells were recovered, labeled for IL4RA (CD124) and analysed by Flow Cytometry at 0, 2, 6, 10 or 20h (n >30,000 cells). From 10h onwards, cells were separated in the different MΦ populations containing growing or non-growing bacteria. This is a representative example of two repeats.

Supplementary Figure 12 | MΦs polarization depends on bacterial growth. MΦs were infected with Salmonella for 20h prior to being recovered, labeled and analysed by Flow Cytometry (n >30,000 cells). Cells were gated depending on the growth status of the bacteria and separated in cells containing multiple non-growing bacteria or cells containing growing bacteria. Levels of detection of IL1B, ARG1, IL4RA (CD124) and CD86 were measured and compared in the different MΦ populations.

SUPPLEMENTARY TABLES LEGENDS
Supplementary Table 1: Sequencing results summary.
Summary of sequencing results of the 62 single-cells composing the dataset that passed the initial quality control (QC) (MNGB:MΦ with non growing bacteria; MGB: MΦ with growing bacteria; NNI: Naive non infected). For every single-cell sequenced labeled by a unique ID number (column 1), the flow cytometry sorting gate (following Fig. 1b) is indicated in column 2 and the cell type in column 3. The total number of reads is given in column 4 associated with the percentage of those that passed the quality control (column 4). Column 6 gives the total number of detected genes and column 6 the associated level for actin. Column 7 indicates the percentage of reads associated with the spike-in (ERCC). Column 8 gives the final status of the cell whether  (YES) or not (NO) the single-cell passed the quality control filter.

Supplementary Table 2: Cell clustering and differentially expressed genes between subpopulations.
a, Cells are classified in groups as displayed in Fig. 2b. Column 1 and 2 recapitulates the Cell ID and the cell type respectively for every single-cell and column 3 gives the associated group number. b-c, Identified groups by PCA analysis have been compared pairwise using SCDE method (Kharchenko et al, 2014; PMID: 24836921). The result of the comparison between naive MΦ and challenged cells (b), group II and group III (c) are given. The tables are sorted by decreasing Z score. d, Selected genes for the heatmap displayed in Fig. 2c. Column 1 provides the assigned gene cluster (A to D). Column 2 gives the gene ensembl code associated with the know name in column 3. e, Compariso n with Avraham et al, 2015 (PMID:26343579). Lists of common genes between cluster I, II, III defined in [Figure 2, Supplementary Figure 2, Table S2] in Avraham et al and cluster A and C, and cluster D are listed in column 1 and 2 respectively. Enriched GO term of common genes between both dataset is listed in column 4 (Accession number) and column 5 (associated name to accession number). Every enriched GO term is associated in column 5 to Fisher’s test value.
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